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Abstract

1. The Pacific sand lance (Ammodytes personatus) is a key forage species for many

commercially important fish (e.g. salmon and groundfish), marine birds, and whales

found in nearshore coastal waters of British Columbia, Canada.

2. Sand lance lack a swim bladder and have a requirement for low-silt, medium-

coarse sandy sea-bed habitat for burying. Little information is available describing

the distribution of burying habitat, partly because there are no commercial

fisheries for A. personatus in British Columbia.

3. This information is required by habitat and wildlife managers to identify and

protect uncommon patches of burying habitats from detrimental activities,

including dredging, infilling, and oil spills.

4. In this study, habitat distribution results from five suitability modelling algorithms

were evaluated: maximum entropy, generalized linear model, generalized additive

model, random forest, and an ensemble model of the latter three.

5. The maximum entropy model had the highest performance score (area under the

receiver operator characteristic curve was 0.78) and was selected as the model

that most accurately identified the presence of suitable A. personatus burying

habitat.

6. Model results indicate that suitable burying habitat is primarily influenced by

derived sea-bed substrate, distance to estuary, distance to sand-gravel beaches,

and bottom sea temperature.

7. Overall, the spatial modelling identified only 105 km2 of highly suitable sand lance

burying habitat, or 2.6% of the study area (0–150 m), primarily in Haro Strait,

along the east coast of Vancouver Island, and in northern regions of the strait near

Cortes, Savary, and Harwood islands.

8. Identification of this uncommon and patchy burying habitat will contribute to the

ongoing conservation of an important coastal prey species.

K E YWORD S

Ammodytes personatus, burying habitat, ensemble modelling, forage fish, habitat suitability
model, Salish Sea

Received: 28 July 2020 Revised: 18 January 2021 Accepted: 14 February 2021

DOI: 10.1002/aqc.3593

Aquatic Conserv: Mar Freshw Ecosyst. 2021;1–15. wileyonlinelibrary.com/journal/aqc © 2021 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0001-9199-2233
mailto:cliff.robinson@dfo-mpo.gc.ca
http://wileyonlinelibrary.com/journal/aqc


1 | INTRODUCTION

The Pacific sand lance (Ammodytes personatus; sand lance) is an

important forage fish for many species of marine birds

(e.g. rhinoceros auklet, Cerorhinca monocerata), numerous coastal

fish (e.g. salmon and groundfish), and baleen whales (e.g. humpback

whale, Megaptera novaeangliae) found in the coastal waters of

British Columbia, such as the Strait of Georgia, Haro Strait, Puget

Sound, and Juan de Fuca Strait, collectively known as the Salish

Sea. Compared with other small forage fish species, sand lance are

unique in that they lack a swim bladder and rely upon sea-bed

substrates to bury in when not foraging in the water column or to

escape from vertebrate predators. Importantly, the life history of

A. personatus also includes an extended period where fish remain

buried in sea-bed sediments from late autumn until spawning in

early winter while developing gonads. After spawning in mid-

winter, the sand lance resume foraging excursions into the water

column from spring to early autumn during daylight, returning to

bury in sand patches at night (Robards et al., 1999; Haynes &

Robinson, 2011).

Ammodytes personatus is not commercially fished on the Pacific

coast of Canada, and hence there is little information available

describing the potential locations of important subtidal burying habi-

tats. This information is ultimately required to support the recovery

of threatened marine species dependent on sand lance, such as

the marbled murrelet (Brachyramphus marmoratus; Environment

Canada, 2014). Moreover, information on the location of burying

habitats is required in light of increased coastal development and

shipping traffic in British Columbia and associated activities such as

sea-bed dredging, infilling, and oiling. These activities would result in

permanent changes in suitable sand lance burying habitat and might

constitute loss of habitat under the Canadian Fisheries Act (R.S.C.,

1985, c. F-14) Government of Canada, 1985. Overall, identifying

factors that influence the distribution of sand lance burying habitat

and mapping its location offers value for wildlife and fish habitat

managers regulating marine activities, designing and establishing

protected areas, and supporting other conservation and management

activities.

The key attributes of the sea-bed substrate that make it a

suitable habitat for sand lance burying include low silt content and

a high percentage composition of medium-coarse sand (e.g., >70%).

Earlier field work in coastal British Columbia validated these key

sand lance burying habitat properties. For instance, Haynes, Robin-

son & Dearden (2008) evaluated the properties of sand patches

where young sand lance buried themselves in intertidal and shallow

subtidal habitats and found that patches consisted of coarse sands

and shell hash. The importance of coarse-grained burying habitat

was further emphasized by Haynes & Robinson (2011), in that sand

lance were found to reuse the same sand patches during summer

and appeared to remain within several kilometres of their subtidal

burying habitats when foraging in the water column. Overall, shal-

low sea-bed burying habitat properties of sand lance in coastal

British Columbia are very similar to the North Sea (e.g. Wright,

Jensen & Tuck, 2000; Holland et al., 2005; Greenstreet et al., 2010),

southern Salish Sea (Bizzarro et al., 2016), and Alaska (Robards

et al., 1999). It has been suggested that medium-coarse sands with

relatively low silt content (<4%) due to specific oceanographic

processes maintain relatively high surface dissolved oxygen, allowing

Ammodytes to remain buried for extended non-foraging periods

(Wright, Jensen & Tuck, 2000; Holland et al., 2005).

