

ASX: IMU

Developing Cancer Immunotherapies

DISCLAIMER

- 1. The information in this presentation does not constitute personal investment advice. The presentation is not intended to be comprehensive or provide all information required by investors to make an informed decision on any investment in Imagene Limited (Company). In preparing this presentation, the Company did not take into account the investment objectives, financial situation and particular needs of any particular investor.
- 2. Further advice should be obtained from a professional investment adviser before taking any action on any information dealt with in the presentation. Those acting upon any information without advice do so entirely at their own risk.
- Whilst this presentation is based on information from sources which are considered reliable, no representation or warranty, express or implied, is made or given by or on behalf of the Company, any of its directors, or any other person about the accuracy, completeness or fairness of the information or opinions contained in this presentation. No responsibility or liability is accepted by any of them for that information or those opinions or for any errors, omissions, misstatements (negligent or otherwise) or for any communication written or otherwise, contained or referred to in this presentation.

- 4. Neither the Company nor any of its directors, officers, employees, advisers, associated persons or subsidiaries are liable for any direct, indirect or consequential loss or damage suffered by any person as a result of relying upon any statement in this presentation or any document supplied with this presentation, or by any future communications in connection with those documents and all of those losses and damages are expressly disclaimed.
- 5. Any opinions expressed reflect the Company's position at the date of this presentation and are subject to change
- International offer restrictions This document does not constitute an offer to sell, or a solicitation of an offer to buy, securities in the United States or any other jurisdiction in which it would be unlawful. In particular, the New Shares have not been, and will not be, registered under the US Securities Act of 1933 and may not be offered or sold in the United States except in transactions exempt from, or not subject to, the registration requirements of the US Securities Act and applicable US state securities laws. The distribution of this presentation in jurisdictions outside Australia may be restricted by law and any such restrictions should be observed.

INTRODUCTION TO IMUGENE

Imugene is a biotech company headquartered in Australia and publicly traded on the Australian Securities Exchange (ASX:IMU)

2013
Licensed HERVaxx from the
Medical University
of Vienna

2017 HER-Vaxx enters the clinic 2019

Licensed CF33 oncolytic virus platform from City of Hope invented by Dr Yuman Fong 2021

Licensed on CARlytics from City of Hope invented by Dr Y Fong, Dr S Priceman & Dr A Park 2021

CHECKvacc enters the clinic 2021

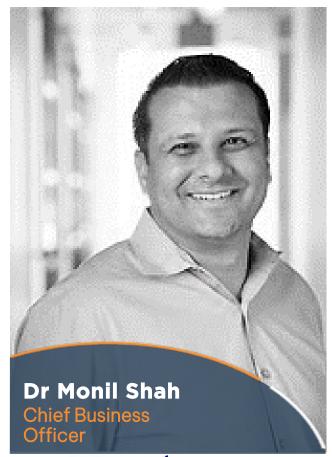
HER-Vaxx Clinical
Trial Supply
Partnership with
Merck KGaA & Pfizer

2021

Entered the S&P/ASX 200 Index 2022

HER-Vaxx Phase 2 Final OS

EXPERIENCED MANAGEMENT TEAM WITH SIGNIFICANT CLINICAL DEVELOPMENT EXPERTISE



THREE UNIQUE TECHNOLOGY PLATFORMS MAXIMIZE OPPORTUNITIES IN SOLID TUMORS

PLATFORM

TRIALS

CLINICAL

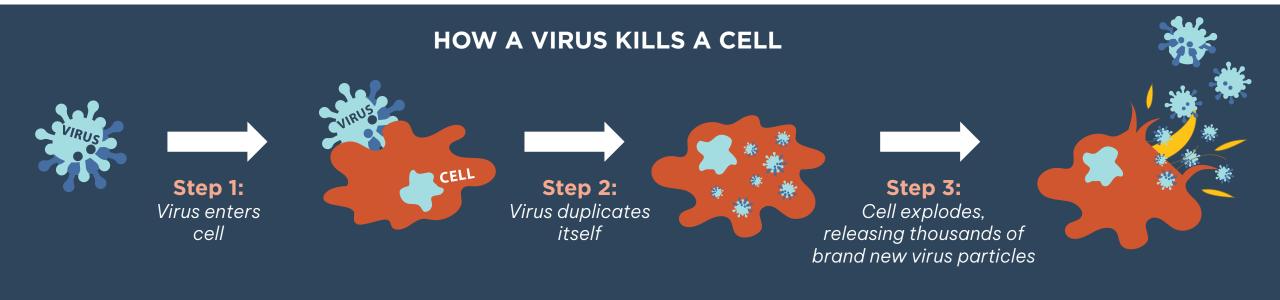
Therapeutic approaches with combination potential with existing standards of care

IMUGENE Developing Cancer Immunotherapies B Cell Immunotherapy onCARlytics IMUGENE CF33 Oncolytic Virus **CF33-CD19 CAR T Combination Therapy CHECKvacc VAXINIA HER-Vaxx PD1-Vaxx IP TO 2036 IP TO 2037 Granted in IP TO 2037 IP TO 2038** Filed in major territories multiple Filed in major Filed in major territories **Granted in Japan/Mexico** countries territories (US/EU/Asia) **COH TNBC IST** TBC **MAST HERIZON IMPRINTER** Phase 1 Phase 1 Phase 1 Phase 1b/2 Phase 1 celularity' **DOMINICA** nextHERIZON Phase 1 Phase 2 neoHERIZON Phase 2 TIGIT-Vaxx, PDL1-Vaxx, LAG3-Vaxx, 5 TIM3-Vaxx. CTLA4-Vaxx

