
MINI-BOOK
MB80 – JULY 2020

ORGANIZATION
DYNAMICS
WITH TEAM
TOPOLOGIES

Team-sized software
Team-first tools and skills
Curated team interactions

Key industry insights in 6 articles

In association with TechBeacon

2

Organization Dynamics with
Team Topologies
Team-first software delivery

Effective software teams are essential for any organization
to deliver value continuously and sustainably.

Team Topologies provides a practical, step-by-step, adaptive model for
organizational design and team interaction, treating teams as the fundamental
means of delivery, where team structures and communication pathways are able
to evolve with technological and organizational maturity

All the articles first appeared on TechBeacon.com and are reproduced here with
permission.

In this mini-book:

How to break apart a monolith without destroying your team

Forget monoliths vs. microservices. Cognitive load is what matters

Why teams fail with Kubernetes — and what to do about it

How to find the right DevOps tools for your team

Why you should hire DevOps enablers, not experts

Are poor team interactions killing your DevOps transformation?

3

10

19

27

39

45

3

Team-sized software

How to break apart a
monolith without destroying
your team
Matthew Skelton, co-author of Team Topologies

Many organizations try to increase business agility by splitting apart existing
software systems into smaller chunks, believing that this enables safer, more
rapid changes. But when moving from a monolithic software system to more
loosely coupled services, you must consider how the new architecture will affect
the teams involved in building your software.

Without taking into account the team angle, you risk splitting the monolith in the
wrong places, or even creating a complex, coupled mess of unmaintainable code
— what’s know as a “distributed monolith.”

When I help organizations decouple their large systems into smaller segments, I
take an approach to splitting up monoliths that starts with the teams, rather than
the technology. Here are some of the common patterns and techniques I have
adopted that I hope you’ll find useful. But first let’s step back a bit.

What is a monolith?

The word monolith literally means “single stone” in Greek—a big slab of stuff
that’s heavy and difficult to work with. In the software world, there are many
different kinds of monoliths, and each requires a different approach to break it
apart. Here are six of the more common types:

1. Application monolith: A single large application, with many dependencies
and responsibilities, that possibly exposes many services or different user
journeys.

https://techbeacon.com/planning-microservices-know-tradeoffs-monolithic-design
https://techbeacon.com/planning-microservices-know-tradeoffs-monolithic-design
https://www.microservices.com/talks/dont-build-a-distributed-monolith/

4

Team-sized software

2. Joined at the database: Several applications or services, all coupled to the
same database schema, making them difficult to change.

3. Monolithic builds: One gigantic continuous integration (CI) build that’s done
just to get a new version of any component.

4. Monolithic releases: Smaller components bundled together into a “release.”

5. Monolithic model: Attempted language and model (representation)
consistency across many different contexts. “Everyone can work on anything,”
leading to inconsistent or leaky domain models.

6. Monolithic thinking: One-size-fits-all thinking for teams that leads to
unnecessary restrictions on technology and implementation approaches
between teams.

This is not an exhaustive list; you may have other kinds of monoliths (or too-tight
coupling). So before you start splitting your monolith, identify which kind you’re
dealing with, then invest time in good decoupling.

Some organizations have taken the time and effort to split up an application
monolith into microservices, only to produce a monolithic release farther down
the deployment pipeline, wasting an opportunity to move faster and safer. To
avoid creating downstream monoliths, always be on the lookout for the different
kinds of monolithic software listed above.

Match your organizational architecture
with your software architecture

Several studies have confirmed the core message of Conway’s Law that “Any
organization that designs a system ... will produce a design whose structure is a
copy of the organization's communication structure.” There are many subtleties
to this in practice, but it boils down to this: If the intercommunication between
teams does not reflect the actual or intended communication between software
components, the software will be difficult to build and operate.

You can use “Reverse Conway” — changing the team structure to match the

https://techbeacon.com/planning-microservices-know-tradeoffs-monolithic-design
https://techbeacon.com/planning-microservices-know-tradeoffs-monolithic-design
https://techbeacon.com/your-application-architecture-prepared-microservices
http://www.melconway.com/Home/Conways_Law.html
https://vimeo.com/108017431

5

Team-sized software

required system architecture — together with techniques such as domain-driven
design (DDD) and code forensics, to reshape team responsibilities to align with
the software architecture you need to produce in order to clarify boundaries and
improve the development and operation of your systems. But how do you know
where to split the monolith safely?

Use code forensics to help identify hidden coupling

By splitting up your monolithic code into smaller services, you may be able
to make responsibility boundaries clearer, although that doesn’t happen
automatically. You can use tools such as Codescene and Code Maat to analyze
your codebase and detect not only standard code metrics, such as cyclomatic
complexity and static coupling, but also temporal coupling — places in your
codebase where apparently unrelated files tend to change at the same time —
as shown in the repository history.

Temporal coupling analysis by Codescene (with permission from Adam Tornhill)

https://techbeacon.com/why-you-need-domain-driven-design
https://techbeacon.com/why-you-need-domain-driven-design
https://codescene.io/
https://github.com/adamtornhill/code-maat
https://codescene.io/projects/1593/jobs/3920/results/code/temporal-coupling/by-commits

6

Team-sized software

In his book Your Code as a Crime Scene, Codescene and Code Maat creator
Adam Tornhill explained how to use police forensics techniques to analyze and
understand the evolution of codebases. For example, he said that ”information-
poor abstract names are magnets for extra [unwanted] responsibilities.“ How you
name things really does matter, since badly chosen names tend to accrete extra
code, making your software harder to work with. Tornhill’s new book, Software
Design X-Rays: Fix Technical Debt with Behavioral Code Analysis, takes these
ideas even further. I highly recommend both titles.

Cognitive load for teams determines
the size of subsystems

For safe monolith splitting, it is crucial to consider the cognitive load on each
team that works with your software. Cognitive load, as defined by psychologist
John Sweller, is “the total amount of mental effort being used in the working
memory.” So cognitive load is important in activities that require mental agility—
such as software development.

The maximum effective size for a software team is about nine people, and the
maximum cognitive load for any given team is the combined and amalgamated
capacity of all team members. One team’s maximum cognitive load will differ
from others. For example, a team of experienced engineers will have a higher
cognitive load than will a team of less experienced people. But there is still
a maximum effective size for every subsystem, and that is smaller than many
software monoliths.

That means you should limit the size of each subsystem to be no greater than
the cognitive load of the team that’s building it. That’s right: The size and shape
of your software should be determined by the maximum cognitive load of your
teams. By starting with the needs of each team, you can infer a software and
systems architecture that best suits your team members.

A recipe for splitting monolithic software

Now that you have taken Conway’s Law into account, used Code Maat or
a similar tool to analyze your codebase for temporal coupling, and limited

https://pragprog.com/book/atcrime/your-code-as-a-crime-scene
https://pragprog.com/book/atevol/software-design-x-rays
https://pragprog.com/book/atevol/software-design-x-rays

7

Team-sized software

the maximum size of each subsystem to match each team’s cognitive load,
you’re ready to begin splitting your own monolith. But first let’s validate a few
assumptions.

Are you certain that your existing monolith works as expected? Are the internal
responsibilities between packages/namespaces/modules neat and well-defined?
What about subtle bugs that might become serious when you move from in-
process calls to cross-machine HTTP calls?

To answer these questions, you need to instrument the code using modern
logging, tracing, and metrics techniques to produce rich data about exactly how
the software works at runtime. Specifically, you can use event ID techniques
in your logging to detect unexpected actions and states reached in the code,
along with call tracing. You can use tools such as OpenTracing or Zipkin, and/or
application performance monitoring (APM) tools to detect the exact code path
used during a request or execution path.

These techniques will probably highlight areas where your subsystems are
communicating unexpectedly, or they could find undetected fault conditions.
Fix those problems before splitting your code. Otherwise, the problems of
these extra calls and errors will be exacerbated when you move to a distributed
microservices model.

Once you’ve fixed any unwanted calls and errors, you can begin to align a slice
of the monolith to what is referred to in DDD as a “business domain bounded
context” — a segment of the functionality within which the terminology is
consistent and that has a single responsibility, such as taking payments or

Detect unexpected communications and faults in a monolith using logging and tracing.

https://www.slideshare.net/SkeltonThatcher/unbroken-logging-operabilityio-2015-matthew-skelton
https://www.slideshare.net/SkeltonThatcher/unbroken-logging-operabilityio-2015-matthew-skelton
http://opentracing.io/
https://zipkin.io/
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles
https://techbeacon.com/get-your-feet-wet-domain-driven-design-3-guiding-principles

8

Team-sized software

rendering a document. Where possible, split by DDD bounded context.

