

Whitebark pine mapping in the Northern Region of the US Forest Service

Steve Brown – USDA Forest Service Joe Fortier – MT Natural Heritage Program

Whitebark Pine Single-Species Mapping

- Process Developed by RSAC, 2013
 - Flathead National Forest
- Re-Applied by MTNHP
 - Helena Lewis and Clark
 - Custer Gallatin
 - Bitterroot Lolo
 - Idaho Panhandle & Kootenai

Field Data Collection

• USFS

- 2012 Flathead NF
- 2017 Beaverhead-Deerlodge NF
- Montana Natural Heritage Program
 - 2013 Custer Gallatin NF
 - 2014 Helena Lewis and Clark NF
 - 2015 Bitterroot Lolo NF
 - 2016 Idaho Panhandle and Kootenai NF

Region One, U.S. Forest Service

- Objective 1 Model Whitebark Pine potential range
- Objective 2 Identify areas of historical forest disturbance and recovery to direct potential WBP restoration projects
- Objective 3 Generate WBP occurrence maps
 - Presence
 - Relative % of canopy cover

Objective 1- Model Whitebark Pine potential range:

- Predictive habitat distribution model
 - Presence/Absence locations compared against topographic and climatic independent variables
 - Random Forest binary classification in R

Dependent Predictor:

Presence/Absence locations

- MTNHP field inventory 2013-2016
- High resolution image photointerpretation
- Vmap
- Montana Gap Analysis

Independent Predictor Variable	Source
Topography	
Elevation (DEM)	US Geological Survey
Slope (radians)	Transformed DEM
Aspect (radians)	Ш
Hillshade	н
Potential Annual Incoming Heatload	McCune and Keon (2002)
Euclidian Distance from Ridgeline	Jenness <i>et al.</i> (2013)
Euclidian Distance from Valley Bottom	Housman <i>et al.</i> (2012)
Modeled Probability of Valley Bottom	п
Height Above DEM Derived Drainage	п
Climate	
Average Annual Maximum Temperature	PRISM climate group; Daly et al. (2007)
Average Annual Minimum Temperature	п
Average Annual Precipitation	п
Mean Snow Depth March 1 (2004-2014)	National Operational Hydrologic Remote Sensing Center (2004)
Mean Snow Depth April 1 (2004-2014)	п
Mean Snow Depth May 1 (2004-2014)	п
Mean Snow Depth June 1 (2004-2014)	п
Mean Snow Depth July 1 (2004-2014)	п

Whitebark Pine Potential Habitat Mapping

Example: Custer Gallatin National Forest

Training Data

- 4,307 presence locations
- 3,404 absence locations

Modeled Potential Habitat results

- 801,044 acres of WBP suitable habitat
- 23% of Custer Gallatin forested area
- Model accuracy -- 93%

Post Disturbance Restoration Suitability

Objective 2 – Identify areas of historical forest disturbance and recovery:

- Spectral differencing between 27 year Landsat time-series stack
 - Date and extent of disturbance
 - Severity of disturbance
 - Post disturbance rate of recovery
 - Date of stand recovery (return to forest)
- Products can inform WBP restoration projects
 - ex. Recent stand clearing disturbance with recovery potential within WBP suitable habitat = candidate for reintroduction

Post Disturbance Restoration Suitability

Example: Custer Gallatin National Forest

Objective 3 – Generate Whitebark Pine Occurrence Maps:

Whitebark Pine presence

- 30 meter resolution
- Landsat spectral imagery
- 1991 pre-blister rust die off
- 2013-2015 post die off

Whitebark Pine Relative % of Canopy Cover

- 10 meter resolution
- 2013 NAIP CIR aerial photography

Mapping WBP occurrence pre- and post- blister rust die off

- **Training data:** Field work, Vmap, GAP, Landfire, Photointerpretation
- Inputs: Landsat imagery, spectral transformations, Slope, Elevation, Precipitation
- **Classification Algorithm:** Random Forest in R

Mapping WBP occurrence pre- and post- blister rust die off

- Classification accuracies range from 87% to 95%
- Die off rates ranged from 15% to 61% loss of WBP due to blister rust or fire within the different National Forests.

Example: Custer Gallatin National Forest

- 732,621 ha of WBP in 1991
- 340,647 ha of WBP in 2015
- 53% mortality rate
 - 44,200 ha within fire boundaries
 - 350,000 ha likely due to blister rust

Northern Region, Regional Office

Modeling WBP relative percent of canopy cover

- **Training data:** Field based stand assessments (30% set aside for independent validation)
- Inputs: NAIP CIR, spectral transformations, slope, elevation, aspect, heatload, precipitation
- **Regression Algorithm:** Random Forest in R

Example: Custer Gallatin National Forest Custer National Forest Gallatin National Forest Relative % of Whitebark Pin-Contem may holderted historial Geographics current map policy. Sources, National Geograp

- 95% of all model predicted WBP canopy cover calls were within ±17 points from the field assessed value
- 31,000 ha PIAL dominant stands (>60% cc)

SteveBrown@fs.fed.us

(406) 329-3514

Region One, U.S. Forest Service