POINTS OF INTEREST

A: Access point at Caldwell Playground Park for canoes and kayaks
B: North Bend Road bridge over the Mill Creek
C: Manmade riffles and J-hook weirs in this segment re-direct flow toward center of the stream
D: Mill Creek Greenway
E: Seymour Avenue bridge over the Mill Creek
F: Manmade slopeway stream riffle followed by three J-hook weirs on the outside bend
G: Seymor Nature Preserve tributary confluence with the Mill Creek
H: Center Hill Landfill restoration with two J-hook weirs and streambank stabilization
I: Center Hill Drive/Township Avenue bridge and manmade riffle
J: Confluence of an urbanized, un-named tributary parallel to Center Hill Road
K: Confluence of Bloody Run, which drains parts of Elmwood Place, St. Bernard, Paddock Hills and Roselawn
L: Upstream beginning of the V-cut low-flow channel that mimics an amusement park ride
M: Spring Grove Avenue bridge over the Mill Creek
N: Double-track railroad bridge over the Mill Creek
O: Mitchell Avenue bridge over the Mill Creek
P: Low-head dam
Q: Double-track railroad bridge over the Mill Creek
R: Ludlow Avenue Viaduct over the Mill Creek
S: Shallow low-head dam that may be navigable
T: Spring Grove Avenue bridge in close proximity to each other
U: Low-head dam with a significant drop
V: Ludlow Avenue Viaduct over the Mill Creek
W: Salway Park with greenway, stormwater management and stream corridor restoration projects
X: Low-head dam with a significant drop
Y: Ludlow Avenue Viaduct over the Mill Creek
Z: Shallow low-head dam that may be navigable
AA: I-74 overpasses and Spring Grove Avenue bridge in close proximity to each other
BB: Stream segment that usually has enough soft-stem vegetation to function as a riparian wetland
CC: Confluence of West Fork, which drains Mt. Airy, Northside, South Cumminsville and North Fairmount
DD: Access point for canoes and kayaks at south side of Mill Creek Road bridge, along west streambank

Put-In: Caldwell Playground, 316 W. North Bend Road, Cincinnati, 45216, east bank of Mill Creek, just upstream (north) of North Bend Road bridge
Take-Out: Mill Creek Road bridge, along the right (west) bank, parallel to Cincinnati’s Division of Sanitation, 3320 Millcreek Road, 45223
Distance: about 5½ miles to Mill Creek Road bridge; nearly 4¼ miles to Salway Park
Time: at least 4½ hours to Mill Creek Road bridge; at least 3½ hours to Salway Park

Challenges:
• jagged and sharp objects in stream substrate where you may need to portage your canoe or kayak
• low-head dams that can be hard to paddle or portage (marked by circle)
• slow currents and shallow waters during dry spells
• strainers – fallen trees amid the stream current
• combined sewer overflows, which are common on this trip
• rocky riffles that can be hard to paddle or portage

River Mile (from the Ohio River) marked by }
Safety Tips

WEAR YOUR LIFE JACKET! Most boating fatalities occur because a person wasn’t wearing a life jacket, properly fitted. A properly fitted or personal flotation device (“PFD”) can save your life, but it only works if you wear it! The Mill Creek South is swift in places, so anyone can fall in the water, especially if you have lost consciousness. Ohio law requires that every canoe or kayak carry a PFD for each person on board. We recommend that you wear your PFD.

DON’T BOAT ALONE! Paddle with a group, not by yourself. It’s more fun that way, anyway. Leave a “float plan” for your trip with a friend or relative.

DON’T PADDLE UNDER THE INFLUENCE OF DRUGS/ALCOHOL! It’s illegal and un-safe.

PADDLE SAFELY! Know your skill and fitness levels. Stay within them.

BE PREPARED! Planning your trip will help you avoid hazards and have more fun.
- Know the location of all dams and other hazards. Scout conditions when you are uncertain.
- Be prepared to portage (carry around) hazards. If in doubt, get out of the water and find another spot.
- Be prepared to swim. If the water looks too hazardous to swim, don’t boat on it!
- Assess the risk of flash flooding. Consider the impact of current or predicted rainfall and stream flow.

POLLUTION: The Ohio EPA recommends no contact with waters of the Mill Creek because it can have high levels of fecal coliform bacteria and other pathogens from time to time, especially within 24 hours of a storm. The Mill Creek is a tributary of the Ohio River, which is a federal “impaired waterbody.” The Mill Creek is not suitable for contact activities such as wading or swimming. For more information about CSOs visit www.projectgrounderw.org, which is a website offered by the Metropolitan Sewer District of Greater Cincinnati (MSD).