But sometimes you’ll need an alternative split line (what I call a “fracture
plane”), such as splitting by technology or risk. For example, to meet regulatory
compliance (such as PCI-DSS), you may need to split along a data boundary.
Similarly, to help achieve performance isolation—for a high-volume ticket-
booking system, for example—you may need to split out technical aspects of the
booking flow.

You can then split off the new team-aligned subsystems or services piece by
piece, each time looking at the rich log data and metrics data you can use to
validate your assumptions about how the software is working before and after
you split out the code. You should:

1. Instrument the monolith using logging, tracing, and metrics.
2. Understand the data flows and fault responses and fix any problems.
3. Align teams to available segments based on suitable fracture planes.
4. Split off segments one by one, using logging and metrics to validate changes.

After you’ve split a segment from the monolith, ensure that the new segment has
independence in every area, including a separate version control repository, a
build and deployment pipeline, and probably either separate servers (if you’re
using virtual machines) or pods (when using Kubernetes). The new segment
is independent from the monolith and other segments, enabling the team
responsible for each segment to work independently.

Make your move: How to get started

Moving from monolithic software to smaller, decoupled services helps you
release more rapidly and safely. But to avoid creating a complex, distributed
mess, first consider how teams will build and run the new services. Conway’s
Law warns that communications between teams will drive the new, decoupled
architecture, and your new services should not be larger than the cognitive load
of each team.

First, identify what kind of monolith you’re dealing with. Then, before you split
the code, use a code forensics tool such as Code Maat to identify temporal

https://medium.com/@danielbryantuk/microservice-testing-coupling-and-cohesion-all-the-way-down-b84dacf8cff0
https://medium.com/@danielbryantuk/microservice-testing-coupling-and-cohesion-all-the-way-down-b84dacf8cff0

9

Team-sized software

coupling. Use modern logging, tracing, and metrics tools that can identify
unexpected calls and faults.

Only then can you identify suitable fracture planes within the code that can act
as sensible split boundaries. Finally, split off segments one by one, validating
system behavior with logging and metrics at each stage.

For more on monoliths and teams, watch my presentation from the Velocity
Conference EU 2016. Thanks to Adam Tornhill for his input on code forensics,
Daniel Bryant for early feedback on this material, and Chris O’Dell for additional
insights.

[Original:
https://techbeacon.com/app-dev-testing/how-break-apart-monolith-without-destroying-your-team]

https://techbeacon.com/app-dev-testing/how-break-apart-monolith-without-destroying-your-team

10

Team-sized software

Forget monoliths vs.
microservices. Cognitive
load is what matters
Matthew Skelton and Manuel Pais, co-authors of Team Topologies

The “monoliths versus microservices” debate often focuses on technological
hinking organizations are beginning with the team's cognitive load as the guiding
principle for the effective delivery and operation of modern software systems.

Excessive cognitive load works against effective team ownership and
supportability of software. Here’s why, and how to approach the problem.

Overview: Monoliths and microservices

Many organizations are moving from traditional, monolithic software architectures
to designs based on microservices and serverless, allowing them to take
advantage of newer runtimes that help teams to take ownership of software
services.

However, it can be difficult for software architects, team leads, and other
technical leaders to assess the “right size” for these services. Should a
microservice be limited to 100 lines of code? Should you start with a monolith
and extract microservices, as Tammer Saleh recommends, or start with
microservices from the beginning, as advised by Stefan Tilkov? How do you
avoid what Simon Brown calls a “distributed microservices big ball of mud”?

During the research for our book (Team Topologies: Organizing Business and
Technology Teams for Fast Flow), and working with clients in different parts of
the world, we realized that many organizations fail to consider an important
dimension in the decisions around the size of software services: team cognitive
load.

http://techbeacon.com/app-dev-testing/how-break-apart-monolith-without-destroying-your-team
https://techbeacon.com/app-dev-testing/monolith-microservices-horror-stories-best-practices
https://techbeacon.com/app-dev-testing/monolith-microservices-horror-stories-best-practices
https://www.infoq.com/presentations/cloud-anti-patterns
https://www.infoq.com/presentations/cloud-anti-patterns
https://twitter.com/tammersaleh
https://martinfowler.com/articles/dont-start-monolith.html
https://martinfowler.com/articles/dont-start-monolith.html
https://twitter.com/stilkov
https://twitter.com/simonbrown
https://www.infoq.com/news/2014/08/microservices_ballmud
https://teamtopologies.com/book
https://teamtopologies.com/book

11

Team-sized software

Most of the confusion around the sizing of services goes away when you reframe
the problem in terms of the cognitive load that a single service-owning team can
handle, as you'll see below.

How to define cognitive load

But first, here's what we mean by cognitive load and how this applies to teams.
Psychologist John Sweller defined cognitive load as “the total amount of mental
effort being used in the working memory,” and went on to describe three different
kinds of cognitive load:

1. Intrinsic cognitive load, which relates to aspects of the task fundamental to
the problem space. Example: How is a class defined in Java?

2. Extraneous cognitive load, which relates to the environment in which the task
is being done. Example: How do I deploy this component, again?

3. Germane cognitive load, which relates to aspects of the task that need
special attention for learning or high performance. Example: How should this
service interact with the ABC service?

Broadly speaking, you should attempt to minimize the intrinsic cognitive load
(through training, good choice of technologies, hiring, pair programming,
etc.) and eliminate extraneous cognitive load (boring or superfluous tasks or
commands that add little value to retain in working memory). This will leave more
space for germane cognitive load (where “value-added” thinking lies).

For a great overview of how cognitive load applies to software development, see
the article “Managing Cognitive Load for Team Learning”, by Jo Pearce.

Cognitive load applied to teams

When you apply the concept of cognitive load to a whole team, you need to limit
the size of the software system on which the team is expected to work. That is,
don't allow a software subsystem to grow beyond the cognitive load of the team
responsible for it. This has strong and quite radical implications for the shape
and architecture of software systems: Software architecture becomes much

https://en.wikipedia.org/wiki/John_Sweller%C2%A0
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1202_4/abstract
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1202_4/abstract
https://12devsofxmas.co.uk/2015/12/day-3-managing-cognitive-load-for-team-learning/
https://twitter.com/jdpearce

12

Team-sized software

more “team-shaped” as you explicitly consider cognitive load as an indicator of
supportability and operability.

The drive to minimize extraneous cognitive load also leads to the need to focus
on developer experience and operator experience. By using explicitly defined
platforms and components, your teams will be able to reduce their extraneous
cognitive load.

Some organizations have even begun to use cognitive load as an explicit input
into software architecture and system boundary decisions.

Why you should use team cognitive
load to right-size microservices

In a world of “You build it, you run it,” where the whole team is responsible
for the successful operation of software services, it is imperative to remove
unnecessary barriers to team ownership of software. Obscure commands or
arcane configuration options increase the (extraneous) cognitive load on team
members, effectively reducing their capacity for acquiring or improving business-
oriented aspects (germane cognitive load).

Another typical example is waiting for another team to provision tickets for
infrastructure or to update configurations. This interrupts the flow of the
dependent team, again resulting in a reduction in the effective use of cognitive
capacity.

Reduced team cognitive capacity puts a strain on the team’s ability to fully own
a software service. The team is spending so much time dealing with complicated
configuration, error-prone procedures, and/or waiting for new environments or
infrastructure changes that it cannot pay enough attention to important aspects
of testability or runtime edge cases.

As software developer Julia Evans says, reducing cognitive load for your team
means setting interface boundaries. Every techie at your organization doesn't
need to be a Kubernetes expert.

Put another way, by ensuring that the cognitive load on a team is not too high,

https://skeltonthatcher.com/2017/10/18/build-run-developers-also-call/
https://twitter.com/b0rk
https://twitter.com/bridgetkromhout/status/1072677842989842433
https://twitter.com/bridgetkromhout/status/1072677842989842433

13

Team-sized software

you have a better chance to enhance the supportability and operability of the
software on which your the team is working. It can better own its services,
because the team understands them better.

Three ways to reduce team cognitive
load and improve flow

There is no magic formula for reducing cognitive load for teams, but having
worked with many large organizations around the world (including in China,
Europe, and the US), we recommend three helpful approaches: well-defined
team interaction patterns, independent stream-aligned teams, and a thinnest
viable platform.

1. Create well-defined team interaction patterns

Too often in organizations, the relationships between teams are not well defined
or understood. As Russell Ackoff said, problems that arise in organizations “are
almost always the product of interactions of parts, never the action of a single
part.”