Habitat suitability models (HSMs) are valuable tools that have

become increasingly important for supporting the conservation and

management of species and their habitats. By exploring relationships

between a biological entity of interest (e.g. community, biome,

species, gene, habitat) and environmental variables, the presence of

species and habitats can be predicted. Additionally, HSMs can be

used to investigate environmental conditions that meet a given spe-

cies' habitat requirements. Here, the more general term ‘habitat
suitability modelling’ is used because the intent of the study is to

predict the presence of suitable sand lance burying habitat in the

Strait of Georgia rather than predict the distribution of sand lance.

The choice of HSM method can considerably influence predictive

outputs and performance of modelled outputs (Elith et al., 2006;

Pearson et al., 2006). Additionally, selecting the best modelling

approach can be challenging, as no single method is consistently

superior in terms of predictive performance (Segurado &

Araujo, 2004; Shabani, Kumar & Ahmadi, 2016). One approach that

can help find consensus among the varying predictive outputs and

performances of HSMs is ensemble modelling (Thuiller et al., 2009;

Oppel et al., 2012). Ensemble modelling involves combining predic-

tive outputs from multiple different modelling algorithms into a

single model (Araújo & New, 2007; Robinson et al., 2017). The

objective of this study is to compare the predictive performance of

individual and ensemble HSMs to identify the modelling approach

that best represents the distribution of potential sand lance burying

habitat in the Strait of Georgia. The results will ultimately be used

to inform conservation and management decisions related to sand

lance and their habitats.

2 | METHODS

The Strait of Georgia consists of three main oceanographic basins

that are defined by a submarine sill in Boundary Pass and a second

sill south of Victoria (Figure 1; Thomson, 1981). The region to the

north of the Boundary Pass sill is referred to as the Strait of

Georgia, and the region between the two sills is known as Haro

Strait. Not considered in this study is the region seaward of the

Victoria sill, namely Juan de Fuca Strait. The study area

encompassed the Canadian portion of Haro Strait and the Strait of

Georgia for depths ranging between chart datum and 150 m—

depths that previous studies have indicated would most likely con-

tain sand lance burying habitat (e.g. Jensen et al., 2011; Robinson

et al., 2013). The shallow study area consisted of about 4,100 km2

(Figure 1), which is approximately 60% of the sea surface area of

the Strait of Georgia and Haro Strait.
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2.1 | Species data

Information on the presence of sand lance in sea-bed sediments was

derived from a 15 L Van Veen benthic grab sampler. Grab samples of

sea-bed sediments and fish were collected from 500 shallow subtidal

stations during late spring–early summer 2017. At each station, sedi-

ment from the grab sampler was placed in a 40 L tray, photographed,

and a 250 ml representative subsample removed and frozen for later

laboratory analysis (see later). Any sand lances caught in the Van Veen

grabs were placed in plastic bags, labelled (e.g. date, time, location),

and frozen for later laboratory analysis. Fish were collected under

Fisheries and Oceans Canada Scientific Research Permit XR 2352017.

The 500 sediment grab samples collected by the field programme

were analysed in a Parks Canada Agency laboratory in Vancouver,

British Columbia, for grain size analysis. Sediment samples were first

oven-dried at 60�C for 48 hr. Each sediment sample was then shaken

over a series of graded, stacked sieves from largest to smallest mesh

size (4.0, 2.0, 1.0, 0.5, 0.125, 0.063, and <0.063 mm) using a Retsch

AS200 vibratory sieve shaker. After shaking, sediment fractions were

then removed from each sieve and weighed to the nearest 0.01 g.

Percentages of the fractions of grain size diameters in each sample

were calculated and reported according to the Udden–Wentworth

scale of sediment/rock size classification: silt (<0.0625 mm), very fine

sand (0.0625–0.125 mm), fine sand (0.125–0.25 mm), silts and fine

sands (≤0.25 mm), medium sand (0.25–0.5 mm), coarse sand

(0.5–1.0 mm), very coarse sand (1.0–2.0 mm), medium-coarse sands

(0.25–1.0 mm), and very fine gravel (>2.00 mm).

Additional grain size data from 177 grab samples were obtained

from previous studies conducted within the Strait of Georgia.

Sixty-nine subtidal grab samples were obtained from a cooperative

student project in the southern Strait of Georgia in 2010 in an exami-

nation of sand lance shallow subtidal spawning habitats (Robinson

CLK, unpublished data, 2021), while 108 grab samples with grain size

data were assembled from Environment and Climate Change Canada

for a project in the southern Gulf Islands (Bertram D, Environment

and Climate Change Canada, unpublished data, 2021).

