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In recent years, understanding the structure and function of complex networks has become the foundation
for explaining many different real-world complex biological, technological, and informal social phenomena.

Techniques from statistical physics have been successfully applied to the analysis of these networks, and have
uncovered surprising statistical structural properties that have also been shown to have a major effect on their
functionality, dynamics, robustness, and fragility. This paper examines, for the first time, the statistical properties
of strategically important organizational networks—networks of people engaged in distributed product devel-
opment (PD)—and discusses the significance of these properties in providing insight into ways of improving the
strategic and operational decision making of the organization. We show that the structure of information flow
networks that are at the heart of large-scale product development efforts have properties that are similar to those
displayed by other social, biological, and technological networks. In this context, we also identify novel prop-
erties that may be characteristic of other information-carrying networks. We further present a detailed model
and analysis of PD dynamics on complex networks, and show how the underlying network topologies provide
direct information about the characteristics of these dynamics. We believe that our new analysis methodology
and empirical results are also relevant to other organizational information-carrying networks.
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1. Introduction
The usefulness of understanding organizational net-
work structure as a tool for assessing the effects
of decisions on organizational performance has been
illustrated in the social science and management lit-
eratures (Granovetter 1973, Krackhardt and Hanson
1993, Wasserman and Faust 1999). There it has
been shown that informal networks of relationships
(e.g., communication, information, and problem-
solving networks)—rather than formal organizational
charts—determine to a large extent the patterns of
coordination and work processes embedded in the
organization. In recent years, networks have also
become the foundation for understanding numerous
and disparate complex systems outside the field of
social sciences (e.g., biology, ecology, engineering, and
Internet technology (see Albert and Barabási 2002,
Newman 2003, and Bar-Yam 1997)).
The goal of this paper is to examine, for the first

time, the statistical properties of an important class
of large-scale information-carrying networks—new

product development. We discuss the significance
of these statistical properties in providing insight
into ways of improving the strategic and opera-
tional decision making of the organization. In general,
information-carrying networks constitute the infras-
tructure for exchanging knowledge that is important
to the achievement of work by individual agents. We
believe that our results will also be relevant to other
information-carrying networks.
Distributed product development (PD), which often

involves an intricate set of interconnected tasks car-
ried out by hundreds of designers, is fundamen-
tal to the creation of complex man-made systems
(Alexander 1964). The interdependence between the
various tasks makes system development fundamen-
tally iterative (Braha and Maimon 1998). Iterations
are driven by the repetition (rework) of tasks due
to the availability of new information generated by
other tasks, such as changes in input, updates of
shared assumptions, components, boundaries, or the
discovery of errors. In such a network of interactions,
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iterations occur when some development tasks must
be attempted even though the complete predecessor
information is not available or known with certainty
(Yassine and Braha 2003). As this missing or uncer-
tain information becomes available, the tasks are
repeated to come closer to the design specifications
or goals. This iterative process proceeds until con-
vergence occurs (Yassine and Braha 2003, Klein et al.
2006, Yassine et al. 2003).
Design iterations, which are the result of the PD

network structure, might slow down the PD conver-
gence or have a destabilizing effect on the system’s
behavior. This will delay the time required for prod-
uct development, and thus compromise the effective-
ness and efficiency of the PD process. For example,
it is estimated that iteration costs about one-third of
the whole PD time (Osborne 1993), while lost prof-
its result when new products are delayed in devel-
opment and shipped late (Clark 1989). Characterizing
the real-world structure, and eventually the dynam-
ics of complex PD networks, may lead to the devel-
opment of guidelines for coping with complexity. It
would also suggest ways for improving the decision-
making process, and the search for innovative design
solutions.
The last few years have witnessed substantial and

dramatic new advances in understanding the large-
scale structural properties of many real-world com-
plex networks (Strogatz 2001, Albert and Barabási
2002, Newman 2003). The availability of large-scale
empirical data on one hand and the advances in com-
puting power and theoretical understanding have led
to a series of discoveries that have uncovered sta-
tistical properties that are common to a variety of
diverse real-world social, biological, and technologi-
cal networks including the World-Wide Web (Albert
et al. 1999), the Internet (Faloutsos et al. 1999), power
grids (Watts and Strogatz 1998), metabolic and pro-
tein networks (Jeong et al. 2000, 2001), food webs
(Montoya and Solé 2002), scientific collaboration net-
works (Amaral et al. 2000, Newman 2001), citation
networks (de S. Price 1965), electronic circuits (Ferrer
et al. 2001), and software architecture (Valverde et al.
2002). These studies have shown that many complex
networks are sparse, that is, they have only a small
fraction of the possible number of links. Despite being
primarily locally connected, such networks exhibit the
“small-world” property of short average path lengths
between any two nodes. Studies also have found that
complex networks are characterized by an inhomo-
geneous distribution of nodal degrees (the number
of nodes a particular node is connected to), with
this distribution often following a power law (termed
“scale-free” networks in Barabási and Albert 1999).
Scale-free networks have been shown to be robust to
random failures of nodes, but vulnerable to failure

of the highly connected nodes (Albert et al. 2000).
A variety of network growth processes that might
occur on real networks, and that lead to scale-free and
small-world networks, have been proposed (Albert
and Barabási 2002, Newman 2003). The dynamics of
networks can be understood to be due to processes
propagating through the network of connections (Bar-
Yam and Epstein 2004); the range of dynamical pro-
cesses include disease spreading and diffusion, search
and random walks, synchronization, games, Boolean
networks and cellular automata, and rumor propa-
gation. Indeed, the raison d’être of complex network
studies might be said to be the finding that topology
provides direct information about the characteristics
of network dynamics. In this paper, we study network
topologies in the context of large-scale product devel-
opment and discuss their relationship to the func-
tional utility of the system, as well as to the dynamics
of the underlying distributed design problem solving.
Planning techniques and analytical models that