You've likely heard complaints such as “Why should we have to collaborate with
that other team?” or “Why doesn’t that team provide us what we need?” These
are signs that the team interactions within the organization are ambiguous. In
our Team Topologies book we identify three core team interaction modes to help
clarify and define how teams should interact:

1. Collaboration: Working together with another team for a defined period of
time to discover new ways of working, new tools, or new solutions.

2. X-as-a-service: Consuming or providing something “as a service,” with a
clear API and clear expectations around service levels.

3. Facilitating: Helping (or being helped by) a team to gain new skills or new
domain awareness, or to adopt a new technology.

With these well-defined team interactions patterns in place, you can begin to

https://en.wikipedia.org/wiki/Russell_L._Ackoff
https://en.wikiquote.org/wiki/Russell_L._Ackoff
https://en.wikiquote.org/wiki/Russell_L._Ackoff
https://en.wikiquote.org/wiki/Russell_L._Ackoff

14

Team-sized software

listen for signals at the organization level for team interactions that are working
well and those that are not, including problems with cognitive load.

For example, if a collaboration interaction goes on for too long, perhaps it’s a
signal that some aspect of the technology would be better provided as a service
by a platform.

Similarly, if one team expects to consume a monitoring tool “as a service” but
constantly needs to work with the providing team to diagnose problems, this
could be a signal that there is too much cognitive load on the consuming team
and you need to simplify the API.

2. Use independent, stream-aligned teams

It is increasingly common in large and small organizations to see small, cross-
functional teams (with a mix of skills) owning an entire “slice” of the problem
domain, from idea to live services. Such teams are often called product or
feature teams.

But with the coming-of-age of IoT and ubiquitous connected services, we call
them “stream-aligned” because “product” loses its meaning when you're talking
about many-to-many interactions among physical devices, online services, and
others. (“Product” is often a physical thing in these cases.)

Stream-aligned teams are aligned to the stream of change required by a segment
of the organization, whether that’s a line of business, a market segment, a
specific geography, or a government service.

It is hugely important to ensure that stream-aligned teams can analyze, test,
build, release, and monitor changes independently of other teams for the vast
majority of their work. Dependencies introduce a substantial amount of cognitive
load (e.g., waiting for other microservices or environments to be able to test, or
not having microservices-focused monitoring).

Ensuring that stream-aligned teams are substantially independent in their day-
to-day flow of work removes unhelpful extraneous cognitive load, allowing teams
to focus on the intrinsic and germane (domain-relevant) aspects of the work. Part

15

Team-sized software

of this independence comes from being able to use an effective platform.

In larger organizations it's useful to align two or three teams in a close
partnership when delivering large, complicated systems. That close relationship
helps to avoid one team waiting on another.

Obviously, teams do depend on other services and associated teams
for providing infrastructure, runtime APIs, tooling, and so on. But these
dependencies don’t block the flow of work of a stream-aligned team. Being
able to self-service new test environments, deployment pipelines, or service
monitoring are all examples of non-blocking dependencies. Stream-aligned
teams can consume these independently as needed.

3. Build the thinnest viable platform

Stream-aligned teams should expect to consume services from a well-defined
platform, but avoid the massive, unfriendly platforms of yesteryear. Instead, build
the thinnest viable platform (TVP): the smallest set of APIs, documentation, and
tools needed to accelerate the teams developing modern software services and
systems.

Such a TVP could be as small as a single wiki page that defines which public
cloud provider services other teams should use, and how. Larger organizations
might decide to build additional services atop an underlying cloud or IoT
platform, but those extra services should always be “just thick enough” to
accelerate the flow of change in stream-aligned teams, and no thicker.

Avoid the frequent mistakes of the past, when internal platforms were bloated,
slow, and buggy; had terrible user experience; and — to make matter worse —
were mandatory to use.

A good platform acts as a force multiplier for stream-aligned teams, helping
them to focus on core domain functionality through attention to the developer
experience, ease of use, simplicity of tooling, and richness of documentation.
In short, build and run the platform as a product or service itself, with stream-
aligned teams as internal customers, using standard agile and DevOps practices

16

Team-sized software

within the platform itself.

The engineers at cloud communications company Twilio have taken this approach
internally for their delivery squads. In a presentation at QCon in 2018, senior
director of engineering Justin Kitagawa described how Twilio's internal platform
has evolved to reduce the engineers’ cognitive load by providing a unified
self-service, declarative platform to build, deliver, and run thousands of global
microservices.

Furthermore, the platform’s developer experience is regularly assessed via
feedback from internal customers using a Net Promoter Score.

The internal platform at Twilio explicitly follows these key principles:

• API-first: Empower dev teams to innovate on platform features via
automation.

• Self-service over gatekeepers: Help dev teams determine their own
workflow.

• Declarative over imperative: Prefer “what” over “how.”

• Build with empathy: Understand the needs and frustrations of people using
the platform.

This approach has enabled Twilio to scale to a customer base of over 40,000
organizations worldwide.

By reducing cognitive load, a good platform helps dev teams focus on the
differentiating aspects of a problem, increasing personal and team-level flow and
allowing the whole team to be more effective.

Lighten the load

Team cognitive load is an important dimension when considering the size and
shape of your software system boundaries. By ensuring that team cognitive load
isn’t too high, you can increase the chances that team members will be able to

https://twitter.com/JustinKitagawa
https://www.infoq.com/presentations/twilio-devops
https://en.wikipedia.org/wiki/Net_Promoter

17

Team-sized software

build and operate services effectively because they will properly understand the
systems they are building.

We recommend the use of three core team interaction modes to clarify the
interactions between teams and ultimately help to reduce cognitive load. When
used with independent stream-aligned teams and a thinnest viable platform,
these team interaction modes will help your organization detect when cognitive
load is too high in different parts of your systems.

[Original:
https://techbeacon.com/app-dev-testing/forget-monoliths-vs-microservices-cognitive-load-what-matters]

https://techbeacon.com/app-dev-testing/forget-monoliths-vs-microservices-cognitive-load-what-matters

Assessment objectives

Uncover Blockers
to Fast Flow

Accelerate Flow
and Feedback

True Team
Autonomy

14

Assessment benefits

Shared
Understanding

Teams agree on their fundamental
purpose and relationship to other
teams and topologies. Clarity on

core interactions modes and
expected behaviors reduces

cognitive load.

Clear
Roadmap

Clear picture of the organization
landscape today and where to

go next based on identified gaps
in teams capabilities, autonomy,

purpose, and interactions. A
roadmap co-created and agreed

by all the teams involved.

Energized
for Change

The organisation is ready to
tackle improvements and new

ways of working, including
rolling out further assessments

19

Assessments
Assessment objectives

Core dimensions

Benefits

teamtopologies.com/assessments

http://teamtopologies.com/assessments

19

Team-first tools and skills

Why teams fail with
Kubernetes — and what to
do about it
Manuel Pais, co-author of Team Topologies

Kubernetes offers a powerful operating model for running cloud-native systems,
but adopting it is anything but straightforward.

Yes, Kubernetes helps reduce the operational complexity of microservices, and it
provides useful abstractions for deploying and running containers. But moving to
Kubernetes is akin to adopting an elephant as a pet.

There are major implications to how teams must interact when you're using
Kubernetes—especially as you scale. Fail to address those issues, and you'll put
your entire endeavor at risk. Here's what you need to keep in mind.

It's all about team interactions

Kubernetes adoption is not just about the operations/infrastructure team
migrating the infrastructure setup to Kubernetes clusters while product teams
deploy and run services in Kubernetes pods. Those are the core inputs to the
engine, but you'll face many other tasks and responsibilities when running
Kubernetes — even if you're using a managed service.

Fail to address the questions “Who is responsible for x?” and “Who is affected
by y?” and you'll put all your efforts at risk. For example, replace “x” above with
“deciding on namespaces versus clusters for service and environment isolation”
or “upgrading all clusters to a new Kubernetes version,” and you start to see why
you need to clarify the boundaries of responsibility and their impacts.

The way teams interact, and the behaviors promoted by your culture, are more
accurate predictors of a successful Kubernetes adoption than are technical

https://techbeacon.com/enterprise-it/47-advanced-tutorials-mastering-kubernetes
https://techbeacon.com/app-dev-testing/9-best-open-source-options-building-microservice-apps
https://techbeacon.com/enterprise-it/30-essential-container-technology-tools-resources-0
https://techbeacon.com/devops/one-year-using-kubernetes-production-lessons-learned

20

Team-first tools and skills

expertise and infrastructure costs and metrics — that is, if you measure success
as enabling faster and sustainable delivery of customer-focused value (via
features, better user experience, more resilience).