To define whether a grab sample might contain sand with suitable

sand lance burying properties, the sediment properties from grab

samples containing both sand lance and grain size data were evalu-

ated. The grain size properties associated with sand lance presence

F IGURE 1 Map of the Strait of
Georgia study area. Hatched lines indicate
the extent of the Pacific sand lance
burying habitat modelling (maximum
depth 150 m)
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were then used to generate criteria that were applied to the remaining

grab sediment samples (not containing fish) and hence classify the

sediment as to its suitability as burying habitat. The importance of

other environmental factors in determining sand lance burying habitat

were to be identified during the habitat suitability modelling process.

2.2 | Environmental variables

A suite of environmental variables (Table 1) that may potentially

influence the presence of buried sand lance was obtained at

100 m × 100 m resolution from chart datum to −150 m depth.

Additional bathymetric derivatives (slope, bathymetric position index,

vector ruggedness) were calculated using the Benthic Terrain Model-

ler toolbox (Walbridge et al., 2018) in ArcGIS. A substrate layer was

developed by combining existing Fisheries and Oceans Canada grain

size (Gregr et al., 2016) and bottom patch (Gregr, Lessard &

Harper, 2013) models to produce a substrate classification composed

of nine classes. However, owing to the sample size constraints

(i.e. not all sediment substrate classes contained sufficient observa-

tions), the nine classes were reclassified into four classes ranging from

high to low suitability for sand lance. The reclassification scheme

(Table 2) was based on published literature of sand lance habitat

suitability (Haynes & Robinson, 2011). The sediment composition of

the four reclassified classes ranged from hard, consolidated substrates

(low suitability) to soft/sandy substrates (high suitability) with the

exception of silt, which was reclassified as low suitability because

sand lances require a low silt content to remain buried and able to

respire during extended non-foraging periods.

To produce a higher resolution 50 m × 50 m data set that aligned

with the bathymetric and bathymetric derivative data, the oceano-

graphic variables were downscaled using ArcGIS Spatial Analyst Tools.

Though downscaling the oceanographic variables does not provide

any additional information, given that pixel values remain the same

after downscaling, general patterns remain and the species observa-

tions can be aggregated to the scale of the higher resolution geomor-

phic variables.

2.3 | Data preparation

Species observations were aggregated to the resolution of the

50 m × 50 m environmental data. If more than one grab observa-

tion fell within a single raster cell, the cell was assigned a presence

if at least one observation was present (Guinotte & Davies, 2014;

Nephin et al., 2020). This step standardizes the observations and

predictions to the same spatial resolution. However, aggregating

presence observations within a large cell grid can often lead to a

reduction in sample size, particularly if observations are in close

proximity to each other. After aggregating, 402 sample points,

225 with suitable substrate (HS) and 177 with no suitable substrate

TABLE 1 Environmental variables used to model Pacific sand lance burying habitat in the Strait of Georgia

Variable Units Native resolution Reference (calculation tool)

Bathymetry m 50 m × 50 m DFO Pacific Region

Medium BPIa — 50 m × 50 m Bathymetric derivative (BTM Toolbox)

Rugosity — 50 m × 50 m Bathymetric derivative (BTM Toolbox)

Slope degrees 50 m × 50 m Bathymetric derivative (BTM Toolbox)

Bottom salinity max (1998–2007) PSU 3 km × 3 km Masson & Fine (2012)

Bottom temperature max (1998–2007) Celsius 3 km × 3 km Masson & Fine (2012)

Tidal current cm/s Variable Foreman et al. (2008)

Distance to estuaries km 100 m × 100 m DFO Pacific Region

Distance to sand-gravel source km 100 m × 100 m DFO Pacific Region

Distance to terrestrial sand km 100 m × 100 m DFO Pacific Region

Dervied sea-bed substrate — — Gregr, Lessard & Harper (2013); Gregr et al. (2016)

Abbreviation: BPI, benthic position index; PSU, practical salinity unit; DFO, Fisheries and Oceans Canada.
aInner radius of 200m, outer radius of 2,000m.

TABLE 2 Reclassification of the derived sea-bed substrate layer

Original classificationa Reclassification

Hard 1

Bedrock dominant 1

Boulder dominant 1

Mixed hard and soft 2

Soft surface with patchy distribution

of boulder and cobble

2

Soft surface overlaying hard substrate 2

Soft 3

Sand/shell 4

Silt/mud 1

aRefer to Gregr, Lessard & Harper (2013) for details of classification.
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(NS) were used to model the presence of suitable sand lance

burying habitat. After aggregating, 102 presence points were used

as an additional measure of performance by determining the

proportion of sand lance presence observations that were correctly

classified when binary presence/absence habitat maps were

produced for each model (refer to Section 2.4.7).

2.3.1 | Cross-validation

Data were partitioned into training and testing data sets using

spatial blocking fivefold cross-validation (CV). Spatial blocking CV is

considered best practice when partitioning data for model fitting

and testing because spatial blocking improves the spatial indepen-

dence of the training and testing data, resulting in more accurate

estimates of model performance (Roberts et al., 2017; Fourcade,

Besnard & Secondi, 2018; Nephin et al., 2020). The range of spatial

autocorrelation in the environmental predictor data was used to

determine the optimal block size. This was done using the blockCV

R package (Valavi et al., 2019). The approach involves automatically

fitting variogram models to each continuous predictor layer and

finding the effective range of spatial autocorrelation; the median

range of spatial autocorrelation of the predictors defines the block

size. An even dispersal of presence and absence observations across

folds was obtained by iteratively (n = 2,000) and randomly assigning

blocks to folds and selecting the configuration with the most even

distribution of HS and NS points. Model fitting and evaluation were

performed for each CV run. Individual CV runs were then combined

to build the final models.