view the PD process as a network of interacting
components have been proposed before (Braha and
Maimon 1998, Yassine and Braha 2003, Klein et al.
2006, Yassine et al. 2003, Eppinger et al. 1994, Steward
1981, Mihm et al. 2003). However, others have not yet
addressed the large-scale statistical properties of real-
world PD task networks. In the research we report
here, we study such networks. We show that task
networks have properties (sparseness, small-world,
scaling regimes) that are like those of other biologi-
cal, social, and technological networks. We discover
a distinctive asymmetry between the distributions of
incoming and outgoing information flows (links) of
PD networks, which has implications for their func-
tionality, sensitivity, and robustness (error tolerance)
properties.
We further present a model of PD dynamics em-

bodying interactions through the network. Using
analysis and simulation, we study its behavior to de-
termine the conditions under which all the PD tasks
are completed, and the rate of convergence to the
completed state. We show that network topology pro-
vides key information about the characteristics of con-
vergence, both whether and how rapidly convergence
occurs. We find, quite reasonably, that the PD net-
work dynamics will converge unless the total rate
at which a task is affected by its neighboring tasks
exceeds the “internal completion rate” of the task.
Convergence is impeded by the existence of nodes
that have high numbers of both incoming and outgo-
ing information flows, i.e., convergence is controlled
by the joint distribution of incoming and outgoing
links. A more general result, which is presented in
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Supplement 4 (provided in the e-companion),1 shows
that the characteristics of convergence depend on
the incoming and outgoing information flows among
multiple tasks.
This paper is organized as follows: In §2, we review

the basic structural properties of real-world complex
networks. In §3, we describe the PD data used in this
paper. In §4, we present an analysis of the PD task net-
works, their small-world property, and node connec-
tivity distributions. We demonstrate the distinct roles
of incoming and outgoing information flows in dis-
tributed PD processes by analyzing the corresponding
in-degree and out-degree link distributions. In §5, we
present a dynamical model of PD processes on com-
plex networks, and show analytically and numerically
how the empirical structural properties bear on the
PD dynamics. In §6, we present simulation results.
In §7, we present our conclusions.

2. Structural Properties of Complex
Networks

Complex networks can be defined formally in terms
of a graph G = �V �E�, which is a pair of nodes V =
�1�2� � � � �N 
, and a set of lines E = �e1� e2� � � � � eL

between pairs of nodes. If the line between two
nodes is nondirectional, then the network is called
undirected; otherwise, the network is called directed.
A network is usually represented by a diagram,
where nodes are drawn as points, undirected lines
are drawn as edges, and directed lines as arcs con-
necting the corresponding two nodes. Three prop-
erties have been used to characterize real-world
complex networks (Albert and Barabási 2002, New-
man 2003). The first characteristic is the average
distance (geodesic) between two nodes, where the
distance d�i� j� between nodes i and j is defined as the
number of edges along the shortest path connecting
them. The characteristic path length l is the average
distance between any two vertices:

l= 1
N�N − 1�

∑
i �=j

dij � (1)

The second characteristic measures the tendency of
vertices to be locally interconnected or to cluster in
dense modules. The clustering coefficient Ci of a ver-
tex i is defined as follows: Let vertex i be connected to
ki neighbors. The total number of edges between these
neighbors is at most ki�ki − 1�/2. If the actual number
of edges between these ki neighbors is ni, then the
clustering coefficient Ci of the vertex i is the ratio

Ci =
2ni

ki�ki − 1�
� (2)

1 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.

The clustering coefficient of the graph, which is a
measure of the network’s potential modularity, is the
average over all vertices,

C = 1
N

N∑
i=1

Ci� (3)

The third characteristic is the distribution of de-
grees of vertices. The degree of a vertex, denoted
by ki, is the number of nodes adjacent to it. The mean
nodal degree is the average degree of the nodes in the
network,

�k� =
∑N

i=1 ki

N
� (4)

If the network is directed, a distinction is made be-
tween the in-degree of a node and its out-degree. The
in-degree of a node, kin�i�, is the number of nodes that
are adjacent to i. The out-degree of a node, kout�i�, is
the number of nodes adjacent from i.
Regular networks, where all the degrees of all the

nodes are equal (such as circles, grids, and fully con-
nected graphs), have been traditionally employed in
modeling physical systems of atoms (Strogatz 2001).
On the other hand, many real-world social, biologi-
cal, and technological networks appear more random
than regular (Strogatz 2001, Albert and Barabási 2002,
Newman 2003). With the scarcity of large-scale empir-
ical data on one hand, and the lack of computing
power on the other hand, scientists have been led
to model real-world networks as completely random
graphs using the probabilistic graph models of Erdős
and Rényi (1959).2

In their seminal paper on random graphs, Erdős
and Rényi (1959) considered a model where N nodes
are randomly connected with probability p. In this
model, the average degree of the nodes in the network
is �k� � pN , and a Poisson distribution approximates
the distribution of the nodal degree. In a Poisson ran-
dom network, the probability of nodes with at least
k edges decays rapidly for large values of k. Conse-
quently, a typical Poisson random network is rather
homogeneous, where most of the nodal degrees are
concentrated around the mean. In particular, the aver-
age distance between any pair of nodes lrandom scales
with the number of nodes as lrandom ∼ ln�N �/ ln��k��.
This feature of having a relatively short path between
any two nodes, despite the often large graph size,
is known as the small-world effect (de Sola Pool and
Kochen 1978). In a Poisson random graph, the clus-
tering coefficient is Crandom = p � �k�/N . Thus, while
the average distance between any pair of nodes grows
only logarithmically with N , the Poisson random
graph is poorly clustered.