Having clarity of purpose, and understanding the responsibilities and behaviors
around the teams operating Kubernetes (operations/infrastructure/platform)
as well as the teams using Kubernetes (product/feature/stream) are all key to
success.

Abstractions, cognitive load, and DevEx

Using Kubernetes might be a sound decision from an engineering standpoint, but
the developer experience (DevEx) is often subpar, and the abstractions are at a
lower level than any individual developer would need because Kubernetes was
designed as a generic platform to meet every possible use case.

Extraneous cognitive load is the amount of human working memory used to
understand and perform a task that is not directly related to the business
outcome you're trying to achieve.

Poor DevEx and complicated abstractions and interfaces mean that the
cognitive load for the average developer who lacks deep Kubernetes expertise
will increase steeply when you adopt Kubernetes. That is, unless you explicitly
consider and manage that potential overload.

You need a digital platform on top of Kubernetes

Kelsey Hightower, staff developer advocate for the Google Cloud Platform, said
Kubernetes should be an implementation detail of an organization's change
management system.

In other words, you need to focus on clarifying the interfaces and enhancing
the usage experience of the internal services that your product teams rely upon
to quickly and safely build, deploy, and run the services they are responsible
for. These systems can range from CI/CD pipelines to monitoring and metrics
collection.

https://twitter.com/copyconstruct/status/1194701905248673792?s=03
https://twitter.com/kelseyhightower
https://twitter.com/kelseyhightower/status/1178822088481636353
https://twitter.com/kelseyhightower/status/1178822088481636353

21

Team-first tools and skills

You need to abstract away the details that are extraneous to your organization’s
build and run processes. You need to increase the reliability, predictability,
and security of that small set of critical internal services, and provide adequate
support (including on-call support) and communication channels for fast
feedback.

All of this is engraved in Evan Bottcher’s simple definition of a digital platform: “A
digital platform is a foundation of self-service APIs, tools, services, knowledge
and support, which are arranged as a compelling internal product.”

“Kubernetes is not a digital platform, although it might well be
the foundation for one (regardless if under a managed service like
Amazon Elastic Kubernetes Service or not). Failing to understand and
address this difference is the prime reason for poor adoption in many
organizations.”

Not defining this internal platform leads to inconsistencies in the use of external
services. It also leads to unreasonable demands on product teams that are
already being pulled in many directions while, ironically, being pressured to
deliver more features faster, since they now have Kubernetes.

But Kubernetes is no silver bullet. Its complexity presents a steep learning
curve for newcomers. If your engineers are being asked to rely on Kubernetes
documentation to learn to solve their problems, no matter how good that
documentation is, you do not have a digital platform.

You likely have a gap in operational capabilities and a maturity issue that
needs to be addressed before you can reap the force-multiplier benefits that
Kubernetes can bring about.

The size of a digital platform varies with mileage and scale. For a startup, a
simple wiki page specifying which cloud services to use with some sensible
defaults, tricks, and caveats might be enough. You might rely on your more
experienced engineers to provide documentation and support on an as-needed
basis. In our book, Team Topologies: Organizing Business and Technology Teams
for Fast Flow, Matthew Skelton and I call this a “thinnest viable platform.”

https://twitter.com/evanbottcher
https://martinfowler.com/articles/talk-about-platforms.html#WhatIsAplatformAnyway
https://techbeacon.com/enterprise-it/6-best-practices-highly-available-kubernetes-clusters
https://itrevolution.com/team-topologies/
https://itrevolution.com/team-topologies/
https://twitter.com/matthewpskelton

22

Team-first tools and skills

As your startup grows, so will your platform, as the product teams begin to
need more internal services. Eventually, a platform group might include multiple
platform teams, each aligned to a small set of platform services. These teams
need strong product management to create a compelling internal product that
makes life easier for the other engineering teams (the platform clients).

How Airbnb enabled 1,000+
engineers with Kubernetes

Airbnb is a good example of a digital platform on top of Kubernetes that evolved
based on the needs of its engineering teams. Melanie Cebula, infrastructure
engineer at Airbnb, spoke at QCon London about the way her team wraps
Kubernetes into easy-to-consume internal services for its development teams.

As she explained, instead of creating a set of dreaded YAML files (deployment,
ConfigMap, service) per environment (dev, canary, production), development
teams need only provide their project-specific, service-focused inputs and then
run the internal service kube-gen (alias k gen).

This simple command takes care of generating all the required YAML files,
ensuring their correctness (not just syntax-wise but also semantically in terms
of expected values), and finally applying them in the corresponding Kubernetes
cluster(s).

The infrastructure team at Airbnb is saving hundreds, if not thousands, of hours
for 1,000+ engineers who can now use a much simpler abstraction that has been
adapted to their needs, with a user experience that’s familiar to them.

Other internal services provided by the infrastructure team include k deploy, to
create new namespaces; k diagnose, to collect information from multiple sources
on malfunctioning pods and services; and templates for new services and
deployment pipelines.

Effectively, they are providing a digital platform for their engineers that embeds
their evolving understanding of what engineering teams need to perform better,
as well as good practices and tooling around security, logging, debugging, and
so on. Crucially, they are doing this without asking for more of the engineering

https://techbeacon.com/app-dev-testing/how-airbnb-scaled-its-migration-continuous-delivery-spinnaker
https://twitter.com/MelanieCebula
https://www.infoq.com/presentations/airbnb-kubernetes-services/

23

Team-first tools and skills

teams’ cognitive load. Instead, engineers are free to focus on business outcomes
with clearly defined, simple service boundaries.

Figure 1. The kube-gen wrapper generates the needed configuration files per environment at Airbnb.
Source: Melanie Cebula, Airbnb.

Figure 2. The infrastructure platform at Airbnb establishes clear boundaries and reduces the cognitive load
on development teams. Source: Team Topologies: Organizing Business and Technology Teams for Fast Flow.

24

Team-first tools and skills

Clear team interactions are key to sustained success

The success of an internal platform is influenced by the behaviors and interaction
modes of the responsible teams to a much larger extent than by its technical
achievements. If the platform team does not see its mission as to reduce the
extraneous cognitive load of engineering teams by means of a compelling
internal product, then it might dwell in the technical complexity of a service and
forget to check if it serves the needs of the team that requested it.

If the platform team does not collaborate closely with the product teams during
initial stages of a new service or evolution to have fast feedback, then the
developer experience will suffer, and usage will drop because the platform will
stop being a compelling product.

If the platform team does not provide timely (on-call and office hours) support
for its internal services with clear response times, service status pages, and
communication channels, then the platform will not be seen as reliable and
engineering teams might resort to other options.

On the other hand, product teams need to carefully reconsider whether they
really need to go off the “paved road” provided by the platform for any specific
service or tooling requirements. If they go off on their own without talking to the
platform team and without a clear use case for adopting some new technology,
then they will break the trust boundaries with the platform team and end up
having too much unnecessary cognitive load.

Product teams need to be open and frank about their needs while understanding
whatever limitations the platform teams might be working under. Blameless
interactions are key.

A general pattern of interaction between product and platform team is to have
close collaboration during the initial discovery stages for a new platform service
(or evolution) required by a product team. Over a period of time, this intentional
collaboration effort will diminish as the needs, boundaries, and interfaces for
this service becomes clearer, until eventually it can be consumed by all product
teams as a service.

25

Team-first tools and skills

In the end, it’s all about teams having a clear purpose, responsibilities and ways
of interacting in order to set the right expectations and behaviors.

How to get started

Take these three simple steps to nudge your organization’s Kubernetes adoption
with a human- and team-centric approach.

1. Assess cognitive load. Ask your teams if they truly understand how to build,
deploy, and run the applications they are responsible for in Kubernetes.

2. Visualize the platform. Kubernetes is not your internal platform. Document
how your organization is currently using it, along with your recommended
practices, sensible defaults, and other useful information in a wiki page. Then
start adding the missing pieces for a true digital platform.

3. Clarify team interactions. Set the right expectations between teams in terms
of who is responsible for what, who is affected, and what types of behaviors
to adopt in which circumstances.

Follow the initial steps above and you’ll start to understand the gap between
your current Kubernetes implementation and having an internal digital platform
(and teams) that accelerates software delivery through reduced cognitive load, a
first-class developer experience, and a compelling platform that is resilient and
fit for purpose.