2.3.2 | Variable selection

Collinearity among predictor variables was assessed using the

variance inflation factor (Zuur et al., 2009) and Pearson's correlation.

Maximum salinity was removed, as it was highly correlated (>0.70)

with maximum bottom temperature, while slope was also removed

due to a high VIF (> 10), leaving nine environmental variables for

modelling (Table 1).

2.4 | Modelling

Ensemble modelling is a technique that involves combining predictive

outputs from multiple different modelling algorithms and is one option

for incorporating the varying predictions and performance of multiple

HSMs (Araújo & New, 2007; Robinson et al., 2017). For this study,

three individual modelling algorithms were combined into an ensem-

ble model to predict the presence of burying habitat in the Strait of

Georgia: a generalized linear model (GLM), a generalized additive

model (GAM), and a random forest (RF) model. Ensemble modelling

was completed with the Biomod2 R package version 3.4.6 (Thuiller

et al., 2016). A MaxEnt (Phillips, Anderson & Schapire, 2006) model

was also produced and compared with the individual and ensemble

models, and the model with superior performance judged by area

under the receiver operator characteristic curve (AUC) and true skill

statistic (TSS) was selected as the model that best represents the

location of burying habitat in the study area.

2.4.1 | Generalized linear model

GLMs are flexible and widely used distribution modelling methods

used to relate species observations to environmental variables by

calculating species occurrence as parametric functions of environmen-

tal predictors (McCullagh & Nelder, 2019). In this study, five GLMs

(one for each CV run) were developed to predict the presence of suit-

able sand lance burying habitat in the Strait of Georgia. A binomial

error distribution and logit link function were used (Guisan, Thuiller &

Zimmermann, 2017), and variable selection was done by ranking

models based on the Bayesian information criterion. A GLM predic-

tion surface representing the probability of occurrence of sand lance

burying habitat was derived by calculating the mean prediction from

the five CV runs.

2.4.2 | Generalized additive model

GAMs are an extension of GLMs that are not restricted to linear

relationships between species occurrences and environmental

predictors (Hastie & Tibshirani, 1990). GAMs are flexible and utilize

smoothing functions of predictor variables, allowing for non-linear

relationships between the environmental covariates and the pres-

ence of sand lance burying habitat. The following default Biomod2

settings were used for model fitting: thin-plate regression spline

smoothing function (which is more flexible than the cubic spline

smoothing function), binomial error distribution, and logit link

function. Variable selection was based on generalized CV by attrib-

uting low weights to the less important variables. A GAM predic-

tion surface representing the probability of occurrence of sand

lance burying habitat was derived by calculating the mean predic-

tion from the five CV runs.

2.4.3 | Random forest model

RF (Breiman, 2001) is a machine-learning classification and

regression-tree-based approach to species distribution modelling

that involves creating multiple decision trees and combining the out-

puts. Default Biomod2 settings were applied: The square root of

the number of explanatory values was used to determine the num-

ber of explanatory variables selected at each split, the number of

trees was set to 500, and node size was set to 5. An RF prediction

surface representing the probability of occurrence of sand lance

burying habitat was derived by calculating the mean prediction from

the five CV models.

ROBINSON ET AL. 5



2.4.4 | Maximum entropy model

In contrast to the regression-based GLM, GAM, and RF models, the

MaxEnt model (Phillips, Anderson & Schapire, 2006) uses the principle

of maximum entropy to model the distribution of a species or biologi-

cal entity of interest. MaxEnt models assume that the optimal

approach for addressing remaining uncertainty in a distribution within

known environmental constraints is to maximize entropy (Elith

et al., 2011; Georgian, Anderson & Rowden, 2019). Instead of using a

random selection of background points to define the available envi-

ronmental conditions (the default MaxEnt settings), absence data

were specified as the NS grab locations for model parameterization

and testing in a ‘targeted background’ approach (Phillips &

Dudík, 2008). The same HS and NS observations divided into five CV

folds (training and test data) as used for the GLM, GAM, and RF were

also used for the MaxEnt modelling. MaxEnt modelling was carried

out using the dismo package in R (https://cran.r-project.org/web/

packages/dismo/dismo.pdf). During initial data exploration, the regu-

larization parameter and feature classes used in the MaxEnt modelling

were varied systematically to choose the best settings for analysis

and minimize overfitting of the training data (Merow, Smith &

Silander, 2013; Morales, Fernandez & Baca-Gonzalez, 2017). Models

were evaluated based on the joint rank of AUC calculated for the test-

ing data partition, the difference between the AUC for the training

data and the testing data, and the Akaike information criterion calcu-

lated for small sample sizes (Rooper et al., 2019). A regularization

parameter of 3.9 with exclusion of the product feature class was

found to produce the best average rank. A final MaxEnt prediction

surface representing the probability of occurrence of sand lance bury-

ing habitat was derived by calculating the mean prediction from the

five CV models. It is important to note that the MaxEnt model did not

predict the presence or absence of suitable habitat, but only those

areas where habitats were relatively more or less suitable within the

background. So, a probability of 0.8 in the MaxEnt output does not

infer a probability of suitable habitat of 80%, but only that relative to

the overall conditions there is an 80% chance that the habitat is better

than an average background point.