2 For an earlier treatment of random graphs, see Solomonoff and
Rapoport (1951).
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Regular networks and random graphs serve as use-
ful models for complex systems, yet many real net-
works are neither completely ordered nor completely
random. Watts and Strogatz (1998) found that social,
technological, and biological networks are much more
highly clustered than a random graph with the same
number of nodes and edges (i.e., Creal 	 Crandom�,
while the characteristic path length lreal is close to
the theoretically minimum distance obtained for a
random graph with the same average connectivity.
Small-world networks are a class of graphs that are
highly clustered like regular graphs (Creal 	 Crandom�,
but with a small characteristic path length like a ran-
dom graph (lreal ≈ lrandom�. Many real-world complex
systems have been shown to be small-world net-
works, including power-line grids (Watts and Strogatz
1998), neuronal networks (Watts and Strogatz 1998),
social networks (Amaral et al. 2000, Newman 2001),
the World Wide Web (Albert et al. 1999), the Inter-
net (Albert et al. 2000), food webs (Montoya and Solé
2002), and chemical-reaction networks (Jeong et al.
2000).
Another important characteristic of real-world net-

works is related to their nodal degree distribution.
Unlike the bell-shaped Poisson distribution of ran-
dom graphs, the degree distributions of many real-
world networks have been documented to have
power-law degree distribution,

p�k�∼ k−�� (5)

where p�k� is the probability that a node has k edges.
Networks with power-law distributions are often re-
ferred to as scale-free networks (de S. Price 1965,
Barabási and Albert 1999). The power-law distribu-
tion implies that there are a few nodes with many
edges; in other words, the distribution of nodal
degrees has a long right tail (resulting in an extremely
large variance) of values that are far above the mean
(as opposed to the fast decaying tail of a Poisson dis-
tribution, which results in a small variance). Power-
law distributions of both the in-degree and out-degree
of a node have also been observed in a variety of
directed real-world networks (Albert and Barabási
2002, Newman 2003), including the World Wide Web,
metabolic networks, networks of citations of scientific
papers, and telephone call graphs. Although scale-
free networks are prevalent, the power-law distri-
bution is not universal. Empirical work shows that
the total node degree distribution of a variety of
real networks often has a scale-free regime with an
exponential cutoff, i.e., p�k�∼ k−�f �k/k∗�, where k∗ is
the cutoff (Strogatz 2001, Amaral et al. 2000). The exis-
tence of a cutoff has been attributed to physical costs
of adding links or limited capacity of a vertex (Amaral
et al. 2000). In some networks, the power-law regime

is not even present, and the nodal degree distribution
is characterized by a distribution with a fast-decaying
tail (Strogatz 2001, Amaral et al. 2000). It is also not
clear that a scale-free network optimizes properties
of network behavior, and alternatives have been pro-
posed (Shargel et al. 2003).
The goal of this paper is to investigate the sta-

tistical properties of large-scale distributed product
development networks. We show that large-scale PD
networks, although of a different nature, have general
properties that are shared by other social, technologi-
cal, and biological networks.

3. Data
We analyzed distributed PD data of different large-
scale organizations in the United States and Eng-
land, involved in vehicle design (Cividanes 2002a),
operating software design (Denker 2002), pharmaceu-
tical facility design (Newton and Austin 2002), and a
16-story hospital facility design (Newton and Austin
2002). A PD-distributed network can be considered
as a directed graph with N nodes and L arcs, where
there is an arc from task vi to task vj if task vi

feeds information to task vj . The documentation of
the directed links between the tasks has been based
on structured interviews with experienced engineers
and design documentation data (design process mod-
els). In all cases, the repeated nature of the PD
projects and the knowledgeable people involved in
eliciting the information flow dependencies reduce
the risk of error in the construction of the PD net-
works. More specifically, Cividanes obtained the vehi-
cle development network by questioning in person
at least one engineer from each task, “Where do the
inputs for the task come from (e.g., another task)?”
and “Where do the outputs generated by the task go
to (e.g., another task)?” The answers to these ques-
tions were used by him to construct the network of
information flows (Cividanes 2002b). The operating
software development network was obtained from
module/subsystems dependency diagrams compiled
by Denker (2002); and both the pharmaceutical facil-
ity development and the hospital facility develop-
ment networks were compiled by Newton and Austin
(2002) from data flow diagrams and design-process
model diagrams (Austin et al. 1999) deployed by the
organizations. An example of a diagram from the
pharmaceutical facility and 16-story hospital facility
process models is shown in Figure 1.

4. Results
4.1. Small-World Properties
An example of one of these distributed PD networks
(operating software development) is shown in Fig-
ure 2. Here we consider the undirected version of the
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Figure 1 Example of a Diagram from a Design Process Model
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Note. Such diagrams were used to construct the pharmaceutical facility and the 16-story hospital facility networks (adapted from Austin et al. 2000).