5

IMUGENE'S DEEP IMMUNOTHERAPY PIPELINE FOR THE TREATMENT OF SOLID TUMORS

PLATFORM	PROGRAM/ TARGET	COMBINATION APPROACH	INDICATION	IND	PRECLINICAL	IND	PHASE 1	PHASE 2	2023 EXPECTED MILESTONES
onCARIytics IMUGENE	onCARlytics (CF33-CD19)	CD19 targeted therapies	Metastatic Solid Tumors		PHASE 1				FDA IND FPI
CF33 Oncolytic Virus	VAXINIA (CF33)	Pembrolizumab	Metastatic Solid Tumors	\bigcirc	MAST				IV Cohort 2 Cleared Optimal Biological Dose Combination FPI IT and IV Combination OBD IV
CF33 ONE (**) INJOETHE	CHECKvacc (CF33-aPD- L1)	Checkpoint Inhibitors	Metastatic TNBC	\Diamond	CHECKvacc IS	ST			IT Cohort 3 Cleared Optimal Biological Dose
	CHECKvacc (CF33-aPD- L1)	Checkpoint Inhibitors	Solid Tumors		DOMINICA				FDA IND
E Cell Immunotherapy	HER-Vaxx (HER2)	Chemotherapy Checkpoint Inhibitors	First Line Gastric Cancer		HERIZON				Publication and Presentation (ASCO GI)
			Neoadjuvant Gastric Cancer		neoHERIZON				CTA Clearance FPI
			Metastatic Gastric Cancer	\Diamond	nextHERIZO	V			ASCO GI TiP Interim Data Readout
	PD1-Vaxx (PD1) Chemothero Atezolizuma	Chemotherapy Atezolizumab	Metastatic NSCLC	\bigcirc	IMPRINTER				Combination FPI
			MSI High CRC		NeoPolem I	ST			CTA Clearance FPI



CF33 Oncolytic Virus

ONCOLYTIC VIRUSES OFFER A SELECTIVE IMMUNOGENIC APPROACH TO EFFECTIVELY KILL TUMOR CELLS

Engineering enhancements

- Infect and kill only cancer cells
- Carry additional payloads to augment killing (check point inhibitors, cytokines, antiangiogenics)

Multiple ways to kill cancer cells

- Direct Lysis
- Immuno-activation
- Priming of TME to enhance checkpoint inhibitor response¹

Precedent for approval

- Tvec approved in the United States for melanoma (2015)
- Oncorine approved in China for head and neck cancer (2005)
- Delytact approved in Japan for malignant glioma (2021)

MAJOR ADVANTAGES OF VAXINIA CF33

Robust Efficacy

Highly potent cancer killing

Converts 'cold' tumors to responsive 'warm' tumors

Direct intra-tumor and systemic anti-tumor activity

Well-Tolerated

Large therapeutic window

Genetically stable

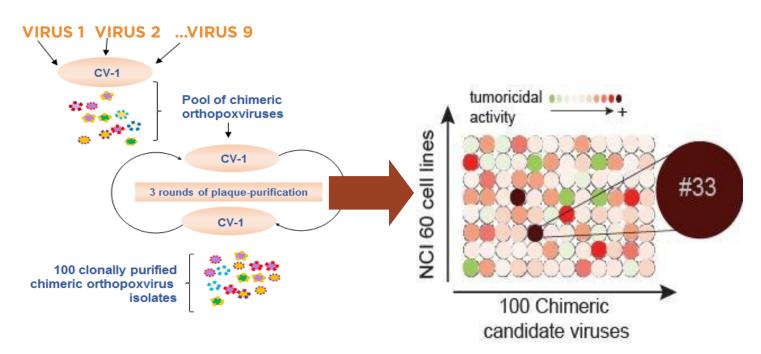
Combinability with targeted therapies

Broad Application

Tumor agnostic approach

IT, IV or IP administration with potential to multi-dose

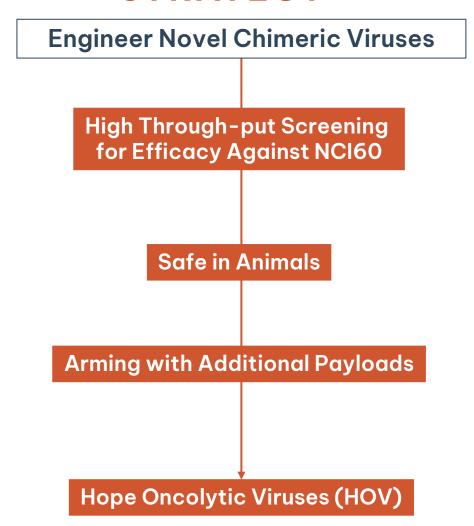
Combination approaches


Scalability

Made in high titers

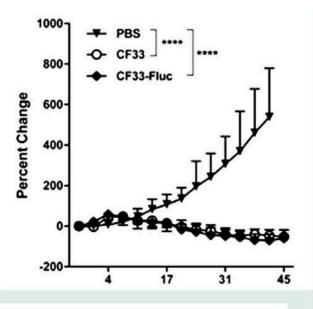
Storage stability

Clinically stable after mixing

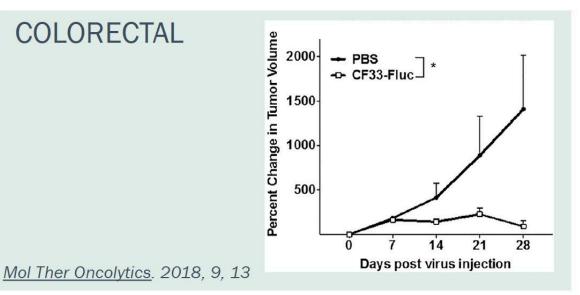

CF33 GENERATION & EVALUATION OF NOVEL CHIMERIC POXVIRUSES

- Infection by 9 different pox vaccinia vaccine strains trading genetic material isolating over 100 different clones (new species)
- Placed in the State-of-the-art high throughput screening for efficacy against the NCI 60 cell lines.
- The 33rd virus was chosen for its eradication of all cancer cell lines in the NCI 60, CF33