You'll also gain insights into how your teams interact today, and the anti-patterns
and misaligned expectations that are creating friction between teams and

Figure 3. The evolution pattern of team interactions for a new platform service (or evolution), from initial
discovery with high collaboration to "X as a service" with no need to collaborate any more. Source:
Team Topologies: Organizing Business and Technology Teams for Fast Flow.

26

Team-first tools and skills

individuals. You'll be moving toward a healthier, more organic work environment
that acknowledges the complex socio-technical nature of software systems
today.

[Original:
https://techbeacon.com/enterprise-it/why-teams-fail-kubernetes-what-do-about-it]

https://techbeacon.com/enterprise-it/why-teams-fail-kubernetes-what-do-about-it

27

Team-first tools and skills

How to find the right
DevOps tools for your team
Matthew Skelton, Head of Consulting, Team Topologies

When you adopt a DevOps approach to building and operating software
systems, you must rely on modern tools for almost every aspect of build, release,
and operations activities. But before you get into the weeds of comparing one
tool against another, you need to think more broadly about what you need.

And there are many types of DevOps tools to consider. With DevOps, many
previously manual or semi-manual activities are fully automated, including
version control (for application code, infrastructure code, and configuration),
continuous integration (for application code and infrastructure code), artifact
management (packages, container images, container applications), continuous
delivery deployment pipelines, test automation (unit tests, component tests,
integration tests, deployment tests, performance tests, security tests, etc.),
environment automation and configuration, release management, log aggregation
and search, metrics, monitoring, team communications (chat, video calling,
screen sharing), and reporting.

You’ll find plenty of excellent tools in all of these categories, but it’s easy to
get hung up on the pros and cons of using one tool versus another. And while
sometimes that’s the right debate to have, confusion around tools may be a
symptom of deeper problems with respect to the way in which your team uses
those tools, or how you introduce those tools to the team.

I have been using the guidelines below with clients since 2014, and we’ve
managed to solve tooling-related problems that would otherwise have
descended into an unhelpful product X-versus-Y shooting match. To become a
high-performing organization, you must take into account the social dynamics of
your organization and the trajectory of the rapidly evolving public cloud vendors.

https://techbeacon.com/9-ways-organizations-screw-continuous-delivery
https://techbeacon.com/open-source-tools-put-ops-devops
https://techbeacon.com/dont-be-fool-your-devops-tools

28

Team-first tools and skills

Choose tools that facilitate collaboration

Having highly effective collaboration between teams is critical for DevOps. Some
people think they need to buy a dedicated collaboration tool for this purpose,
but there are many different tools you can use to enhance collaboration.

Consider one of the cornerstones of a DevOps approach: version control. Let’s
say you’re trying to encourage more people in the organization to use version
control, including for database scripts, configuration files, and so on. If you insist
that everyone use only a command-line tool for version control, you’ll miss out on
collaboration opportunities:

The command-line view of version control is certainly part of a DevOps tool
set, but it is unfamiliar to many people — especially non-developers — and
has no obvious collaboration potential. But if you use a richly featured version-
control platform such as Github, Bitbucket, or Gitlab, you can take advantage
of discussion threads around file changes to get people talking about why a file
changed. This helps you collaborate with people who have different skills, and
encourages more people to learn how to use version control:

Command-line tools can be a barrier to collaboration for some people.

29

Team-first tools and skills

Using a browser-based version-control platform opens up version control to
a wider audience than just software developers, which in turn helps you to
emphasize the importance of version control as a key DevOps practice. By
choosing a version-control tool with discussion capabilities and making it
available to a wide audience, you can enable rich communication between teams
and groups within your organization.

The same approach works for many other tools, too. I once consulted with an
organization that had a tool for log aggregation and search. The IT operations
people found it valuable, but the developers did not have permission to search
the logs from the production systems. Access was denied because, IT claimed,
the data was of a sensitive nature. But the managers wanted to improve the way
in which the IT Ops and Dev teams collaborated. So they opened up access to
the log-search tool for developers and — surprise — developers and operations
people collaborated more. The tool hadn’t changed, but changing access
permissions enhanced collaboration.

Browser-based tools can help to encourage collaboration for people who are less technology-savvy.

30

Team-first tools and skills

Key points:

• Value collaboration as a key selection aspect of tools.
• Look behind the tool’s main purpose to find collaboration opportunities.
• Ask, “How does our use of this tool help or hinder people in collaboration?”

Favor tools with APIs

Modern software development needs delivery tools that are highly automatable,
yet customizable. That means you need a fully featured API for each tool—
preferably one that’s HTTP-based. When you compose capabilities by gluing
together API-rich tools, you enable easy wiring for alerts and other events. Avoid
tools that try to do everything from within their own frames of reference; favor
those that do one or more jobs well and integrate easily with other tools.

Given the speed of change in the software sector, it’s particularly important to
choose tools that meet these criteria. If you do, then when a new tool comes
along you’ll be able to replace your old tool with minimal disruption. Being stuck
with a big, lumbering tool set that’s only half-good at most things has been a
source of significant pain for organizations trying to adopt DevOps. Keep your
tooling nimble and composable to give your team the flexibility to adapt new
approaches easily.

But beware of “spaghetti” tooling that’s chained together with undocumented
scripts. Treat your software delivery and operations tools like a proper production
system. At the rapid pace enabled by DevOps, it’s essential to be able to keep
the tools you use for software delivery and operations running and working 24x7.
Many companies make the mistake of adopting new tools without the operational
support and care needed to make those tools work well. So when adopting
new tooling, consider starting with SaaS-hosted offerings and running internal
prototypes/demo versions before building an internal capability.

Key points:

• Choose tools that expose APIs.
• Aim for composition of new capabilities from multiple API-driven tools.
• Build and deployment are first-class concerns.

31

Team-first tools and skills

Favor tools that can store configuration
in version control

One core tenet of DevOps is that you should store all configuration settings in
version control. That includes the configuration not just for your custom software
applications, but also for tools you use in software delivery and IT operations.

To be effective in a DevOps context, each tool must expose its configuration
in such a way that you can store the configuration as text files that you can
then expose to version control. Then you can track the history of configuration
changes and test changes beforehand.

Why would you want to do that? If you cannot track and test configuration
changes to your delivery and operations tooling, you risk breaking the machinery
that makes DevOps work.

Key points:

• Choose tools that expose configuration to version control.
• Point-and-click is no longer acceptable for configuration of tools.

Use your tools in a way that encourages learning

Some of the tools useful for DevOps are quite involved and complicated,
especially for people new to them; don’t expect everyone to understand or
adopt difficult new tools immediately. In fact, if you introduce a tool that is too
tricky, some people may become hostile, especially if you don’t provide training
or coaching. That sometimes happens when organizations select best-of-breed
tools without considering how easy they are to use.

Assess the skills in your organization and devise a tools roadmap for moving
teams to improved ways of working. Select tools that offer more than one way
to use them (GUI, API, command-line) so people can learn at their own pace.
And avoid leaving people behind on the climb to more advanced approaches
by holding regular team show-and-tell sessions to demonstrate tools and
techniques.

32

Team-first tools and skills

For example, you might start with the browser-based interface, such as the
one below, for people new to version control, giving them time to adjust to this
approach before training them on the command-line tools for version control.

DevOps is a journey from mostly manual to fully automated, and not everyone
starts from the same place. Give people time and space to become familiar with
new tools and approaches. They might start with a simpler tool, then adopt a
more powerful one later.

Key points:

• Bring people with you on your DevOps journey.
• Prefer achievable gains now over possible future state.
• Avoid a fear of too-scary tools by stepwise evolution.

Command-line tools can be daunting for some people and may hinder collaboration unless you provide
training. Tools with a more friendly UI can help to bring people on board to new ways of working, giving
them the confidence to adopt command-line tools later.

33

Team-first tools and skills

Avoid special production-only tools

The speed and frequency of change that DevOps gives you the means you need
to emphasize the feedback loops within your delivery and operations processes.
In particular, it is important that all technology people in your organization learn
as much as possible about how the production environment works so they can
build better-working, more resilient software. You also need to test changes to
all parts of the software system before deploying new versions to production.

For an effective DevOps approach, choose tools that work easily in
nonproduction environments (development, continuous integration, staging,
etc.). The tool should be cheap enough to buy or install so that you can install it
in all environments, including developer laptops and the automated build-and-
test system. A tool that is so expensive that you can only afford a license for
production is not a good tool for DevOps. Such “singleton” tools tend to accrue
an aura of magic, leading people to think that production is special. People
become disengaged, and that’s a bad outcome. Good tools for DevOps are also
easy to spin up in different environments using automated scripts. A tool that
needs manual installation is not a good choice for DevOps.

