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0 Introduction

0 Introduction

These notes follow a course on sheaf theory in topology and algebraic geometry taught by
Dr. Andrei Rapinchuk at the University of Virginia in Fall 2018. Topics include:

� Basic presheaf and sheaf theory on a topological space

� Some algebraic geometry

� Sheaf cohomology

� Applications to topology and algebraic geometry.

The main references are Godement’s original 1958 text Topologie Algébrique et Théorie
des Faisceaux, Wedhorn’s Manifolds, Sheaves and Cohomology, Bredon’s Sheaf Theory and
Hartshorne’s Algebraic Geometry.
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1 Presheaves and Sheaves on a Topological Space

1 Presheaves and Sheaves on a Topological Space

In this chapter, we describe the theory of presheaves and sheaves on topological spaces. The
basic intuition is that for a topological space X, one wishes to study a given property defined
on open sets U ⊆ X that behaves well under union and intersection of open sets.

1.1 Presheaves

Definition. For a topological space X, a presheaf on X is a contravariant functor F :
TopX → C, where C is any category. For each inclusion of open sets V ↪→ U , the induced
morphism FUV : F (U)→ F (V ) is called restriction, written FUV (σ) = σ|V .

We will typically take C to be a ‘set category’ such as Set, Ab, Ring, Alg, etc.

Example 1.1.1. The classic example of a presheaf on a topological space X assigns to each
open U ⊆ X the set F (U) of all continuous (or differentiable, smooth, holomorphic, etc.)
functions on U , with restriction maps given by restriction of functions. Each of these is a
presheaf of rings. More generally, if Y is any topological space, the functor U 7→ C(U, Y ),
the set of continuous functions U → Y , is a presheaf of sets on X.

Example 1.1.2. Let S be a set and define a functor F : TopX → Set by F (U) = S for all
U ⊆ X, with the restriction maps given by σ|V = σ ∈ S for any inclusion V ↪→ U . Then F
is a presheaf, called the constant presheaf on S.

Example 1.1.3. For a map π : Y → X, the presheaf of sections is the functor Γ(π,−)
sending U 7→ Γ(π, U) := {s : U → Y | π ◦ s = idU}. An element of Γ(π, U) is called a section
of π over U and an element of Γ(π,X) is called a global section.

Example 1.1.4. For a presheaf F onX and an open set U ⊆ X, the functor F |U : V 7→ F (V )
is a presheaf on U . The operation F 7→ F |U is called restriction of a presheaf.

Example 1.1.5. Suppose A is a set (or an abelian group, ring, etc.). The skyscraper presheaf
at x ∈ X with coefficients in A is the presheaf Ax defined by

x∗A(U) =

{
A, x ∈ U
∗, x 6∈ U

where ∗ denotes a point set. One can think of a skyscraper presheaf as a sort of constant
presheaf concentrated at the point x.

Example 1.1.6. Let K be an algebraically closed field, A = K[x1, . . . , xn] the polynomial
ring in n variables and V ⊆ Kn an algebraic set defined by an ideal I ⊂ A. The structure
presheaf on V is the presheaf OV defined on Zariski-open sets U ⊆ V by

U 7−→ OV (U) = {f : U → K | f is a regular function}.
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1.2 Sheaves 1 Presheaves and Sheaves on a Topological Space

Note that regular functions over an open set form a ring, so OV is a presheaf of rings (even
K-algebras). Let K[V ] = OV (V ), so that there is a surjective ring homomorphism

ϕ : K[x1, . . . , xn] −→ K[V ]

p 7−→ p|V .

Then K[V ] ∼= K[x1, . . . , xn]/I(V ) where I(V ) = kerϕ is the vanishing ideal of V .
When V is a variety (i.e. an irreducible algebraic set), K[V ] is an integral domain so it

has a field of fractions K(V ), called the field of rational functions of V . In this case, for each
open U ⊆ V ,

OV (U) =

{
f ∈ K(V ) | for all x ∈ V , there exist gx, hx ∈ K[V ] such that f =

gx
hx
, hx(x) 6= 0

}
.

So OV is really a sub-presheaf of the constant presheaf defined by K(V ).

1.2 Sheaves

Sheaves are a tool for encoding the local and global data of a topological space: in many
situations, the topological properties that one can define on a collection of open sets (local
data) can be glued together to give properties on their union (global data). The following
definition makes this rigorous.

Definition. A presheaf F : TopX → C is called a sheaf on X provided it satisfies the
following ‘descent conditions’:

(1) For any open covering U =
⋃
Ui, if there exist sections s, t ∈ F (U) such that s|Ui = t|Ui

for all i, then s = t.

(2) For any open covering U =
⋃
Ui admitting sections si ∈ F (Ui) such that si|Ui∩Uj =

sj|Ui∩Uj for all i, j, there exists a unique section s ∈ F (U) such that s|Ui = si for all i.

Example 1.2.1. The presheaf F : U 7→ C(U, Y ) of continuous functions on X in Exam-
ple 1.1.1 is a sheaf. Indeed, if U =

⋃
Ui is an open cover in X and f, g : U → Y are

continuous maps such that f |Ui = g|Ui , this means f(x) = g(x) for all x ∈ Ui. Since the
Ui cover U , this means f(x) = g(x) for all x ∈ U and hence f = g. If instead we have
continuous functions fi : Ui → Y for each i with fi|Ui∩Uj = fj|Ui∩Uj , then fi(x) = fj(x) for
all x ∈ Ui ∩ Uj. For x ∈ U , define f : U → Y by f(x) = fi(x) if x ∈ Ui. Then the previous
statement implies f is well-defined and continuous on U . Hence f ∈ F (U) and f |Ui = fi for
all i.

Example 1.2.2. Let F (U) be the set of bounded functions U → R. Then F : U 7→ F (U)
is a presheaf on X, with the usual restriction maps, but F is not a sheaf. For example,
when X = R, consider the open cover of X given by Un =

(
n− 1

3
, n+ 4

3

)
. Then fn(x) = x

defines a sequence of bounded functions on each Un which agree on intersections, but the
only possible lift of {fn} to X is f(x) = x, an unbounded function. Hence axiom (2) fails.
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1.3 The Category of Sheaves 1 Presheaves and Sheaves on a Topological Space

Example 1.2.3. The skyscraper presheaf x∗A of Example 1.1.5 at a point x ∈ X is a sheaf
on X: suppose U =

⋃
Ui is an open cover and s, t ∈ x∗A(U) such that s|Ui = t|Ui for all Ui.

If x 6∈ U , then x∗A(U) = ∗ so s = t is immediate. If x ∈ U , then x∗A(U) = A and x ∈ Ui
for some i, but s|Ui = s ∈ A and t|Ui = t ∈ A, so s = t. On the other hand, if si ∈ x∗A(Ui)
such that si|Ui∩Uj = sj|Ui∩Uj for all Ui ∩ Uj 6= ∅, then there are two cases again. If x 6∈ U ,
there is a trivial lift of the si to s ∈ x∗A(U) = ∗. If x ∈ U , x lies in some Ui so we may take
s = si ∈ x∗A(Ui) = A = x∗A(U). If x also lies in Uj, then Ui ∩ Uj 6= ∅ so si|Ui∩Uj = sj|Ui∩Uj
and in particular si = sj. Therefore s is well-defined, so x∗A is a sheaf.

Example 1.2.4. For an affine algebraic variety V ⊆ Kn, the structure presheaf OV of
Example 1.1.6 is a sheaf. The proof is similar to the argument in Example 1.2.1.

Lemma 1.2.5. If F is a sheaf on X and U =
⋃
Ui is an open cover, then F (U) =

⋂
F (Ui).

Proof. For any Ui ∩ Uj 6= ∅, the pushforward diagram

Ui ∩ Uj Ui

Uj U

induces a pullback diagram of sets (or abelian groups, rings, etc.)

F (U) F (Ui)

F (Uj) F (Ui ∩ Uj)

So F (U) = F (Ui) ∩ F (Uj) by definition. This extends to arbitrary unions.

Proposition 1.2.6. For an affine algebraic variety V over K and a regular function f ∈
K[V ], let D(f) = {x ∈ V | f(x) 6= 0} be the principal open subset defined by f . Then
OV (D(f)) = K[V ]f , the localization at all powers of f .

Proof. It is clear thatK[V ]f ⊆ OV (D(f)). Going the other direction, suppose g ∈ OV (D(f)).
Then for any x ∈ D(f), g = ax

bx
in K(V ) with bx(x) 6= 0. Let I be the ideal in K[V ] generated

by {bx}x∈D(f). Then V (I) ∩D(f) = ∅ so V (I) ⊆ V ((f)). By Hilbert’s Nullstellensatz, this
implies fm ∈ I for some m ≥ 1, so fm =

∑r
i=1 hxibxi for some x1, . . . , xr and hxi ∈ K[V ].

Thus gfm =
∑r

i=1 hxiaxi which shows g =
∑r

i=1

hxiaxi
fm
∈ K[V ]f .

1.3 The Category of Sheaves

Let PreshX be the category of presheaves of abelian groups on X, with morphisms given by
natural transformations of functors, and define ShX to be the full subcategory of sheaves in
PreshX . (That is, a morphism of sheaves on X is a morphism of the underlying presheaves.)
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1.3 The Category of Sheaves 1 Presheaves and Sheaves on a Topological Space

Many categorical constructions in PreshX can be constructed locally, i.e. over open sets
U ⊆ X. For example:

Definition. For two presheaves F and G on X, the presheaf product F × G is defined
by (F × G)(U) = F (U) × G(U). Likewise, the presheaf coproduct F

∐
G is defined by

(F
∐
G)(U) = F (U)

∐
G(U).

Definition. Let ϕ : F → G be a morphism of presheaves.

� The presheaf image imϕ is defined by (imϕ)(U) = im(F (U)→ G(U)).

� The presheaf kernel kerϕ is defined by (kerϕ)(U) = ker(F (U)→ G(U)).

� The presheaf cokernel cokerϕ is defined by (cokerϕ)(U) = coker(F (U)→ G(U)).

Lemma 1.3.1. If ϕ : F → G is a morphism of sheaves, then kerϕ is a sheaf.

Proof. Suppose U =
⋃
i Ui is an open cover in X and s, t ∈ (kerϕ)(U) such that s|Ui = t|Ui

for all Ui. Then since (kerϕ)(U) ⊆ F (U), the first sheaf axiom for F implies directly that
s = t. Now suppose there are sections si ∈ (kerϕ)(Ui) such that si|Ui∩Uj = sj|Ui∩Uj for all
overlapping Ui, Uj. Since (kerϕ)(Ui) ⊆ F (Ui), the second sheaf axiom for F implies there
exists a section s ∈ F (U) such that s|Ui = si for all i. We must show s ∈ (kerϕ)(U) ⊆ F (U).
Note that ϕU(s)|Ui = ϕUi(s|Ui) = ϕUi(si) = 0 for each Ui, so by the first sheaf axiom for G,
we must have ϕU(s) = 0.

However, not all of the constructions above yield sheaves. For example, the cokernel of
a morphism of sheaves is not a sheaf in general. To remedy this, we introduce a sheaf F sh

associated to any presheaf F , called the sheafification of F .

Theorem (Sheafification). For any presheaf F on X, there exists a sheaf F sh on X together
with a morphism F → F sh such that for any sheaf G and morphism of presheaves F → G,
there is a unique morphism of sheaves F sh → G making the diagram

F G

F sh

commute. Further, F 7→ F sh is a functor PreshX → ShX which is left adjoint to the forgetful
functor ShX ↪→ PreshX .

To prove this, we need the following definition.

Definition. For a presheaf F on X and a point x ∈ X, the stalk of F at x is the direct
limit

Fx := lim
−→

F (U)

taken over all open sets U ⊆ X containing x.
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1.3 The Category of Sheaves 1 Presheaves and Sheaves on a Topological Space

Example 1.3.2. For the constant presheaf FS, the stalks are all the same: FS,x = S. The
same is true if F is the sheaf of locally constant functions on X, i.e. F (U) consists of
functions f : U → S which are constant on some open subset V ⊆ U .

Example 1.3.3. Suppose X is T1 and let x∗A be the skyscraper sheaf on X with value A
on neighborhoods of x ∈ X (see Example 1.1.5). Then for a point y ∈ X, the stalk (x∗A)y
is A if y = x and 0 otherwise. Therefore we can think of a skyscraper sheaf as a sort of
constant sheaf concentrated at the point x.

When X is not T1 and x is not a closed point of X, then the stalks are a little ‘fuzzier’:
for y ∈ X,

(x∗A)y =

{
A, y ∈ {x}
0, y 6∈ {x}.

Example 1.3.4. For an affine algebraic variety V ⊆ An, the stalk of the structure sheaf OV
(see Example 1.1.6) at a point x ∈ V is

OV,x = K[V ]mx ,

the localization of K[V ] at the maximal ideal mx = {f ∈ K[V ] | f(x) = 0}. Equivalently,
OV,x consists of all rational functions f ∈ K(V ) which are defined at x, meaning on some
neighborhood U of x, f = gx

hx
for some gx, hx ∈ OV (U) with hx(x) 6= 0.

Let ϕ : F → G be a morphism of presheaves on X. Then for any x ∈ X, since the stalks
Fx and Gx are defined via direct limits, there is an induced morphism ϕx : Fx → Gx.

Lemma 1.3.5. Let F be a sheaf on X and U ⊆ X an open set with sections s, t ∈ F (U).
Then s = t if and only if for all x ∈ U , s|x = t|x in Fx. In other words, the morphism
F (U)→

∏
x∈U Fx is injective.

Proof. If s|x = t|x, then there is some neighborhood Ux ⊆ U of x such that s|Ux = t|Ux . Since
this holds for all x ∈ U and U =

⋃
x∈U Ux, we have s|Ux = s|Ux for all Ux, but by the sheaf

axioms this implies s = t.

Corollary 1.3.6. Let F be a presheaf, G a sheaf and ϕ, ψ : F → G two morphisms of
presheaves. Then ϕ = ψ if and only if ϕx = ψx : Fx → Gx for all x ∈ X.

Proof. The ( =⇒ ) implication is clear, so suppose ϕx = ψx for all x. Let U ⊆ X be an open
set and take s ∈ F (U). Then the elements ϕU(s), ψU(s) ∈ G(U) restrict on stalks to:

ϕU(s)|x = ϕx(s|x) since ϕ is a morphism

= ψx(s|x) by hypothesis

= ψU(s)|x since ψ is a morphism.

Therefore by Lemma 1.3.5, ϕU(s) = ψU(s). Since this holds for all U , we get ϕ = ψ.

Definition. Let F be a sheaf of abelian groups on X and s ∈ Γ(X,F ) a global section. Then
the support of s is the set

supp(s) = {x ∈ X | s|x 6= 0 in Fx}.
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1.3 The Category of Sheaves 1 Presheaves and Sheaves on a Topological Space

Lemma 1.3.7. For any s ∈ Γ(X,F ), supp(s) is a closed set in X.

Proposition 1.3.8. Let ϕ : F → G be a morphism of presheaves, with F a sheaf. Then

(1) The morphisms ϕx : Fx → Gx are injective for all x ∈ X if and only if the morphisms
ϕU : F (U)→ G(U) are injective for all open sets U ⊆ X.

(2) The morphisms ϕx : Fx → Gx are bijective for all x ∈ X if and only if the morphisms
ϕU : F (U)→ G(U) are bijective for all open sets U ⊆ X.

Proof. (1) Assume ϕx are injective for all x ∈ X and suppose s, t ∈ F (U) are sections such
that ϕU(s) = ϕU(t) in G(U). Then for all x ∈ X,

ϕx(s|x) = ϕU(s)|x = ϕU(t)|x = ϕx(t|x)

since ϕ is a morphism, so injectivity implies s|x = t|x. Finally, Lemma 1.3.5 shows that s = t
in F (U).

Conversely, assume that each ϕU is injective. For a fixed x ∈ X, take sx, tx ∈ Fx such that
ϕx(sx) = ϕx(tx) in Gx. Then there is a neighborhood U of x such that sx = s|x and tx = t|x
for some s, t ∈ F (U). Since Gx = lim

−→
G(U) over all neighborhoods U of x, the condition that

ϕx(sx) = ϕx(tx) in Gx means there is some smaller neighborhood V ⊆ U containing x on
which ϕU(s)|V = ϕU(t)|V . Since ϕ is a morphism, this is equivalent to ϕV (s|V ) = ϕV (t|V ),
but by injectivity of ϕV , we get s|V = t|V . Passing to the direct limit, we have sx = tx in
Fx. Hence ϕx is injective.

(2) The ( =⇒) implication is trivial. For ( =⇒ ), suppose each ϕx is bijective. Fix
U ⊆ X and t ∈ G(U); we must find s ∈ F (U) so that ϕU(s) = t. For any x ∈ U ,
consider the image tx of t in the stalk Gx. By hypothesis, there is some sx ∈ Fx such that
ϕx(sx) = tx. Then there is a neighborhood Ux ⊆ U of x on which sx = sUx|x for some
sUx ∈ F (Ux). By construction, ϕUx(sUx) = t in Gx, so there is a neighborhood Vx ⊆ Ux of x
with ϕVx(sUx|Vx) = ϕUx(sUx)|Vx = tVx . Set sVx = sUx|Vx . Letting x range over the points of
U , we get a cover U =

⋃
x∈U Vx and moreover, if x, y ∈ U , then

ϕVx∩Vy(sVx|Vx∩Vy) = ϕVx(sVx)|Vx∩Vy since ϕ is a morphism

= t|Vx∩Vy
= ϕVy(sVy)|Vx∩Vy
= ϕVx∩Vy(sVy |Vx∩Vy) for the same reason.

We are assuming each ϕx is bijective, so in particular (1) implies each ϕVx∩Vy is injective, and
thus sVx|Vx∩Vy = sVy |Vx∩Vy . Now the second sheaf axiom guarantees that there is a section
s ∈ F (U) such that s|Vx = sVx for all x ∈ U . Finally, observe that

ϕU(s)|Vx = ϕVx(s|Vx) = ϕVx(sVx) = t|Vx

for all x ∈ U . Thus the first sheaf axiom implies ϕU(s) = t.

Remark. Notice that the proof of surjectivity in (2) crucially relies on the fact that the ϕx
and ϕU are already injective. It is not true in general that the ϕx are all surjective if and
only if the ϕU are all surjective.
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1.3 The Category of Sheaves 1 Presheaves and Sheaves on a Topological Space

Proposition 1.3.9. For any x ∈ X, the stalk functor PreshX → Ab, F 7→ Fx, is exact.

Proof. Suppose F ′
ϕ−→ F

ψ−→ F ′′ is an exact sequence of presheaves on X. We must show the

induced sequence of stalks F ′x
ϕx−→ Fx

ψx−→ F ′′x is exact. First, since ψ ◦ ϕ = 0 globally, on
each stalk we get ψx ◦ ϕx = 0 so imϕx ⊆ kerψx. On the other hand if sx ∈ kerψx, then for
some neighborhood U of x, there is a section s ∈ F (U) such that s|x = sx and ψU(s)|x =
ψx(sx) = 0. Thus on some smaller neighborhood V ⊆ U of x, ψV (s|V ) = ψU(s)|V = 0, so
s|V ∈ kerψV . By exactness, this means s|V = ϕV (s′) for some s′ ∈ F ′(V ). Then we have
sx = ϕV (s′)x = ϕx(s

′
x) for s′x = s′|x in Fx. Hence kerψx ⊆ imϕx so the sequence is exact.