network, where there is an edge between two tasks
if they exchange information between them (not nec-
essarily reciprocal communication). We see that this
network is sparse (2L/N�N −1�= 0�0114911�, with the
average degree of each node only 5.34, which is small
compared to the number of possible edges N − 1 =
465. A clear deviation from a purely random graph
is observed. We see that most of the nodes have low
degree, while a few nodes have a very large degree.
This is in contrast to the nodal degree homogeneity
of purely random graphs, where most of the nodal
degrees are concentrated around the mean. The soft-
ware development network also illustrates the small-
world property (see §2), which can be detected by
measuring two basic statistical characteristics: (1) the
average distance (geodesic) between two nodes, and
(2) the clustering coefficient of the graph. Small-world
networks are a class of graphs that are highly clus-
tered like regular graphs (Creal 	 Crandom�, but with
small characteristic path length like a random graph
(lreal ≈ lrandom�. For the software development network,
the network is highly clustered, as measured by the
clustering coefficient of the graph (Csoftware = 0�327�
compared to a random graph with the same num-
ber of nodes and edges (Crandom = 0�021�, but with

small characteristic path length like a random graph
(lsoftware = 3�700≈ lrandom = 3�448�.
In Table 1, we present the characteristic path length

and clustering coefficient for the four distributed PD
networks examined in this paper, and compare their
values with random graphs having the same number
of nodes and edges. In all cases, the empirical results
display the small-world property (Creal 	 Crandom and
lreal ≈ lrandom�.
An interpretation of the functional significance of

the architecture of PD networks must be based on
recognition of the factors that such systems are opti-
mizing. Shorter development times, improved prod-
uct quality, and lower development costs are the key
factors for successful complex PD processes. The exis-
tence of cycles in the PD networks, readily noted in
the network architectures investigated, points to the
seemingly undeniable truth that there is an inher-
ent, iterative nature to the design process (Braha and
Maimon 1998). Each iteration results in changes that
must propagate through the PD network, requiring
the rework of other reachable tasks. Consequently,
late feedback and excessive rework should be mini-
mized if shorter development time is required.
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Figure 2 Network of Information Flows Between Tasks of an Operating
System Development Process

Notes. This PD task network consists of 1,245 directed information flows
between 466 development tasks. Each task is assigned to one or more actors
(“design teams” or “engineers”) who are responsible for it. Nodes with the
same degree are colored the same.

The functional significance of the small-world prop-
erty can be attributed to the fast information transfer
throughout the network, which results in immediate
response to the rework created by other tasks in the
network. A high clustering coefficient is consistent
with a modular organization, i.e., the organization of
the PD process in clusters that contain most, if not all,
of the interactions internally, and the interactions or
links between separate clusters is minimized (Alexan-
der 1964, Braha and Maimon 1998, Yassine and Braha
2003, Bar-Yam 1997). The dynamic model developed
in Yassine et al. (2003) shows that a speed-up of the
PD convergence to the design solution is obtained by
reducing or ignoring some of the task dependencies
(i.e., eliminating some of the arcs in the correspond-
ing PD network). A modular architecture of the PD
process is aligned with this strategy.

4.2. In-Degree and Out-Degree Distributions
We compared (see Figures 3(a)–3(d)) the cumula-
tive probability distributions Pin�k� and Pout�k� that a
task has more than k incoming and outgoing links,
respectively.3 For all four networks, we find that

3 Note that a power-law distribution of the in-degree distribution
(respectively, the out-degree distribution) pin�k� ∼ k−�in with expo-
nent �in translates into a power-law distribution of the cumulative
probability distribution Pin�k� ∼

∑�
k′=k k

′−�in ∼ k−��in−1� with expo-
nent �in − 1.

Table 1 Empirical Statistics of the Four Large-Scale PD Networks

Network N L C l Crandom lrandom

Vehicle 120 417 0.205 2.878 0.070 2.698
Operating software∗ 466 1�245 0.327 3.700 0.021 3.448
Pharmaceutical facility 582 4�123 0.449 2.628 0.023 2.771
16-story hospital facility∗ 889 8�178 0.274 3.118 0.024 2.583

∗We restrict attention to the largest connected component of the graphs,
which includes ∼82% of all tasks for the operating software network, and
∼92% of all tasks for the 16-story hospital facility network.

the in-degree and out-degree distributions can be
described by power laws (the “scale-free” property),
with cutoffs introduced at some characteristic scale
k∗; k−�f �k/k∗� (typically the function f corresponds
to an exponential or Gaussian). More specifically, we
find scaling regimes (i.e., straight-line regimes in the
figure) for both Pin�k� and Pout�k�. We note, however,
that the cutoff k∗ is lower by more than a factor
of two for Pin�k� than for Pout�k�.4 It is worthwhile
to note that the very low cutoff of the in-degree
distribution exhibited by some networks (e.g., vehi-
cle, software, and pharmaceutical) indicates that the
in-degree distribution k−�f �k/k∗� is broadly governed
by the fast-decaying function f for k > k∗, implying
that tasks with large incoming connectivity are prac-
tically absent. In this case, the in-degree distribution
might be better fitted by an exponential as seen by
the markedly curved-shaped behavior in Figure 3(c).
The scale-free property suggests that complex PD

task networks are dominated by a few highly cen-
tral tasks. This is in contrast to the bell-shaped Pois-
son distribution of random graphs, which leads to
a fairly homogeneous network where each node has
approximately the same number of links (and thus
equally affecting the network behavior). The fail-
ure (e.g., excessive rework, lack of integration abil-
ity, or delays) of central PD tasks will likely affect
the vulnerability of the overall PD process. Focus-
ing engineering efforts and resources (e.g., funding
and technology support) as well as developing appro-
priate control and management strategies for central
PD tasks will likely maintain the sustainability and
improve the performance of the PD process.
To analyze the structure of PD networks, it is im-

portant to study the relationships between the in-
degree and out-degree of tasks. Thus, for example,
we are interested in questions such as “Do tasks
with high out-degree also have relatively high in-
degree?” We address such questions by plotting the