Production-only tools prevent teams from learning because production is treated as a special case.

Running the same tools in production as in all other environments enables rapid learning and increases
engagement within teams.

34

Team-first tools and skills

In some sense, this “run it anywhere” approach to tools for DevOps makes
production less special, and rightly so. Many of the problems with older, fragile
IT systems are the result of production being treated in a special way, preventing
developers and testers from learning how production works. With a DevOps
approach, your aim is to choose tools that are easy to install and can spin up in
multiple environments, even if the feature set is less impressive than that of a tool
that is more advanced but difficult to configure. Aim to optimize globally across
teams that need to collaborate, not just locally for production.

Key points: Production-only tools...

• Break the learning feedback loop.
• Make CI/CD more difficult.
• Underestimate the value of collaboration and learning.

Choose tools that enhance inter-
team communications

One of the most common problems I see in organizations struggling to build
and run modern software systems in a DevOps way is a mismatch between
the responsibility boundaries for teams or departments and those for tools.
The organization either has multiple tools when a single tool would suffice (in
order to provide a common, shared view), or it has a single tool that’s causing
problems because teams need separate ones.

In recent years, Conway’s Law has been observed and measured in many
studies. The communication paths in our organization drive the resulting system
architecture:

“Organizations which design systems ... are constrained to produce
designs which are copies of the communication structures of these
organizations.”
 — Mel Conway

You therefore need to be mindful of the effect of shared tools on the way in

35

Team-first tools and skills

which teams interact. If you want your teams to collaborate, then shared tools
make sense. But if you need a clear responsibility boundary between teams,
separate tools may be best. Use my DevOps team topologies patterns to
understand which DevOps model is right for your organization, and then choose
the tools that fit that model.

If you need the development team to work closely with operations (the Type 1
model), then having separate ticketing or incident management tools for Dev
and Ops will result in poor inter-team communication. To help these teams
collaborate and communicate, choose a tool that can meet the needs of both
groups. But be sure that you understand the user experience needs of each
group, since a tool that infuriates your engineers is a sure way to stop a DevOps
effort dead in its tracks.

If, like many enterprises, yours is moving to a Type 3 (platform) model, then the
platform team is not responsible for the live service of the applications; that’s the
responsibility of the product development teams. When responsibility boundaries
don’t overlap, you won’t get much value from insisting on the same incident-
tracking tool or even the same monitoring tool for the platform and development

In a Type 1 platform model, smooth collaboration implies some shared tooling between Dev and Ops.
Image from DevOpsTopologies.com and licensed under CC BY-SA license.

http://devopstopologies.com/
http://devopstopologies.com
https://creativecommons.org/licenses/by-sa/4.0/

36

Team-first tools and skills

teams. This becomes even clearer when IT operations has outsourced to a cloud
service provider, since in that case there’s no question about forcing the same
tools on two different teams.

In summary, don’t select a single tool for the whole organization without
considering team inter-relationships first.

Key points:

• See the whole organization as a system you’re building.
• Have separate tools for separate teams.
• Deploy shared tools for collaborative teams.

Optimize for learning, collaboration,
automation, and team dynamics

When choosing tools for DevOps, it’s important to avoid product X-versus-Y
tooling shootouts that simply compare lists of features side by side. Sometimes

A Type 3, IT Ops as infrastructure-as-a-service (platform) implies little need for shared tooling between
Dev and Ops. Image from DevOpsTopologies.com and licensed under CC BY-SA license.

http://devopstopologies.com
https://creativecommons.org/licenses/by-sa/4.0/

37

Team-first tools and skills

that’s needed, but only after you understand the broader implications of having
one (or both) of those tools in place in your organization. Using tools in the
wrong way — especially trying to make everyone use the same tool — can be
counterproductive for DevOps.

Try to assess and understand where your team communication boundaries should
be, using the DevOps team topologies patterns and Conway’s Law, to avoid a
one-size-fits-all approach to tools. Sometimes, using multiple, similar tools is the
right approach, but that depends on your team boundaries.

Ensure that the tools you choose do not present a learning barrier to people
who are new to DevOps approaches; expect to replace tools regularly as people
develop their skills and establish new collaboration patterns.

Tools for DevOps need programmable APIs. Don’t buy or use tools that need a
human operator to click buttons on a browser application. With DevOps, you
need to compose functionality from multiple, cooperating tools using APIs and
“glue” scripts.

Finally, don’t optimize for your production environment. A tool that exists only in
the live production environment is a tool that you can’t test upstream, and that’s
a dangerous approach in a fast-paced DevOps world.

[Original: https://techbeacon.com/devops/how-find-right-devops-tools-your-team]

https://techbeacon.com/devops/how-find-right-devops-tools-your-team

Training
Training courses

Online interactive courses with up to 15 attendees

Each half-day session can be taken independently. Four sessions
together (TT04 to TT07) form the Essentials course:

• TT04 - Stream-aligned Teams

• TT05 - Reducing Cognitive Load

• TT06 - Evolving Responsive Organizations

• TT07 - Architecture for Fast Flow

• TT08 - Modern Platforms

Fully remote training using videoconference and group work tools.

Training benefits

teamtopologies.com/training

http://teamtopologies.com/training

39

Curated team interactions

Why you should hire DevOps
enablers, not experts
Manuel Pais, co-author of Team Topologies

We are regularly asked if we know any DevOps or site reliability engineering
(SRE) experts available for hire. Our answer is, invariably, ”Not really.“ It's a
tough market out there.

DevOps and SRE (for large-scale software, at least) are critical approaches for
success in modern software delivery and operations, as widely demonstrated
every year in the State of DevOps report or the array of presentations at the
DevOps Enterprise Summit.

But if you think you can achieve DevOps by hiring “DevOps experts,” you are
missing some contextual awareness. What exactly are you trying to improve in
the first place? If your software delivery is slow because of work you're handing
off among multiple teams with diverse schedules and priorities, will a new hire
really help?

We’re not suggesting that you not hire people with diverse skills and
backgrounds — that can be quite valuable to bring in new perspectives and
approaches. But conventional hiring based on expertise alone is ineffective and
prevents organizations from developing the “learning muscles” that can help
teams traverse the latest trends (DevOps, SRE, etc.) to their benefit at the right
time, and in the right context.

Hiring experts for every need is like engaging in palliative care for organizational
health. Preventive care would be to incorporate the necessary team structures
and interactions — as well as a focus on people growth and sufficient slack —
to effectively take in process, technology, and business changes.

Learning organizations smoothly morph as they adapt to new challenges, and
they unlearn existing ways of working when they become limitations rather than
enablers.

https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
http://www.youtube.com/channel/UCkAQCw5_sIZmj2IkSrNy00A/playlists
http://bit.ly/DOES19TechBeacon
https://techbeacon.com/devops/7-keys-finding-phenomenal-devops-talent
https://twitter.com/jboogie/status/1036917800617615361?s=19
https://www.unlearn.online/

40

Curated team interactions

Hire with alignment of purpose in mind

In his book Drive: The Surprising Truth About What Motivates Us, Daniel Pink
explains the three pillars of intrinsic motivation for knowledge workers:

• Autonomy
• Mastery
• Purpose

When you acknowledge that a team is the fundamental, indivisible unit of
delivery and operations for a product or service, then it follows that a high-
performing team needs to fulfill those three intrinsic motivators for all of its
members.

People generally understand how to apply autonomy and mastery to a team,
especially within the context of agile, but the purpose of a team is less clear.

In our book, Team Topologies, we identify and characterize the purpose of four
fundamental topologies. Besides clarifying what each team is trying to achieve,
you also want to ensure that new team members’ individual purposes are aligned
with those of the team.

Four fundamental team types and purposes

There are four different team types and purposes:

1. Stream-aligned. These are cross-functional teams whose purpose is to deliver
a product or service to external customers via end-to-end ownership of the
lifecycle, from ideation to operations.

2. Platform. This type of team’s purpose is to provide internal services to reduce
the (cognitive) effort that would be required from stream-aligned teams to
develop these underlying services. In other words, such a team delivers
services to internal customers.

3. Enabling. These are teams of specialists in a given technical (or product)
domain whose purpose is to help other teams grow new capabilities in that

https://www.amazon.com/Drive-Surprising-Truth-About-Motivates/dp/1594484805
https://twitter.com/DanielPink
https://teamtopologies.com/book

41

Curated team interactions

domain, reducing their learning curve when adopting new practices and
technologies. They can be seen as internal consultants, and do not develop
products or services.