This gives us a good definition for what it means for a sequence of sheaves to be exact.

Definition. A sequence of sheaves F ′ → F → F ′′ is exact if for all x ∈ X, the sequence of
stalks F ′x → Fx → F ′′x is exact.

Theorem 1.3.10. Let 0→ F ′
ϕ−→ F

ψ−→ F ′′ → 0 be a short exact sequence of sheaves on X.
Then for every open set U ⊆ X, the sequence

0→ F ′(U)→ F (U)→ F ′′(U)

is exact. That is, the forgetful functor ShX → PreshX is left exact.

Proof. By definition, 0 → F ′x
ϕx−→ Fx

ψx−→ F ′′x → 0 is exact for all x ∈ X, so Proposi-
tion 1.3.8(1) implies 0 → F ′(U) → F (U) is exact for all open sets U ⊆ X. Set K(U) =
ker(F (U) → F ′′(U)). Then by Lemma 1.3.1, K : U 7→ K(U) is a sheaf and it is easy to
see that the stalks are Kx = ker(Fx → F ′′x ). Now we have (ψ ◦ ϕ)x = ψx ◦ ϕx = 0 for all
x ∈ X by exactness of the sequence of stalks, so (ψ ◦ ϕ)U = ψU ◦ ϕU = 0 for all U , and thus
imϕU ⊆ K(U). Finally, ϕ can be written as a morphism F → K, but on the level of stalks
this is a bijection ϕx : Fx

∼−→ Kx = imϕx, so by Proposition 1.3.8(2), ϕU : F (U) → K(U)
is also bijective. Hence F ∼= imϕ = K so the sequence 0 → F ′(U) → F (U) → F ′′(U) is
exact.

In general, if F → F ′′ is surjective, it need not be true that F (U)→ F ′′(U) is surjective.
By definition, surjectivity of sheaves means surjectivity of stalks, so an element s′′x ∈ F ′′x is
the image of some sx ∈ Fx but this sx need only be defined on some neighborhood of x, not
necessarily on arbitrary U .

Example 1.3.11. Take X = C and let O be the sheaf of holomorphic functions from
Example 1.1.1. If O× denotes the sheaf of nonvanishing holomorphic functions on C, then
there is a morphism of sheaves ϕ : O → O× given locally by ϕU : O(U)→ O(U)×, f 7→ e2πif .
In fact, one can see that ϕ is an isomorphism on stalks (using the complex logarithm).
However, on U = C×, the map O(C×)→ O(C×)× is not surjective, since f(z) = z is not in
the image. Thus on the level of stalks we have exact sequences

0→ Zx
ψx−→ Ox

ϕx−→ O×x → 0

where Z denotes the constant sheaf, but 0→ Z(C×)→ O(C×)→ O(C×)× → 0 is not exact.

8



1.3 The Category of Sheaves 1 Presheaves and Sheaves on a Topological Space

Definition. A sheaf F on X is called flasque (or flabby) if for every open inclusion V ⊆ U ,
the restriction map F (U)→ F (V ) is surjective.

Theorem 1.3.12. If 0 → F ′
ϕ−→ F

ψ−→ F ′′ → 0 is a short exact sequence of sheaves with F ′

flasque, then the sequence

0→ F ′(U)→ F (U)→ F ′′(U)→ 0

is exact for any open U ⊆ X. If in addition F is flasque, then so is F ′′.

Proof. By Theorem 1.3.10, it’s enough to show ψU : F (U) → F ′′(U) is surjective. Further,
after restriction of sheaves, it’s enough to consider the case U = X. Let t ∈ F ′′(X). Then
for any x ∈ X, there is a neighborhood Ux ⊆ X of x and a section sUx ∈ F (Ux) such that
ψUx(sUx) = t|Ux , by surjectivity of stalks. Consider the set of pairs

C = {(U, s) | U ⊆ X, s ∈ F (U), ψU(s) = t|U}

of open sets which admit an extension of t. Then C is a partially ordered set via (U1, s1) �
(U2, s2) if and only if U1 ⊆ U2 and s2|U1 = s1. For a linearly ordered subset (Uα, sα) in C, the
pair (

⋃
Uα, s

∗) is an upper bound, where s∗ ∈ F (
⋃
Uα) is defined using the sheaf conditions

on F . Thus by Zorn’s Lemma, C contains a maximal element, say (U, s). Assume x ∈ XrU .
Then there is a neighborhood V of x and a section sV,0 ∈ F (U) with ψV (sV,0) = t|V by
surjectivity on stalks. Note that

ψU∩V (s|U∩V − sV,0|U∩V ) = ψU∩V (s|U∩V )− ψU∩V (sV,0|U∩V ) = t|U∩V − t|U∩V = 0

so s|U∩V −sV,0|U∩V ∈ ψU∩V = imϕU∩V by exactness at F (U∩V ). That is, s|U∩V −sV,0|U∩V =
ϕU∩V (s′0) for some s′0 ∈ F ′(U ∩V ). Now since F ′ is flasque, s′0 = s′|U∩V for some s′ ∈ F ′(V ).
Set sV = sV,0 + ϕV (s′). By construction, s|U∩V = sV |U∩V so by the sheaf axioms on F over
U ∪ V , there is a section sU∪V ∈ F (U ∪ V ) with sU∪V |U = s and sU∪V |V = sV . This shows
that (U, s) ≺ (U ∪ V, sU∪V ), contradicting the fact that (U, s) is a maximal element in C.
Hence X r U = ∅, or U = X, and s ∈ F (X) satisfies ψX(s) = t by definition.

For the last statement, consider the following diagram with exact rows:

0 F ′(U) F (U) F ′′(U) 0

0 F ′(V ) F (V ) F ′′(V ) 0

If F is flasque, then the middle column is surjective, so it follows that the right column is
also surjective. Hence F ′′ is also flasque.

Proposition 1.3.13. Let ϕ : F → G be a morphism of presheaves on X. Then

(1) ϕ is surjective over all open sets U ⊆ X if and only if ϕ is an epimorphism in the
category PreshX .

9



1.4 Étale Space and Sheafification 1 Presheaves and Sheaves on a Topological Space

(2) If F and G are sheaves, then ϕ is surjective on stalks if and only if ϕ is an epimorphism
in the category ShX .

Proof. (1) Let cokerϕ be the presheaf cokernel of ϕ. Then ϕ is an epimorphism if and only
if cokerϕ = 0. For any open U ⊆ X, (cokerϕ)(U) is the cokernel of ϕU : F (U) → G(U)
in the category of abelian groups, so it is 0 if and only if ϕU is surjective. On the level of
sheaves, cokerϕ = 0 if and only if (cokerϕ)(U) = 0 for all U , thus ϕ is surjective on open
sets if and only if it’s an epimorphism.

(2) First suppose ϕ is surjective on stalks. If

F G H
ϕ f

g

is a diagram of sheaves such that f ◦ ϕ = g ◦ ϕ, then for all x ∈ X, we have

fx ◦ ϕx = (f ◦ ϕ)x = (g ◦ ϕ)x = gx ◦ ϕx

but since ϕx is surjective, this implies fx = gx. Applying Corollary 1.3.6 gives us f = g, so
ϕ is an epimorphism.

Conversely, if ϕ is an epimorphism, let C = cokerϕ be the presheaf cokernel of ϕ. If
p : G→ G/ϕ(F ) ∼= C is the natural projection of presheaves, consider the diagram

F G C
ϕ p

0

Then p ◦ϕ = 0 = 0 ◦ϕ so by assumption, p = 0. That is, C = 0, which means Cx = 0 for all
x ∈ X. But Cx = coker(ϕx : Fx → Gx), so Cx = 0 implies ϕx is surjective for all x ∈ X.

1.4 Étale Space and Sheafification

Definition. Let p : E → X be a morphism in a category C. A section of p is a morphism
σ : X → E such that p ◦ σ = idX .

Definition. When p : E → X is a continuous map of topological spaces, a local section
of p over an open set U ⊆ X is a map σ : U → E such that p ◦ σ = idX |U . The set of all
sections of p over U is denoted Γp(U). A global section of p is a section over the open set
U = X.

Let p : E → X be a local homeomorphism of topological spaces, i.e. a map such that for
each point e ∈ E, there is a neighborhood Ve ⊆ E which is mapped homeomorphically by π
to a neighborhood Ux of x = p(e) in X. For each x ∈ X, we will write Ex = p−1(x) ⊆ E.

Proposition 1.4.1. Let p : E → X be a local homeomorphism. Then

(1) The functor Γp(−) : TopX → Set, U 7→ Γp(U), is a sheaf on X with restriction maps
Γp(U)→ Γp(V ) for V ⊆ U given by restriction of sections s 7→ s|V .

10



1.4 Étale Space and Sheafification 1 Presheaves and Sheaves on a Topological Space

(2) Sets of the form s(U), where U ⊆ X is open and s ∈ Γp(U), form a basis for the
topology on E.

(3) The stalk of Γp(−) at x ∈ X is the fibre Ex.

Proof. (1) and (2) are routine. Here’s a proof of (3):
For each neighborhood U ⊆ X of x, define a map

νU : Γp(U) −→ Ex

s 7−→ s(x).

This is compatible with restriction, i.e. if V ⊆ U is a smaller neighborhood of x, the diagram

Γp(U)

Γp(V )

Ex

νU

νV

commutes. Therefore the νU induce a morphism ν : Γp(−)x = lim
−→

Γp(U)→ Ex. For e ∈ Ex,
take a neighborhood Ve ⊆ E such that p|Ve : Ve → π(Ve) = U is a homeomorphism. Then
the map s = p|−1

Ve
is a section of p over U and s(x) = s(p(e)) = e, so ν is onto. Finally, if

s and t are sections of p over some neighborhoods U1 and U2 of x, respectively, such that
s(x) = t(x) in Ex, then we may choose neighborhoods V1, V2 ⊆ E such that p|V1 : V1

∼−→ U1

and p|V2 : V2 → U2 are homeomorphisms. Set V = V1 ∩ V2 and U = π(V ). Then p is a
homeomorphism on V , so p ◦ s|U = p ◦ t|U implies s|U = t|U so s = t in Γp(−)x. Thus ν is a
bijection.

Definition. The éspace étale of a sheaf F on X is the space EF =
∐

x∈X Fx with the
topology induced by the open sets

VU,s := {(x, s|Fx) | x ∈ U, s ∈ F (U)}

where U runs over all open sets in X. The étale cover pF : EF → X is naturally defined
as (x, f |Fx) 7→ x.

Example 1.4.2. For the sheaf of holomorphic functions O on C, the open sets VU,f (for
holomorphic functions f : U → C) are given by

VU,f = {(z0, p(z)) | p(z) is the Taylor series expansion of f(z) at z0}.

Theorem 1.4.3. There is an equivalence of categories between maps p : E → X and sheaves
F on X given by (p : E → X) 7→ Γp and F 7→ (pF : EF → X).

11



1.4 Étale Space and Sheafification 1 Presheaves and Sheaves on a Topological Space

Proof. We have seen, courtesy of Proposition 1.4.1, that Γp is a sheaf on X. On the other
hand, it follows from the definition of the topology on EF that the map pF : EF → X is
continuous. Therefore it remains to show that the assignments p 7→ Γp and F 7→ pF define
an equivalence of categories. That is, we must show that for a sheaf F on X, there is an
isomorphism ΓpF

∼= F , and for a map p : E → X, there is a homeomorphism EΓp
∼= E

making the diagram

EΓp E

X

∼

p

commute. First let F be a sheaf, let U ⊆ X be open, take σ ∈ F (U) and define s ∈ ΓpF (U)
by s(x) = (x, σ|x). Consider s−1(VU,f ) ⊆ U for some f ∈ F (U). Then

x ∈ s−1(VU,f ) ⇐⇒ s(x) = f(x)

⇐⇒ s|W = f |W for some neighborhood W of x.

For such an x we have W ⊆ s−1(VU,f ), so the morphism F → ΓpF sending σ 7→ s is well-
defined and continuous. Suppose s′ ∈ ΓpF (U) such that s(x) = s′(x) for all x ∈ U ′. Then
there exists an open cover U =

⋃
Ui with s|Ui = s′|Ui for all Ui, so by the sheaf axioms,

s = s′. Therefore F → ΓpF is one-to-one.
On the other hand, suppose s : U → EΓp is a section of pF . Then

s−1(VU ′,s′) = {x′ ∈ U ′ | s(x′) = s′(u′)}.

On the open set s−1(VU ′,s′) ⊆ U , s comes from s′ uniquely. Therefore if U ′ is a neighborhood
of x, then s−1(VU ′,s′), where s′(x) = s(x), is a neighborhood of x. This means there is an
open cover U =

⋃
Ui with σi ∈ F (Ui) such that σi(x) = s(x) for all x ∈ U . Moreover, since

F → ΓpF is one-to-one, we have σi|Ui∩Uj = σj|Ui∩Uj for all i, j. Therefore by the sheaf axioms,
there is a unique section σ ∈ F (U) with σ|Ui = σi for all i, which then satisfies σ(x) = s(x)
for all x ∈ U . Thus F → ΓpF is onto, hence an isomorphism.

Now let p : E → X be a continuous map. Define E → EΓp as follows. For y ∈ E, set
x = p(y) ∈ X. Then for all open sets U ⊆ X containing X, y ∈ p−1(U), so y in fact lies
in the stalk Γp,x = lim

−→
Γp(U). Thus the assignment E → EΓp , y 7→ y is well-defined. It is

clearly one-to-one and onto, and continuity follows easily from the definition of the topology
on EΓp .

Theorem 1.4.4 (Sheafification). For every presheaf (of sets) F on X, there exists a presheaf
F sh together with a morphism of presheaves θ : F → F sh such that for every x ∈ X,
θx : Fx → F sh

x is a bijection. Moreover, for any morphism ϕ : F → G where G is a sheaf,
there is a unique morphism of sheaves ψ : F sh → G such that the diagram

12
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F F sh

G

θ

ψϕ

commutes.

Corollary 1.4.5. If F is a sheaf, then F sh = F .

Proof. This follows from Proposition 1.3.8(2) and the fact that Fx → F sh
x is a bijection for

all x ∈ X.

Proof of 1.4.4. Let E = EF
π−→ X be the étale space of F and define F = Γπ(−), the sheaf

of sections of π. Then the morphism θ : F → F sh is defined by

θU : F (U) −→ F sh(U)

s 7−→ (s̃ : U → E, x 7→ s|x).

Suppose V ⊆ U is an inclusion of open sets. It is immediate that the diagram

F (U) F sh(U)

F (V ) F sh(V )

θU

θV

commutes, so the θU indeed give a morphism θ : F → F sh. On stalks, we have that
F sh
x = Γ(−, π)x = Ex = Fx by Proposition 1.4.1(3), and it is clear that θx : Fx → Fx is just

the identity morphism sx 7→ sx.
To prove the universal property, note that Corollary 1.4.5 already follows from the para-

graph above, so for any sheaf G, θ : G → Gsh is the identity on G. If ϕ : F → G is a
morphism (of presheaves), then by Theorem 1.4.3 there is a continuous map Eϕ : EF → EG
and thus a morphism ψ : F sh = ΓπF → ΓπG = Gsh = G. Now for all open U ⊆ X and
sections s ∈ F (U),

ψU ◦ θU(s) = ψU(s̃) = Eϕ ◦ s̃ = ϕU(s)

by construction, so the diagram

F (U) F sh(U)

G(U)

θU

ψUϕU
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commutes, and once again this is compatible with restriction of sections along V ⊆ U . The
fact that such a ψ is unique follows from the bijection Fx → F sh

x and Proposition 1.3.8.

Definition. For a presheaf F on X, we call F sh the sheafification of F , or the sheaf
associated to F .

Remark. Abstractly, we have an adjoint pair of functors (see Section A.2)

Presh(C) Sh(C)
sh

forget

which means sheafification is right exact and the forgetful functor is left exact (we already
knew the latter from Theorem 1.3.10). In a more general setting, such as when we consider
the categories of presheaves and sheaves of abelian groups, rings, algebras, etc., we can take
this as our definition of the sheafification functor: it is the left adjoint to the (left exact)
forgetful functor ShX ↪→ PreshX .

Alternatively, we can equip an associated sheaf F sh with the structure of a sheaf of
abelian groups (or rings, algebras, etc.) as follows. Let E

π−→ X be the étale cover for the
presheaf F and consider the fibre product

E ×X E := {(e1, e2) ∈ E × E | π(e1) = π(e2)}.

Then E×X E → E, (e1, e2) 7→ e1 + e2 is a well-defined, continuous map of topological spaces
since the fibres of E (i.e. the stalks of F ) are abelian groups. The induced map

F sh(U)× F sh(U) = Γπ(U)× Γπ(U) ∼= Γπ×Xπ(U) −→ Γπ(U) = F sh(U)

gives an additive structure on each F sh(U), making F sh into a sheaf of abelian groups.
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2 Čech Cohomology

2 Čech Cohomology

2.1 The Mittag-Leffler Problem

We motivate the definition of Čech cohomology with a classical problem originally studied
by Mittag-Leffler. Let X be a Riemann surface, that is, a 2-manifold admitting a complex
structure with holomorphic transition functions. We do not assume X to be closed. Suppose
E is a closed, discrete subset of X and for each point a ∈ E, we are given a function
za : Ua → C on some neighborhood Ua ⊆ X of a such that za(a) = 0. Consider a function

pa(za) = α−mz
−m
a + α−m+1z

−m+1
a + . . .+ α−1z

−1
a , αj ∈ C.

That is, pa is a polynomial in z−1
a , or a Laurent polynomial on Ua centered at a. The Mittag-

Leffler problem is to find a meromorphic function f : X → C such that f is holomorphic on
X r E and for all a ∈ E, the function f − pa has a removable discontinuity at a. Then pa
will be the principal part of f on Ua.

In short, the Mittag-Leffler problem asks us to extend meromorphic functions defined on
open sets in X to a meromorphic function on the whole Riemann surface. The following
restatement will be useful for later generalization. Let U = {Ui}i∈I be an open cover of X
and suppose {fi : Ui → C} is a collection of meromorphic functions such that each fi is
either holomorphic on Ui or has a single pole ai ∈ Ui, with ai 6∈ Uj for any j 6= i. The
Mittag-Leffler problem is then to find a meromorphic function f : X → C such that for each
i ∈ I, f |Ui − fi is holomorphic.

First notice that if the fi agree on all overlaps Ui ∩ Uj, then the sheaf condition on M
(the sheaf of meromorphic functions on X) guarantees that there is a global meromorphic
function f ∈ M(X) so that f |Ui − fi = 0 for all i, a much stronger conclusion than the
Mittag-Leffler problem asks for. Thus in some sense, the problem is to study how far one
can lift local meromorphic functions that do not glue together on overlaps. In any case,
one way to find such a function f : X → C in the previous paragraph is to find a family
{hi : Ui → C} of holomorphic functions on each Ui such that (fi +hi)|Ui∩Uj = (fj +hj)|Ui∩Uj
for all i, j. This can be rewritten as

fi|Ui∩Uj − fj|Ui∩Uj = hj|Ui∩Uj − hi|Ui∩Uj .