STRATEGY

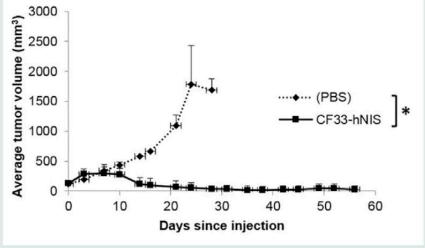


COMPELLING KILLING OF MANY TUMOR TYPES

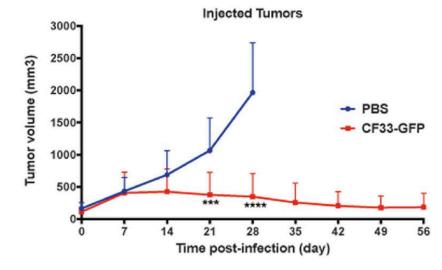


PANCREATIC

AT LOW DOSES

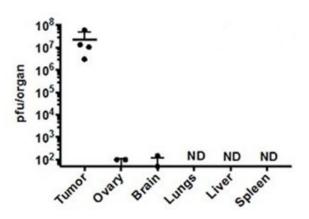


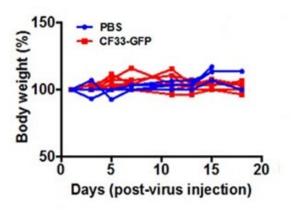
COLORECTAL



J Transl Med. 2018, 16, 110

COLON


LUNG


SAFELY DELIVERED ROUTES: IT, IP, IV ENABLES LARGE THERAPEUTIC INDEX IN PATIENTS

Tumor restricted viral delivery

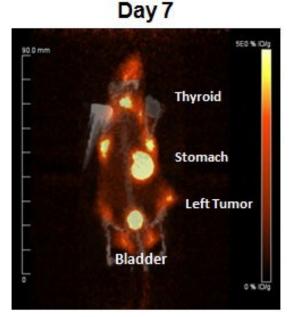
No change in body weight

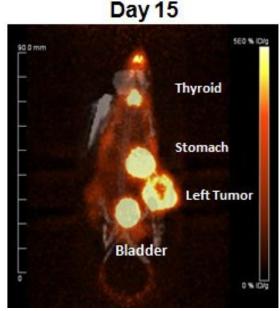
No toxicity across tumor models in over 1,000 mice until over 10⁹

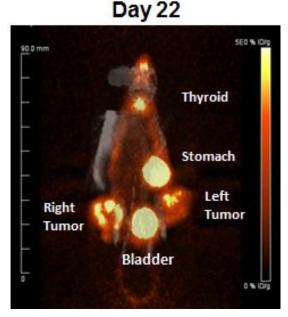
VIRUS	MOUSE	# OF MICE	DOSE	DELIVERY	TOXICITY
CF33-NIS	Nude	73	1e3-1e5	IT	No findings
CF33-miR	Nude	41	1e3-1e5	IT	No findings
CF33-Luc	Nude NSG	48 8	1e3-2e5 1e6	IT, IV & IP IT	No findings
CF33-GFP	Nude NSG	18 8	1e3-2e7 1e6	IT IT	No findings
CF33-hNIS- αPDL1	Nude Black/6 BALB/c	52 67 31	1e4 1e5-1e8 1e7	IT IT & IV (1e6) IT & IV	No findings
CF33-hNIS- Δ14.5	Nude Black/6 BALB/c	36 16 16	1e4 1e6 – 1e8 1e7-3e7	IT IT IT & IV (2e7)	No findings
CF33-CD19	NSG	288	1e6-1e8	IT	No findings

Majority of mice cured with a single injection of 1000 pfu via IT, IV and IP delivery

CF33-hNIS: TUMOR TRACKING AND TROPISM


Genetic modification enables tumor tracking and tumor tropism


- hNIS (human sodium iodide symporter) protein is expressed on the tumor cell surface
- hNIS transgene inserted within J2R locus (Tk) to transport radioactive iodine for imaging


Tracked virus supports tumor specificity and systemic delivery

- Cross infection of tumors supported by 124l uptake in right side on day 22 following injection on left side
- Physiologic uptake in thyroid, stomach and bladder

124| PET Imaging of CF33-hNIS-infected HCT116 (colon cancer) from flank xenografts in nude mice over time

CHECKvacc PHASE 1 TNBC STUDY CF33+hNIS+aPD-L1 ("Armed" Virus)

Presented at SABC 2022

Identify: COHORT 8 | 3-6 PATIENTS **Metastatic Triple** Recommended Phase 2 **Negative Breast** • • • Dose (RP2D) **RP2D Expansion** Cancer Based on: 12 Patients COHORT 2 | 3-6 PATIENTS Safety - 2 prior lines of treatment Immunogenicity COHORT 1 | 3-6 PATIENTS • Tumor Response

First Patient Enrolled October 2021

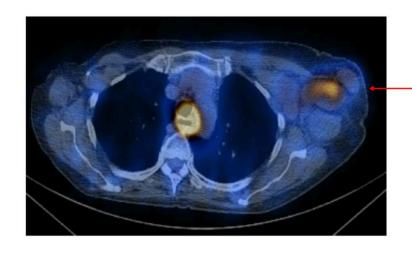
Disease of need

 8-13 month survival for metastatic disease with few treatments Potential target for immunotherapy

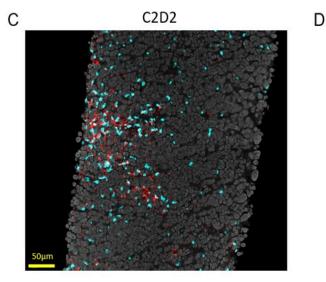
 Expresses PD1, PD-L1 Treatment responses to Atezolizumab (JAMA Oncology, 5:74, 2019)