2.4.5 | Model performance

Models derived from the GLM, GAM, RF, and MaxEnt CV folds were

evaluated using the mean and SD of the following performance

metrics (definitions obtained from Nephin et al. (2020)):

• AUC—A common metric for estimating the performance of HSMs.

AUC values of >0.5 are estimated to be better than chance, values

>0.7 are considered acceptable, and values between or higher than

0.8 and 0.9 are considered excellent (Pearce & Ferrier, 2000).

• TSS—Balances sensitivity and specificity and is independent of

prevalence of observations. TSS ranges from −1 to +1, with values

<0 indicating that models are no better than chance and values of

1 indicating perfect agreement (Allouche, Tsoar & Kadmon, 2006).

TSS values >0.6 are considered good, and values between 0.2 and

0.6 are considered moderate (Landis & Koch, 1977).

• Accuracy—The percentage of predictions that are correctly classified

when the probability of presence of suitable habitat is converted to

a binary presence–absence classification. The threshold probability

was determined by maximizing model sensitivity and specificity

(see Section 2.4.7 for details on how thresholds were calculated).

Model uncertainty was also illustrated using the multivariate environ-

mental similarity index to quantify uncertainty associated with extrap-

olation (Elith, Kearny & Phillips, 2010; Guillaumot et al., 2020). The

approach estimates areas where environmental conditions are outside

the range of conditions used to build the models (i.e. observed in the

species data). Extrapolated areas occur where at least one environ-

mental descriptor value is outside the range of environmental data

used in model calibration.

2.4.6 | Ensemble modelling

Ensemble model predictions were created by averaging the GLM,

GAM, and RF model predictions for each CV run. One ensemble

model was built for each CV run to ensure that all models could be

accurately evaluated and compared. Predictions from individual CV

runs were weighted based on their performance (AUC). The threshold

for including models in the ensemble was set at 0.5 to ensure that a

model performing worse or no better than random (AUC ≤ 0.5) does

not contribute to the ensemble prediction (Nephin et al., 2020). The

threshold was selected because any greater value (e.g. 0.7) would be

arbitrary (Nephin et al., 2020). The mean prediction from the five

ensemble models (one for each CV run) was used to produce the final

ensemble output. The fivefold CV was used to compute a standard

error for prediction at each raster grid cell on the map.

Because the MaxEnt algorithm models the density of environ-

mental conditions used that are then back transformed to be inter-

preted as the probability of suitable conditions for substrate, rather

than the presence or absence of suitable habitat (Guisan, Thuiller &

Zimmermann, 2017), it is not appropriate to include the MaxEnt

model within the ensemble. However, MaxEnt models are known to

perform consistently well and can outperform other modelling

approaches (Elith et al., 2006; Reiss et al., 2011), and hence including

MaxEnt in the model comparisons is pertinent for determining the

model algorithm that best represents sand lance burying habitat in the

Strait of Georgia.

2.4.7 | Model comparison and selection

To determine the potential areas of sand lance burying habitat in the

Strait of Georgia, a threshold probability of suitable habitat was gener-

ated for each model, and the proportion of sand lance presence obser-

vations from grab samples (Figure 2) that were correctly classified was

calculated and used as an additional measure of performance. For the
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MaxEnt model, a threshold probability was generated using the

confusion matrix calculated by the PresenceAbsence package in R

(Freeman & Moisen, 2008). For the GLM, GAM, RF, and ensemble

models, the threshold was generated using the Find.Optim.Stat func-

tion in the Biomod2 R package (Thuiller et al., 2016). Both methods

use a function to find the threshold at which a selected evaluation

metric is optimized. In this study, a threshold that maximized TSS was

determined by iterating through 1,000 fitted values to determine the

optimal TSS score and the associated threshold cut-off for converting

the continuous values to binary. The model with the highest average

performance metrics was determined to be the best representation of

sand lance burying habitat in the Strait of Georgia.

3 | RESULTS

3.1 | Model performance

CV testing suggested that the GAM, MaxEnt model, and ensemble

model performed reasonably well, with AUC scores of 0.78 (MaxEnt),

0.76 (GAM), and 0.75 (ensemble; Table 3). The GLM and RF model

performed the poorest, with AUC scores of 0.73 and 0.63 respec-

tively. TSS scores for all models were moderate to good, with the

ensemble model having the highest TSS score (0.64; Table 3).