4 This observation, verified for many real-world networks, has been
previously reported in Braha and Bar-Yam (2004). See also Fig-
ure EC.4, which is provided as Supplement 5 in the e-companion,
for an analysis of open source software and electronic circuit
networks.
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Figure 3 Degree Distributions for Four Distributed Problem-Solving Networks
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in in each case. The very low cutoff of the in-
degree distributions for the vehicle, software, and pharmaceutical networks suggests a single scale (characteristic of exponential decay) for the in-degree
connectivities (see text). (a) Vehicle development with 120 tasks and 417 arcs. The exponents of the cumulative distributions are � invehicle − 1 and �outvehicle − 1,
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� inpharmaceutical ≈ 1�92± 0�07 and �outpharmaceutical ≈ 1�96± 0�07. (d) Hospital facility development with 889 tasks and 8,178 arcs, where � inhospital ≈ 1�8± 0�03 and
�outhospital ≈ 1�95± 0�03.

relationship between the in-degree and out-degree of
tasks (Figures 4(a)–4(d)). Figure 4 reveals that when
considering the vehicle, pharmaceutical, and hospi-
tal PD networks, nodes with large in-degree generally
have small out-degree, and vice versa. This kind of
selective linking has been verified by calculating the
Pearson coefficient between the in-degrees of tasks
and their out-degrees; focusing on a reduced set of
highly connected tasks for which their in-degree or
out-degree exceed a certain threshold.5 The calcula-
tion shows (see Figure 4) a noticeable negative cor-
relation between in- and out-degrees for so-defined
highly connected tasks. To further illustrate this find-
ing, we present in Table 2 the top 10 tasks of the vehi-
cle development network at General Motors’ Research
and Development Center, ranked according to their
in-degree and out-degree centrality measures. We see

5 Somewhat arbitrarily, the threshold is defined as the maximum of
the 90 percentiles associated with the in- and out-degree distribu-
tions.

that only two out of the 10 tasks (italicized in the
table) appear both in the in-degree ranking and in
the out-degree ranking. This finding implies that gen-
erally there is a clear distinction between large-scale
generators of information (i.e., with high out-degree)
and large-scale consumers (i.e., with high in-degree);
a high generator of information could be a low con-
sumer and vice versa. This further suggests that a dis-
tinction has to be made between in- and out-centrality
as far as control and management strategies are con-
cerned. Moreover, those tasks that have both high in-
and out-centrality (e.g., “track total vehicle issues”
at General Motors’ vehicle design in Figure 4) are
likely to play a unique role during the product design
process. Interestingly enough, when considering the
entire set of tasks (i.e., no filter on task connectivities
is applied), the results for the vehicle, pharmaceutical,
and hospital PD networks reveal almost no correla-
tion between the in-degrees of tasks and their out-
degrees. The dynamical model presented in §5 shows
that the nature of in- and out-degree correlations has
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Figure 4 In-Degree as a Function of Out-Degree for Four Distributed PD Networks
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Notes. (a) Vehicle PD network. The main figure shows the correlation between the in-degrees of tasks and their out-degrees, when considering the entire set of
tasks. Almost no correlation is observed (Pearson coefficient of 0.17). The Inset shows a significant negative correlation of kin and kout, when considering the
reduced set of tasks with kin ≥ 7 or kout ≥ 7 (Pearson coefficient of −0�53). (b) Software PD network. The main figure shows a significant positive correlation
for the full data set (Pearson coefficient of 0.76). For the reduced set with kin ≥ 10 or kout ≥ 10, a significant positive correlation is also observed (inset,
Pearson coefficient of 0.43). (c) Pharmaceutical PD network. The main figure shows almost no correlation for the full data set (Pearson coefficient of 0.1). For
the reduced set with kin ≥ 15 or kout ≥ 15, a significant negative correlation is observed (inset, Pearson coefficient of −0�52). (d) Hospital PD network. The
main figure shows almost no correlation for the full data set (Pearson coefficient of 0.11). For the reduced set with kin ≥ 20 or kout ≥ 20, a significant negative
correlation is observed (inset, Pearson coefficient of −0�34).

profound and subtle effects on the behavior of PD
processes defined on top of complex networks. In par-
ticular, the model and simulation provides a theoret-
ical explanation for the observed weak correlation at
the level of all tasks, and anticorrelation at the level
of highly connected tasks.
The presence of cutoffs in node degree distribu-

tions has been attributed to physical costs of adding
links and limited capacity of a node (Amaral et al.
2000). Such networks may also arise if network for-

mation occurs under conditions of preferential attach-
ment with limited information (Mossa et al. 2002).
As previously noted (Amaral et al. 2000, Mossa et al.
2002), the limited capacity of a node, or limited
information-processing capability of a node, are sim-
ilar to the so-called “bounded rationality” concept of
Simon (1998).
We find that there is an asymmetry between the

distributions of incoming and outgoing information
flows. The narrower power-law regime for Pin�k� sug-
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Table 2 The Top 10 Tasks of the Vehicle Development Network at General Motors’ Research and Development Center Ranked According to Their
In-Degree and Out-Degree Centrality Measures

Task In-degree Task Out-degree

Develop mainstream integrated concept vehicle model
Maintain vehicle mainstream chart and update engineering

product content sheet
Conduct performance synthesis and analysis in quick
study phase

Track total vehicle issues
Review quick study deliverables
Assess risks in performance requirements
Prepare program QRD matrix
Follow up and maintain open issues—front compartment
Follow up and maintain open issues—passenger/rear
Follow up and maintain open issues—chassis

Develop nine box summary
Track total vehicle issues
Set engineering target parameters (concept technical descriptors)
Recommend final architecture
Identify target architectures
Develop critical product characteristics/key voices
Develop engineering product content sheet
Maintain vehicle mainstream chart and update engineering

product content sheet
Create initial visual surfaces
Establish body BOM sharing strategy