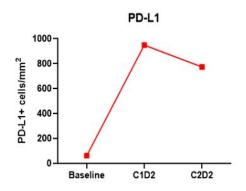
1st line: 24%; 2nd line: 6%

 Approved by FDA 8 March 2019 Potential for registration in well-designed, randomized P2 study


ndication	TNBC		
FDA IND	CHECKvacc: CF33-hNIS-aPDL1		
٧	33-78		
_ocation	Single Center: COH		
Admin Route Intratumoral (IT)			

CHECKvacc (CF33-hNIS-antiPD-L1) TUMOR TRACKING




SPECT imaging of patient using Technetium-99m (C1D8): Patient COH-004 received CHECKvacc at Dose Level 2 (3x10⁵ PFU). Injected lesion was left axilla showed significant enhancement of injected lymph node.

hNIS 99m uptake in SPECT scan

SAN ANTONIO BREAST CANCER SYMPOSIUM

> Immune activationincrease in PD-L1

Multiplex immunofluorescence (mIF) of COH-004 tumor: C&D immune infiltrates shows increase density of PD-L1+ cells across patient tissue biopsies.

VAXINIA PHASE 1 MAST STUDY

COHORT

3-6 PATIENTS

COHORT

3-6 PATIENTS

COHORT

3-6 PATIENTS

3-6 PATIENTS

(Metastatic Advanced Solid Tumors)

Dose Administration (Parallel Groups)

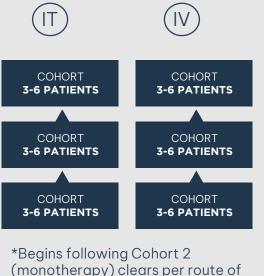
n=52-100

IT Administration

Metastatic and Advanced Solid Tumors

IV Administration

Metastatic and Advanced Solid Tumors


Site Location: USA, AUS

First Patient Enrolled May 2022, IV Cohort 1 Cleared Nov 2022

VAXINIA Monotherapy
Dose Escalation

VAXINIA + Pembrolizumab
Combination Dose Escalation*

Cohort Expansion

administration

RP2D Expansion (N=10)

Tumor Types of Interest

(cleared cohorts)

Identify: Recommended Phase 2 Dose (RP2D) – Monotherapy and Combination **Based on:** Safety, Immunogenicity, Tumor Response

COHORT

3-6 PATIENTS

COHORT

3-6 PATIENTS

COHORT

3-6 PATIENTS

3-6 PATIENTS

CF33-CD19

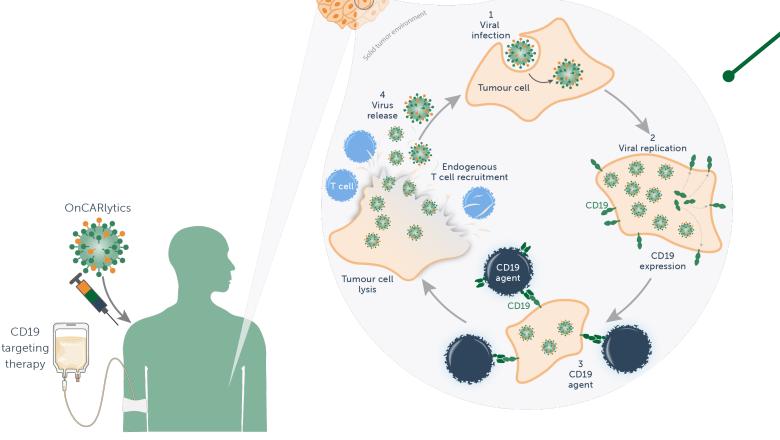
THE CELL THERAPY SOLID TUMOR CHALLENGE & IMUGENE'S SOLUTION

Cell therapy, including Chimeric Antigen Receptor (CAR) T cell therapy, has had limited activity in solid tumors, largely due to a lack of selectively and highly expressed surface antigens, such as the blood B cell antigen CD19

CD19 Targeting

Cells

Solid Tumor

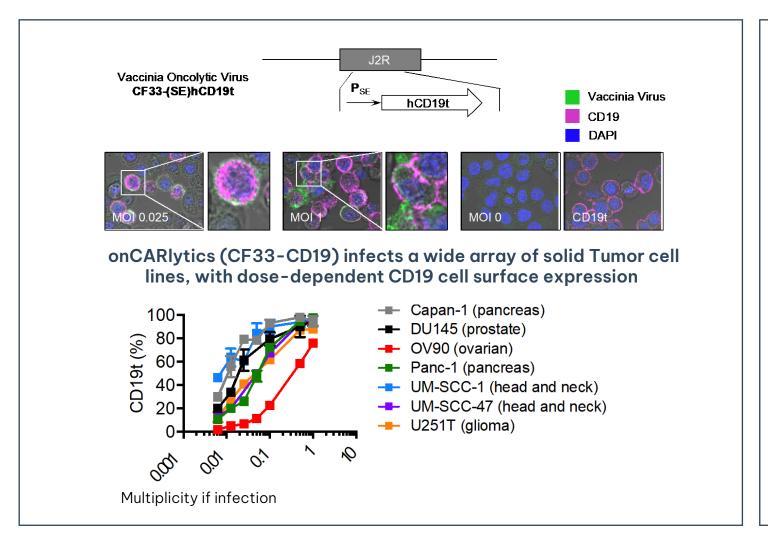

CD19 Targeting domain

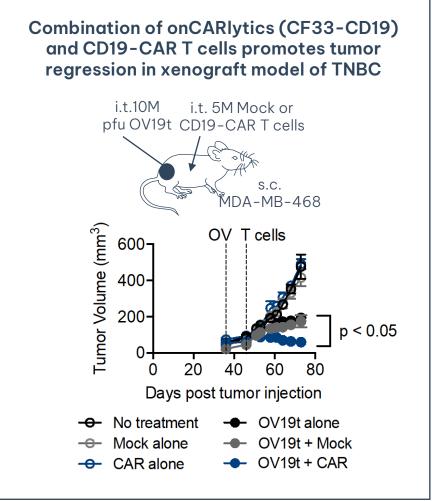
> OV generated CD19

IMUGENE'S APPROACH

- Use onCARlytics (CF33-CD19) to express CD19 antigen on solid tumor cells
- Combine on CARlytics (CF33-CD19) with autologous or allogeneic CD19 CAR T cell therapies for the treatment of solid tumors