Set tij = fi|Ui∩Uj −fj|Ui∩Uj . Then if the above equation is satisfied, we have tij ∈ O(Ui∩Uj),
where O is the sheaf of holomorphic functions on X (see Example 1.1.1) and

tjk − tik + tij = 0.

Thus we want to find holomorphic functions hi ∈ O(Ui) satisfying:

(1) tij = hj − hi on Ui ∩ Uj (the boundary condition); and

(2) tjk − tik + tij = 0 on Ui ∩ Uj ∩ Uk (the cycle condition).

This generalizes to any space X with open cover U = {Ui}i∈I .
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Definition. Let F be a presheaf on X. A family of sections (tij) ∈
∏

i,j F (Ui ∩Uj) is called

a Čech 1-cocycle if for all i, j, k, tjk − tik + tij = 0 on Ui ∩ Uj ∩ Uk. The group of Čech

1-cocycles is written Ž
1
(U , F ).

Definition. A family (tij) ∈
∏

i,j F (Ui ∩ Uj) is called a Čech 1-coboundary if there is a
family (hi) ∈

∏
i F (Ui) such that tij = hj − hi on each Ui ∩ Uj. This forms a subgroup of

Ž
1
(U , F ) which is denoted B̌

1
(U , F ).

Definition. The first Čech cohomology group of the cover U with coefficients in F is
the quotient group

Ȟ
1
(U , F ) := Ž

1
(U , F )/B̌

1
(U , F ).

Now to solve the Mittag-Leffler problem, it’s enough to show that for a Riemann surface

X with cover U , Ȟ
1
(U ,O) = 0 where O is the sheaf of holomorphic functions on X. Note

that these Čech cohomology groups depend on the cover U . To package together all of
the information about holomorphic functions on covers of X, we introduce the notion of a
refinement of covers.

Definition. Let U = {Ui}i∈I and V = {Vj}j∈J be open covers of X. We say V is a refine-
ment of U if there exists a function τ : J → I such that for all j ∈ J , Vj ⊆ Uτ(j).

Notice that such a refinement τ induces a map

τ 1 : Ž
1
(U , F ) −→ Ž

1
(V , F )

(tik)i,k∈I
(
tτ(j)τ(`)|Vj∩V`

)
j,`∈J .

Lemma 2.1.1. If τ is a refinement from U to V, then τ 1(B̌
1
(U , F )) ⊆ B̌

1
(V , F ).

Thus there is an induced map on Čech cohomology groups, Ȟ
1
(U , F ) → Ȟ

1
(V , F ) and

one can check that this does not depend on the choice of map τ : J → I.

Definition. The first Čech cohomology of X with coefficients in F is the direct limit

Ȟ
1
(X,F ) = lim

−→
Ȟ

1
(U , F )

over all open covers U of X, ordered by refinement.

Lemma 2.1.2. For any sheaf F on a Riemann surface X, the maps

Ȟ
1
(U , F ) −→ Ȟ

1
(X,F )

are injective for every open cover U of X.

Proof. Let U = {Ui}i∈I be an open cover of X. If g = (gik)i,k∈I ∈ Ȟ
1
(U , F ) becomes 0 in

Ȟ
1
(X,F ), this means there is some open cover V = {Vj}j∈J which is a refinement of U ,

say by τ : J → I, such that g′ = (g′j`)j,` =
(
gτ(j)τ(`)|Vj∩V`

)
j,`

lies in B̌
1
(V , F ). Since g′ is a
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1-coboundary, there is a family (hj) ∈
∏

j F (Vj) such that g′j` = hj − h` on Vj ∩ V`. For a
fixed index i ∈ I, observe that

g′j` = gτ(j)τ(`)

= gτ(j)i + giτ(`) by the cocycle condition

= giτ(`) − giτ(j) by the cocycle condition again

= hj − h` on Vj ∩ V`.
This can be rewritten as

giτ(j) + hj = giτ(`) + h` on Ui ∩ Vj ∩ V`.
Consider the cover {Ui ∩ Vj}j∈J of Ui. By the sheaf axioms for F , there exists a section
ti ∈ F (Ui) such that for each Vj, ti|Ui∩Vj = (giτ(j) + hj)|Ui∩Vj . Now let i, k ∈ I be arbitrary
and fix some j ∈ J . Then

gik = giτ(j) + gτ(j)k = giτ(j) − gkτ(j)by the cocycle condition

= (ti − hj)− (tk − hj) by the above

= ti − tk on Ui ∩ Uk ∩ Vj.
Since j was arbitrary and {Ui∩Uk∩Vj}j∈J covers Ui∩Uk, the sheaf axioms imply gik−ti−tk
on Ui ∩ Uk. Hence gik ∈ B̌

1
(U , F ) so g = 0 in Ȟ

1
(U , F ).

Theorem 2.1.3 (Mittag-Leffler). For a non-compact Riemann surface X with sheaf of holo-

morphic functions O, Ȟ
1
(U,O) = 0 for every open cover U of X.

Proof. We will show that Ȟ
1
(X,O) = 0 in this situation, so Lemma 2.1.2 implies that

Ȟ
1
(U ,O) = 0.

This same strategy allows us to classify vector bundles on a manifold. Let X be a
(smooth) real manifold and Vectk(X) the category of (smooth) vector bundles of rank k on
X. For each open U ⊆ X, let S(U) denote the algebra of smooth functions U → R and set
F (U) = GLk(S(U)). Then F is a sheaf of groups on X. Let U = {Ui} be an open cover of
X. Notice that for an element ϕ = (ϕij) ∈

∏
i,j F (Ui ∩ Uj), we have

ϕjk ◦ ϕ−1
ik ◦ ϕij = Ik

on Ui ∩ Uj ∩ Uk, where Ik is the k × k identity matrix. Using this as a jumping off point,

one can define noncommutative versions of Ž
1
(U , F ), B̌

1
(U , F ) and Ȟ

1
(U , F ) – here, they

are just pointed sets, with basepoint corresponding to the identity matrix. As before, set

Ȟ
1
(X,F ) = lim

−→
Ȟ

1
(U , F )

where the U are ordered by refinement. Then:

Proposition 2.1.4. For a manifold X and k ≥ 1, the set Ȟ
1
(X,GLk(S)) is the set of

isomorphism classes of rank k vector bundles on X. Moreover, for each open cover U of X,

Ȟ
1
(U , GLk(S)) is the set of isomorphism classes of rank k vector bundles that are trivial

over U .

Example 2.1.5. When k = 1, Ȟ
1
(X,S×) classifies line bundles (up to isomorphism) on X.

This is a group under ⊗, called the Picard group of X.
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2.2 The Čech Complex and Čech Cohomology

Definition. Let U = {Ui}i∈I be an open cover of X and let F be a sheaf of abelian groups
on X. The Čech complex of F with respect to U is the cochain complex C•(U , F ) defined
by

Cp(U , F ) =
∏

i0,...,ip∈I

F (Ui0 ∩ · · · ∩ Uip)

with differential

d : Cp(U , F ) −→ Cp+1(U , F )

α 7−→

(
p+1∑
k=0

(−1)kαi0,...,ik−1,ik+1,...,ip+1|Ui0,...,ip+1

)

where Ui0,...,ip+1 = Ui0 ∩ · · · ∩ Uip+1.

Lemma 2.2.1. d2 = 0; that is, C•(U , F ) is a cochain complex.

Definition. The pth Čech cohomology with respect to an open cover U of a space
X with coefficients in a sheaf F is the pth cohomology of the Čech complex:

Ȟ
p
(U , F ) := Hp(C•(U , F )).

Lemma 2.2.2. For any sheaf F and cover U of X, Ȟ
0
(U , F ) = H0(X,F ) = Γ(X,F ).

Proof. By definition, Ȟ
0
(U , F ) = ker(d : C0(U , F ) → C1(U , F )). For α = (αi) ∈ C0(U , F ),

we have dα = (αi − αj)i,j which is zero if and only if αi = αj on Ui ∩ Uj for all i, j. Thus
ker d = Γ(X,F ).

Suppose U ′ is a refinement of U , that is, U ′ = {U ′j}j∈J is a cover of X and there is
a function λ : J → I such that for all j ∈ J , U ′j ⊆ Uλ(j). Then there is a chain map
C•(U ′, F )→ C•(U , F ) given by

Cp(U ′, F ) −→ Cp(U , F ), (αj0,...,jp) 7−→ (αλ(j0),...,λ(jp)|Uj0∩···∩Ujp ).

This in turn induces maps on Čech cohomology:

Ȟ
p
(U ′, F ) −→ Ȟ

p
(U , F )

for all p.

Definition. The pth Čech cohomology of a space X with coefficients in a sheaf F is the
direct limit

Ȟ
p
(X,F ) := lim

−→
Ȟ
p
(U , F )

taken over all covers U ordered with respect to refinement.

18
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Fix a space X, an open cover U = {Ui}i∈I and a sheaf F on X. We construct a complex
of sheaves of abelian groups Cp(U , F ) on X as follows. For an open set V ⊆ X, define

Cp(U , F ) : V 7−→ Γ(V, Cp(U , F )) :=
∏

i0,...,ip∈I

F (V ∩ Ui0,...,ip)

where as usual Ui0,...,ip = Ui0 ∩ · · · ∩ Uip .

Proposition 2.2.3. If F is a sheaf on X, then Cp(U , F ) is a sheaf for all p ≥ 0.

We give C•(U , F ) the structure of a complex of sheaves by letting

dV : Γ(V, Cp(U , F )) −→ Γ(V, Cp+1(U , F ))

be the map induced from the Čech differential d : Cp(U , F )→ Cp+1(U , F ) restricted to each
V ∩ Ui0,...,ip .

Proposition 2.2.4. For an open cover U and a sheaf F , there is an exact sequence of sheaves

0→ F → C0(U , F )→ C1(U , F )→ · · ·

Proof. The sheaf axioms on F imply F → C0(U , F ) is injective. To prove exactness at
Cp(U , F ), we need to check that the sequence of stalks

Cp−1(U , F )x
α−→ Cp(U , F )x

β−→ Cp+1(U , F )x

is exact for all x ∈ X. Since U covers X, we know x ∈ Uj for some Uj. Take fx ∈ Cp(U , F )x
and let V be a neighborhood of x and f ∈ Γ(V, Cp(U , F )) with f |x = fx. We may assume
V ⊆ Uj. Then for each p ≥ 1,

θp : Cp(U , F )x −→ Cp−1(U , F )x

fx 7−→ fj,i0,...,ip−1|x

is well-defined and independent of the choice of V and Uj. Now with the same fx and f as
above, we have

θp+1(df)x = (df)j,i0,...,ip|x

=

(
fi0,...,ip −

p∑
k=0

(−1)kfj,i0,...,ik−1,ik+1,...,ip

)∣∣∣∣∣
x

= fx − d(θpfx).

Hence θp+1d + dθp is the identity on Cp(U , F )x, which shows the identity map on this stalk
is chain homotopic to the zero map and thus ker β = imα, proving exactness.

Definition. For a sheaf F on X, the exact sequence

0→ F → C0(U , F )→ C1(U , F )→ · · ·

is called the Čech resolution of F with respect to the cover U .
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The sheafification functor PreshX → ShX (Theorem 1.4.4) can alternatively be con-
structed using the Čech resolution. In fact, this construction works in a much more general
context known as Grothendieck topology. Let F be a presheaf on a space X, U = {Ui} an
open cover of X and

Ȟ
0
(U , F ) =

{
f = (fi) ∈

∏
F (Ui) : fi|Ui∩Uj = fj|Ui∩Uj for all i, j

}
.

For an open set U ⊆ X, let

Ȟ
0
(U, F |U) = lim

−→
Ȟ

0
(U ′, F |U)

where the limit is over all open covers U ′ of U . Define the set F#(U) = Ȟ
0
(U, F |U). For

an inclusion of open sets V ↪→ U in X, there is a natural restriction map Ȟ
0
(U, F |U) →

Ȟ
0
(V, F |V ) coming from restriction of an open cover. This makes U 7→ F#(U) into a presheaf

on X. Moreover, Proposition 2.2.4 shows that F → F# is injective.

Definition. We call a presheaf F on X a separated presheaf if it satisfies the first sheaf
axiom; that is, if U =

⋃
Ui is an open cover and there are sections s, t ∈ F (U) such that

s|Ui = t|Ui for all Ui, then s = t.

Theorem 2.2.5. Let F be a presheaf on X. Then

(1) F# is a separated presheaf on X.

(2) If F is a separated presheaf, then F# is a sheaf. In particular, F## is always a sheaf
on X.

(3) F## is a sheafification of F .

Proof. (1) Suppose s, t ∈ F#(U) and there is an open cover {Vj} of U such that s|Vj = t|Vj
for all Vj. We must show s = t in F#(U). Since they are elements of a direct limit, s and t
have representatives

sU = (si), tU = (ti) ∈ Ȟ
0
(U , F |U)

on some open cover U of U – a priori there may be two different covers supporting s and t,
but after a common refinement of the covers we may assume this takes place on just a single
cover. By hypothesis, there is an open cover Wj = {Wjk}k of each Vj that is a refinement of
{Vj ∩ Ui}i such that si|Wjk

= ti|Wjk
for all k. Then W = {Wjk}j,k is an open cover of U on

which si|Wjk
= ti|Wjk

on every element. Therefore the images of sU and tU in lim
−→

Ȟ
0
(U , F |U)

are equal, so s = t as required.
(2) Now assume F itself is separated; we must show that F# satisfies the second sheaf

axiom. As an intermediate step, we claim that for any open cover U = {Ui}i∈I of U , the
map

Ȟ
0
(U , F |U) −→ Ȟ

0
(U, F |U)

is injective (this is conditioned on F being separated). Notice that if s, t ∈ Ȟ
0
(U , F |U)

become equal in the direct limit Ȟ
0
(U, F |U), then there exists a cover V = {Vj}j∈J of U
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such that s|Vj = t|Vj for all j ∈ J . We may assume V is a refinement of U , say by a map

τ : J → I. Then sτ(j)|Vj = tτ(j)|Vj for all j ∈ J . Since s and t are Čech 0-cocycles, we have

si|Ui∩Uτ(j) = sτ(j)|Ui∩Uτ(j) and ti|Ui∩Uτ(j) = tτ(j)|Ui∩Uτ(j)
for all i, j. Since Vj ⊆ Uτ(j) for all j, this means

si|Ui∩Vj = ti|Ui∩Vj
for all i, j. Fixing i ∈ I, the collection {Ui∩Vj}j is an open cover of Ui and si|Ui∩Vj = ti|Ui∩Vj ,
so by the separated condition, si = ti on Ui. This implies s = t in Ȟ

0
(U , F |U), proving the

claim.
Now take si ∈ F#(Ui) for some cover U = {Ui}i∈I of U such that si|Ui∩Uj = sj|Ui∩Uj for

all i, j ∈ I. We must construct a section s ∈ F#(U) restricting to si on each Ui. Each si is

represented by some sVi = (sik) ∈ Ȟ
0
(Vi, F |Ui) for an open cover Vi = {Vik}k of Ui. Then

V = {Vik}i,k is an open cover of U . Fixing i, j ∈ I, consider the cover W = {Vik ∩ Vj`}k,` of
Ui ∩ Uj. The sections

s̃i = (sik|Vik∩Vj`), s̃j = (sj`|Vik∩Vj`) ∈ Ȟ
0
(W , F |Ui∩Uj)

become equal in Ȟ
0
(Ui∩Uj, F |Ui∩Uj) by assumption, so because F is separated, the previous

paragraph shows s̃i = s̃j in Ȟ
0
(W , F |Ui∩Uj). Therefore the s̃i give a well-defined element

s ∈ Ȟ0
(U, F |U) restricting to si on each Ui. Hence F# is a sheaf.

(3) Suppose F → G is a morphism of presheaves, where G is a sheaf. This determines a
chain map

C•(U , F ) −→ C•(U , G)

for any open cover U of X. Hence there is a map on Čech cohomology

Ȟ
p
(U , F ) −→ Ȟ

p
(U , G)

for all p ≥ 0, which is compatible with refinement. In particular, there is a map

Ȟ
0
(X,F ) −→ Ȟ

0
(X,G).

Let U ⊆ X be an open set. Then there is a map Ȟ
0
(U, F |U) → Ȟ

0
(U,G|U) which fits into

a diagram

F (U) G(U)

Ȟ
0
(U, F |U) Ȟ

0
(U,G|U)

∼=

The right column is an isomorphism since G is a sheaf. Thus we may defined the dashed

arrow Ȟ
0
(U, F |U)→ G(U) which induces a morphism of presheaves F# → G through which

F → G factors. Repeating the argument shows that F → G further factors through a
morphism F## → G. Uniqueness follows from a similar argument as the one in the proof
of Theorem 1.4.4.
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3 Sheaf Cohomology

3.1 Derived Functors and Cohomology

To construct sheaf cohomology, we first recall the basic theory of derived functors. Proofs
can be found in Rotman, among many places.

Definition. Suppose T : A → C is a covariant, additive, right exact functor between abelian
categories, where A has enough projectives. The nth left derived functor of T is the
functor

LnT : A −→ C
A 7−→ Hn(T (P•))

where P• is a fixed projective resolution of A.

Derived functors in some sense measure the failure of exactness in the nth homological
dimension of the functor T . The dual notion to a left derived functor is a right derived
functor.

Definition. For a covariant, additive, left exact functor S : A → C between abelian cate-
gories, where A has enough injectives, the nth right derived functor of S is the functor

RnS : A −→ C
A 7−→ H−n(S(E•))

where E• is a fixed injective resolution of A.

In defining left and right derived functors, we are implicitly choosing a particular projec-
tive (or injective) resolution of A. The Comparison Theorem says that unique chain maps
exist between projective resolutions of M and N when M → N is a module homomorphism,
so this choice does not matter when defining LnT and RnT .

Theorem 3.1.1 (Comparison). Let P• : · · · → P2 → P1 → P0 be a projective chain complex
and suppose C• : · · ·C2 → C1 → C0 is an acyclic chain complex. Then for any homomor-
phism ϕ : H0(P•)→ H0(C•), there is a chain map f : P• → C• whose induced map on H0 is
ϕ, and ϕ is unique up to chain homotopy.

Proof. Consider the diagram

P2 P1 P0 H0(P•) 0

C2 C1 C0 H0(C•) 0

∂2 ∂1 ∂0

f2 f1 f0 ϕ

∂′2 ∂′1 ∂′0

Since P0 is projective, there exists an f0 lifting ϕ to P0 → C0. Inductively, given fn−1 we
have a diagram
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Pn Pn−1

Cn Cn−1

∂n

fn−1

∂′n

fn

Note that fn−1∂ has image lying in ker ∂′n ⊆ Cn−1, but C• is acyclic, so ∂′n(Cn) = ker ∂′n−1.
Since Pn is projective, we can lift fn−1∂n to the desired map fn : Pn → Cn. By construction,
f = {fn}∞n=0 satisfies the desired properties.