14 24
12 15

12
12 11

10
11 10
11 9
10 9
10
9 9
8 9
8

gests that the costs of adding incoming links and lim-
ited in-degree capacity of a task are higher than their
counterpart out-degree links. We note that this is con-
sistent with the realization that bounded rationality
applies to incoming information, and to outgoing
information only when it is different for each recipi-
ent, not when it is duplicated. This naturally leads to
a weaker restriction on the out-degree distribution.
An additional functional significance of the asym-

metric topology can be attributed to the distinct roles
of incoming and outgoing links in distributed PD
processes. The narrow scaling regime governing the
information flowing into a task implies that tasks with
large incoming connectivity are practically absent.
This suggests that distributed PD networks limit con-
flicts by reducing the multiplicity of interactions that
affect a single task, as reflected in the incoming links.
Such architecture reduces the amount and range of
potential revisions that occur in the dynamic PD
process, and thus increases the likelihood of converg-
ing to a successful solution. Our empirical observa-
tion is found to be consistent with the dynamic PD
model presented in the next section. There it is shown
that additional rework might slow down the PD con-
vergence or have a destabilizing effect on the sys-
tem’s behavior. As a general rule, the rate of problem
solving has to be measured and controlled such that
the total number of design problems being created
is smaller than the total number of design problems
being solved.
The scale-free nature of the outgoing communica-

tion links means that some tasks communicate their
outcomes to many more tasks than others do, and
may play the role of coordinators (or product integra-
tors, see Yassine et al. 2003). Unlike the case of large
numbers of incoming links, this may improve the
integration and consistency of the problem-solving
process, thus reducing the number of potential con-
flicts. Product integrators put the separate develop-
ment tasks together to ensure fit and functionality.

Because late changes in product design are highly
expensive, product integrators continuously check
unfinished component designs and provide feedback
to a large number of tasks accordingly.

5. A Dynamical Model on Complex
PD Networks

This section introduces a deliberately simple model of
product development on complex directed networks,
which captures important features of PD dynamics
(e.g., see Yassine and Braha 2003). We characterize the
model’s behavior by using analysis and simulations
performed on the empirically heterogeneous directed
network topologies examined in §4 (rather than on
simplified fully connected or lattice topologies). In our
model, there is a network of interconnected nodes
(elemental tasks); each can be in a “resolved” or
“unresolved” state. Each node could be affected by
those nodes that directly reach it, and could affect
those nodes that are directly reachable from it. The
rule by which a resolved node becomes unresolved
depends stochastically on the number of unresolved
contiguous incoming nodes—the higher the number
of unresolved neighbors, the higher the probability
of becoming unresolved. This rule reflects the repeti-
tion (rework) of tasks due to the availability of new
information and input changes generated by other
contiguous tasks. An unresolved node may be fully
resolved with probability that depends on both its
self-completion rate (internal problem-solving rate),
and on the number of unresolved neighboring nodes.
Incorporating the effect of task j on task i (which
possibly differs between each pair of tasks) as well
as including nonbinary states (e.g., the number of
design problems or open issues associated with a
task) can be readily done but does not offer addi-
tional understanding on the issues addressed here.
Although the motivation is different, it is worthwhile
to note that the model considered here is similar in
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spirit to dynamic models that have been studied in
the context of collective action, percolation, majority-
vote cellular automata, self-organized criticality, spin-
flip Ising dynamics, and epidemic spreading.

5.1. Model
We consider a network where each node (a task in
the network) can be in one of two states, zero or one,
representing unresolved or resolved states, respec-
tively. We consider a dynamic process occurring at
discrete times, 1�2� � � � � t. Node states are updated
synchronously, indicating a parallel mode of product
development.6 Let si�t� be the state of node i at time t.
We consider two cases:
Case 1. Node i is resolved at time t (i.e., si�t� = 1�.

Let kini be the in-degree connectivity of node i, and
let ki�t� = kini −∑

j� �j� i�∈E sj �t� be the number of neigh-
boring unresolved nodes that are directly connected
by directional links (arcs) to node i at time t. Node i
changes its state according to the following stochas-
tic rule:

si�t+ 1�=


0 with probability tanh��iki�t���

1 with probability 1− tanh��iki�t���
(6)

where �i is a parameter that reflects the sensitiv-
ity of the node i state to its neighboring unresolved
nodes, and tanh�x� is the hyperbolic tangent function
defined by

tanh�x�= ex − e−x

ex + e−x
� (7)

The stochastic dynamic rule allows for node state
realizations to vary over time even if the node has
the same number of unresolved neighbors at differ-
ent times. The parameter �i captures the tendency of
a node to be affected by its neighbors. For �i = 0,
the node’s behavior is completely decoupled from its
neighbors. A low �i corresponds to the case where a
node’s behavior is not influenced much by the states
of its neighbors. For �i →�, each node’s behavior is
completely dependent on its neighbors: Any nonzero
number of unresolved neighbors will render the node
unresolved at the next iteration.
Case 2. Node i is unresolved at time t (i.e., si�t�= 0�.