Using training data thresholds that optimize the balance of sensi-

tivity and specificity, the MaxEnt, ensemble, and GAMs correctly

predicted higher probability of suitable habitat or the presence of

suitable habitat at places where sand lance were captured in 88%

(threshold 0.54), 85% (threshold 0.57), and 86% (threshold 0.47) of

occurrences respectively. Presence observations used to evaluate the

models are generally located in areas of high density of HS/NS

sampling points, suggesting that these are areas where the model is

predicting sand lance habitat quite well, resulting in high accuracy

scores when evaluating using the presence observations. Additionally,

the high accuracy and associated high threshold values for the MaxEnt

and ensemble confirm high probabilities of occurrence of suitable habi-

tat associated with presence observations. Across all models, the results

show that the presence of suitable burying habitat in the Strait of

Georgia is strongly influenced by derived substrate, distance to estuary,

distance to sand-gravel beach, and bottom temperature (Figure 3).

F IGURE 2 Distribution of suitable
and non-suitable burying habitat grabs
used for model training and testing.
Orange symbols indicate Pacifics and
lance presence observations used for
model evaluation
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Response curves for all models (Figure 4) are similar, showing

that the probability of the presence of sand lance burying habitat

decreases as distance to estuaries and distance to sand-gravel

beaches increase and as bottom temperature decreases. In contrast,

the relationship between depth and the presence of suitable sand

lance burying habitat is less clear, with lower probabilities observed

at mid-depths and no apparent relationship in the RF model

(Figure 4c). Not surprisingly, across all models, the probability of

the presence of suitable burying habitat increases as substrate suit-

ability increases.

3.2 | Spatial distribution

Across all models, predictions were generally consistent with the data

on presences and absences. All models produced similar patterns,

predicting high probabilities of the presence of suitable sand lance

burying habitat (>0.8) in Baynes Sound, Haro Strait, and near Savary,

Hernando, and Marina islands (near the entrance to Desolation Sound;

Figure 5). In general, low suitability is predicted in deeper regions of

the study area (>70 m) with the exception of the GLM and GAM pre-

dictions east of Baynes Sound, which is reflected in the ensemble

model built on the GLM, GAM, and RF model. Low suitability is also

predicted at the Fraser River Delta and near Texada and Lasqueti

islands (Figure 5).

3.2.1 | Model selection

When both the CV and threshold/accuracy performance metrics are

considered, the MaxEnt model performs consistently well, with an

AUC score of 0.78 and an accuracy score of 0.88 when evaluated

against independent sand lance presence data. As such, the MaxEnt

model (Figure 6) was elected as the model that most accurately

predicts the presence of suitable sand lance burying habitat in the

Strait of Georgia. The ensemble and GAM models also likely represent

reasonable predictions of the probability of presence of sand lance

burying habitat in the Strait of Georgia, as both the ensemble model

and GAM have higher sensitivity and specificity than the MaxEnt

F IGURE 3 Variable importance plots for generalized linear (GLM), generalized additive (GAM), random forest (RF) and maximum entropy
models predicting the distribution of suitable Pacific sand lance burying habitat in the Strait of Georgia. Variable importance is measured as the
mean increase in accuracy based on the mean square error of predictions. A higher percentage increase indicates a higher variable importance. SG
= sand-gravel; BPI = bathymetric position index

TABLE 3 Performance metrics for generalized linear model
(GLM), generalized additive model (GAM), random forest (RF) model,
ensemble model, and MaxEnt model when evaluated using fivefold
cross-validation

Model

Cross-validation evaluation

AUC TSS Sensitivity Specificity

GLM 0.73 0.47 0.75 0.75

GAM 0.76 0.52 0.76 0.76

RF 0.63 0.31 0.66 0.63

Ensemble 0.75 0.64 0.82 0.82

MaxEnt 0.78 0.45 0.76 0.69

Note: Higher AUC scores (closer to 1) indicate superior model

performance.

AUC, area under the receiver operator characteristic curve; TSS, true skill

statistic
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model. However, additional field validation is required to confirm the

presence of suitable burying habitat (e.g. low silt, medium-coarse

sand) in deeper regions of the study area as identified in the GAM and

ensemble model.

3.3 | Spatial uncertainty

Models generally exhibited similar patterns of spatial uncertainty

(measured as the standard error of averaging predictions from CV

folds) compared with the individual models they were built on. Areas

with the highest uncertainty values include areas at greater depths

and along the margins of areas predicted to be highly suitable. Uncer-

tainty was generally low in areas where highly suitable sand lance

burying habitat is predicted. Figure 6 illustrates the spatial distribution

of the mean and standard deviation of the MaxEnt model. Extrapo-

lated areas identified by the multivariate environmental similarity

calculation are located throughout the study area (Figures 5 and 6),

particularly at the deep margin of the study area, in undersampled

regions near Texada and Lasqueti islands and in the Fraser Delta.