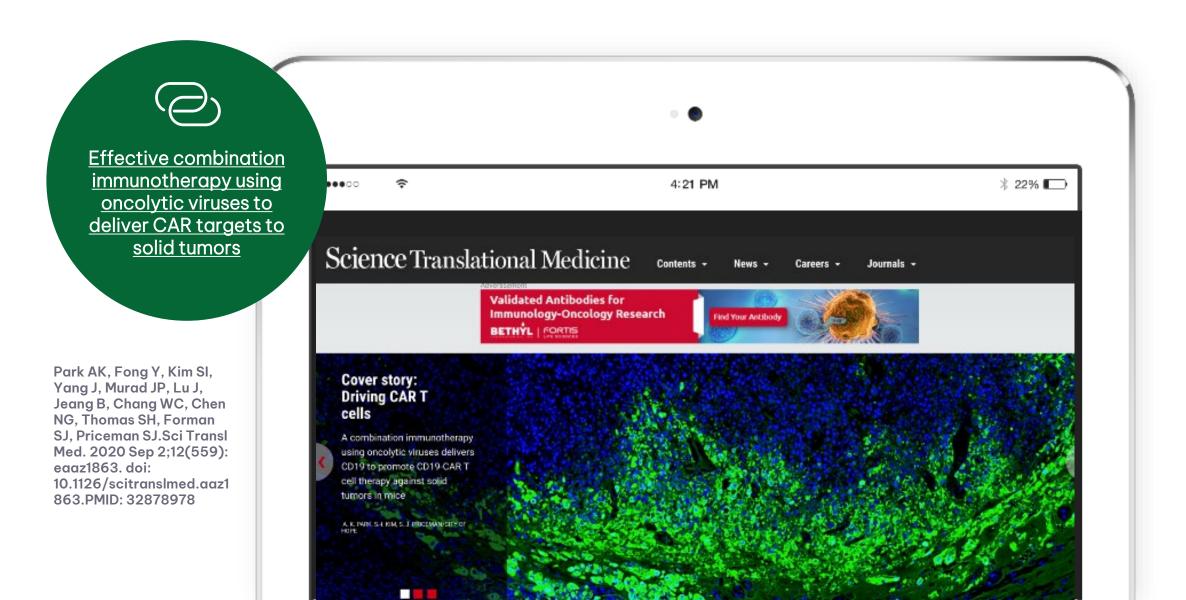
MECHANISM OF ACTION: HOW DOES IT WORK?


Solid tumour


onCARlytics makes solid tumors "seen" by CD19 targeting therapies

- OnCARlytics infects Tumor cells
- 2. Virus replication and production of CF33-CD19 on the cell surface enabling CD19 cell targeting
- 3. Tumor cell lysis leads to viral particle release and the combination promotes endogenous immune cell recruitment to Tumors
- 4. Released viral particles reinitiate virus infection of surrounding Tumor cells.

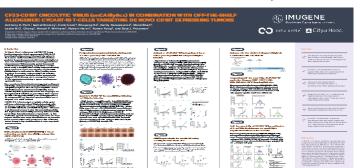
onCARLYTICS DELIVERS TARGETS TO "TARGETLESS" SOLID TUMORS

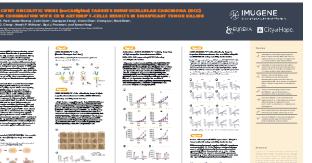


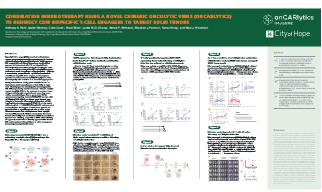
PUBLISHED FRONT COVER OF SCIENCE TRANSLATIONAL MEDICINE JOURNAL IN 2020

onCARLYTICS COMBINATION WITH CD19 TARGETING THERAPIES

Collaboration with Celularity, Eureka and Arovella for combination with onCARlytics

