Art in the Age of CAPTCHA

Jimena Canales

"I am not a robot," wrote Philippe Decauzat, in notes for a series of paintings displayed on the white walls of an art gallery. The artist concluded his notes by referring to the CAPTCHA, a widely used test to tell computers and humans apart. With clockwork regularity, philosophers, scholars and artists raise their voices to argue that computers cannot make art. Yet every day more and more art involves computing and robotics in a creative and original way. At stake in these debates are dystopian and utopian concerns about mechanisation, artificial intelligence, and the fragility of our basic humanity. Can art save us? Decauzat's work invites us to look at art in the age of CAPTCHA. Instead of tackling the question of art's exceptionalism theoretically and philosophically, he investigates it practically, visually... viscerally.

Though protest too much, many might say after hearing the old arguments against computer art and intelligence. For more than half a century already, computers have played key roles in the art world. In 1960, in his article on 'Inventing the Future', the scientist and engineer Dennis Gabor asked, "Will the machine go a step farther and cut out also the creative artist?" While Gabor hoped that 'machines will never replace the creative artist', he 'in good conscience [...] cannot say that they never could.'

The editors of Computers and Automation magazine had different hopes. To see just how far computers could enter into the art world, they launched one of the first annual computer art contest. The winning image usually graced the cover of their August issue.

Abstract art and Op art had the most to lose—or gain, depending on the perspective—from the new challenge. The artist Piet Mondrian was among the first whose work was impersonated by a machine-programmed specifically to produce work that was practically indistinguishable from the artist's, and possibly better. While working at Bell Telephone Labs, A. Michael Noll, the computer art pioneer, programmed a computer to create Computer Composition With Lines (1964), closely mimicking Mondrian's Composition with Lines (1917). Bridget Riley's Op art creations soon suffered a similar fate with Ninety Parallel Sinusoids with Linearly Increasing Period (1964), created by a computer programmed by Noll to rival her recently completed painting, Current (1964). Noll polled volunteers about the provenance of the computer-generated image and its value. Only 28 per cent could identify the computer picture correctly. 72 per cent thought the Mondrian itself was done by a computer, and 59 per cent of the viewers preferred the Mondrian imposer to the original.

Programmers such as Noll and other artists soon noted that computers excelled at constructing logarithmic spirals, Lissajous curves, stochastic or repetitive patterns (e.g. checkerboards), mathematically defined shapes and surfaces, and oscillating waveforms. When judged in terms of their artistic worth, some of the images produced through these new means appeared to imitate, mimic, simulate, and at times even surpass those created by some of the most celebrated artists of the century.

With the creation of ELIZA, one of the first chatbots to successfully impersonate a human (it was designed to simulate a Rogerian psychoanalyst), fears increased that machines capable of taking on human characteristics might be built. Joseph Weizenbaum, who had programmed ELIZA, grew so afraid about how easily people fell for ELIZA's charms that he wrote an entire book, Computer Power and Human Reason, to point out the dangers of further developing these machines. 'A relatively simple computer program, he warned, 'could induce powerful delusional thinking in quite normal people.' He hoped that they would not be given speech recognition abilities in the future, with which they could listen in on our conversations.

By 1984 the MIT professor Sherry Turkle still considered as 'far away' the possibility that AI (artificial intelligence) can make robots with superhuman powers. Those fears, she claimed, were misplaced, as 'the eventual success of artificial intelligence researchers in actually making machines that duplicate people, mattered little compared to the already present tendency of users to anthropomorphise machines.' People tend to perceive a "machine that thinks" as a "machine who thinks", she wrote. A decade later, AI had gotten much better at the task of seemingly creating 'dopplegangers in certain, albeit limited, contexts. The childish proclivity to anthropomorphise things, denounced by Weizenbaum, Turkle and others, would soon prove to be a quaint concern.

"[The Internet] is growing faster than O. J. Simpson's legal bills," noted an article in Time magazine in 1994. Distinguishing humans and computers became much more difficult within the framework of the Internet. On 10 October 1989, President Clinton and Vice President Gore announced their commitment to the Next Generation Internet (NGI) program launched by the US government: 'The Internet will provide a powerful and versatile environment for business, education, culture, and..."
clear early on: the same person could enter an opinion into the poll many times. Worse yet, anyone could potentially create a bot to enter data automatically to skew the polls. As a precaution, the service started displaying an American flag in a random position on the screen, and then required the user to click on the flag before entering an opinion.16 The solution was faulty, since it was easy to write a program that recognizes the American flag and simulates a click; therefore, this method does not effectively restrict access by electronic agents.17