For uniqueness, suppose g : P• → C• is another chain map restricting to ϕ on H0. Since
f0 − g0 = 0 on H0, it must be that (f0 − g0)(P0) ⊆ ker ∂′0 = im ∂′1, so by projectivity of P0

there exists s0 : P0 → C1 making the following diagram commute:

P0

C1 im ∂′1 0

f0 − g0s0

Inductively, given s0, . . . , sn−1 satisfying fk − gk = ∂′k+1sk + sk+1∂k for all 0 ≤ k ≤ n− 1, we
have

∂′n(fn − gn − sn−1∂n) = (fn−1 − gn−1)∂n − ∂′nsn−1∂n since f, g are chain maps

= (∂′nsn−1 − sn−2∂n−1)∂n − ∂′nsn−1∂n = 0.

Hence there is a commutative diagram

Pn

Cn+1 ker ∂′n 0
∂′n+1

fn − gn − sn−1∂nsn

This establishes the chain homotopy s : P• → C• such that fn − gn = ∂′n+1sn + sn+1∂n for
all n ≥ 0. Hence f is unique up to chain homotopy.

Corollary 3.1.2. Let g : M → N be R-linear and pick projective resolutions P• and Q• of
M and N , respectively. Then there exists a chain map f : P• → Q• such that H0(f) = g
and f is unique up to chain homotopy.

Proof. Given projective resolutions P•, Q• → M , we have M = H0(P•) = H0(Q•) so let
ϕ = idM . Since projective resolutions are acyclic, the comparison theorem gives us a chain
map f : P• → Q•. Reversing the roles of P• and Q• gives a chain map in the opposite
direction, and uniqueness forces the composition of these maps to be the identity in either
direction.
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Theorem 3.1.3. If T : A → C is an additive covariant functor between abelian categories,
and A has enough projectives, then each LnT : A → C is an additive covariant functor.

Proposition 3.1.4. If T : A → C is an additive covariant functor of abelian categories,
then (LnT )A = 0 for all A ∈ obj(A) whenever n is negative.

Proof. This is immediate from the definition since the nth term of a resolution P of A is 0
whenever n is negative.

Analogous statements hold for right derived functors.

3.2 Sheaf Cohomology

Let X be a topological space and consider the category ShX of sheaves of abelian groups on
X. Let Γ : F 7→ Γ(X,F ) = F (X) be the global sections functor on X. By Theorem 1.3.10,
Γ is left exact but in general it is not right exact.

Theorem 3.2.1. For any topological space X, the category ShX has enough injectives.

Proof. Given x ∈ X and an abelian group A, let x∗A denote the skyscraper sheaf at x with
coefficients A:

x∗A(U) =

{
A, x ∈ U
0, x 6∈ U.

Then for a sheaf G, Hom(G, x∗A) consists of collections of homomorphisms G(U) → A for
each U containing x which are compatible with the restrictions G(U) → G(V ) for V ↪→ U .
By the universal property of stalks (they are limits), this is the same as a map Gx → A.
Thus

HomShX (G, x∗A) ∼= HomAb(Gx, A).

If A is an injective abelian group, this shows that x∗A is an injective object of ShX . Moreover,
since Hom commutes with products, we have

HomShX

(
G,
∏
x∈X

x∗Ax

)
∼=
∏
x∈X

HomShX (G, x∗Ax) ∼=
∏
x∈X

HomAb(Gx, Ax)

for any family of abelian groups (Ax)x∈X . Since Ab has enough injectives, for each x ∈ X we
may choose a monic ϕx : Gx ↪→ Ax with Ax injective, so that the induced morphism

G −→
∏
x∈X

x∗Ax

is monic and
∏

x∈X x∗Ax is injective.

This allows us to define the cohomology groups of X with coefficients in a sheaf F to be
the right derived functors of Γ.
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Definition. Let X be a topological space and F a sheaf on X. Then the sheaf cohomology
of X with coefficients in F is the sequence of right derived functors of Γ : ShX → Ab,

H i(X,F ) := RiΓ(X,F ) = H i(Γ(X,E•))

where E• is an injective resolution of F in the category of sheaves.

One way to compute sheaf cohomology is by comparing it to Čech cohomology, which is
much more amenable to calculation. To this end, we have the following consequence of the
Čech resolution construction.

Theorem 3.2.2. For any sheaf F on X and any open cover U of X, there is a natural map

Ȟ
p
(U , F ) −→ Hp(X,F )

for all p ≥ 0 which is compatible with refinement. In particular, there is a natural map

Ȟ
p
(X,F ) −→ Hp(X,F )

for all p ≥ 0.

Proof. Applying the global sections functor to the Čech resolution of F yields

0→ F (X)→ Č
0
(U , F )→ Č

1
(U , F )→ · · ·

Clearly the cohomology groups of this sequence are precisely the Čech cohomology groups
Ȟ
p
(U , F ). Therefore there is a chain map

0 F C0(U , F ) C1(U , F ) · · ·

0 F E0 E1 · · ·

id

for any injective resolution E• of F . This induces the maps on cohomology, Ȟ
p
(U , F ) →

Hp(X,F ), and one can check that they commute with the maps coming from refinements of
open covers. The second statement follows.

One of the main phenomena to exploit is that ShX has many acyclic objects which are
not injective. This is important because of the following result.

Theorem 3.2.3. Let F be a sheaf on X and suppose L• is an acyclic resolution of F , i.e.
a complex of sheaves for which each Ln is acyclic. Then for all i ≥ 0,

H i(X,F ) ∼= H i(Γ(X,L•)).
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Proof. The statement is trivial for i = 0. Let

0→ F → L0 f0−→ L1 f1−→ L2 → · · ·

be our acyclic resolution of F . Set K0 = F and for each i ≥ 1, Ki = im fi−1 ⊆ Li. Then
there are short exact sequences of sheaves

0→ Ki ei−→ Li
gi−→ Ki+1 → 0

where ei is the inclusion of a subsheaf and the gi satisfy ei+1 ◦ gi = fi. Since Γ is left exact
(Theorem 1.3.10), each sequence

0→ Γ(X,Ki)
Γei−−→ Γ(X,Li)

Γgi−−→ Γ(X,Ki+1)

is exact. Note that Γei identifies Γ(X,Ki) with ker Γgi, which is equal to ker Γfi since Γei is
injective. Likewise, im Γgi−1 = im Γfi−1. Therefore Γ(X,Ki)/ im Γgi−1

∼= ker Γfi/ im Γfi−1 =
H i(Γ(X,L•)). On the other hand, there is a long exact sequence

0→ Γ(X,Ki)→ Γ(X,L•)
Γgi−−→ Γ(X,Ki+1)→ H1(X,Ki)→ H1(X,Li) = 0

with a zero on the end because Li is acyclic. Hence

H1(X,Ki) ∼= Γ(X,Ki+1)/ im Γgi = H i+1(Γ(X,L•)).

The same argument shows that there is an isomorphism Hj−1(X,Ki+1) ∼= Hj(X,Ki) for each
j ≥ 2. In particular, H1(X,Ki) ∼= H i+1(X,K0) = H i+1(K,F ) so we obtain H i+1(X,F ) ∼=
H i+1(Γ(X,L•)) for all i ≥ 0.

In fact, Theorem 3.2.3 holds in much greater generality, namely for the derived functors
of a left exact functor out of an abelian category with enough injectives, but we will only
need it for sheaf cohomology computations in these notes.

In general, cohomology is hard to compute from the derived functors definition. However,
we may begin by recovering ordinary (singular) cohomology with coefficients:

Theorem 3.2.4. Let X be a topological space, A an abelian group and AX the constant sheaf
on X with stalks A. Then

H i(X,AX) ∼= H i(X;A)

where H i(X;A) denotes the ordinary cohomology of X with coefficients in A.

Proof. For each open set U ⊆ X, let Cn(U ;A) denote the A-module spanned by singular
simplices on U and let ∂ : Cn(U ;A) → Cn−1(U ;A) denote the simplicial boundary map.
Dualizing gives us the modules of singular cosimplices Cn(U ;A) := HomA(Cn(U ;A), A) with
coboundary map given by the adjoint, d = ∂∗ : Cn(U ;A) → Cn+1(U ;A). The assignment
U 7→ Cn(U ;A) defines a presheaf Cn on X for each n ≥ 0. In fact by construction, for any
inclusion V ↪→ U , the restriction map Cn(U ;A)→ Cn(V ;A) is surjective, so Cn is a flasque
presheaf on X. Note that Cn satisfies the gluing axiom of a sheaf, but it is not separated.
However, sheafifying a flasque presheaf which satisfies the gluing axiom yields a flasque sheaf
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in general, so setting Cn := (Cn)sh, we get a complex of flasque sheaves C•. The differential
d : Cn → Cn+1 is induced by the coboundary maps dU : Cn(U ;A) → Cn+1(U ;A). In fact,
one can show that Cn is isomorphic to the quotient sheaf Cn/Cn

0 , where

Cn
0 (U) = {ϕ ∈ Cn(U) | there exists an open cover U = {Ui} of U such that ϕ|Ui ≡ 0}.

To verify that C• is an exact complex, it suffices to compute exactness on stalks. On
a neighborhood of each point, however, this sequence becomes C•(U) which is exact by
construction in algebraic topology. Note that ker(d : C0 → C1) is precisely the constant
sheaf AX , so C• is a flasque resolution of X. We will show (Theorem 3.4.3) that flasque
sheaves are acyclic, so Theorem 3.2.3 implies that

H i(X,AX) ∼= H i(Γ(X, C•))

for all i ≥ 0.
Finally, singular cohomology is computed by the complex of abelian groups C•(X) but

we have a short exact sequence of complexes of presheaves

0→ C•0 → C• → C• → 0

so to prove H i(X;A) = H i(Γ(X,C•)) ∼= H i(Γ(X, C•)) = H i(X,AX), it remains to show that
C•0 is acyclic. Fix an open cover U of X and let CUn (U ;A) denote the submodule of Cn(U ;A)
spanned by simplices lying in an element of U . Set Cn

U(U ;A) = HomA(CUn (U ;A), A) and let
C•U be the resulting complex of presheaves on X. There is a natural morphism of presheaves
Cn → Cn

U which is surjective; call its kernel Cn
U ,0. Then we can see that

Cn
0 = lim

−→
Cn
U ,0

where the limit is taken over all open covers U of X. This identification is compatible with
differentials, so we get C•0 = lim

−→
C•U ,0. By a result in algebraic topology, there exists a cover

U for which C•U ,0 is acyclic, which finishes the proof.

Now the strategy for computing general sheaf cohomology is clear: we may take an in-
jective resolution of AX and compute the cohomology of the resulting complex. Of course,
different ways of resolving a constant sheaf can give different ways of computing cohomol-
ogy, and these observations will produce beautiful comparisons between different flavors of
cohomology theory.

3.3 Direct and Inverse Image

Let ShX denote the category of sheaves (of abelian groups) on a topological space X. For
a continuous map f : X → Y , there are various functors between ShX and ShY which may
illuminate the structure of these categories. The easiest to define is the direct image.

Definition. For a morphism f : X → Y and a presheaf F on TopX , define the direct
image (or pushforward) of F along f to be the presheaf f∗F : TopopY → Ab sending V 7→
(f∗F )(V ) := F (f−1(V )) for all open V ⊆ Y .
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Proposition 3.3.1. For any continuous map f : X → Y , f∗ is a functor ShX → ShY .

Proof. Suppose ϕ : F → G is a morphism of presheaves on X. Then for all open V ⊆ Y ,
define (f∗ϕ)V : (f∗F )(V ) → (f∗G)(V ) to be the map ϕf−1(V ) : F (f−1(V )) → G(f−1(V )).
This shows that f∗ is a functor. To finish, take a covering V =

⋃
Vi in Y , set U = f−1(V ) and

consider the covering U =
⋃
Ui where Ui = f−1(Vi). Suppose s, t ∈ (f∗F )(V ) = F (U) such

that s|Vi = t|Vi for all Vi. This means s|Vi = t|Vi in (f∗F )(Vi) = F (Ui), so by the first sheaf
axiom for F , s = t in F (U) = (f∗F )(V ). On the other hand, suppose si ∈ (f∗F )(Vi) = F (Ui)
for all i such that si|Vi∩Vj = sj|Vi∩Vj for all Vi, Vj. This means si and sj are equal in each
(f∗F )(Vi ∩ Vj) = F (f−1(Vi ∩ Vj)) = F (Ui ∩ Uj) so by the second sheaf axiom on F , there is
a section s ∈ F (U) restricting to si on each Ui. That is, s ∈ (f∗F )(V ) such that s|Vi = si in
each (f∗F )(Vi). Hence f∗F is a sheaf.

Example 3.3.2. If i : {x} → X is a point of X, then any sheaf on {x} is an abelian group,
say A, and i∗A = Ax is the skyscraper sheaf on X supported at x with stalk A. This explains
the usual notation x∗A for skyscraper sheaves.

Example 3.3.3. Consider the inclusion j : D2 ↪→ R2 and let F be the sheaf of locally
constant functions on D2 with values in S (as in Example 1.3.2). Then for all open sets U ⊆
R2, (j∗F )(U) = F (U ∩D2). If U ∩D2 has n connected components, then (j∗F )(U) = S×n.

Example 3.3.4. Let p : X → Y be a finite-sheeted covering space of degree n > 1 and let
F = FS be the sheaf of locally constant functions on Y with values in S, |S| > 1. Then for
V ⊆ Y sufficiently small, f−1(V ) =

∐n
i=1 Ui for disjoint neighborhoods U1, . . . , Un which are

each homeomorphic to V . Thus (p∗F )(V ) = S×n. This shows that for each y ∈ Y , the stalk
at y of F is

(p∗F )y = S×n.

Another sheaf on Y with stalk S×n is the locally constant sheaf G = FS×n . However, p∗F is
not isomorphic to G, as we have

(p∗F )(Y ) = S 6= S×n = G(Y ).

Proposition 3.3.5. For any map f : X → Y , the functor f∗ : ShX → ShY is left exact.

Proof. Suppose 0→ F → G→ H → 0 is a short exact sequence in ShX . By Theorem 1.3.10,
the sequence

0→ F (U)→ G(U)→ H(U)

is exact for all open sets U ⊆ X. In particular, if V ⊆ Y is open, then the above applied to
U = f−1(V ) shows that

0→ (f∗F )(V )→ (f∗G)(V )→ (f∗H)(V )

is exact. Passing to stalks proves the statement.

This allows us to define the right derived functors of f∗.
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Definition. Let E• be an injective resolution of a sheaf F ∈ ShX and suppose f : X → Y
is a continuous map. The higher direct images of f are the right derived functors of the
direct image functor:

Rnf∗F := Hn(f∗E
•)

where for a complex of sheaves G• on Y and n ≥ 0, Hn(G•) denotes the quotient sheaf
ker(Gn → Gn+1)/ im(Gn−1 → Gn).

Proposition 3.3.6. Suppose X
f−→ Y

g−→ Z are continuous maps. Then (g ◦ f)∗ = g∗ ◦ f∗.

Lemma 3.3.7. Let f : X → Y be a continuous map, V = {Vj} an open cover of Y and
U = {f−1(Vj)} the induced open cover of X. Then for all sheaves F on X and all p ≥ 0,

Ȟ
p
(U , F ) = Ȟ

p
(V , f∗F ).

Proof. Set Vj0,...,jp = Vj0 ∩ · · · ∩ Vjp and Uj0,...,jp = f−1(Vj0,...,jp). Then (f∗F )(Vj0,...,jp) =
F (Uj0,...,jp) so it follows that Cp(U , F ) = Cp(V , f∗F ) for all p ≥ 0. Hence the cohomologies
of these complexes are the same.

Example 3.3.8. Let i : X ↪→ Y be a closed embedding and let F be a sheaf on X. Then
for any y ∈ Y , the stalk of i∗F at y is

(i∗F )y =

{
Fx, y = i(x) ∈ i(X)

0, y 6∈ i(X).

In particular, this proves:

Lemma 3.3.9. If i : X ↪→ Y is a closed embedding, then i∗ : ShX → ShY is an exact functor.

Therefore, if E• is an injective resolution of a sheaf F on X, then for a closed embedding
i : X ↪→ Y the cohomology of i∗F may be computed via the resolution i∗E

•:

Hp(X,F ) = Hp(Y, i∗F ) = Hp(Γ(Y, i∗E
•)).

Let f : X → Y be any continuous map. There is also an inverse image functor f ∗ :
ShY → ShX which is a little harder to construct, since f(U) need not be open in Y for all
open U ⊆ X.

Definition. Let f : X → Y be a continuous map, F a sheaf on Y and define a presheaf
f−1F by

(f−1F )(U) = lim
−→

F (V )

where the direct limit is taken over all open sets V ⊆ Y containing f(U). The inverse
image (or pullback) of F along f , denoted f ∗F , is the sheafification of f−1F .

Remark. The inverse image sheaf may also be defined on the level of étale spaces as follows.
Let EF → Y be the étale space of F . Then f ∗F is the sheaf of sections of the map
E = Ef∗F → X whose total space is the pullback in the diagram
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E X

EF Y

f

Example 3.3.10. If f : X → Y is an open map, then for all U ⊆ X, (f−1F )(U) = F (f(U))
and this already defines a sheaf, so f−1F = f ∗F .

Example 3.3.11. Let i : {x} ↪→ X be the inclusion of a point in X and let F be a sheaf on
X. Then i∗F = Fx, the (constant sheaf on {x} given by the) stalk of F at x. More generally:

Proposition 3.3.12. For any continuous map f : X → Y , sheaf F on Y and point x ∈ X,
there is a natural isomorphism (f ∗F )x ∼= Ff(x).

Proof. Let f−1F be the presheaf U 7→ lim
−→

F (V ) as in the definition of inverse image, set

y = f(x) and suppose U ⊆ X is an open neighborhood of x and V ⊆ Y is an open set in
Y containing f(U). Then y lies in every such V so we get morphisms F (V ) → Fy which
assemble into a morphism out of the direct limit,

λU : (f−1F )(U) −→ Fy.

Taking the limit over all such neighborhoods U of x gives a morphism λ : (f−1F )x → Fy.
We claim this is an isomorphism. For sy ∈ Fy, choose a representative sV ∈ F (V ) on some
open neighborhood V of y. Then U = f−1(V ) is an open neighborhood of x in X such that
f(U) ⊆ V . Hence there are maps

F (V )→ (f−1F )(U)
λU−→ Fy

whose composition is the stalk map F (V ) → Fy. Thus λU(f−1sV ) maps to sy in the stalk
at y, so λ is surjective.

On the other hand, if t1, t2 ∈ (f−1F )x with λ(t1) = λ(t2), then there is some neighborhood
U of x such that t1 = tU,1|x and t2 = tU,2|x for sections tU,1, tU,2 ∈ (f−1F )(U). (A priori,
these happen on different open neighborhoods of x but we may pass to the intersection.)
In turn these tU,1, tU,2 are represented by sections sV,1, sV,2 ∈ F (V ) for some open set V
containing f(U) and the fact that λ(t1) = λ(t2) ensures that sV,1|y = sV,2|y in Fy. Thus by
shrinking V , we have sV,1|V ′ = sV,2|V ′ for some open neighborhood V ′ ⊆ V containing y. Let
U ′ = f−1(V ′) ⊆ U . Then x ∈ U ′ and tU,1|U ′ = tU,2|U ′ so t1 = t2 in (f−1F )x. Thus λ is an
isomorphism.