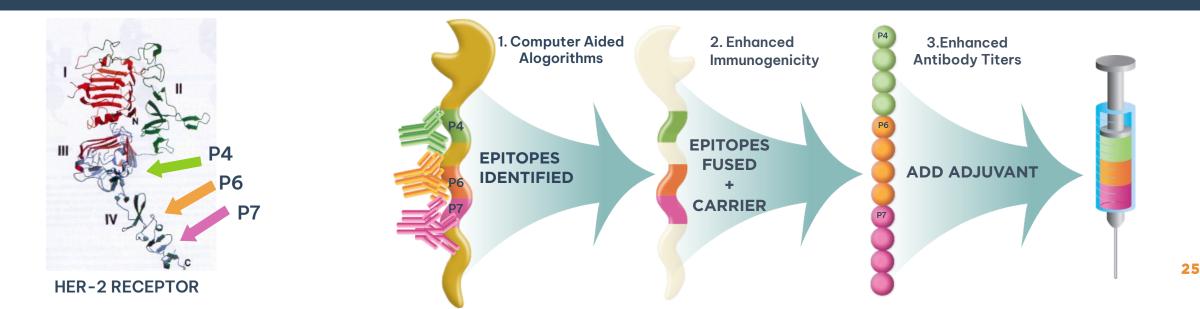



3 POSTERS PRESENTED AT SITC 2022



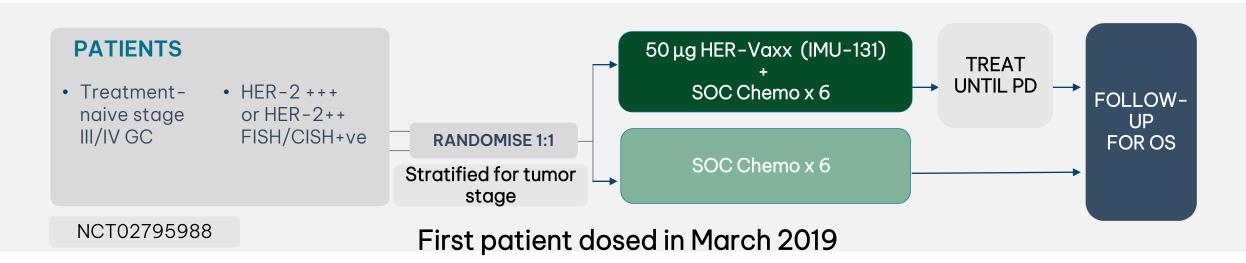
HER-Vaxx

B CELL BASED ANTIBODIES HAVE DISTINCT COMPETITIVE ADVANTAGES TO EXISTING TREATMENTS



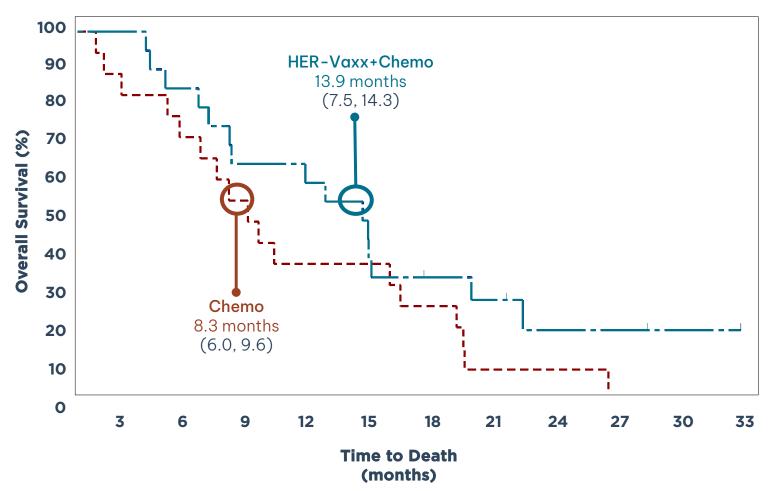
B cell vaccines offer a unique opportunity to intervene at multiple points in the immune system and create immune memory which enhances durability of response.	NATURAL B CELL DERIVED ANTIBODIES	MONOCLONAL ANTIBODIES
Safety	Stimulates the immune system to produce Abs, which may be potentially safer	Synthetic Ab, with side effects (including ventricular dysfunction, CHF, anaphylaxis, infusion reactions, immune mediation)
Efficacy	Polyclonal Ab response reduces risk of resistance and potentially increases efficacy	Monoclonal Ab – may develop anti- drug antibodies
Durability	Antibodies continuously produced with lasting immune response to potentially inhibit tumor recurrence	Half life necessitates recurrent dosing
Usability	After priming, low numbers of vaccinations required per year	Requires regular infusion
Cost	Low cost of production enables greater pricing flexibility facilitating combination	Expensive course of treatment >US\$100K per year

HER-Vaxx: B-CELL IMMUNOTHERAPY VACCINE AGAINST HER-2



- B-cell cancer vaccine designed to stimulate a patient's own immune system to repeatedly target the HER-2+ cancer with HER-2 directed antibodies
- Stimulates a patient's B cells to produce polyclonal antibodies that target cells with overexpressing HER-2 receptors on their surface
- HER-Vaxx consists (1) of three fused B-cell epitope peptides (P4, P6, P7) from the HER-2 receptor conjugated to (2) a carrier protein CRM197 plus (3) an adjuvant Montanide ISA51. Injected as a water-in-oil emulsion.

HERIZON PHASE 1B/2 OPEN LABEL, MULTICENTER STUDY


HER-Vaxx	C1D1, C3D1 then Q9 weeks till PD					
Chemotherapy	6 cycles Q3 weeks (Cisplatin + 5FU or	6 cycles Q3 weeks (Cisplatin + 5FU or Capecitabine; Oxaliplatin + Capecitabine)				
PRIMARY ENDPOINT	OS (pre-spec 1-sided alpha 0.10, power 90% with critical HR 0.6 and 24 events)	NO. OF PATIENTS 3	6			
SECONDARY ENDPOINTS	PFS, Safety, Immune Response	SITE LOCATION E	astern Europe, India			