In August 1998, while speaking at the annual summit on ‘Cyberspace and the American Dream’ in Aspen, Colorado, Ira Magaziner, the Clinton administration’s Internet czar, claimed that ‘censorship and content control are not only undesirable, but effectively impossible.’18 If regulating human Internet users appeared to be next to impossible, regulating bots proved even harder. Just as companies such as DEC were working to distinguish single from duplicate pollsters and human ones from automatic ones, others were charging on ahead creating computing and programmes that could pass the Turing Test (i.e., ‘could impersonate humans so well that they could not be outed as such’). That year the programmer and artist Peggy Weil noted that ‘no matter that no AI has “passed” a Turing Test, however that might be formally debated or defined; there are plenty of “good enough” bots, online and embedded in our personal devices, to have neutralized the original question.’19 Weil went on to create one such bot herself, whom she named Mr Mind, taking him online in September 1998 and leaving him there for the next sixteen years. Intriguingly, he was designed to ask users what made them human.

Bots soon started playing more active roles on the Internet. That fall, a website launched an online poll asking users to vote for the best computer science department. Students at Carnegie Mellon University found a way to send in votes by using automated programmes. The next day MIT students developed another programme, winning with 21,156 votes, compared with Carnegie Mellon’s 21,032, while other schools received less than 1,000.20 The bot-rigged poll had worked. The result most likely indicated which schools had the best computer science departments, but the poll, which expected answers from humans, had not worked in the way it had been designed.

During these years, the challenges of Internet regulation were mostly looked upon as positive, since the new medium was associated with freedom of speech, free flows of information, democracy and anti-totalitarianism. When, in 2000, President Bill Clinton discussed having China join the World Trade Organization, he downplayed that country’s censorship efforts. Its attempts ‘to crack down on the Internet’, he said, were futile: ‘That’s sort of like trying to nail Jell-O to the wall’. Censoring humans would soon prove to be much easier than controlling bots.

While early pioneers had tried to make computers more like humans, the challenge for the next millennium would be to find a way to distinguish between the two. One of the first patent applications submitted for this purpose was designed to prevent users from creating multiple accounts automatically for online subscription services. By asking users to identify a ‘graphical vali-
The mechanism, known as a CAPTCHA, was designed to prevent automated programs from accessing websites by requiring humans to enter a unique code generated by the website's software. This code is typically displayed in a distorted image or a set of characters that are hard for automated systems to read.

In recent years, the use of CAPTCHAs has become increasingly common as a means of protecting websites from automated attacks. However, the effectiveness of these mechanisms has come into question as new technologies and approaches to evade them have emerged.

For example, some attackers have developed software that can automatically solve CAPTCHAs, allowing them to access websites and perform actions that would normally require human interaction. As a result, CAPTCHA manufacturers are continually improving their methods to make CAPTCHAs more difficult to evade.

Despite these challenges, CAPTCHAs remain an important tool for protecting websites from automated attacks. As technology continues to evolve, it is likely that new approaches will be developed to further improve the effectiveness of these mechanisms.

Art in the Age of CAPTCHA
often extract data such as street names and traffic signs from Street View imagery to improve Google Maps with useful information like business addresses and locations. -human users or bots, mostly unknowingly, were helping computers get better at image recognition.

Programmers had long been aware of the possibility of using the data from humans to help computers become more human and more intelligent. For half a decade already, ImageNet, an AI project launched at Stanford University, relied heavily on crowdsourcing to classify and categorise images. By having volunteers classify sets of widely available Internet images, this ‘data’ could become ‘nourishment’ for AI, initially, ImageNet gathered 500,000 willing and able individuals to classify about one billion images and the images were then fed to the computers being trained. Immense progress could be made in AI, explained the project leader, now that ‘we have the data to nourish our computer brain’.

What if these individuals started providing AI nourishment for free — without even knowing? CAPTCHA researchers had landed on the idea of using instances of open pattern recognition problems to build CAPTCHAs in order to benefit both online security and pattern recognition research early on. Google was now implementing that project on a massively unprecedented scale. The original project of differentiating humans from bots now took on a secondary importance. Vinay Shet, Google’s product manager for reCAPTCHAs, explained in the company’s Security Blog the reasons behind the change: ‘Advances in artificial intelligence have reduced the gap between human and machine capabilities in deciphering distorted text.’ The aggressive nature of the fight was as clear as it had ever been, with bots who tried to break in considered by their opponents as ‘attackers’.