Safety Hazards on the Mill Creek

In order to have a safe canoe or kayak trip, you must be aware of possible hazards on the Mill Creek. Scout the creek before you use it, and plan your trip to avoid any hazards. Use care when wading or portaging. Potential safety hazards include sudden drop-offs, hidden holes, slippery strainers, submerged obstacles and jagged objects.

FLASH FLOODS AND SWIFT WATER: The Mill Creek is especially prone to flash floods. Water levels in the creek can rise rapidly and unpredictably. High water causes hazards such as low-water dams to become even more dangerous. Unseen obstacles such as floating logs or submerged boulders can be swept downstream. Stream current may make it more likely to overtake a paddler’s ability to avoid hazards or reach shore once in the water.

LOW-WATER DAMS: Know the locations of all low-head dams on the creek. The Mill Creek has many. Scout the creek before you use it, and plan your trip to avoid any hazards. Dam sites can be accessed from any downstream portage.

Assess the risk of flash flooding. Consider the impact of current or predicted rainfall and stream flow.

Keep storm drains clear of debris, dirt or other waste.

Report Spills

When it rains, some rainfall percolates slowly through the ground. Gradually reaching the Mill Creek and its tributaries. However, it can fall on impervious surfaces like roads, driveways, road, and parking lots. It directly enters our storm sewer system. Storm sewers serve several portions of the area, and funnel stormwater quickly into local creeks. This causes creek levels to rise rapidly.

Paddlers

In the fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. In fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. Note the route taken by experienced paddlers in front of you and feel free to ask for their help. In fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. In fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. In fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. In fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. Never try to boat over a dam or waterfall. Small dams can lock harmless, particularly in slower streams, are very dangerous because of the circulating turbulence often created at the base of a dam. Boats as well as people can become entrapped in this turbulence. Circulating currents at the base of a dam or waterfall can be powerful, backwash currents can suck you in if you approach too closely from downstream. Portage around the hazard and launch at a safe distance downstream.

STRainers: Rivers obstructions that allow water to flow through them, but which block or “strain” other objects. That may tip you out or damage the boat.

COLD WATER IMERSION & HYPOThERMia: Sudden immersion in cold water can be deadly. The initial shock can induce gasping, hyperventilation, panic and vertigo. Temperature shock may cause combined sewer overflows. Individuals with open cuts or sores may be more prone to flash floods. Water levels in the creek can rise rapidly and unpredictably. High water causes hazards such as low-water dams to become even more dangerous. Unseen obstacles such as floating logs or submerged boulders can be swept downstream. Stream current may make it more likely to overtake a paddler’s ability to avoid hazards or reach shore once in the water.

Assess the risk of flash flooding. Consider the impact of current or predicted rainfall and stream flow.

Keep storm drains clear of debris, dirt or other waste.

Report Spills

When it rains, some rainfall percolates slowly through the ground. Gradually reaching the Mill Creek and its tributaries. However, it can fall on impervious surfaces like roads, driveways, road, and parking lots. It directly enters our storm sewer system. Storm sewers serve several portions of the area, and funnel stormwater quickly into local creeks. This causes creek levels to rise rapidly.

Paddlers

In the fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. In fast water, if possible, stay upstream of your canoe and keep your feet pointing downstream. Never try to boat over a dam or waterfall. Small dams can lock harmless, particularly in slower streams, are very dangerous because of the circulating turbulence often created at the base of a dam. Boats as well as people can become entrapped in this turbulence. Circulating currents at the base of a dam or waterfall can be powerful, backwash currents can suck you in if you approach too closely from downstream. Portage around the hazard and launch at a safe distance downstream.

STRainers: Rivers obstructions that allow water to flow through them, but which block or “strain” other objects. That may tip you out or damage the boat.

COLD WATER IMERSION & HYPOThERMia: Sudden immersion in cold water can be deadly. The initial shock can induce gasping, hyperventilation, panic and vertigo. Temperature shock may cause combined sewer overflows. Individuals with open cuts or sores may be more prone to flash floods. Water levels in the creek can rise rapidly and unpredictably. High water causes hazards such as low-water dams to become even more dangerous. Unseen obstacles such as floating logs or submerged boulders can be swept downstream. Stream current may make it more likely to overtake a paddler’s ability to avoid hazards or reach shore once in the water.

Assess the risk of flash flooding. Consider the impact of current or predicted rainfall and stream flow.