HER-Vaxx SIGNIFICANTLY PROLONGS OVERALL SURVIVAL IN 1L PATIENTS WITH HER-2+ GASTRIC CANCER

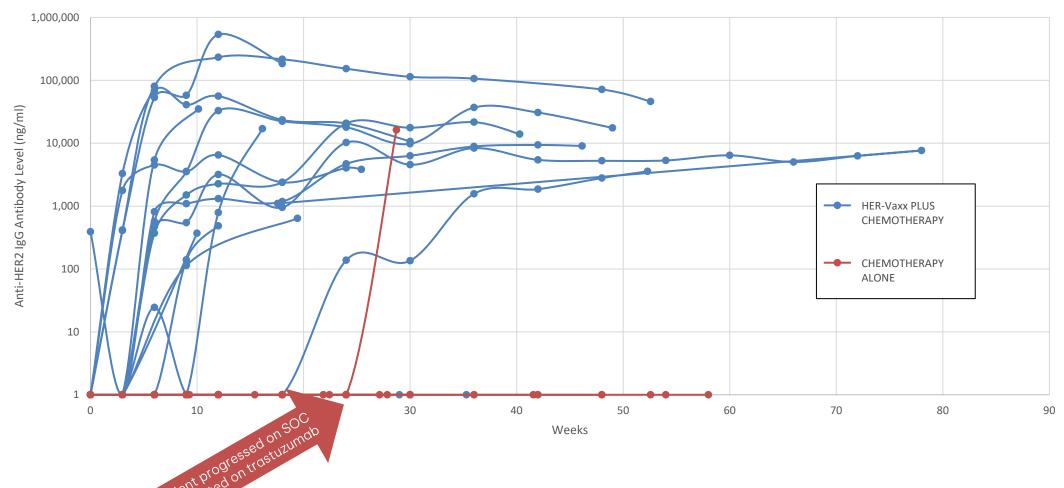
	HER-Vaxx + Chemotherapy	Chemotherapy
Sample Size	19	17
Events	15	17
Median OS	13.9 months	8.3 months
(2-sided 80% CI)	(7.5, 14.3)	(6.0, 9.6)
Median Duration of Response	30 weeks	19 weeks
HR	0.5	80
2-sided 80%Cl	(0.362, 0.927)	
Log-rank Test (1-sided p- value) *	0.066 *	

^{*}Significant, 1-sided p < 0.10

HER-Vaxx PHASE 2:HERIZON SAFETY

TREATMENT EMERGENT ADVERSE EVENTS

	HER-Vaxx + CHEMOTHERAPY (N =1 9)	CHEMOTHERAPY ONLY (N =1 7)	
	n (%)	n (%)	
Patients with at least one TEAE	18 (94.7%)	16 (94.1%)	
Grade 1 / 2	10 (52.6%)	9 (52.9%)	
Grade <u>></u> 3	8 (42.1%)	7 (41.2%)	
Serious AE*	2 (10.5%)	5 (29.4%)	
Fatal AE	1(5.3%)	1(5.9%)	


^{*}SAEs are also included in the \geq 3 AE. N = number of patients in the treatment arm at final analysis. n = number of patients who experienced the event.

HER-Vaxx PHASE 2:

HERIZON HER-2 ANTIBODY LEVELS PER PATIENT

HER2-Specific IgG by Treatment Assignment and Study Visit - Logarithmic Scale

HER-Vaxx PHASE 2: nextHERIZON IN METASTATIC GASTRIC CANCER AFTER PROGRESSION ON TRASTUZUMAB

- Phase 2
- Open label
- USA, Australia, Asia
- Treat until progression/toxicity

- > 1L
- Advanced or metastatic Gastric Cancer
- HER-2/neu overexpressing
- Progressed on prior trastuzumab
- Non-Randomised
- HER-Vaxx in combination with paclitaxel + ramucirumab OR
 - HER-Vaxx in combination with pembrolizumab

Primary

- Objective Response Rate
- Safety

Secondary

- Overall Survival
- Progression-free survival
- Duration of Response

First Patient Enrolled Sept 2022

mGC/GEJ cancer
HER-2/neu overexpressing
Progressed on or after trastuzumab &
previously received PD-1/PD-L1 treatment

Arm 1: HER-Vaxx + SOC Chemotherapy

mGC/GEJ cancer
HER-2/neu overexpressing
Progressed on or after trastuzumab

Arm 2: HER-Vaxx + pembrolizumab

PRIMARY ENDPOINTS:

ORR Safety

SECONDARY ENDPOINTS:

OS PFS DoR

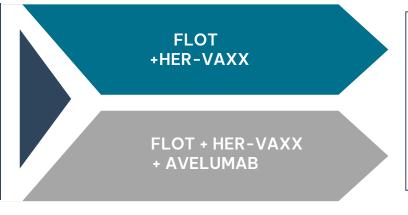
EXPLORATORY ENDPOINT: Biomarker/Immune Response

HER-Vaxx PHASE 2: neoHERIZON IN RESECTABLE GASTRIC CANCER

- Phase 2
- Open label
- Randomised
- Germany

- Neoadjuvant Gastric Cancer
- HER-2++/HER-2++ FISH/CISH+ve

- Arm 1 FLOT + HER-Vaxx
- Arm 2 FLOT + Avelumab + HER-Vaxx


Primary

• Pathological Complete Response

Secondary

- Safety
- Immune Response
- Duration of Response/Overall Survival

Resectable HER2 overexpressing Gastric & GEJ cancer

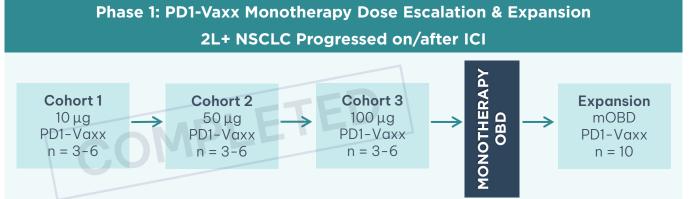
PRIMARY ENDPOINTS: pCR

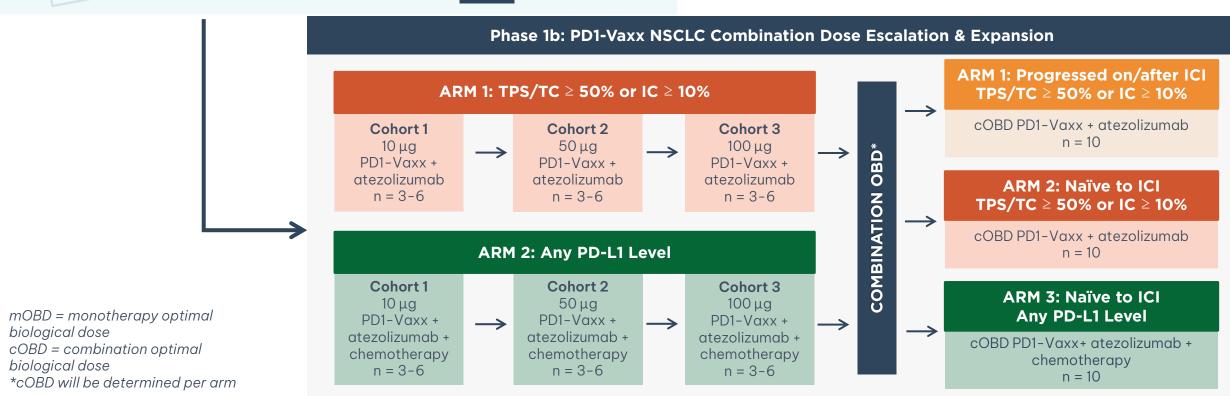
SECONDARY ENDPOINTS: Safety, Immune response, DoR/OS