4. Complicated subsystem. These are teams whose purpose is to build and
maintain a highly complicated part of a system that depends heavily on
specialist knowledge (think PhD-level specialists or niche technology),
requiring full-time effort.

The last three team types work toward reducing the cognitive load of the stream-
aligned teams, so the latter can focus on fully understanding and owning the
products or services for which they are responsible without diversions such as,
for example, setting up infrastructure and monitoring from scratch.

Failure to consider how a candidate fits in with your team’s purpose can lead
to a dysfunctional team, disengaged team members, and high turnover rates —
especially for individuals hired based on their expertise in “hot” trends.

Alignment is key

A modern hiring process needs to consider alignment between individual goals
and interests and the purpose of the team new hires are expected to join. For
example:

• A candidate who strives to be multi-skilled and always learning should be
a good fit in a stream-aligned team, but only if that person enjoys frequent
feedback and contact with (sometimes upset) customers.

• A candidate who enjoys automating processes should fit in well in a platform
team, but only if that person is genuinely interested in understanding the
needs of other teams (as well as the organization), and in developing services
based on feedback and fitness-for-purpose.

• A candidate who thrives on a particular technical or product domain or
practice and wants to continuously stay ahead of the curve might fit in well
in an enabling team, but only if naturally inclined to communicate, pair, and
share knowledge in a non-judgmental way.

https://simplicable.com/new/fit-for-purpose

42

Curated team interactions

Hire with cognitive load in mind

There are three types of cognitive load that teams may face:

• Intrinsic cognitive load, which relates to aspects of the task that are
fundamental to the problem. Example: How are classes defined in Java?

• Extraneous cognitive load, which relates to the environment in which the
team is performing the task. Example: How do I deploy this app, again?

• Germane cognitive load, which relates to aspects of the task that need
special attention for learning or high performance. Example: How do bank
transfers work?

Broadly speaking, you want to minimize intrinsic cognitive load and eliminate
extraneous cognitive load (boring or superfluous tasks or commands that add
little value). This will free working memory for germane cognitive load (which is
where value-added thinking lies).

Learning approaches to consider

Keyword-driven hiring focuses on finding experts with low intrinsic cognitive
load; they have internalized tasks in their domain of expertise, like driving a car
without thinking about all the actions involved.

But that only helps in the short term. An expert who cares more about the
delivery mechanisms and technology, rather than how the actual products
or services work and fit the needs of its users, will be increasing extraneous
cognitive load and reducing space for business-focused germane cognitive load.

Also, there are plenty of approaches you can take to reduce intrinsic cognitive
load by spreading knowledge within teams and organizations. These include pair
and mob programming, mentoring, immersive dojos, communities of practice,
brown bag lunches, more classical training, conferences, and books.

Pick what’s easiest to start with and evolve over time. What is often missing,
however, is the vision to invest the necessary time and patience to start

https://techbeacon.com/app-dev-testing/forget-monoliths-vs-microservices-cognitive-load-what-matters
https://techbeacon.com/devops/devops-100-top-leaders-practitioners-experts-follow-0
https://itrevolution.com/devops-dojo-captial-one/
https://www.infoq.com/articles/communities-of-practice-agile-organisation/
https://www.thebalancecareers.com/brown-bag-lunch-1919309
https://techbeacon.com/devops/best-devops-conferences-2019

43

Curated team interactions

harvesting the results of upskilled, empowered employees.

This means your organization should continuously look for ways to reduce
extraneous cognitive load on its teams, rather than falling back to hiring experts
as a palliative solution for an immediate need.

Hire with learning in mind

If hiring experts is the principal way you acquire expertise and skills (such as
agile, DevOps, or site reliability engineering) in your organization, you will face
a difficult challenge competing with many other organizations that are doing
the same in a scarce labor market. And even if you successfully address that
challenge, it will lead to atrophy of your organization’s learning muscles. Learning
organizations grow from the inside. They can detect when existing tools,
practices, and processes are no longer effective for the challenges at hand and
adapt continuously.

Bringing in people with new skills and points of view can help challenge
assumptions and make progress, but it will not fundamentally transform a static,
slow-changing organization into a fast-paced, adaptive one. Becoming a true
learning organization requires not only setting up safe learning spaces and
practices, but also adopting an integrated view of who you're hiring and why.

So rethink hiring as part of your larger strategy to become a learning
organization. Your strategy should:

• Take into account existing team structures and interactions and how they are
expected to evolve

• Empower knowledge-sharing activities, providing logistics and especially
slack time

• Make it a priority to hire people who are a good fit for a team’s purpose,
expected behaviors, and interactions with others, above specific technology
expertise

Also consider what options you have to reduce the current cognitive load on your

44

Curated team interactions

teams before hiring.

The Team Topologies approach provides a thousand-foot view of your
organizational landscape, helping you see the forest (missing capabilities and
blockers to learning) for the trees (specific skills and trends in need today).

[Original: https://techbeacon.com/devops/why-you-should-hire-devops-enablers-not-experts]

http://teamtopologies.com/
https://techbeacon.com/devops/why-you-should-hire-devops-enablers-not-experts

45

Curated team interactions

Are poor team interactions
killing your DevOps
transformation?
Matthew Skelton and Manuel Pais, co-authors of Team Topologies

The COVID-19 pandemic has ushered in a new remote-first world for IT, with
many organizations struggling to catch up with new tooling and ways of working.
Some companies have embraced this new reality, ditched their expensive
downtown offices, and told staff they can work from home permanently.

And some are discovering for the first time that the physical office was
substituting for poorly defined teams and poorly defined areas of focus,
threatening their digital transformation efforts.

A successful remote-first approach requires that you explicitly design the
communication among teams using physical and online spaces. Using simple
tools for dependency tracking, and patterns such as a “team application
programming interface” (a concept we developed and explain in our book, Team
Topologies), organizations are finding that well-defined team interactions are key
to effective IT delivery in the remote-first world.

Here’s what you need to know to go that route.

What does an organization need to
thrive in a remote-first world?

Many organizations have found to their dismay that rolling out a new chat or
video tool for staff working remotely does not magically make the organization
remote-first. Certainly, tools are needed and useful, but for a successful DevOps
transformation — whether co-located or remote-first — the organization also
needs good psychological safety for teams and an effective set of ground rules
and practices for teams to use for working together.

https://content.microfocus.com/digital-transformation-tb/digital-transformation-pandemic?utm_source=techbeacon&utm_medium=referral&utm_campaign=00172256
https://content.microfocus.com/digital-transformation-tb/digital-transformation-it?utm_source=techbeacon&utm_medium=referral&utm_campaign=00172256
https://teamtopologies.com/book
https://teamtopologies.com/book
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/

46

Curated team interactions

The ground rules and practices define ways of working, set expectations, and
provide easy-to-recognize patterns and modes of behavior that make it easy
for people to work in well-defined ways. In particular, well-defined team
interactions clarify the relationships among different groups in the organization
and the purpose of different activities.

This in turn helps to minimize the cognitive load on teams and provides more
head space for focusing on the most important aspects of work within the
organization.

So, what techniques can your organization use to improve interactions among
teams?

The team API approach can define and
communicate responsibilities and team focus

So, what’s a team API? An API, or application programming interface, is a
technical term for the way one piece of software interacts with another piece of
software programmatically. A team’s API is a specification for how other teams in
the organization can and should interact with that team.

A team API covers a wide range of things, including:

• Artifacts owned by the team (libraries, applications, services, etc.)
• Versioning and testing approach
• Wiki and documentation
• Practices and principles
• Road map and priorities
• Communication preferences (when/how)

By defining these things and making them discoverable by other teams, your
team increases its clarity of purpose and helps other groups to understand how
that team fits in the wider organization. (There’s a free-to-use template for the
team API on GitHub.)

https://techbeacon.com/app-dev-testing/forget-monoliths-vs-microservices-cognitive-load-what-matters
https://github.com/TeamTopologies/Team-API-template
https://github.com/TeamTopologies/Team-API-template

47

Curated team interactions

Track dependencies using simple tools
and remove blocking dependencies

In a remote-first environment, it's impossible to simply walk up to the desk of
someone on another team to ask about progress, and a constant stream of chat
messages asking for status updates becomes a cognitive burden.

Instead of spending time waiting on other teams to finish their work, focus on
tracking and then removing these in-flow dependencies. Books such as Making
Work Visible by Dominica Degrandis, explain useful techniques for visualizing
team dependencies, many of which can easily be adapted to work in a fully
remote context.

We recently published a template for tracking team dependencies on GitHub.
Based on work from Spotify, the tracker template helps teams to frame
conversations around improving flow, avoiding blocking waits, and ultimately
moving to a more autonomous delivery model.