Another breakthrough arrived on 25 October 2013, with the announcement that reCAPTCHA just got easier (but only if you’re human). Psychologists had long known of a clever trick for diagnosing behavioural or mental disorders. When administering an inkblot Rorschach test, for example, an analyst might as well forget the answer to their question about the inkblot if the subject’s behaviour before and after appeared strange. Google tried a similar strategy, picking up data about users’ behaviour well before they were even aware that they were being watched. The CAPTCHA itself was no longer the central part of the test. In fact, it was more of a distraction laid out to see how users reacted to the test itself and after it was administered. Google started focusing on the user’s entire engagement with the CAPTCHA — before, during and after they interact with it. The ‘test’ had just all boundaries; CAPTCHA was just one challenge in a rapidly growing bag of tricks. That means that today the distorted letters serve less as a test of humanity and more as a medium of engagement to elicit a broad range of cues that characterize humans and bots, they explained. What is more, by 2014, computers running machine-learning algorithms developed by Google got the distorted text right 99.8 per cent of the time, while humans got a mere 33 per cent. The results of such human/bot discrepancy sent computer engineers into a panic. ‘Thus distorted text, on its own, is no longer a dependable test,’ they concluded. The comments section exploded with complaints from users that they were being blocked. One irate user wrote:

From my very limited dataset of just my own encounters, reCAPTCHAs human/bot pre-distinction is atrociously bad. And from my own horrible experience with it, assuming that all of my own legitmate users will have to deal with the same, I’ve had no choice but to ditch reCAPTCHA entirely. I cannot afford to subject my users to this torture and scare them away forever. It’s gone too far. Especially since I hear that there are bots out there with automatic CAPTCHA solvers that have a much better hit rate than myself at this point.

In other contexts, bots were not only passing as regular human users — they were passing as brilliant scientists. That year the problem was so severe that a computer-generated author became ‘the world’s 21st most highly cited scientist’.

It was time for an update. In December 2014, CAPTCHA tests were changed to a system based on forced confessions. Users were now asked to click on a box besides the prompt ‘I am not a robot’. If used in combination with user behaviour data gathered before and after the answer was given, the new test worked like a charm. Vinay Shet called it ‘No CAPTCHA’.

Figure of automatically generated face HIP (Human Interactive Proof) originaly published in Yong Rui, Zhicheng Liu, Shannon Kilin, Gavin Interactive Proofs (Berlin: Springer, 2005). 57.
How important are the subtle changes these systems undergo on a regular basis? CAPTCHA designers (starting in 2004) would claim that ‘you’ve probably seen them’ without knowing much about them. What else do we see on a regular basis that we do not know much or anything about? What is essential to our lives, yet remains unnoticed?

It takes art as subtle as Decruazat’s to direct our attention to changes in our sensory-motor environment that remain unnoticed. Art in the age of CAPTCHA is a call to a different kind of creative action, one aimed at amplifying the near-silent echo of transformations that interpellate us in coded, abstract, and rarefied ways. Because they have no boundaries, these changes defy categorization in terms of disciplines. They stump traditional explanations based on longstanding conventions of rational discourse, where they are seen as too minor to be taken seriously. They escape the attention of humanists as much as scientists. Yet it is through them that we can see how some of the most important metaphysical boundaries of our age, such as that between humans and machines, and art and artefacts, are created and sustained.

What else? What is taking place right before our eyes that we are not noticing? Answers remain elusive. We have seen, painted, and photographed many sunsets. But only for a much shorter time have we seen, painted, and photographed the repetitive patterns of industrially produced products, or created art based on the toothed wheels and gears animating the machines around us. Only since the invention of the printing press did we become increasingly acquainted with the shape of single letters; only after typewriters left us flooded with loose sheets did we start to read blank pages; only after early computers made us aware of the strange patterns on punch cards did we begin to see them elsewhere. Today, barcodes and QR codes we cannot read reflect prices we cannot afford; pixelated images give us less rather than more when we zoom in; and scrolling text before our tired eyes reflects our present condition just as much as the divisive content on the screen. What have we become when the ring or the vibration of a new notification matters more than the tolling of the bells? When we look up at the sun, it no longer looks the same.

Art in the age of CAPTCHA shows us a world much different from what it was when we last saw it.

Notes
11. Lillibridge et al., 2.
17. von Ahn et al. (2003), 309.
18. Lillibridge et al., 1.
19. Lillibridge et al., 1.
20. von Ahn et al. (2003), 305.
22. von Ahn et al. (2003), 294.
27. Shet (2013), 32.
32. Shet (2013), 32.
34. Shet (2013), 32.
38. Shet (2013), 32.
41. Shet (2013), 32.
42. Shet (2013), 32.
43. Shet (2013), 32.
44. Shet (2013), 32.
46. Shet (2013), 32.
47. Shet (2013), 32.
49. Shet (2013), 32.
52. Shet (2013), 32.