> EXPLORATORY ENDPOINT: Biomarkers

PD1-Vaxx

PD1-VAXX STOPS CANCER CELLS FROM USING PD1 TO STAY UNDETECTED BY THE IMMUNE SYSTEM


PD-L1 binding to PD-1 prevents T cell recognition and killing of cancer cells binding Cancer Cell Protein Cancer cells express PD-L1 which binds to the PD-1 receptor on T cells


PD1-Vaxx stops cancer cells from staying undetected by T cells PD1-VAXX B cell vaccine ANTI PD-1 pAb Anti-PD1 pAb binds PD1 on the T cell PD-L1 PROTEIN Anti-PD1 pAb Induces the body to blocks PD-L1 produce polyclonal antibodies (pAb) interaction on cancer cell Cancer Cell T cells recognize cancer cells and mount an 33

immune response

IMPRINTER: PD1-Vaxx NSCLC PHASE 1 STUDY DESIGN

VALUE INFLECTION POINTS EXPECTED IN THE NEXT 12 MONTHS

TECHNOLOGY MILESTONE VAXINIA MAST: Combination OBD IV onCARIytics FPI HER-Vaxx neoHERIZON: FPI HER-Vaxx nextHERIZON: Interim Data Readout **VAXINIA** MAST: Optimal Biological Dose (Monotherapy IV and/or IT) HER-Vaxx neoHERIZON: CTA Clearance **CHECKvacc** Dominica: FDA IND **CHECKvacc** COH IST: Optimal Biological Dose PD1-Vaxx IMPRINTER: Combination FPI onCARlytics FDA IND **CHECKvacc** COH IST: IT Cohort 3 Cleared **VAXINIA** MAST: Combination FPI IT and/or IV **VAXINIA** MAST: IV Cohort 2 Cleared HERIZON: Publication and Presentation (ASCO GI) HER-Vaxx HER-Vaxx nextHERIZON: Trial in Progress Poster (ASCO GI) VAXINIA MAST: IV Cohort 1 Cleared onCARIytics Strategic Partnership with Arovella on CAR19-iNKT VAXINIA MAST: IV Arm - 1st Patient Dosed HER-Vaxx nextHERIZON: Phase 2 - 1st Patient Dosed HER-Vaxx HERIZON: Phase 2 Final OS readout

NEXT 1-12 MONTHS

FINANCIAL SUMMARY

PUBLIC MARKET OVERVIEW (January 4, 2023)

Share Price	A\$0.155
52 week range	\$0.13 - \$0.43
Market Capitalisation ¹	A\$995M
Cash equivalents (30 September '22)	A\$164M
Enterprise Value	A\$831M

TOP 5 SHAREHOLDERS (as at January 4, 2023)

9.24%
5.69%
4.94%
4.60%
4.58%

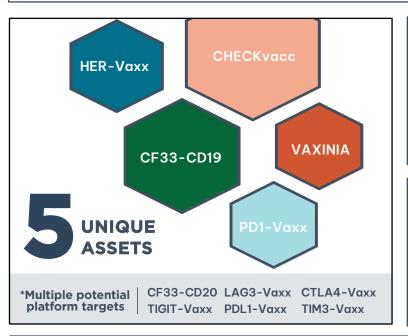
SHARE PRICE PERFORMANCE

Note:

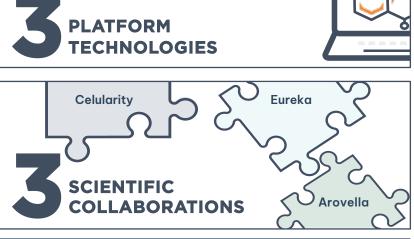
^{1.} Market capitalisation calculations based on ordinary shares (6.422 bn) only and excludes the dilutive impact of options outstanding (0.477 bn)

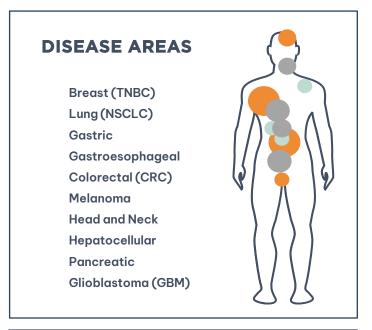
INVESTMENT HIGHLIGHTS

MARKET CAPITALISATION 4th Jan 2023


A\$995M




CASH AS OF 30th Sep 2022


A\$164M

CLINICAL STUDIES

HERIZON: Ph1b/2 First line Gastric Cancer IMPRINTER: Ph1 NSCLC (FDA IND) CHECKvacc COH IST: Ph1 TNBC (FDA IND) neoHERIZON: Ph 2 Neoadjuvant Gastric Cancer

nextHERIZON: Ph2 Metastatic Gastric Cancer (FDA IND)

MAST: Ph1 Solid Tumors (FDA IND) DOMINICA: Ph1 TNBC (FDA IND)

onCARlytics: Ph1 Solid Tumors (FDA IND)

neoPolem IST: Ph1 CRC

Merck KGaA/Pfizer

Roche

Contact

<u>shareholderenquiries@imugene.com</u> www.imugene.com