Consciously design inter-team communications
using team interaction modes

There are many different chat tools available for remote-first working, and most
organizations are using a chat tool (or several) these days. However, simply
providing all-staff access to a chat tool is only the first step in making remote-
first a success.

Too many organizations allow a kind of free rein within the chat tool, with little or
no consistency about channel names, display names, the meaning of emojis, or
even etiquette. This can rapidly lead to the chat tool becoming both essential to
watch (in case you miss a vital message) and incredibly confusing and difficult to
use.

For effective remote work, some chat tool conventions are needed. The virtual
space inside the chat tool needs to be predictable and discoverable. Arbitrary
channel names such as #homepage_discussion, #increase-conversions,
and #ninjas make it difficult to know where to go to discuss a topic. If this is
combined with multiple private channels, finding the right people to speak to is a

https://techbeacon.com/devops/how-defrag-your-devops-value-stream
https://techbeacon.com/devops/how-defrag-your-devops-value-stream
https://itrevolution.com/book/making-work-visible/
https://itrevolution.com/book/making-work-visible/
https://twitter.com/dominicad
https://github.com/TeamTopologies/Team-Dependencies-Tracking

48

Curated team interactions

game of cat-and-mouse.

Instead, define a set of conventions that improve predictability and
discoverability. For example, include the team name and type of team in the
channel name for the team’s main outward-facing chat channel. For example:

• #streamteam-green — the public channel for the stream-aligned team “Green”
• #streamteam-blue — the public channel for the stream-aligned team “Blue”
• #platformteam-data — the public channel for the platform team “Data”
• #platformteam-infra — the public channel for the platform team “Infra”
• #enablingteam-k8s — the public channel for the enabling team “k8s”

The team interaction modes from Team Topologies can help further increase the
clarity of purpose for teams working together, including for these scenarios:
collaboration (two teams working together for a defined discovery period to
achieve a specific goal); x-as-a-service (one team provides something as a
service, another team consumes); and facilitating (one team helps another to
detect capability gaps or increase skills and awareness).

Figure 1. The four team types and their different interaction modes. Source: Team Topologies by Manuel
Pais and Matthew Skelton.

49

Curated team interactions

For example, a stream-aligned team might currently be interacting with two other
teams: a test-automation enabling team (using facilitating) and a face recognition
“complicated subsystem” team (using collaboration). In this case, there could be
two temporary chat tool channels to clarify these interactions:

• #testautom-facilitating-green—the test automation team is facilitating the
green stream-aligned team

• #facerecog-collaboration-green—the face recognition team is
collaborating with the green stream-aligned team

Furthermore, it can be hugely helpful to have channel names that make it clear
where to get support or help for common or shared infrastructure or tools:

• #support-environments—the support channel for environments

• #support-logging—the support channel for logging

This makes it easy for people to “self-serve” and discover the best place to ask
a question or ask for help. Similarly, set some conventions around the display
name that shows in the chat for each person. “Jim” or “sara_b” provide much
less context than something such as “Jim Ngo (infra platform team)” or “Sara
Brown (green stream team).” With the more descriptive display names, we have
immediate context for who they are and their team role.

Overcommunicate using just enough
written documentation

In a remote work setting, it’s vital to “overcommunicate.” Be very clear all the
time about what you are working on, why, how, and when. Overcommunication
feels almost like an externalization of your key decisions and reasoning so that
people can easily reconstruct the sequence of thoughts that led you to your
current work.

Overcommunication will take several forms: sharing small decisions in a chat tool,
writing up larger decisions or designs in a wiki or document, and even creating
a presentation or report to explain important concepts. Don't rely on people just

https://techbeacon.com/app-dev-testing/remote-testing-teams-how-overcome-key-challenges

50

Curated team interactions

seeing scrolling messages in the chat tool.

“Being a good writer is an essential part of being a good remote worker,” say
Jason Fried and David Heinemeier Hansson in their classic 2013 book REMOTE:
Office Not Required. The authors built the hugely successful company 37signals,
starting fully remote in 2003. Among many other useful tips in their book, they
explain that because most human-to-human interaction will be via chat and text
media (such as wikis, documents, and so on), it is essential to emphasize good
writing skills for remote work.

It’s not just about typing lots of text, though. The text we type needs to have
context when seen by itself. “Hi, what do you think?” requires a mental context-
switch for the person reading the message (what does that question refer to?).
But, “Hi. So do you think we should switch component A for component B due
to the performance issues with A?” gives plenty of context for the reader.

Don’t make it hard for people to discover meaning in written communications;
make the messages self-contained.

Design and define the ways that teams interact

Well-defined interactions are key to effective teams, and this is especially
true for remote-work situations. Team-focused conventions within chat tools
and wiki documentation increase discoverability and reduce cognitive load on
communications.

By adopting clear ground rules and practices — such as team APIs and chat tool
naming conventions — organizations can take advantage of remote-first ways
of working to increase the chances of success with DevOps transformations,
becoming more effective at software delivery.

[Original: https://techbeacon.com/devops/are-poor-team-interactions-killing-your-devops-transformation]

https://twitter.com/jasonfried
https://twitter.com/dhh
https://www.goodreads.com/book/show/17316682-remote
https://www.goodreads.com/book/show/17316682-remote
https://techbeacon.com/devops/are-poor-team-interactions-killing-your-devops-transformation

Read more

Team Topologies

Overview: teamtopologies.com/key-concepts

Book: Team Topologies (IT Revolution Press, 2019)
teamtopologies.com/book

More insights: teamtopologies.com/learn

https://teamtopologies.com/key-concepts
https://teamtopologies.com/book
https://teamtopologies.com/learn

TechBeacon.com is a digital hub by and for
software engineering, IT and security professionals
sharing practical and passionate guidance to real-

world challenges.
Join the conversation:

techbeacon.com

https://techbeacon.com

53

About the authors
Matthew Skelton is co-author of Team Topologies: organizing
business and technology teams for fast flow. Recognised by
TechBeacon in 2018 and 2019 as one of the top 100 people
to follow in DevOps, Matthew curates the well-known
DevOps team topologies patterns at devopstopologies.
com. He is Head of Consulting at Conflux and specialises
in Continuous Delivery, operability, and organisation
dynamics for modern software systems.

Twitter: @matthewpskelton | LinkedIn: linkedin.com/in/matthewskelton/

Manuel Pais is co-author of Team Topologies: organizing
business and technology teams for fast flow. Recognized
by TechBeacon as a DevOps thought leader, Manuel is
an independent IT organizational consultant and trainer,
focused on team interactions, delivery practices and
accelerating flow. Manuel is also a LinkedIn instructor on
Accelerating Continuous Delivery in the Enterprise.

Twitter: @manupaisable | LinkedIn: linkedin.com/in/manuelpais/

About Team Topologies
Team Topologies is a clear, easy-to-follow approach to modern software delivery with an
emphasis on optimizing team interactions for flow. Four fundamental types of team — team
topologies — and three core team interaction modes combine with awareness of Conway’s
Law, team cognitive load, and responsive organization evolution to define a no-nonsense,
team-friendly, humanistic approach to building and running software systems.

Devised by experienced IT consultants Matthew Skelton and Manuel Pais, the Team Topologies
approach is informed by the well-known DevOps Team Topologies patterns (also authored and
curated by Matthew and Manuel). Matthew and Manuel have worked with many organizations
around the world to help them shape their teams for modern software delivery, and Team
Topologies is the result of that experience.

https://teamtopologies.com/book
https://techbeacon.com/devops-100-top-leaders-practitioners-experts-follow
https://techbeacon.com/devops-100-top-leaders-practitioners-experts-follow
http://devopstopologies.com/
http://devopstopologies.com/
https://confluxdigital.net/
https://twitter.com/matthewpskelton
https://linkedin.com/in/matthewskelton/
https://teamtopologies.com/book
https://techbeacon.com/devops/devops-100-top-leaders-practitioners-experts-follow-0
https://www.linkedin.com/learning/devops-foundations-accelerating-continuous-delivery-in-the-enterprise
https://twitter.com/manupaisable
https://linkedin.com/in/manuelpais/
https://teamtopologies.com/people
http://devopstopologies.com/

organizing business and technology teams for fast flow:
book + training + consulting

teamtopologies.com

Copyright © 2017-2020 Conflux Digital, Ltd. All Rights Reserved.

Registered office: 67 Kirkstall Avenue, Leeds, LS5 3DW, UK

Registered in England and Wales, number 10890964. VAT registration number GB280146126

https://confluxdigital.net