Finally, the sheafification map f−1F → f ∗F induces a map on stalks (f−1F )x → (f ∗F )x
such that the composition (f−1F )x → (f ∗F )x ∼= Fy is precisely the isomorphism λ. This
shows (f ∗F )x ∼= Fy as desired.

Proposition 3.3.13. For any continuous map f : X → Y , f ∗ is a functor ShY → ShX .

Proof. By definition, f ∗F is a sheaf on X for all sheaves F on Y , so we need only prove
naturality. Let ϕ : F → G be a morphism of sheaves on Y and fix an open set U ⊆ X. Then
the maps ϕV : F (V )→ G(V ) over all open V ⊆ Y containing U assemble into a map

(f−1F )(U) = lim
−→

F (V ) −→ lim
−→

G(V ) = (f−1G)(U).
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Passing to the sheafification, we get a map f ∗ϕ : f ∗F → f ∗G.

Corollary 3.3.14. For any f : X → Y , the pullback functor f ∗ : ShY → ShX is exact.

Proof. Let 0→ F → G→ H → 0 be an exact sequence of sheaves on Y . Then for all y ∈ Y ,
the sequence on stalks 0→ Fy → Gy → Hy → 0 is exact. Thus Proposition 3.3.12 says that
0 → (f ∗F )x → (f ∗G)x → (f ∗H)x → 0 is exact for all x ∈ X, with f(x) = y. By definition
this means 0→ f ∗F → f ∗G→ f ∗H → 0 is exact.

Proposition 3.3.15. For any f : X → Y and any sheaf F on Y , f ∗F is the sheaf of sections
of the map EF ×Y X → X, where EF → Y is the étale space of F .

Proof. Set E = EF ×Y X and let Ef∗F be the étale space of f ∗F = (f−1F )sh. Then
Ef∗F = Ef−1F so it’s enough to show that Ef−1F = E. The maps λ : (f−1F )x → Ff(x) for
all x ∈ X in the proof of Proposition 3.3.12 induce a map of sets

Φ : Ef−1F =
∐
x∈X

(f−1F )x −→
∐
y∈Y

Fy = EF .

It’s easy to check that Φ is continuous with respect to the topology on the étale spaces.
Moreover, the diagram

Ef−1F EF

X Y
f

commutes by construction, so by the universal property of pullbacks, we get a map Ψ :
Ef−1F → E = EF ×Y X. Notice that the fibres of Ef−1F and E are the same and Ψ induces
bijections on these fibres. Hence Ψ is a continuous bijection. Finally, the fact that Ef−1F →
X and E → X are both local homeomorphisms ensures that Ψ is a homeomorphism.

Example 3.3.16. Let f : X → Y be continuous and F = FS the sheaf of locally constant
functions on Y with values in S. Then EF = S×Y → Y where S has the discrete topology.
By Proposition 3.3.12, Ef∗F = EF ×Y X = (S×Y )×Y X = S×X, which by Theorem 1.4.3
has sheaf of sections FS → X, the sheaf of locally constant functions on X. So pullback of
a locally constant sheaf is again locally constant.

Example 3.3.17. Let i : X ↪→ Y be the inclusion of a subspace. Then i∗ is just the
restriction functor F 7→ F |X .

We will show that (f ∗, f∗) is an adjoint pair of functors. To do so, recall the following
characterization of adjointness from homological algebra:

Definition. For an adjoint pair (S, T ), the natural transformations η : idA → TS and
ε : ST → idB are called the unit and counit of the adjunction, respectively. The conditions
Tε ◦ ηT = id and εS ◦ Sη = id are called the triangle identities.

Theorem 3.3.18. For a continuous map f : X → Y , (f ∗, f∗) is an adjoint pair of functors.
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Proof. Let F be a sheaf on X and G be a sheaf on Y . Then since f ∗G = (f−1G)sh,
Theorem 1.4.4 gives a natural isomorphism

HomShX (f ∗G,F ) ∼= HomPreshX (f−1G,F )

so by Lemma A.2.2, we must construct a natural isomorphism

HomPreshX (f−1G,F ) ∼= HomShY (G, f∗F ).

Notice that for any open V ⊆ Y ,

(f∗f
−1G)(V ) = (f−1G)(f−1(V )) = lim

−→
G(V ′)

over all open sets V ′ ⊆ Y containing f(f−1(V )). But since V itself is an open set containing
f(f−1(V )), we get a map G(V ) → lim

−→
G(V ′) which is compatible with restriction. This

defines a natural transformation

η : idShY −→ f∗f
−1

which will be the unit of our adjunction. Next, we construct a counit of the adjunction. For
any open U ⊆ X, we have

(f−1f∗F )(U) = lim
−→

(f∗F )(V ) = lim
−→

F (f−1(V ))

where the limit is over all open V ⊆ Y containing f(U). Well for every such V , f−1(V ) ⊇ U
so the restriction maps F (f−1(V ))→ F (U) assemble to give a map lim

−→
F (f−1(V ))→ F (U).

This defines the counit
ε : f−1f∗ −→ idPreshX .

Finally, by Lemma A.2.2 it remains to show that η and ε satisfy the triangle identities. For
an open set V ⊆ Y , we have

f∗εF ◦ ηf∗F (V ) : f∗F (V )→ f∗f
−1f∗F (V )→ f∗F (V )

which is F (f−1(V ))→ lim
−→

F (f−1(V ′))→ F (f−1(V ))

where the limit in the middle is over all open V ′ ⊆ Y containing f(f−1(V )). Since V ⊇
f(f−1(V )), this composition is clearly the identity on F (f−1(V )). Therefore f∗εF ◦ ηf∗F is
the identity on f∗F . Likewise, for U ⊆ X open,

εf−1G ◦ f−1ηG(U) : f−1G(U)→ f−1f∗f
−1G(U)→ f−1G(U)

which is lim
−→

G(V )→ lim
−→

G(V ′)→ lim
−→

G(V )

where the outer limits are over all open V ⊆ Y containing f(U) and the middle limit is
over all open V ′ ⊆ Y containing f(f−1(V )) for any V containing f(U). Any such V in
the first limit also appears in the second limit, so the composition is given by the trivial
restrictions G(V )→ G(V ) for all V . That is, the composition is the identity on lim

−→
G(V ) =

f−1G(U).
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Corollary 3.3.19. For any maps X
f−→ Y

g−→ Z, (g ◦ f)∗ = f ∗ ◦ g∗.

Proof. Each of (g ◦ f)∗ and f ∗ ◦ g∗ is a left adjoint of (g ◦ f)∗ = g∗ ◦ f∗.

Corollary 3.3.20. Let f : X → Y be a continuous map and E an injective sheaf on X.
Then f∗E is an injective sheaf on Y .

Proof. Suppose 0→ F → G is an exact sequence in ShY . Then since f ∗ is exact, 0→ f ∗F →
f ∗G is an exact sequence in ShX and by adjointness of (f ∗, f∗), we have a commutative
diagram

Hom(G, f∗E) Hom(F, f∗E)

Hom(f ∗G,E) Hom(f ∗F,E)

0

0

∼= ∼=

with isomorphisms on the columns. Since E is injective, the bottom row is exact. Therefore
the top row is also exact, which proves f∗E is injective.

Remark. More generally, any functor with an exact left adjoint preserves injectives.

Corollary 3.3.21. For any continuous map f : X → Y and sheaf F on X, there is a
homomorphism

Hp(X,F ) −→ Hp(Y, f∗F )

for all p ≥ 0.

Proof. Take an injective resolution E• of F in ShX . Then by Corollary 3.3.20, f∗E
• is an

injective resolution of f∗F in ShY , so we can compute cohomology using this resolution:

Hp(Y, f∗F ) = Hp(Γ(Y, f∗E
•)).

Since each f∗E
n is defined locally by a direct limit lim

−→
En(f−1(V )), there is an induced map

of global sections Γ(X,En)→ Γ(Y, f∗E
n) for each n ≥ 0. This induces the desired maps on

cohomology: Hp(X,F ) −→ Hp(Y, f∗F ).

Remark. To compute Hp(X, f ∗G) for a sheaf G on Y is harder in general, since if E• is an
injective resolution of G in ShY , the inverse images f ∗E• need not form an injective resolution
of f ∗G on X. However, by the theory of derived categories, there exists an injective complex
of sheaves J• on X and an embedding f ∗E• → J• which is a quasi-isomorphism, i.e. it
induces isomorphisms on all cohomology groups. Therefore the cohomology of f ∗G can be
computed with this resolution:

Hp(X, f ∗G) = Hp(Γ(X, J•)).

Further, there are chain maps

Γ(Y,E•)→ Γ(X, f ∗E•)→ Γ(X, J•)
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which induce a homomorphism on cohomology

Hp(Y,G) −→ Hp(X, f ∗G)

for all p ≥ 0. In principle these can be defined directly from the definitions of sheaf coho-
mology and f ∗, but the derived categorical perspective makes this straightforward.

One thing to note about the direct image functor is that it does not preserve stalks.
Indeed, if f : X → Y is an arbitrary continuous map and y ∈ Y , then for any sheaf F on
X, (f∗F )y = Fx if y = f(x) ∈ f(X), but if y 6∈ f(X), then (f∗F )y need not be 0 (the value
of F over the empty set). One way to remedy this is to define a new type of pushforward
functor that respects stalks. We start by giving the definition for open embeddings.

Definition. Let j : U ↪→ X be the inclusion of an open set. For a sheaf F on U , define the
extension by zero of F along j to be the sheafification j!F of the presheaf P on X defined
by

P (V ) =

{
F (V ), V ⊆ U

0, V 6⊆ U.

Lemma 3.3.22. For any open embedding j : U ↪→ X, the assignment F 7→ j!F is a functor
ShU → ShX .

Proposition 3.3.23. For any open embedding j : U ↪→ X, (j!, j
∗) is an adjoint pair of

functors.

Proof. Let F be a sheaf on U and G a sheaf on X. First recall that the inverse image functor
j∗ is simply restriction: j∗G = G|U . Then for the presheaf P defined above, we have

HomShX (j!F,G) ∼= HomPreshX (P,G) by the universal property of sheafification
∼= HomShU (F,G|U) by definition of P

= HomShU (F, j∗G).

These isomorphisms are all natural in F and G, so (j!, j
∗) is an adjoint pair.

Corollary 3.3.24. For any open embedding j : U ↪→ X, j! is exact and j∗ preserves injec-
tives.

Proof. Exactness of j! can be checked on stalks, and the second statement is a consequence
of the remark following Corollary 3.3.20.

If j : U ↪→ X is an open embedding, the above gives us a triple of functors (j!, j
∗, j∗) in

which each consecutive pair is an adjunction and j∗ is exact. In a similar fashion, we can
extend the adjunction (i∗, i∗) for a closed embedding i : Z ↪→ X.

Definition. Let i : Z ↪→ X be the inclusion of a closed subset. For a sheaf F on X, define
the inverse image of F supported on Z to be the sheaf i!F whose value on an open set
V ⊆ Z is

(i!F )(V ) = ΓZ(V, F ) := {s ∈ Γ(V, F ) | supp(s) ⊆ V }.
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Lemma 3.3.25. For any closed embedding i : Z ↪→ X, F 7→ i!F is a functor ShX → ShZ.

Proposition 3.3.26. For any closed embedding i : Z ↪→ X, (i∗, i
!) is an adjoint pair of

functors.

Corollary 3.3.27. For any closed embedding i : Z ↪→ X, i∗ is exact and i! preserves
injectives.

Therefore we have a triple of functors (i∗, i∗, i
!) in which each consecutive pair is an

adjunction and i∗ is exact. We remark that the functor f ! does not exist in general –
although a derived analogue does exist and agrees with the derived functor of i! for a closed
embedding.

Let i : Z ↪→ X be a closed embedding, set U = X r Z and let j : U ↪→ X be the
corresponding open embedding. Define a category C whose objects are triples (G,H, ϕ)
where G is a sheaf on Z, H is a sheaf on U and ϕ : G→ i∗j∗H is a morphism of sheaves, and
whose morphisms are pairs of morphisms (ξ : G→ G′, χ : H → H ′) making the diagram

G i∗j∗H

G′ i∗j∗H
′

ϕ

ξ i∗j∗(χ)

ϕ′

commute. Let η : F → j∗j
∗F be the unit of the adjunction (j∗, j∗). Then this induces a

morphism of sheaves i∗(η) : i∗F → i∗j∗j
∗F .

Theorem 3.3.28 (Recollment of Sheaves). For i : Z ↪→ X and j : U = X r Z ↪→ X as
above,

ShX −→ C
F 7−→ (i∗F, j∗F, i∗(η))

is an equivalence of categories.

When i : Z ↪→ X is a closed embedding and G is a sheaf on Z, note that the stalks of
the direct image sheaf F = i∗G are precisely

Fx =

{
Gx, x ∈ Z
0, x 6∈ Z.

Since i∗ preserves stalks, this shows that the counit ε : i∗i∗G→ G of the adjunction (i∗, i∗) is
in fact an isomorphism. Hence i∗G = F = i!G. On the other hand, for the open embedding
j : U = X r Z ↪→ X, we have

(j∗G)x =

{
Gx, x ∈ U
0, x 6∈ U.

Therefore j∗G 6= j!G in general. This presents an obstacle to constructing the adjunctions
(f!, f

∗, f∗, f
!) for more general maps f .
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Definition. A subset W ⊆ X is locally closed if

(1) W is open in W .

(2) W = U ∩ C where U ⊆ X is open and C ⊆ X is closed.

(3) For all x ∈ W , there is a neighborhood V ⊆ X of x such that V ∩W is closed in V .

Proposition 3.3.29. The adjunctions (i!, i
∗, i∗, i

!) exist for any locally closed embedding
i : W ↪→ X.

Proof. We have an open embedding W ↪→ W and a closed embedding W ↪→ X, so apply
Theorem 3.3.28.

Conversely:

Proposition 3.3.30. Let i : W ↪→ X be the inclusion of an arbitrary subset. If every sheaf
on X is of the form i!G for some G ∈ ShW , then W is locally closed in X.

Theorem 3.3.31. Let i : Z ↪→ X be a closed embedding, set U = X rZ and let j : U ↪→ X
be the corresponding open embedding. Then for any sheaf F on X, the sequence

0→ j!j
∗F → F → i∗i

∗F → 0

is exact.

Proof. By definition, it suffices to check this on stalks: for x ∈ X, the sequence is{
0→ Fx

id−→ Fx −→ 0→ 0, x ∈ U
0→ 0 −→ Fx

id−→ Fx → 0, x ∈ Z.

Remark. Note that when j : Z ↪→ X is a closed embedding, the morphism of sheaves
j!G→ j∗G is injective for all G ∈ ShZ , so for every open set V ⊆ X, we may view Γ(V, j!G)
as a subset of Γ(V, j∗G) = Γ(V ∩ U,G), where U = X r Z. Explicitly,

Γ(V, j!G) = {s ∈ Γ(V ∩ U,G) | supp(s) is closed in U}.

This explains another common name, ‘sections with compact support’, for j!. For a general
map f : X → Y , this suggests defining the pushforward with compact support f! : ShZ → ShX
by

(f!F )(V ) = {s ∈ Γ(f−1(V ), F ) | f |supp(s) : supp(s)→ V is proper}.

(Recall that a map is proper if the preimage of every compact set is compact.)
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3.4 Acyclic Sheaves

Injective resolutions are hard to come by in sheaf theory, but Theorem 3.2.3 shows that sheaf
cohomology can be computed via acyclic resolutions. This gives us the following result, which
will be useful in reducing cohomology computations to simpler subspaces.

Proposition 3.4.1. Let i : Z ↪→ X be the inclusion of a closed subset. Then for any sheaf
of abelian groups F on Z,

H i(Z, F ) ∼= H i(X, i∗F )

for all i ≥ 0.

Proof. Suppose E• is an injective resolution of F on Z. Then by exactness of i∗, i∗E
• is

an injective resolution of i∗F on X and Γ(Z,E•) = Γ(X, i∗E
•) so the cohomology groups

agree.

Recall (Section 1.3) that a sheaf F on X is flasque if for all open sets V ⊆ U , the
restriction F (U)→ F (V ) is surjective.

Lemma 3.4.2. Let (X,OX) be a ringed space. Then any injective OX-module is flasque.

Proof. For any open set U , let j : U ↪→ X be the inclusion map and set OU = j!(OX |U).
Then OU is an OX-module. Suppose F is an injective OX-module and V ⊆ U are open sets
in X. Then there is an induced map OV ↪→ OU which is an inclusion since j! is exact, so
by the injective property for F , HomOX (OU , F )→ HomOX (OV , F ) is surjective. Finally, the
adjunction (j!, j

∗) gives us an isomorphism

HomOX (OU , F ) ∼= HomOX |U (OX |U , j∗F ) = F (U).

Hence F (U)→ F (V ) is surjective, so F is flasque.

Theorem 3.4.3. Let F be a flasque sheaf on X. Then F is acyclic.

Proof. Since ShX has enough injectives by Theorem 1.3.10, there is an exact sequence of
sheaves

0→ F → G→ H → 0

where G is injective. By Theorem 1.3.12,

0→ F (X)→ G(X)→ H(X)→ 0

is also exact, so in the long exact sequence in sheaf cohomology, we have

0→ F (X)→ G(X) � H(X)→ H1(X,F )→ H1(X,G) = 0

where the last term is zero since G is injective, and thus acyclic. Therefore exactness implies
H1(X,F ) = 0. Now for i ≥ 2, inductively assume that H i−1(X,Q) = 0 for all flasque sheaves
Q on X. Part of the long exact sequence looks like

0 = H i−1(X,G)→ H i−1(X,H)→ H i(X,F )→ H i(X,G) = 0,

once again using that G is injective. Thus H i(X,F ) ∼= H i−1(X,H). Meanwhile, Lemma 3.4.2
shows that G is flasque, so the second statement in Theorem 1.3.12 implies H is also flasque
and hence H i−1(X,H) = 0 by the inductive hypothesis. This proves H i(X,F ) = 0 for all
i ≥ 2.
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Remark. If (X,OX) is a ringed space, Theorem 3.4.3 shows that flasque sheaves are acyclic
for the functor Γ : ModOX → Ab, so the derived functors of Γ agree with the sheaf cohomology
H i(X,−) for sheaves of abelian groups.

Theorem 3.4.4 (Grothendieck Vanishing). Let X be a noetherian topological space of di-
mension n. Then for any sheaf of abelian groups F on X,

H i(X,F ) = 0

for all i > n.

Proof. First suppose X is reducible; let Z be one of its irreducible components and set
U = X r Z. Following the notation above, let j : U ↪→ X be the open inclusion and set
FU = j!(F |U). Likewise, let i : Z ↪→ X be the closed inclusion and set FZ = i∗(F |Z). Then
by Theorem 3.3.31, there is an exact sequence

0→ FU → F → FZ → 0.