In this case, node i changes its state according to the
following stochastic rule:

si�t+ 1�

=


0 with probability 1− ri �1− tanh��iki�t���

1 with probability ri �1− tanh��iki�t���
(8)

6 Note that this assumption can be easily relaxed by randomly
selecting, at each time point, a node for an update.

where ri is a parameter that reflects the internal com-
pletion rate of task i (0≤ ri ≤ 1�. Here we assume that
the node can be resolved if two events occur: (1) the
node is not affected by its unresolved neighbors, and
(2) the task is successfully completed internally in one
unit of time with probability ri.
Although the model presented above captures im-

portant aspects of PD dynamics, it is worthwhile to
discuss some of the underlying assumptions:
The stochastic rule (Equations (6) and (8)) govern-

ing the response of each task could be modified in
various ways. Still, it is easy to show that the qual-
itative results of the model will be preserved for a
broad family of concave response functions that have
continuous second derivatives, and guarantee proba-
bilities in the !0�1" range. The concavity assumption
of the response function gives a plausible shape for
the marginal effects; that is, at relatively high values,
a marginal change in the number of unresolved con-
tiguous incoming nodes will give a relatively smaller
modification in the probability of state change.
The model assumes that each task is equally influ-

enced by its neighboring tasks, thus taking into account
only the topological structure of the PD network. This
assumption could be relaxed by having some tasks
more influential than others. This could be formalized
by assigning to each arc of the PD network a weight
proportional to the dependency strength of the con-
nections among the various tasks of the network. The
total weight of a task’s connectivities could then be
incorporated into a response function. An interesting
question here is, What is the dynamic effect of such
weighted PD network architectures? Although the
answer to this question requires further empirical and
analytical study, it is plausible that the main findings
reported here (e.g., cutoff asymmetry, and the robust-
ness and sensitivity properties presented in §6) will
remain valid for weighted PD networks as well. Evi-
dence for this can be found in recent empirical studies
that show some real-world networks (the worldwide
airport network and scientific collaboration networks)
exhibit strong correlations among weighted quanti-
ties and the underlying topological structure of the
network (Barrat et al. 2004). More specifically, it has
been shown that the strength of a node (i.e., the
total weight of their connections) increases with the
node degree, and that the functional behavior of
the strength distribution exhibits similarities with the
degree distribution (Barrat et al. 2004). Consequently,
a node centrality measure based only on topological
elements might provide useful information about the
characteristics of network dynamics.
In our model, we assume that the resource usage

intensity required to accomplish the internal comple-
tion rate of the various tasks is uniform throughout
the project. Adjustments in effort levels via resource
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allocation and workload policies could be taken into
account by introducing internal completion rates that
are time based. Finally, in our model, we assume
that the product content, performance, variable cost,
investment, quality, and other project attributes do
not change over the duration of the project. Project
changes could be quantified by introducing an “exter-
nal field” into the model.

5.2. Analytic Results for Random (Erdős-Rényi)
Networks

The relaxation of the system to the uniformly resolved
state (i.e., si�t� = 1 for all tasks) depends on the free
parameters �i, ri, the initial state of the network,
and the PD network topology. Although there is no
theorem guaranteeing the relaxation of the network
to the uniformly resolved state, we apply a mean-
field approximation (Marro and Dickman 1999) to
the stochastic model we have defined to gain insight
about the convergent final state. We derive a rate
equation for the density of unresolved tasks at time t,

#�t�= 1−∑
i

si�t�/N �

We assume that for every task i, ri = r , and �i = �.
We also make the following homogeneity condition,
which holds particularly well for a completely ran-
dom graph: For every task i, its number of unresolved
neighbors is approximately ki�t� � �kin�#�t�, where
�kin� denotes the average in-degree of a task in the
network. The global density of unresolved tasks #�t�
evolves according to the rate equation

d#�t�

dt
= �1−#�t�� tanh���kin�#�t��

−#�t�r�1− tanh���kin�#�t���� (9)

After substitution of the hyperbolic tangent function
and �̄= ��kin�, we obtain

d#�t�

dt
= �1−#�t��

e�̄#�t�−e−�̄#�t�

e�̄#�t�+e−�̄#�t�
−#�t�r

2e−�̄#�t�

e�̄#�t�+e−�̄#�t�
�

At an equilibrium d#�t�/dt = 0; thus, we obtain a sin-
gle equation to be solved for #�t�= #:

#= e�̄# − e−�̄#

e�̄# − e−�̄# + 2re−�̄#
= f �#�� (10)

We conclude that the only stable fixed point of this
equation is #∗ = 0 if f ′�#��#=0 < 1, and has a nonzero
solution if f ′�#��#=0 > 1. Thus, for �̄ < r , the global
density of unresolved tasks at equilibrium is #∗ = 0
(i.e., all tasks are successfully completed). This result
has a simple intuitive interpretation: If the task’s inter-
nal completion rate r exceeds the average total sensi-
tivity of the task to its unresolved incoming neighbors

�̄ = ��kin�, the PD process will converge to the uni-
formly resolved state; otherwise, it is quite likely
that the PD process will converge to a state where
a nonzero fraction #∗ > 0 of the tasks remains unre-
solved.7

When the fraction of unresolved tasks at equilib-
rium is very small (#∗ � 1), we can find a closed-form
expression for #∗ by expanding f �#� in Equation (10)
to the second order in # and solving for #∗:

f �#�= �̄

r
#+ �̄2�r − 1�

r2
#2+O�#3�� (11)

Hence,

#∗ ≈ r��̄− r�

�̄2�1− r�
� (12)

To gain further insight regarding the rate of con-
vergence to the fixed point of Equation (9), we solve
it approximately as follows. For small values of #,
Taylor’s expansion yields

tanh��̄#�= �̄#+O�#3��

Thus, the differential Equation (9) is approximated by

d#

dt
= �1−#��̄#−#r�1− �̄#�� (13)

The solution of Equation (13) is

#�t�= �̄− r

re�r−�̄�t��̄− 1�+ �̄�1− r�
� (14)