4 | DISCUSSION

This study compared results from GLM, GAM, RF, MaxEnt, and an

ensemble model to determine the modelling approach that might best

predict the probability of presence of highly suitable sand lance bury-

ing habitat in the Strait of Georgia. The MaxEnt model was selected

as the best model based on its accuracy in predicting an independent

set of presence observations and on its higher AUC (0.78). The results

indicate that suitable burying habitat is primarily influenced by derived

sea-bed substrate, distance to estuary, distance to sand-gravel

beaches. The low performance of the RF model is likely due to over-

fitting of the training (CV) data, which is fairly common in RF models

(Rooper, Zimmermann & Prescott, 2017). Additionally, using spatial-

CV blocking with a relatively small sample size is also a likely

F IGURE 4 Response Curves from the generalized linear model (GLM; a), generalized additive model (GAM; b), Random Forest (RF; c),
Ensemble (d) and MaxEnt (e) models predicting Pacific sand lance burying habitat in the Strait of Georgia. Dist = distance. Note that rugosity in
the Maxent was eliminated from further modelling
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contributor to the overfitting pattern observed in the RF model. The

lower performance of the ensemble model compared with the MaxEnt

model is also consistent with other studies, in which ensemble model-

ling has also been shown to perform no better than individual model-

ling approaches (Hao et al., 2019; Hao et al., 2020). The results

illustrate the importance of exploring multiple HSM algorithms to

determine the model that is most suitable for a given study.

Across all models, the results indicate that the distribution and

configuration of burying patches varied markedly between the

southern Strait of Georgia (e.g. Haro Strait) and the central or

F IGURE 5 Generalized linear (GLM), generalized additive (GAM) and random forest (RF) models showing the predicted probability of suitable
Pacifics and lance (PSL) burying habitat in the Strait of Georgia. The ensemble model represents the mean probability calculated from the GLM,
GAM and RF models foreach cross validation fold. Warmer colours indicate a higher probability of suitable sand lance burying habitat.
Extrapolation areas identified using the Multivariate Environmental Similarity Surface (MESS) approach are displayed in dark grey
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northern Strait of Georgia, likely because of their underlying ocean-

ography and differences in geological processes. In the central/

northern Strait of Georgia, there is generally a widespread along-

shore distribution of narrow shallow sand lance burying habitat

that is highly fragmented. In contrast, the majority of burying

habitat predicted in the Haro Strait region is associated with large

patches of deeper sea bed dominated by bathymetric restrictions

that are enhanced by current flow and erosion of the underlying

Quaternary sediments into subaqueous sand-to-fine gravel sand

waves (Barrie et al., 2009). Another noticeable difference between

regions is the smaller proportion of modelled sand lance burying

habitat in deeper waters of the Strait of Georgia and adjoining

inlets. It is expected, however, that given the widespread modelled

low bottom-current speeds (<25 cm/s) for more than 75% of the

Strait of Georgia, and the sediment starvation due to major rivers

flowing into inlets (Hill et al., 2008), it is unlikely that many pat-

ches of suitable sand lance burying sediment will be confirmed in

deeper, less exposed waters of the strait. Overall, the observed

patchiness and wide-ranging patch size might be characteristic of

Ammodytes spp. burying habitats in general. For example, in the

North Sea, 217 elongated sandeel patches ranged in size from

1 km2 to 4,023 km2, and they were broadly distributed over 5%

(33,566 km2) of the North Sea and Skagerrak—see Fig. 1 in Jensen

et al. (2011). Models indicate similar patchiness in sand lance habi-

tat that will make it challenging for Salish Sea resource managers,

and this highlights the importance of adequate field sampling and

model validation before potentially detrimental activities to sea-bed

sediments (e.g. dredging or dumping) are allowed to proceed.

The approach used to identify burying habitat in this model study

focused on physical environmental factors that are most likely stable

over time, because it is expected that suitable sand lance burying

habitat is spatially persistent. Barrie et al. (2009) indicated that from

more than 6 years of repetitive multi-beam measurements there was

no clear net directional movement or migration of the subaqueous

dunes in Boundary Pass. The dune field maintained its overall geome-

try and volume, and it was suggested that sediments were derived

from in situ erosion of the underlying sea bed and that sediments

were trapped by a tidally oscillatory system. More recently, Greene,

Cacchione & Hampton (2017) also found no evidence of net sediment

transport in their sand bed fields that were composed of glacially

derived sediment being winnowed and well oxygenated by strong

tidal currents.

Though relatively stable sea bed conditions may exist in the

deeper tidally driven Haro Strait, the nearshore environments in the

central and northern Strait of Georgia might be more influenced by

present-day sediment source and wind exposure. For instance, the

two main sources of sediment supplying nearshore areas are riverine-

derived bed-load transport and mass wasting from terrestrial sand

bluffs, and ultimately redistribution via longshore wind-induced trans-

port (Parks, Shaffer & Barry, 2013). Furthermore, well-known seasonal

F IGURE 6 (a) MaxEnt prediction and (b) standard deviation of the probability of occurrence of suitable Pacific sand lance burying habitat in
the Strait of Georgia. Prediction and standard deviationsurfaces derived from the five-fold cross validation models. Warmer colours indicate a
higher probability of suitable sand lance burying habitat. Extrapolation areas identified using the Multivariate Environmental Similarity Surface
(MESS) approach are displayed in dark grey
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beach dynamics on the British Columbia coast include the movement

of shallow nearshore sands to deeper offshore bars parallel to the

shoreline during winter storms, with spring and summer onshore

sediment movement (Thomson, 1981). Hence, some portion of the

burying habitats available to sand lance in the shallow alongshore sub-

tidal strip in the northern Strait of Georgia in winter might not be

available in spring–summer, and vice versa. Seasonal and interannual

nearshore sediment dynamics have not been considered with respect

to sand lance shallow nearshore burying habitat, and hence should be

investigated more fully.