By the long exact sequence in sheaf cohomology, it’s enough to prove H i(X,FU) = 0 and
H i(X,FZ) = 0 for all i > n. Note that FU extends to a sheaf on U , which is a closed
subset with one less irreducible component than X. Applying Proposition 3.4.1 to U ↪→ X
and noting that Z is closed and irreducible, we may reduce to the case where X is itself
irreducible.

We induct on n = dimX. If n = 0, Γ : ShX → Ab is an equivalence of categories (X is
irreducible) and in particular exact, so RiΓ is trivial for i > 0. For n > 0, note that we have

F = lim
−→

FB

where the limit is over all finite subsets B ⊆
⋃
U⊆X F (U), directed by inclusion, and FB is

the subsheaf of F generated by the sections in B. Since cohomology commutes with direct
limits, it suffices to prove H i(X,FB) = 0 for all B. Suppose B′ ⊆ B and set q = |B r B′|.
Then there is an exact sequence

0→ FB′ → FB → G→ 0

where G is a sheaf generated by q sections over some open subsets of X. Using the long
exact sequence coming from this sequence, we may reduce to the case where q = 1. In this
case we have a short exact sequence

0→ K → ZU → F → 0

for some open set U ⊆ X, where Z denotes the (locally) constant sheaf on X with values
in Z. Thus we may prove the theorem by showing that H i(X,ZU) = 0 for any open U and
H i(X,K) = 0 for any nonzero subsheaf K ⊆ ZU . For such a subsheaf K, we have that Kx

is a subgroup of ZU,x for all x ∈ U , so there is some open set V ⊆ U for which K|V ∼= dZ|V .
Abstractly, dZV ∼= ZV so there is a short exact sequence

0→ ZV → K → Q→ 0.
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The quotient sheaf Q is supported on U r V which has dimension < n since X is irreducible.
Therefore H i(X,Q) = 0 for all i ≥ n by the inductive hypothesis. Thus it remains to show
H i(X,ZU) = 0 for i > n and all U (which implies vanishing for ZV if V ⊆ U). Set Z = XrU .
Since X is irreducible, dimZ < n so by induction, H i(X,ZZ) = 0 for i ≥ n. On the other
hand, Z is obviously flasque so Theorem 3.4.3 shows that H i(X,Z) = 0 for i > 0. Thus the
long exact sequence induced by the short exact sequence

0→ ZU → Z→ ZZ → 0

gives us H i(X,ZU) ∼= H i−1(X,ZZ) which is 0 for all i− 1 ≥ n. This finishes the proof.

Suppose U = {Ui} is an open covering of a space X and F is a sheaf of abelian groups
on X. By Theorem 3.2.2, there is a natural map Ȟ

p
(U , F )→ Hp(X,F ) for every p ≥ 0.

Proposition 3.4.5. If F is a flasque sheaf on X, then Ȟ
p
(U , F ) = 0 for all open covers U

of X and all p > 0.

Proof. Let C•(U , F ) be the Čech resolution of F with respect to U . Recall that Cp(U , F ) is
defined for any open V ⊆ X by

Γ(V, Cp(U , F )) =
∏
i0,...,ip

F (V ∩ Ui0,...,ip)

where Ui0,...,ip = Ui0 ∩ · · · ∩ Uip . For each of these Ui0,...,ip , the sheaf V 7→ F (V ∩ Ui0,...,ip) is
flasque and since products of flasque sheaves are flasque, the entire sheaf Cp(U , F ) is flasque.
Therefore Cp(U , F ) is acyclic by Theorem 3.4.3, so the Čech resolution can used to compute
sheaf cohomology:

Ȟ
p
(U , F ) = Hp(C•(U , F )) = Hp(X,F ) = 0.

Definition. A sheaf F on X is acyclic for an open cover U = {Ui} if for all p > 0,
Hp(Ui0,...,ip , F |Ui0,...,ip ) = 0.

Such covers exist in many common situations, e.g. for manifolds with a Riemannian
metric. The following result allows for relatively easy computations of sheaf cohomology
when an acyclic cover is available.

Theorem 3.4.6 (Leray). If F is a sheaf on X which is acyclic for an open cover U , then
the maps

Ȟ
p
(U , F ) −→ Hp(X,F )

are isomorphisms for all p ≥ 0.

Proof. We prove this by induction on p. For p = 0, this is clear since both Ȟ
0
(U , F ) and

H0(X,F ) are Γ(X,F ). Now assume Ȟ
j
(U , G)→ Hj(X,G) is an isomorphism for all j ≤ p

and all acyclic sheaves G. For our given F , take a short exact sequence of sheaves

0→ F → E → Q→ 0
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where E is injective. Set U = Ui0,...,ip . Then by the hypothesis on F , H i(U, F |U) = 0 for all
i > 0. Since E is injective, and thus flasque by Lemma 3.4.2, we have H i(U,E|U) = 0 as
well. Thus in the long exact sequence induced by the above sequence, we can see

0 = H i(U,E|U)→ H i(U,Q)→ H i+1(U, F ) = 0.

This shows H i(U,Q) = 0 for all i ≥ 1, so by taking the product over all such Ui0,...,ip , we
conclude that Q is acyclic for U . Therefore, the sequence of complexes of sheaves

0→ C•(U , F )→ C•(U , E)→ C•(U , Q)→ 0

is exact and induces a long exact sequence

· · · → Ȟ
p−1

(U , E)→ Ȟ
p−1

(U , Q)→ Ȟ
p
(U , F )→ Ȟ

p
(U , E)→ · · ·

Now since E is flasque, Proposition 3.4.5 shows that Ȟ
p−1

(U , E) = Ȟ
p
(U , E) = 0. Therefore

we have a diagram with exact rows

0 Ȟ
p−1

(U , Q) Ȟ
p
(U , F ) 0

0 Hp−1(X,Q) Hp(X,F ) 0

By induction, the left column is an isomorphism, so it follows that Ȟ
p
(U , F )→ Hp(X,F ) is

an isomorphism.

Corollary 3.4.7. For any sheaf F on X, the map Ȟ
1
(X,F )→ H1(X,F ) is an isomorphism.

Proof. Let E be an injective sheaf and 0 → F → E → Q → 0 a short exact sequence of
sheaves on X. Fix an open cover U of X. Then the morphism of complexes of sheaves
C•(U , F ) → C•(U , E) is injective; let K•(U) be its cokernel, so that we have a short exact
sequence of complexes

0→ C•(U , F )→ C•(U , E)→ K•(U)→ 0.

Then by Proposition 3.4.5, Ȟ
1
(U , E) = 0 and there is a diagram with exact rows:

0 F (X) E(X) H0(K•(U)) Ȟ
1
(U , F ) 0

0 F (X) E(X) Q(X) H1(X,F ) 0

id id

After passing to the direct limit over all U , it’s enough to show that

α : lim
−→

H0(K•(U))→ H0(X,Q)
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is an isomorphism. Injectivity is easy. For surjectivity, take s ∈ H0(X,Q) = Ȟ
0
(X,Q).

Then there exists an open cover U = {Ui} of X such that s = (si) ∈
∏
E(Ui) and these si

satisfy si − sj ∈ ker(F (Ui ∩ Uj) → E(Ui ∩ Uj)) = F (Ui ∩ Uj) for all overlaps Ui ∩ Uj. By

definition this (si) defines a Čech 0-cocycle in Ȟ
0
(U , E) whose image in H0(K•(U)) maps to

s along α. Hence α is an isomorphism.

Definition. The support of a morphism of sheaves ϕ : F → G is the closed set

supp(ϕ) = {x ∈ X | ϕx 6= 0}

where ϕx : Fx → Gx is the map on stalks.

Definition. An open cover U of X is locally finite if every x ∈ X has a neighborhood
which has nonempty intersection with only finitely many elements of U . The space X is
paracompact if every open cover has a locally finite refinement.

Example 3.4.8. All metric spaces are paracompact.

Definition. Let U = {Ui}i∈I be a locally finite cover of X and F a sheaf on X. A partition
of unity for F subordinate to U is a collection of morphisms of sheaves {ηi : F → F}i∈I
such that for each i ∈ I, supp(ηi) ⊆ Ui, and for all x ∈ X,

∑
i∈I ηi,x = idFx.

Note that when U is locally finite, only finitely many of the maps ηi,x : Fx → Fx are
nonzero for any given x ∈ X, so the sum

∑
i∈I ηi,x is always defined.

Definition. A sheaf F on X is fine if it admits partitions of unity subordinate to any locally
finite cover of X.

Proposition 3.4.9. Let 0 → F → G → H → 0 be a short exact sequence of sheaves on
a paracompact space X. If F is fine, then 0 → F (X) → G(X) → H(X) → 0 is exact.
Moreover, if every open set U ⊆ X is paracompact and G is flasque, then H is flasque as
well.

Proof. Similar to the proof of Theorem 1.3.12.

Corollary 3.4.10. Let F be a fine sheaf on X. Then F is acyclic.

Proof. Similar to the proof of Theorem 3.4.3.

Example 3.4.11. Let (X,OX) be a ringed space. Assume U = {Ui}i∈I is a locally finite
open cover and OX admits a partition of unity subordinate to U ; equivalently, assume there
exist sections {si ∈ OX(X)}i∈I for which supp(si) ⊆ Ui for all i ∈ I and

∑
i∈I si = 1 in

OX(X). Let F be an OX-module. Then the maps ηi,U : F (U) → F (U), t 7→ si|U · t induce
a partition of unity {ηi : F → F} for F subordinate to U . Hence sheaves of modules over a
fine sheaf of rings are also fine.
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3.5 De Rham Cohomology

Let X be a smooth n-manifold with tangent bundle π : TX → X. A smooth section of π
is called a vector field on X, that is, a smooth assignment of a tangent vector vx ∈ TxX for
each x ∈ X. Let U ⊆ X be a coordinate chart with local coordinates ∂

∂x1
, . . . , ∂

∂xn
. Then if

x ∈ U , a tangent vector vx can be written

vx =
n∑
i=1

fi(x)
∂

∂xi

for some smooth functions fi : U → R. Let V(U) denote the space of vector fields over U ,
which is a module over the ring of smooth functions on U . Let OX be the sheaf of smooth
functions on X, which makes (X,OX) into a ringed space. Then the assignment U 7→ V(U)
defines a sheaf of OX-modules on X.

On the other hand, the cotangent bundle of X, π∗ : T ∗X → X, defined by dualizing TX
fibrewise, has as its sheaf of sections the sheaf of (smooth) differential 1-forms Ω1

X , which
is also an OX-module. An element of Ω1

X is a smooth assignment x 7→ ωx ∈ C∞(TxX,R).
Such an element ωx can be written in local coordinates (say over U ⊆ X containing x) as

ωx = ϕ1(x) dx1 + . . .+ ϕn(x) dxn

for smooth functions ϕi : U → R and basis elements {dx1, . . . , dxn} of C∞(TxX,R) defined

by
〈
dxi,

∂
∂xj

〉
= δij.

Let Ωk
X =

∧
kT ∗X be the sheaf of differential k-forms on X. By convention Ω0

X = OX .
This defines a sheaf of graded rings Ω•X(U) =

⊕∞
k=0 Ωk

X(U) for every open U ⊆ X. Explicitly,
there is a complex

OX = Ω0
X

d−→ Ω1
X

d−→ Ω2
X

d−→ · · ·

where d is the exterior derivative which is defined over U ⊆ X by

dU : Ωk
X(U) −→ Ωk+1

X (U)

ω =
∑
i1,...,ik

ϕi1,...,ik dxi1 ∧ · · · ∧ dxik 7−→ dω =
∑
i1,...,ik

n∑
j=1

∂ϕi1,...,ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik .

Theorem 3.5.1. Suppose X is a smooth manifold. Then

(1) X is paracompact.

(2) For every locally finite cover U of X, there is a partition of unity for OX subordinate
to U .

Corollary 3.5.2. For each k ≥ 0, Ωk
X is a fine sheaf. In particular, Ωk

X is acyclic.

Proof. Theorem 3.5.1 says that OX is a fine sheaf on X, and since each Ωk
X is a module

over OX , the first statement follows from Example 3.4.11. For the second statement, apply
Corollary 3.4.10.
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Definition. The sheaf cohomology of Ω•X is called the de Rham cohomology of X, written

H i
dR(X) := H i(Γ(X,Ω•X)).

Theorem 3.5.3. For a smooth manifold X, the complex of sheaves

0→ RX
i−→ Ω0

X
d−→ Ω1

X
d−→ Ω2

X
d−→ · · ·

is acyclic, where RX denotes the constant sheaf on X with stalks R, and i is the inclusion of
constant functions.

Proof. It is enough to compute this on stalks, where we have for each x ∈ X a coordinate
chart U ∼= Rn. By Poincaré’s Lemma in algebraic topology, H i

dR(Rn) = 0 for all i > 0, so
H i
dR(U) = 0 for all i > 0 as well. Taking direct limits commutes with cohomology, so

H i(X; Ω•X,x) = lim
−→

H i(U ; Ω•X(U)) = lim
−→

H i
dR(U) = 0.

Corollary 3.5.4. For a smooth manifold X, there is an isomorphism

H•dR(X) ∼= H•(X,RX)

where RX is the constant sheaf.

Proof. Theorem 3.5.3 shows that Ω0
X → Ω1

X → Ω2
X → · · · is a deleted acyclic resolution of

RX , so this follows from the definition of sheaf cohomology as the right derived functors of
Γ(X,RX).

Corollary 3.5.5 (De Rham’s Theorem). For a smooth manifold X, there is an isomorphism
between de Rham cohomology and singular cohomology:

H•dR(X) ∼= H•(X;R).

Proof. Apply Corollary 3.5.4 and Theorem 3.2.4.

Theorem 3.5.6. For a smooth, compact manifold X, H i
dR(X) is finite dimensional for all

i ≥ 0.

Proof. Endow X with a Riemannian metric. Then every point in X admits a neighborhood
which is geodesically convex, meaning any two points in the neighborhood lie on a geodesic
which is contained in the neighborhood. Since X is compact, we may choose a finite cover
U = {U1, . . . , Um} consisting of these geodesically convex open sets. Note that for any
i1, . . . , ir ∈ {1, . . . ,m}, the intersection Ui1,...,ir = Ui1 ∩ · · · ∩ Uir is also geodesically convex.
A geodesically convex set has vanishing de Rham cohomology, so de Rham’s theorem says
that H i(Ui1,...,ir ,RX |Ui1,...,ir ) ∼= H i

dR(Ui1,...,ir) = 0 for all i > 0. Therefore RX is acyclic for

the cover U , so by Leray’s theorem (3.4.6), H i(X,RX) = Ȟ
i
(U ,RX). Now observe that each

Ci(U ,RX) in the Čech complex is a finite product of one-dimensional vector spaces, hence

itself finite dimensional, so Ȟ
i
(U ,RX) is finite dimensional.
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4 Scheme Theory

4.1 Affine Schemes

Hilbert’s Nullstellensatz is an important theorem in commutative algebra which is essentially
the jumping off point for classical algebraic geometry (by which we mean the study of
algebraic varieties in affine and projective space). We recall the statement here.

Theorem 4.1.1 (Hilbert’s Nullstellensatz). If k is an algebraically closed field, then there
is a bijection

An
k ←→ MaxSpec k[t1, . . . , tn]

P = (α1, . . . , αn) 7−→ mP = (t1 − α1, . . . , tn − αn),

where An
k = kn is affine n-space over k and MaxSpec denotes the set of all maximal ideals

of a ring.

Further, if f : A→ B is a morphism of finitely generated k-algebras then we get a map
f ∗ : MaxSpecB → MaxSpecA given by f ∗m = f−1(m) for any maximal ideal m ⊂ B. Note
that if k is not algebraically closed, f−1(m) need not be a maximal ideal of A.

Lemma 4.1.2. Let f : A → B be a ring homomorphism and p ⊂ B a prime ideal. Then
f−1(p) is a prime ideal of A.

Proof. Exercise.

This suggests a natural replacement for MaxSpecA, called the prime spectrum:

SpecA = {p ⊂ A | p is a prime ideal}.

Definition. An affine scheme is a ringed space with underlying topological space X =
SpecA for some ring A.

In order to justify this definition, I will now tell you the topology on SpecA and the sheaf
of rings making it into a ringed space. For any subset E ⊆ A, define

V (E) = {p ∈ SpecA | E ⊆ p}.

Lemma 4.1.3. Let A be a ring and E ⊆ A any subset. Set a = (E), the ideal generated by
E. Then

(a) V (E) = V (a) = V (r(a)) where r denotes the radical of an ideal.

(b) V ({0}) = SpecA and V (A) = ∅.

(c) For a collection of subsets {Ei} of A, V (
⋃
Ei) =

⋂
V (Ei).

(d) For any ideals a, b ⊂ A, V (a ∩ b) = V (ab) = V (a) ∪ V (b).
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As a result, the sets V (E) for E ⊆ A form the closed sets for a topology on SpecA, called
the Zariski topology.

Next, for any prime ideal p ⊂ A, let Ap denote the localization at p. For any open set
U ⊆ SpecA, we define

O(U) =

{
s : U →

∐
p∈U

Ap

∣∣∣∣∣ s(p) ∈ Ap,∃ p ∈ V ⊆ U and f, g ∈ A so that s(q) =
f

g
for all q ∈ V

}
.

Theorem 4.1.4. (SpecA,O) is a ringed space. Moreover,

(1) For any p ∈ SpecA, Op
∼= Ap as rings.

(2) Γ(SpecA,O) ∼= A as rings.

(3) For any f ∈ A, define the open set D(f) = {p ∈ SpecA | f 6∈ p}. Then the D(f)
form a basis for the topology on SpecA and O(D(f)) ∼= Af as rings.

Example 4.1.5. For any field k, Spec k is a single point ∗ corresponding to the zero ideal,
with sheaf O(∗) ∼= k.

Example 4.1.6. Let A = k[t1, . . . , tn] be the polynomial ring in n variables over k. Then
SpecA = An

k , the affine n-space over k. For example, when A = k[t] is the polynomial ring
in a single variable, Spec k[t] = A1

k, the affine line.
When k = C, Hilbert’s Nullstellensatz tells us that all the closed points of A1

k correspond
to maximal ideals of the form (t − α) for α ∈ C. But there is also a non-closed, ‘generic
point’ corresponding to the zero ideal which was not detected before.

Spec C[t]
−2

(t+ 2)

0

(t)

1 + i

(t− (1 + i))

generic point

(0)

closed points

On the other hand, if k = Q or another non-algebraically closed field, the same closed
points corresponding to linear ideals (t − α) show up, as well as the generic point cor-
responding to (0), but there are also points corrresponding to ideals generated by higher
degree irreducible polynomials like t2 + 1. Thus the structure of SpecQ[t] is much different
than the algebraically closed case.

SpecQ[t]
−2

(t+ 2)

0

(t)

??

