Contents of this file

Figures S1 to S26
Captions for Table S1

Introduction

This supporting information provides figures that show the basis for the scarp height measurements in section 3.2, trench photomosaics in sections 4.1-4.4; and C-14 calibration and recalibration data sheets in section 4.1.2.
Figure S1. Ground rupture photos in Sitio Centro, Barangay Napo, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S2. Ground rupture photos in Sitio Centro and Sitio Luwak, Barangay Napo, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S3. Ground rupture photos in Sitio Luwak, Barangay Napo and Sitio Tangob, Barangay Liloan Norte, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S4. Ground rupture photos in Sitio Tangob, Barangay Liloan Norte and Sitio Calubian, Barangay Anonang, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S5. Ground rupture photos in Sitio Calubian, Barangay Anonang, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S6. Ground rupture photos in Sitio Calubian and Sitio Cumayot, Barangay Anonang, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S7. Ground rupture photos in Sitio Cumayot, Barangay Anonang, Inabanga. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S8. Ground rupture photos in Sitio Cumayot, Barangay Anonang, Inabanga and Sitio Haligi, Barangay New Anonang, Buenavista. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S9. Ground rupture photos in Barangay Catagbacan Norte, Loon. Scarp height measurement for each site shown in these photos are listed in Table S1.
Figure S10. LiDAR-derived scarp profiles in Sitio Luwak, Barangay Napo, Barangay Anonang, Inabanga—Part 1. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S11. LiDAR-derived scarp profiles in Sitio Luwak, Barangay Napo, Barangay Anonang, Inabanga—Part 2. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S12. LiDAR-derived scarp profiles in Sitio Tangob, Barangay Liloan Norte, and Sitio Calubian, Barangay Anonang, Inabanga. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S13. LiDAR-derived scarp profiles in Sitio Calubian and Sitio Cumayot, Barangay Anonang, Inabanga. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S14. LiDAR-derived scarp profiles in Sitio Cumayot, Barangay Anonang, Inabanga and Sitio Haligi, Barangay New Anonang, Buenavista. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S15. LiDAR-derived scarp profiles in Sitio Haligi, Barangay New Anonang, Buenavista. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S16. LiDAR-derived scarp profiles in Barangay Caluwasan and Barangay Tontunan, Clarin. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S17. LiDAR-derived scarp profiles in Barangay Catagbacan Norte, Loon—Part 1. Scarp height measurements are summarized in Table S1. All units are in meters.
Figure S18. LiDAR-derived scarp profiles in Barangay Catagbacan Norte, Loon—Part 2. Scarp height measurements are summarized in Table S1. All units are in meters.

Figure S19. Luwak trench photomosaic. Grids are spaced one meter.
Figure S20. Tangob trench photomosaic. Grids are spaced one meter.
Figure S21. Calubian trench photomosaic. Grids are spaced one meter.

Figure S22. Cumayot trench photomosaic. Grids are spaced one meter.
CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12 = -27.2 o/oo c, lab. mult = 1)

Laboratory number: Beta-383129

Conventional radiocarbon age: 10650 ± 40 BP

2 Sigma calibrated result 95% probability: Cal BC 10745 to 10610 (Cal BP 12695 to 12560)

Intercept of radiocarbon age with calibration curve: Cal BC 10050 (Cal BP 12045)

1 Sigma calibrated results 68% probability: Cal BC 10725 to 10630 (Cal BP 12675 to 12580)

Database used: INTCAL13

References:
- Reference to INTCAL13 database

Beta Analytic Radiocarbon Dating Laboratory
4915 S.W. 74 Court Miami Florida 33155 USA • Tel: (305) 567-5157 • Fax: (305) 661-0964 • Email: beta@radiocarbon.com

Figure S23. Calibration Data of SLN-1.
CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12 = -25.4 ± 0.3) lab. mult = 1)

Laboratory number: Beta-383130

Conventional radiocarbon age: 10930 ± 40 BP

2 Sigma calibrated result: Cal BC 10675 to 10775 (Cal BP 12825 to 12725)

Intersection of radiocarbon age with calibration curve: Cal BC 10805 (Cal BP 12755)

1 Sigma calibrated results: Cal BC 10045 to 10705 (Cal BP 12765 to 12735)

Database used: INTCAL13

References:
- Reference to INTCAL13 database

Beta Analytic Radiocarbon Dating Laboratory
4800 S.W. 74 Court Miami, Florida 33158 USA • Tel: (305)-675-5161 • Fax: (305)-673-2654 • Email: beta@radiocarbon.com

Figure S24. Calibration Data of Sample SLS-2.
CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12 = -29.2 o/oo, lab. mult. = 1)

Laboratory number Beta-382121
Conventional radiocarbon age 50 ± 30 BP

2 sigma calibrated result
95% probability
Cal AD 1695 to 1725 (Cal BP 255 to 225)
Cal AD 1815 to 1835 (Cal BP 135 to 115)
Cal AD 1880 to 1915 (Cal BP 70 to 35)
Post AD 1950 (Post BP 0)

Intercept of radiocarbon age with calibration curve
Post AD 1950 (Post BP 0)

1 Sigma calibrated results
68% probability
Cal AD 1895 to 1905 (Cal BP 55 to 45)
Post AD 1950 (Post BP 0)

Database used
INTCAL13

References
Mathematics used for calibration scenarios
References to INTCAL13 database
Kromer, G. et al. INTCAL13 and SHCAL13 radiocarbon age calibration curves 50,000 years BP. Radiocarbon 56(1):189-197.

Beta Analytic Radiocarbon Dating Laboratory
4015 S.W. 74 Court Miami, Florida 33156 USA • Tel: (305) 697-5167 • Fax: (305) 663-0064 • Email: beta@radiocarbon.com

Figure S25. Calibration Data of SLS-3.
Figure S26. Model age distributions from the OxCal Bayesian analysis. a) Distribution of upper boundary age of Luwak unit 3. b) Distribution of lower boundary age of Luwak unit 3. c) SLS-2 recalibrated age distribution. d) SLN-1 recalibrated age distribution. e) Combined plot of the age distributions of a to d. Light gray curves are the calibrated age
distributions while dark gray curves are the model ages distributions from the OxCal Bayesian analysis.

Table S1. Details of rupture scarp height measurements for all segments.