4.1 | Study limitations

This study focused on modelling methods for identifying sand lance

subtidal burying habitat. As with any modelling approach, there are

several limitations to keep in mind. First, the mainland inlets were

excluded from the modelling because the oceanographic and sea-

bed properties of the inlets are very dissimilar to the majority of

the Strait of Georgia (Thomson, 1981). Furthermore, there are

major differences between Haro Strait sea-bed properties (e.g. relic

glacier sediments) and more modern-day fluvial and longshore

transport processes in the central and northern Strait of Georgia.

This wide range of environmental conditions makes it challenging

for any one spatial model to identify a specific suite of factors that

can accurately represent the distribution of sand lance burying

habitat. As with any spatial model, the resolution of grid cells

(e.g. 50 m × 50 m) may present a mismatch in spatial resolution

with the actual field patch size of sand lance burying habitat.

Model results highlight for habitat managers general areas in the

Strait of Georgia where potential burying habitat likely exists

and where additional field sampling, and ultimately conservation

initiatives, should be undertaken.

In terms of limitations of the models, a broader distribution of

observations across predictor space could increase performance of

the models. In particular, a broader distribution of observations

would permit the use of an existing substrate data set that contains

nine classes. This could produce predictions that incorporate a

higher degree of substrate variability in the region as opposed to

predictions that utilize the simplified substrate data set (four

classes) used in this study. A larger sample size with broader cover-

age across geographic space (particularly for buried sand lance pres-

ence observations used for external model evaluation) could also

increase the performance scores and better predict the probability

of buried sand lance in more northern regions of the Strait of

Georgia. Suitable sand lance burying habitat is predicted in northern

parts of the study area (near Savary, Hernando, and Marina islands);

however, there are no observations of sand lance present in grabs

in the region (Figure 2); most observations are from fishery bycatch

and predator diet analyses. Additionally, the presence observations

used in model evaluation are not independent from the training

data used to build the models, which could lead to overly optimistic

accuracy metrics. Best practices indicate that model evaluation

should be done with independently collected, well-sampled data

(Araújo et al., 2019); however, an independent data set was not

available.

Examining the variable importance plots (Figure 3) and response

curves (Figure 4) and the structures of the relationships between the

model outputs and environmental predictors can also provide insights

into the performance of the models. Substrate, distance to estuaries,

distance to sand-gravel beaches, and bottom temperature were

important variables. In contrast, medium bathymetric position index

bathymetry and rugosity were both moderate to low contributors in

all models and exhibited more variable structures in the response

plots, suggesting that the relationship between these variables and

the presence of sand lance burying habitat is less clear. Proximity to

suitable spawning beaches may also be an important variable for

predicting the presence of buried sand lance in the nearshore. Future

sampling efforts could target subtidal areas in close proximity to

known spawning beaches.

4.2 | Burying habitat conservation and
management recommendations

This study provides an improved quantitative estimate of sand

lance burying habitat and its distribution in the Strait of Georgia

and Haro Strait, British Columbia, compared with a study by

Robinson et al. (2013) that relied mainly upon qualitative ecological

information. The best available sea-bed bottom-type data and a rel-

atively large grab data set used in this study helped model sand

lance burying habitat distribution. From the results of the MaxEnt

modelling, it is estimated that about 105 km2 of sea bed in the

Strait of Georgia and Haro Strait study area (2.6%) has a high

probability (>0.75) of containing suitable sand lance burying

habitat (Figure 7), compared with estimates of 6% by Robinson

et al. (2013) using a simple expert-driven habitat suitability index

approach. It is highly recommended that wildlife and habitat

managers use the model maps in combination with enhanced field

sampling to reduce model uncertainty and to increase confidence

in identifying discrete nearshore subtidal burying patches, and

ultimately to increase the conservation of uncommon burying habi-

tat from harmful anthropogenic activities, such as dredging, infilling,

dumping, or oiling.

It is also recommended that managers incorporate model results

to inform evaluations of sand lance population size fluctuations, which

might be an important component of the recovery of marbled murre-

let and Chinook salmon populations, among other species. For exam-

ple, sand lance found in modelled subtidal burying habitats in Haro

Strait should be assessed and monitored over time to better under-

stand how sand lance populations fluctuate in response to ocean

warming.

Finally, a key recommendation from this research is that the

modelling approach described should be incorporated into a decision-

making framework and its uncertainty addressed with additional field

sampling and then applied to the remainder of the British Columbia
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coast. Hence, the modelling approach should be used to better

support management and conservation strategies aimed at reducing

anthropogenic impacts to subtidal burying habitats of a key coastal

forage species on the Pacific coast of Canada.
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