(t2 + 1)

generic point

(0)

closed points

Example 4.1.7. Let X be an algebraic variety over a field k, x ∈ X a point and consider the
affine scheme Y = Spec(k[ε]/(ε2)). We can think of Y as a “big point” with underlying space
∗ corresponding to the zero ideal, along with a “tangent vector” extending infinitesimally
in every direction around ∗. Then any map Y → X determines a unique tangent vector in
TxX, the tangent space of X at x. This idea is useful in intersection theory. For example,
consider the tangency of the x-axis and the parabola y = x2 in A2

k:
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y

y − x2

(0, 0)

As a variety, this point (0, 0) corresponds to the quotient of k-algebras k[x, y]/r(y, y− x2) =
k[x]/r(x2) = k[x]/(x) = k. Thus the information of tangency is lost. However, as an affine
scheme, (0, 0) corresponds to Spec(k[x, y]/(y, y − x2)) = Spec(k[x]/(x2)) so the intersection
information is preserved.

4.2 Schemes

In this section we define a scheme and prove some basic properties resulting from this defi-
nition. Recall that a ringed space is a pair (X,F) where X is a topological space and F is
a sheaf of rings on X.

Definition. A locally ringed space is a ringed space (X,F) such that for all P ∈ X,
there is a ring A such that FP ∼= Ap for some prime ideal p ⊂ A.

Example 4.2.1. Any affine scheme SpecA is a locally ringed space by (1) of Theorem 4.1.4.
We will sometimes denote the structure sheaf O by OA.

Definition. The category of locally ringed spaces is the category whose objects are
locally ringed spaces (X,F) and whose morphisms are morphisms of ringed spaces (X,F)→
(Y,G) such that for each P ∈ X, the induced map f#

P : OY,f(P ) → OX,P is a morphism of

local rings, i.e. (f#
P )−1(mP ) = mf(P ) where mP (resp. mf(P )) is the maximal ideal of the local

ring OX,P (resp. OY,f(P )).

We are now able to define a scheme.

Definition. A scheme is a locally ringed space (X,OX) that admits an open covering {Ui}
such that each Ui is affine, i.e. there are rings Ai such that (Ui,OX |Ui) ∼= (SpecAi,OAi) as
locally ringed spaces.

The category of schemes Sch is defined to be the full subcategory of schemes in the
category of locally ringed spaces. Denote the subcategory of affine schemes by AffSch. Also
let CommRings denote the category of commutative rings with unity.

Proposition 4.2.2. There is an isomorphism of categories

AffSch
∼−→ CommRingsop

(X,OX) 7−→ OX(X)

(SpecA,O) 7−→A.
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Proof. (Sketch) First suppose we have a homomorphism of rings f : A→ B. By Lemma 4.1.2
this induces a morphism f ∗ : SpecB → SpecA, p 7→ f−1(p) which is continuous since
f−1(V (a)) = V (f(a)) for any ideal a ⊂ A. Now for each p ∈ SpecB, define the localization
fp : Af∗p → Bp using the universal property of localization. Then for any open set V ⊆
SpecA, we get a map

f# : OA(V ) −→ OB((f ∗)−1(V )).

One checks that each is a homomorphism of rings and commutes with the restriction maps.
Thus f# : OA → OB is defined. Moreover, the induced map on stalks is just each fp, so the
pair (f ∗, f#) gives a morphism (SpecB,OB)→ (SpecA,OA) of locally ringed spaces, hence
of schemes.

Conversely, take a morphism of schemes (ϕ, ϕ#) : (SpecB,OB) → (SpecA,OA). This
induces a ring homomorphism Γ(SpecA,OA)→ Γ(SpecB,OB) but by (2) of Theorem 4.1.4,
Γ(SpecA,OA) ∼= A and Γ(SpecB,OB) ∼= B so we get a homomorphism A → B. It’s easy
to see that the two functors described give the required isomorphism of categories.

Example 4.2.3. We saw in Example 4.1.5 that for any field k, Spec k = ∗ is a point
with structure sheaf O(∗) = k. If L1, . . . , Lr are finite separable field extensions of k, we
call A = L1 × · · · × Lr a finite étale k-algebra. Then SpecA = SpecL1

∐
· · ·
∐

SpecLr is
(schematically) a disjoint union of points.

Example 4.2.4. Let A be a DVR with residue field k. Then SpecA = {0,mA}, a closed
point for the maximal ideal m and a generic point for the zero ideal. There are two open
subsets here, {0} and SpecA, and we have OA({0}) = k and OA(SpecA) = A.

Example 4.2.5. If k is a field and A is a finitely generated k-algebra, then the closed
points of X = SpecA are in bijection with the closed points of an affine variety over k with
coordinate ring A.

Example 4.2.6. Let A = Z (or any Dedekind domain). Then dimA = 1 and it turns out
that dim SpecA = 1 for some appropriate notion of dimension (see Section 4.3). Explicitly,
SpecZ has a closed point for every prime p ∈ Z and a generic point for (0):

SpecZ
2 3 5 7 11

generic point

(0)

closed points

Example 4.2.7. Let k be a field, X1 = X2 = A1
k two copies of the affine line and U1 = U2 =

A1
k r {0}, where 0 is the closed point of A1

k corresponding to (x) in k[x]. Then we can glue
together X1 and X2 along the identity map U1 → U2 to get a scheme X which looks like the
affine line with the origin “doubled”. Note that X is not affine!

X

A1
k r {0}
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4.3 Properties of Schemes

Many definitions in ring theory can be rephrased for schemes. For example:

Definition. A scheme X is reduced if for all open U ⊆ X, OX(U) has no nilpotent
elements.

Definition. A scheme X is integral if for all open U ⊆ X, OX(U) has no zero divisors.

Lemma 4.3.1. X is integral if and only if X is reduced and irreducible as a topological
space.

Proof. ( =⇒ ) Clearly integral implies reduced, so we just need to prove X is irreducible.
Suppose X = U ∪V for open subsets U, V ⊆ X. Then OX(U ∪V ) = OX(U)×OX(V ) which
is not a domain unless one of OX(U),OX(V ) is 0. In that case, U or V is empty, so this
shows X is irreducible.

( =⇒) Suppose X is reduced and irreducible, but there exists an open set U ⊆ X and
f, g ∈ OX(U) with fg = 0. Define closed sets

C = {P ∈ U | fP ∈ mP ⊂ OX,P}
D = {P ∈ U | gP ∈ mP ⊂ OX,P}.

Then by definition of OX , we must have C∪D = U . By irreducibility, C = U without loss of
generality. Thus for any affine open set U ′ ⊆ U with U ′ = SpecA, we have (OX |U ′)(D(f)) =
0 but by (3) of Theorem 4.1.4, OU ′(D(f)) ∼= Af , the localization of A at powers of f . When
Af = 0, f is nilpotent but by assumption this means f = 0. Hence X is integral.

Definition. The dimension of a scheme X (or any topological space) is

dimX = sup{n ∈ N0 | there exists a chain of irreducible, closed sets X0 ( X1 ( · · · ( Xn ⊆ X}.

Proposition 4.3.2. Let A be a noetherian ring. Then dim SpecA = dimA, the Krull
dimension of A.

Be warned that the converse to Proposition 4.3.2 is false in general.

Definition. Let X be a scheme. Then

� X is locally noetherian if each stalk OX,P is a local noetherian ring.

� X is noetherian if X is integral and locally noetherian.

� An integral scheme X is normal if each stalk OX,P is integrally closed in its field of
fractions.

� X is regular if each OX,P is regular as a local ring, that is, dimOX,P = dimmP/m
2
P

as OX,P/mP -vector spaces.

Definition. Let U ⊆ X be an open subset. Then (U,OX |U) is a scheme which we call an
open subscheme of X. The natural morphism j : U ↪→ X, j# : OX → j∗OX |U is called
an open immersion.
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Example 4.3.3. For X = SpecA, let f ∈ A and recall the open set D(f) defined in
Theorem 4.1.4. Then D(f) is an open subscheme of X and the open immersion D(f) ↪→ X
corresponds to the natural inclusion of prime ideals SpecAf ↪→ SpecA (this is a property of
any localization).

Definition. Let A → A/I be a quotient homomorphism of rings. Then the induced mor-
phism Spec(A/I)→ SpecA is called an affine closed immersion. For a general morphism
of schemes f : X → Y , f is called a closed immersion if f is injective, f(X) ⊆ Y is closed
and there exists a covering of X by affine open sets {Ui} such that each f |Ui : Ui → f(Ui) is
an affine closed immersion. The set f(X) is called a closed subscheme of Y .

Definition. A morphism f : Y → X is locally of finite type if there exists an affine
covering X =

⋃
Ui, with Ui = SpecAi, such that each f−1(Ui) has an open covering

f−1(Ui) =
⋃ni
j=1 SpecBij for ni <∞ and Bij a finitely generated Ai-algebra. Further, we say

f is a finite morphism if each ni = 1, i.e. f−1(Ui) = SpecBi for some finitely generated
Ai-algebra Bi.

4.4 Sheaves of Modules

Through Proposition 4.2.2, we are able to transfer commutative ring theory to the language
of affine schemes. In this section, we define a suitable setting for transferring module theory
to the language of sheaves and schemes.

Definition. Let (X,OX) be a ringed space. A sheaf of OX-modules, or an OX-module
for short, is a sheaf of abelian groups F on X such that each F(U) is an OX(U)-module and
for each inclusion of open sets V ⊆ U , the following diagram commutes:

OX(U)×F(U) F(U)

OX(V )×F(V ) F(V )

If F(U) ⊆ OX(U) is an ideal for each open set U , then we call F a sheaf of ideals on X.

Example 4.4.1. Let f : Y → X be a morphism of ringed spaces. Then the pushforward
sheaf f∗OY is naturally an OX-module on X via f# : OX → f∗OY . Additionally, the kernel
sheaf of f#, defined on open sets by (ker f#)(U) = ker(OX(U) → f∗OY (U)), is a sheaf of
ideals on X.

Most module terminology extends to sheaves of OX-modules. For example,

� A morphism of OX-modules is a morphism of sheaves F → G such that each F(U)→
G(U) is an OX(U)-module map. We write HomX(F ,G) = HomOX (F ,G) for the set of
morphisms F → G as OX-modules. This defines the category of OX-modules, written
OX-Mod.
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� Taking kernels, cokernels and images of morphisms of OX-modules again give OX-
modules.

� Taking quotients of OX-modules by OX-submodules again give OX-modules.

� An exact sequence of OX-modules is a sequence F ′ → F → F ′′ such that each F ′(U)→
F(U)→ F ′′(U) is an exact sequence of OX(U)-modules.

� Basically any functor on modules over a ring generalizes to an operation on OX-
modules, including Hom, written HomOX (F ,G); direct sum F ⊕ G; tensor product
F ⊗OX G; and exterior powers

∧
nF .

The most important of these constructions for our purposes will be the direct sum oper-
ation.

Definition. An OX-module F is free (of rank r) if F ∼= O⊕rX as OX-modules. F is locally
free if X has a covering X =

⋃
Ui such that each F|Ui is free as an OX |Ui-module.

Remark. The rank of a locally free sheaf of OX-modules is constant on connected com-
ponents. In particular, the rank of a locally free OX-module is well-defined whenever X is
connected.

Definition. A locally free OX-module of rank 1 is called an invertible sheaf.

Let A be a ring, M an A-module and set X = SpecA. To extend module theory to
the language of schemes, we want to define an OX-module M̃ on X. To start, for each
p ∈ SpecA, let Mp = M ⊗A Ap be the localization of the module M at p. Then Mp is an
Ap-module consisting of ‘formal fractions’ m

s
where m ∈ M and s ∈ S = A r p. For each

open set U ⊆ X, define

M̃(U) =

{
h : U →

∐
p∈U

Mp

∣∣∣∣∣ s(p) ∈Mp,∃ p ∈ V ⊆ U,m ∈M, s ∈ A with s(q) =
m

s
for all q ∈ V

}
.

(Compare this to the construction of the structure sheaf OA on SpecA in Section 4.1. Also,
note that necessarily the s ∈ A in the definition above must lie outside of all q ∈ V .)

Proposition 4.4.2. Let M be an A-module and X = SpecA. Then M̃ is a sheaf of OX-
modules on X, and moreover,

(1) For any p ∈ SpecA, M̃p
∼= Mp as rings.

(2) Γ(X, M̃) ∼= M as A-modules.

(3) For any f ∈ A, M̃(D(f)) ∼= Mf = M ⊗A Af as A-modules.

The proof is similar to the proof of Theorem 4.1.4; both can be found in Hartshorne.
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Proposition 4.4.3. Let X = SpecA. Then the association

A-Mod −→ OX-Mod

M 7−→ M̃

defines an exact, fully faithful functor.

Proof. Similar to the proof of Proposition 4.2.2.

These M̃ will be our affine model for modules over a scheme X. We next define the
general notion, along with an analogue of finitely generated modules over a ring.

Definition. Let (X,OX) be a scheme. An OX-module F is quasi-coherent if there is an

affine covering X =
⋃
Xi, with Xi = SpecAi, and Ai-modules Mi such that F|Xi ∼= M̃i as

OX |Xi-modules. Further, we say F is coherent if each Mi is a finitely generated Ai-module.

Example 4.4.4. For any scheme X, the structure sheaf OX is obviously a coherent sheaf
on X.

Let QCohX (resp. CohX) be the category of quasi-coherent (resp. coherent) sheaves of
OX-modules on X.

Theorem 4.4.5. QCohX and CohX are abelian categories.

Example 4.4.6. Let X = SpecA, I ⊆ A an ideal and Y = Spec(A/I). Then the natural

inclusion i : Y ↪→ X is a closed immersion by definition, and it turns out that i∗OY ∼= Ã/I
as OX-modules, so i∗OY is a quasi-coherent, even coherent, sheaf on X.

We next identify the image of the functor M 7→ M̃ from Proposition 4.4.3.

Theorem 4.4.7. Let X = SpecA. Then there is an equivalence of categories

A-Mod
∼−→ QCohX .

Moreover, if A is noetherian, this restricts to an equivalence

A-mod
∼−→ CohX

where A-mod denotes the subcategory of finitely generated A-modules.

Proof. (Sketch) The association M 7→ M̃ sends an A-module to a quasi-coherent sheaf on
X = SpecA by definition of quasi-coherence. Further, one can prove that a sheaf F on X is
a quasi-coherent OX-module if and only if F ∼= M̃ for an A-module M . The inverse functor
QCohX → A-Mod is given by F 7→ Γ(X,F).

When A is noetherian, the above extends to say that F is coherent if and only if F ∼= M̃
for a finitely generated A-module M . The rest of the proof is identical.

The following lemma generalizes Example 4.4.6.

Lemma 4.4.8. Let f : Y → X be a morphism of schemes and let G be a quasi-coherent
sheaf on Y . Then f∗G is a quasi-coherent sheaf on X. Further, if G is coherent and f is a
finite morphism, then f∗G is also coherent.

Note that the second statement is false in general.
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4.5 The Proj Construction
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A Category Theory

A Category Theory

A.1 Representable Functors

Let C be a category and A,B two objects in C.

Theorem A.1.1. If A ∼= B then HomC(A,−) and HomC(B,−) are naturally isomorphic
functors. Similarly, HomC(−, A) ∼= HomC(−, B).

Proof. Let A ∼= B via the isomorphism α : A → B and let α−1 be its inverse. Define a
transformation τ : HomC(A,−)→ HomC(B,−) by

τC = (α−1)∗ : HomC(A,C) −→ HomC(B,C)

f 7−→ fα−1

for each C ∈ obj(C). Note that fα−1 : B → C so this map is well-defined.
Next we verify that for any morphism f : C → C ′, the following diagram commutes:

Hom(A,C) Hom(B,C)

Hom(A,C ′) Hom(B,C ′)

τC

f� f�

τC′

If h ∈ Hom(A,C) then it maps h 7→ hα−1 7→ fhα−1 via the top map, and h 7→ fh 7→ fhα−1

via the bottom map, so indeed the diagram commutes. Thus τ is a natural transformation.
Finally we need to check that each τC is an isomorphism. To do this, construct a trans-

formation σC : HomC(B,C) → HomC(A,C) taking g 7→ gα. Then for any f ∈ HomC(A,C)
and g ∈ HomC(B,C) we have

τC(σC(g)) = τC(gα) = gαα−1 = g

and

σC(τC(f)) = σC(fα−1) = fα−1α = f.

Hence τC and σC are inverse morphisms, so τC is an isomorphism. This proves that τ is a
natural isomorphism. The proof that HomC(−, A) ∼= HomC(−, B) is similar.

We will see that the converse of this statement is also true. That is, HomC(−, A) com-
pletely determines the object A itself (as does HomC(A,−)). But what’s the meaning be-
hind statements like this? For an object A ∈ obj(C), the functor HomC(−, A) : Cop → Sets

gives us a lot of information about A. For example, if C is the category of groups and
HomC(Z/2Z, A) contains a nontrivial element, this tells us that A has at least one element of
order 2. Likewise, in the category Top of topological spaces, elements of Hom(S1, A) encode
the information of closed loops in A. So “probing” A by different objects B, i.e. considering
HomC(B,A), tells us different sorts of information about A. By probing A with all objects
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in C, would it be possible to know all information about A? The answer is yes, and the
formal statement of this is called Yoneda’s Lemma.

Lemma A.1.2 (Yoneda’s Lemma). Let C be a category, A ∈ obj(C) and G : C → Sets a
covariant functor. Then there is a bijection

Nat(HomC(−, A), G)←→ G(A).

Proof. Let τ : HomC(−, A)→ G be a natural transformation. Then for each B ∈ obj(C) and
morphism ϕ : A→ B, the following diagram commutes:

Hom(A,A) G(A)

Hom(B,A) G(B)

τA

ϕ∗ G(ϕ)

τB

where ϕ∗ : f 7→ ϕ ◦ f . In particular, 1A ∈ HomC(A,A) maps to τA(1A) ∈ G(A). Define
the map Nat(HomC(−, A), G) → G(A) by sending τ 7→ τA(1A). If σ : HomC(−, A) → G is
another natural transformation such that σA(1A) = τA(1A), then the above diagram shows
that for all ϕ ∈ HomC(B,A),

σB(ϕ) = σBϕ∗(1A) = G(ϕ)τA(1A) = G(ϕ)σA(1A) = τBϕ∗(1A) = τB(ϕ).

Thus σ = τ , so the assignment is one-to-one.
We next show every element x ∈ G(A) is induced by such a natural transformation

τ : HomC(−, A) → G. For each B ∈ obj(C) and f ∈ HomC(B,A), define τB(f) = G(f)(x).
Then for any B → C, the following diagram commutes:

Hom(A,B) G(B)

Hom(A,C) G(C)

τB

τC

Hence τ is a natural transformation and by construction, τA(1A) = G(1A)(x) = 1G(A)(x) = x.
This proves the bijection.

Corollary A.1.3. If HomC(−, A) and HomC(−, B) are naturally isomorphic, then A ∼= B.

Proof. Suppose τ : HomC(−, A)→ HomC(−, B) is a natural isomorphism. Applying Yoneda’s
Lemma to G = HomC(−, B), we get a unique element x ∈ G(A) = HomC(A,B). Applying
Yoneda to the inverse of τ yields a unique inverse to x, proving A ∼= B.

For any category C, there is a functor C → Fun(Cop, Sets) given by A 7→ HomC(−, A).
The Yoneda Lemma shows that this functor is fully faithful, i.e. it embeds C as a full
subcategory of Fun(Cop, Sets). More precisely:
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Corollary A.1.4 (Yoneda Embedding). There is a functor C → Fun(Cop, Sets), A 7→
HomC(−, A), which is an isomorphism on HomC(B,C) for all B,C ∈ C.

Lemma A.1.5 (Yoneda’s Lemma, Covariant Version). Let C be a category, A ∈ obj(C) and
G : C → Sets a covariant functor. Then there is a bijection

Nat(HomC(A,−), G)←→ G(A)

τ 7−→ τA(1A).

Proof. Similar to the proof of Lemma A.1.2.

Corollary A.1.6 (Yoneda Embedding, Covariant Version). There is a fully faithful functor
C → Fun(C, Sets), A 7→ HomC(A,−).

A.2 Adjoint Functors

Recall the following basic theorem in ring theory.

Theorem A.2.1 (Hom-Tensor Adjointness). Given rings R and S and modules AR,RBS

and CS, there is an isomorphism

τA,B,C : HomS(A⊗R B,C) −→ HomR(A,HomS(B,C))

f 7−→ [a 7→ (b 7→ f(a⊗ b))]

i.e. given any f : A ⊗R B → C and an element a ∈ A, we can construct a linear map
fa : B → C sending b 7→ f(a⊗ b).

The term adjointness comes from the idea that Hom may be viewed as an inner product
on R-Mod:

〈·, ·〉 = HomR(−,−) :R Mod×R Mod −→ Ab

which has ⊗R as its adjoint functor. In particular, we have functors

FB := −⊗R B : ModR −→ ModS

GB := HomS(B,−) : ModS −→ ModR.

Then Theorem A.2.1 says that FB and GB are adjoint functors. FB is sometimes called the
left adjoint and GB the right adjoint, and together they are called an adjoint pair. This
generalizes as follows.

Definition. Let F : A → B and G : B → A be functors. Then (F ,G) is called an adjoint
pair if there is a natural isomorphism

HomB(F−,−) ∼= HomA(−,G−).

In this case F is called a left adjoint of G and G is a right adjoint of F .
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Lemma A.2.2. Let F : A → B and G : B → A be a pair of functors. Then (F ,G) is an
adjoint pair if and only if there exist natural transformations η : idA → GF and ε : FG → idB
such that the compositions Gε◦ηG and εF ◦Fη are both the identity natural transformation.

Proof. ( =⇒ ) Suppose (F ,G) is an adjoint pair. Then for any objects X ∈ A and Y ∈ B,
there is an isomorphism

ΦX,Y : Hom(FX, Y )
∼−→ Hom(X,GY ).

Applying this to Y = FX, we have ΦFX,FX : Hom(FX,FX)
∼−→ Hom(X,GFX) which takes

the identity idFX to some morphism ηX = ΦFX,FX(idFX) : X → GFX. This defines the
natural transformation η : idA → GF . On the other hand, applying the natural isomorphism
Φ to X = GY gives an isomorphism ΦFGY,Y : Hom(FGY, Y )

∼−→ Hom(GY,GY ) under which
the identity idGY is mapped to by some εY = Φ−1

FGY,Y (idGY ) : FGY → Y . This defines the
natural transformation ε : FG → idB. To check the identity conditions, apply Φ to the

sequence εY : FGY idFGY−−−→ FGY εY−→ Y to get:

GY ηGY−−→ GFGY Gε−→ GY.

Thus Gε◦ηGY = ΦFGY,Y (εY ) which by definition equals idGY . The proof of the other identity
is similar.

( =⇒) Given natural transformations η : idA → GF and ε : FG → idB, we define
a natural transformation ΦX,Y : Hom(FX, Y ) → Hom(X,GY ) by sending α : FX → Y
to G(α) ◦ η : X → GFX → GY . Similarly, define its inverse Φ−1

X,Y : Hom(X,GY ) →
Hom(FX, Y ) by sending β : X → GY to ε ◦ F(β) : FX → FGY → Y . To see that these
are natural inverses, fix X ∈ A, Y ∈ B and α : FX → Y and consider

Φ−1
X,Y ΦX,Y (α) = Φ−1

X,Y (G(α) ◦ η) = ε ◦ F(G(α) ◦ η)

= ε ◦ FG(α) ◦ Fη since F is a functor

= εF(G(α))Fη = εF ◦ Fη(α) = α

by the identity εF ◦ Fη = id. Similarly, for β : X → GY , we have

ΦX,Y Φ−1
X,Y (β) = ΦX,Y (ε ◦ F(β)) = G(ε ◦ F(β)) ◦ η

= Gε ◦ GF(β) ◦ η since G is a functor

= Gε ◦ ηG(β) = β

by the identity Gε ◦ ηG = id. Hence ΦX,Y and Φ−1
X,Y form a natural isomorphism.

Definition. For an adjoint pair (F ,G), the natural transformations η : idA → GF and
ε : FG → idB are called the unit and counit of the adjunction, respectively. The conditions
Gε ◦ ηG = id and εF ◦ Fη = id are called the triangle identities.

Theorem A.2.3. If (F ,G) is an adjoint pair of functors, then F preserves colimits and G
preserves limits.
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Proof. Assume F : A → B and G : B → A. Let X : C → A be a direct system and
for each C ∈ C, let ϕC : X(C) → colimX be the induced morphism making the relevant
diagrams commute. We must prove that F(colimX) is the colimit of the direct system
F ◦X : C → A → B. For any C ∈ C and B ∈ B, there is an isomorphism

HomB(F(X(C)), B) ∼= HomA(X(C),G(B)).

Thus for any diagram

F(X(C)) B

colim(F ◦X)

the corresponding diagram can be completed:

X(C) G(B)

colimX

On the other hand, applying F to colimX gives a diagram

F(colimX) B

F(X(C))

F ◦ ϕC

In other words, every map F(X(C)) → B which is compatible with the F ◦ ϕC will factor
through F(colimX). Hence by the universal property of colimits, F(colimX) = colim(F ◦
X). The proof that G preserves limits is dual.

Corollary A.2.4. For any (S,R)-bimodule L, L ⊗R − preserves colimits and HomS(L,−)
preserves limits.

Theorem A.2.5. Let F : ModR → AbGps be an additive functor. Then the following are
equivalent:

(1) F ∼= L⊗R − for some R-module L.

(2) F preserves colimits.

(3) F is right exact and preserves direct sums.

(4) F has a right adjoint.

Likewise, we have:
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Theorem A.2.6. Let F : ModR → AbGps be an additive functor. Then the following are
equivalent:

(1) F ∼= HomR(L,−) for some R-module L.

(2) F preserves limits.

(3) F is left exact and preserves direct products.

(4) F has a left adjoint.

A.3 Limits and Colimits

Products and coproducts are special cases of a more general notion in category theory. Let
C be a diagram category, i.e. a category whose objects are the vertices of a directed graph
and whose morphisms are in bijection with the directed edges of this graph (there may be
multiple loops on a given vertex, but every vertex is assumed to possess a distinguished
‘identity’ loop).

Definition. A direct (resp. inverse) system in a category A is a covariant (resp. con-
travariant) functor C → A where C is a diagram category.

Definition. Let F : C → A be an inverse system in A. The limit (also called the projective
or inverse limit) of F is an object limF ∈ obj(A) such that for all objects C ∈ C, there
are morphisms ϕC : limF → F(C) making the diagrams

limF

F(C) F(C ′)

ϕC ϕC′

commute whenever HomA(F(C),F(C ′)) 6= ∅, and such that limF is universal among all
such objects in A.

Limits are sometimes also written lim
←−
F . By the universal property, limits are unique up

to unique isomorphism.

Example A.3.1. Let C be the category consisting of two objects {1, 2} and only identity
morphisms. An inverse system F : C → A is just defined by specifying two objects, F(1) = a1

and F(2) = a2. Then limF is the product of these elements, a1 u a2.

Definition. Let F : C → A be a direct system in A. The colimit (also called the injective
or direct limit) of F is an object colimF ∈ obj(A) such that for all C ∈ C, there are
morphisms ψC : F(C)→ colimF making the diagrams
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F(C) F(C ′)

colimF

ψC ψC′

commute whenever HomA(F(C),F(C ′)) 6= ∅, and such that colimF is universal among all
such objects in A.

Example A.3.2. Let C be the same category as in Example A.3.1. Then a direct system
F : C → A is once again defined by specifying F(1) = a1 and F(2) = a2, but colimF is the
coproduct of these elements, a1 t a2.

There are plenty of other important examples of limits and colimits in category theory.

Definition. Let C be the diagram category

�

�

�

The colimit of a direct system F : C → A is called the pushout of F and the limit of an
inverse system F : C → A is called the pullback of F .

Explicitly, if a direct system F has image A
B

C
then we write the pushout Q =

colimF as a square diagram

A B

C Q

Similarly, if F is an inverse system with image

B

C
A then we write the pullback P = limF

as a square diagram

P B

C A
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Definition. Suppose A is a category with an object 0 ∈ obj(A) that is both initial and

terminal. For any morphism f : A → B, the pushout of the diagram A
B

0

f

is called

the cokernel of f , written coker f . Similarly, for such a morphism f , the pullback of the

diagram

0

A
B

f
is called the kernel of f , written ker f .

Example A.3.3. The category AbGps of abelian groups has the trivial group 0 as a zero
object, i.e. an object that is both initial and terminal. Then for a homomorphism of abelian
groups f : A → B, the kernel and cokernel of f coincide exactly with these notions from
abstract algebra:

ker f = {a ∈ A | f(a) = 0}
and coker f = {[b] | b ∈ B and [b] = [b′] if b′ = b+ f(a)}.

This also holds in ModR for any ring R, and indeed in any abelian category as we shall see in
the next section.

A.4 Abelian Categories

Abelian categories are the preferred setting for working with derived functors, which are the
main tools used in homological algebra.

Definition. C is an additive category if

� HomC(A,B) is an abelian group for all A,B ∈ obj(C). Note that we normally only
require Hom to be a set.

� For all a ∈ A, b ∈ B, f ∈ Hom(A,B) and g ∈ Hom(B,A),

b(f + g) = bf + bf and (f + g)a = fa+ ga.

� There exists a 0 object, which is both initial and terminal, meaning for all A ∈ obj(C),
there exist maps 0→ A and A→ 0.

� C has finite products (
∏

) and coproducts (
⊕

) and they agree on finite-index sets.

The last condition, that
∏

and
⊕

agree on finite sets, can be proven using the other
axioms. We can also define additive functors between additive categories, which are
functors that preserve the additive structure of the category.

To fully understand abelian categories, it requires us to redefine our concept of kernels
and cokernels. These are best understood in terms of monics and epics.

Definition. A monomorphism, or monic, in a category C is a morphism u : B → C so
that if there are maps f, g : A→ B such that uf = ug, then f = g.
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A B C

f

g

u

Definition. An epimorphism, or epic, is the dual notion, that is π is an epic if for every
f, g : B → C, fπ = gπ implies f = g.

A B C

f

g

π

In general, if u is one-to-one then u is monic, and if π is onto then π is epic, but the
converse does not hold in a general category. We use the converse statements to define an
abelian category.

Definition. An additive category A is abelian if

(1) Every morphism has a kernel and a cokernel.

(2) If f : M → N is monic, then M is the kernel of the diagram

0

N

coker f

(3) If f is epic, then N is the cokernel of the diagram ker f
M

0

Note that condition (2) implies that if f is monic, then there exists a short exact sequence

0→M
f−→ N −→ coker f → 0.

Likewise, condition (3) implies that if f is epic, there exists a short exact sequence

0→ ker f −→M
f−→ N → 0.

Example A.4.1. For any ring R, the category ModR is an abelian category. If R is (left)
noetherian, then the subcategory modR of finitely generated (left) R-modules is also an
abelian category.

Theorem A.4.2. Any abelian category is naturally isomorphic to a full subcategory of ModR
for some ring R.

A.5 Grothendieck Topologies and Sites

To every topological space X, we can associate a category Top(X) consisting of the open
subsets U ⊆ X with morphisms given by inclusions of open sets U ↪→ V . A presheaf on X
is a functor F : Top(X)op → Set, i.e. a contravariant functor on the category Top(X). The
conditions for F to be a sheaf on X can be summarized by saying that for every open set
U ∈ Top(X) and every open covering U =

⋃
Ui, the set F (U) is an equalizer in the following

diagram:
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F (U)
∏
i

F (Ui)
∏
i,j

F (Ui ∩ Uj)

This generalizes as follows.

Definition. A Grothendieck topology on a category C is a set of collections of morphisms
Cov(X) = {{Xi → X}i} for every objects X ∈ C, called coverings, satisfying:

(i) Every isomorphism X ′ → X defines a covering {X ′ → X} in Cov(X).

(ii) For any covering {Xi → X} of X and any morphism Y → X in C, the fibre products
Xi ×X Y exist and the induced maps {Xi ×X Y → Y } are a covering of Y .

(iii) If {Xi → X}i is a covering of X and {Yij → Xi}j is a covering of Xi for each i,
then the compositions {Yij → Xi → X}i,j are a covering of X.

A category equipped with a Grothendieck topology is called a site.

Example A.5.1. For a topological space X, the category Top(X) is a site with coverings

Cov(U) =

{
{Ui ↪→ U} : Ui ⊆ U are open and U =

⋃
i

Ui

}
.

When X is a scheme with the Zariski topology, Top(X) is called the (small) Zariski site on
X.

Example A.5.2. The category Top of all topological spaces with continuous maps between
them is a site, called the big topological site, whose coverings are defined by

Cov(X) =

{
{fi : Xi ↪→ X} : fi is an open embedding and X =

⋃
i

Xi

}
.

Example A.5.3. Similarly, for a scheme X, let SchX be the category of X-schemes (the
category Sch of all schemes can be viewed in this framework by setting X = SpecZ since
this is a terminal object in Sch). Then SchX is a site, called the big Zariski site on X, with
coverings

Cov(Y ) =

{
{ϕi : Yi → Y } : ϕi is an open embedding and Y =

⋃
i

Yi

}
.

Example A.5.4. Let C be a site and X ∈ C be an object. Define the localized site (or
the slice category) C/X to be the category with objects Y → X ∈ HomC(Y,X), morphisms
Y → Z in C such that

Y Z

X
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commutes. Then C/X can be equipped with a Grothendieck topology by defining

Cov(Y → X) = {{Yi → Y } : Yi → Y ∈ HomX(Yi, Y ), {Yi → Y } ∈ CovC(Y )}.

Example A.5.5. Let X be a scheme and define the (small) étale site on X to be the category
Ét(X) of X-schemes with étale morphisms Y → X and covers {Yi → Y } ∈ Cov(Y ) such
that

∐
Yi → Y is surjective.

Example A.5.6. In contrast, we can equip the slice category Sch/X with a Grothendieck
topology by declaring {Yi → Y } to be a covering of Y → X if each Yi → Y is étale and∐
Yi → Y is surjective. The resulting site is referred to as the big étale site on X.

Example A.5.7. Similar constructions can be made by replacing “étale” with other prop-
erties, such as:

� The fppf site is the category Sch/X with coverings {Yi → Y } ∈ Cov(Y ) such that
Yi → Y are flat and locally of finite presentation and

∐
Yi → Y is surjective.

� The lisse-étale site LisÉt(X) is the category of X-schemes with smooth morphisms
between them, whose coverings are {Yi → Y } ∈ Cov(Y ) such that the Yi → Y are
étale and

∐
Yi → Y is surjective.

� The smooth site Sm(X) is the category of X-schemes with smooth morphisms between
them and surjective families of smooth coverings.

� Most generally, the flat site is Sch/X with surjective families of flat morphisms of finite
type as coverings.

Definition. A continuous map between sites f : C1 → C2 is a functor F : C2 → C1 that
preserves fibre products and takes coverings in C2 to coverings in C1.

Remark. Notice that a continuous map between sites is a functor in the opposite direction.
This is in analogy with the topological notion: a continuous map f : X → Y between
topological spaces induces a functor F : Top(Y )→ Top(X) given by V 7→ f−1(V ).

Example A.5.8. When X is a scheme, there are continuous maps between the various sites
we have defined on Sch/X. We collect some of these sites in the following table, along with
their relevant features. (The arrows between sites represent continuous maps between sites,
so the functors on the underlying categories go in the opposite direction. Note that when
we define sheaves in the next section, sheaves will pull back in the same direction as these
arrows.)

Xflat → Xfppf → Xsmooth → Xét → XNis → XZar

name flat fppf smooth étale Nisnevich Zariski

maps all
flat,

locally f.p.
smooth étale

étale, with
residue field

isomorphisms
all
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Example A.5.9. Let G be a profinite group and let CG be the category of all finite, discrete
G-sets. Then the collections of G-homomorphisms {Xi → X} such that

∐
iXi → X is

surjective form a Grothendieck topology on CG. When G = Gal(k̄/k) for some field k, the
category CG is equivalent to Xét for X = Spec k.

The notions of presheaf and sheaf generalize quite naturally to an arbitrary category with
a Grothendieck topology. In fact, one may view the axioms of a Grothendieck topology as
precisely those necessary to define a sheaf theory on a category.

Definition. A presheaf on a category C is a functor F : Cop → Set, that is, a contravari-
ant functor from C to the category of sets. The category of presheaves on C (with natural
transformations between them) will be denoted PreShC.

Definition. We say F is separated if for every collection of maps {Xi → X}, the map
F (X)→

∐
i F (Xi) is injective.

Definition. Let C be a site. A sheaf on C is a presheaf F : Cop → Set such that for every
object X ∈ C and every covering {Xi → X} ∈ Cov(X), the sequence of based sets

F (X)
∏
i

F (Xi)
∏
i,j

F (Xi ×X Xj)

is exact, or equivalently, F (X) is an equalizer in the diagram. The category of sheaves on C
will be denoted ShC.

As in topology, we can consider sheaves on C with values in set categories with further
structure, e.g. Group, Ring,R−Mod, Algk.

Theorem A.5.10 (Sheafification). The forgetful functor ShC → PreShC has a left adjoint
F 7→ F a.

Proof. First consider the forgetful functor SepC → PreShC defined on the subcategory of
separated presheaves on C. For a presheaf F on C, let F sep be the presheaf

X 7−→ F sep(X) := F (X)/ ∼

where, for a, b ∈ F (X), a ∼ b if there is a covering {Xi → X} of X such that a and b have
the same image under the map

F (X)→
∐
i

F (Xi).

By construction, F sep is a separated presheaf on C and for any other separated presheaf F ′,
any morphism of presheaves F → F ′ factors through F sep uniquely. Hence F 7→ F sep is left
adjoint to the forgetful functor SepC → PreShC so it remains to construct a sheafification of
every separated presheaf on C.

For a separated presheaf F , define F a to be the presheaf

X 7−→ F a(X) := ({Xi → X}, {αi})/ ∼
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where {Xi → X} ∈ CovC(X), {αi} is a collection of elements in the equalizer

Eq

 ∏
i

F (Xi)
∏
i,j

F (Xi ×X Xj)

 ,

and ({Xi → X}, {αi}) ∼ ({Yj → Y }, {βj}) if αi and βj have the same image in F (Xi×X Yj)
for all i, j. Then as above, F a is a sheaf which is universal with respect to all morphisms of
sheaves F → F ′. Thus F 7→ F a defines a left adjoint to the forgetful functor ShC → SepC
and composition with the first construction proves the theorem.
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