For �̄ < r , limt→� #�t� = 0 and the system converges
exponentially to the uniformly resolved state. For
�̄ > r , the fraction of unresolved tasks decays at an
exponential rate and eventually saturates at a nonzero
fraction of unresolved tasks

#∗ = lim
t→�#�t�= �̄− r

�̄�1− r�

(note that when #∗ is small, as assumed, �̄/r ≈ 1, and
thus the prediction of Equation (12) is consistent with
the estimate above).
The deterministic analysis of the model has in-

volved a number of assumptions that can be tested
by simulation. First, a directed random graph with a
prescribed average in-degree of tasks (and same aver-
age out-degree) has been generated, and all tasks have
been initially selected to be unresolved. The graph
contains 105 tasks with connectivity �kin� = �kout� = 12.
We have simulated the model using a synchronous
discrete-event implementation. Figure 5 compares a
typical simulation run to the corresponding determin-
istic solution (14). The simulation run has followed

7 In other words, a threshold behavior occurs at ��kin�/r = 1.



Braha and Bar-Yam: The Statistical Mechanics of Complex Product Development
1138 Management Science 53(7), pp. 1127–1145, © 2007 INFORMS

Figure 5 Comparison Between Average Fraction of Unresolved Tasks
vs. Time as Predicted by Deterministic Theory (Solid Curve)
and a Typical Simulation Run (Broken Curve) on a Randomly
Generated Graph with 105 Nodes
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Notes. The average number of incoming arcs connected to a node is �kin� =
12�019. In (a), the time evolution of ��t� when the sensitivity and the internal
completion rates of tasks are � = 0�061 and r = 0�75, respectively. In this
case, ��kin�< r , and the simulation run converges to the uniformly resolved
state as predicted by theory. In (b), the sensitivity and the internal com-
pletion rates are � = 0�064 and r = 0�75, respectively. In equilibrium, the
average fraction of unresolved tasks between t = 65 and t = 100 (a station-
ary regime) is �∗ = 0�087, which agrees reasonably well with the prediction
�∗ = 0�090 given in Equation (12).

the deterministic solution quite well. Performing mul-
tiple independent simulation runs using the same
parameters has shown that the variation in the equi-
librium obtained across different simulation runs has
been quite small.

5.3. Analytic Results for Correlated PD Networks
The extreme heterogeneity of the connectivity dis-
tributions of undirected scale-free networks signifi-
cantly affects the dynamical processes that propagate
through these networks. In particular, it was shown
that the large fluctuations, �k2�, of power-law con-
nectivity distributions cannot be neglected as far as
system dynamics is concerned, even for finite-size
systems (Anderson and May 1992). For directed PD
networks, we show below that the first-order joint
moment of the joint in-degree and out-degree dis-
tributions (i.e., �kinkout�� plays an important role in
determining the PD dynamics.
To take into account the extreme heterogeneity

(related to the degree distributions) of real-world
directed PD networks (as shown in §4), we modify
the mean-field analysis presented for random (Erdős-
Rényi) networks by writing the rate equations gov-
erning the time evolution of #k�t�, where #k�t� is the
relative density of unresolved tasks with given in-
degree connectivity k (recall that for Erdős-Rényi net-
works, #k�t� ≈ #�t��. A general analysis, provided in

the appendix (see Supplement 4 provided in the e-
companion), indicates that the characteristics of PD
dynamics are related to the degree correlations among
neighboring tasks. For directed PD networks, the
degree correlations can be measured by four possible
linear (Pearson) correlation coefficients between sets
of degrees (in- and out-degrees) for all tasks i and
j at either ends of a directed edge in the network.
More specifically, we consider &�ki

in� k
j
in�, &�ki

in� k
j
out�,

&�ki
out� k

j
in�, and &�ki

out� k
j
out�, where the index i indi-

cates the source node of the directed edge, and j refers
to the destination node.8 These measures reflect the
tendency of tasks of similar degrees to be connected
to one another. In particular, we show in Supple-
ment 4 that the PD dynamics is directly determined
by the correlation coefficient &�ki

in� k
j
in�. However, we

further show that if neighboring tasks are weakly cor-
related (or weakly coupled, in which case &�ki

in� k
j
in�≈

0� a simplified analysis can be obtained. To this end,
we have tested the correlation coefficients &�ki

in� k
j
in�

for each of the PD networks studied. These have
been found to be 0.0943 (vehicle), −0�0644 (software),
0.2452 (pharmaceutical), and −0�0750 (hospital), indi-
cating that &�ki

in� k
j
in� is indeed small. Consequently,

we assume that the degree correlations among neigh-
boring tasks can be safely neglected, and proceed with
a simplified analysis.
The dynamical mean-field rate equations now be-

come

d#k�t�

dt
= �1−#k�t�� tanh��k'�t��

−#k�t�r�1− tanh��k'�t��� ∀k� (15)

where '�t� is the probability that any given incoming
link (arc) to a task originates from an unresolved task.
At an equilibrium d#k�t�/dt = 0� '�t�= ', and thus we
obtain a single equation to be solved for #k�t�= #k:

#k =
e�k' − e−�k'

e�k' − e−�k' + 2re−�k'
� (16)

To solve the equations in (16), we need to derive
an expression for '. First, we define the probabil-
ity qm that an incoming link to a task originates from
another task with m outgoing links. Because it is more
likely that a randomly chosen link originates from a
node with high out-degree connectivity, the probabil-
ity qm is proportional to mPout�m� and the normalized
distribution is given by

qm = mPout�m�∑
s sPout�s�

= mPout�m�

�kout�
� (17)

8 For undirected networks, these measures are reduced to the linear
(Pearson) correlation &�ki� kj � between the sets �ki
 and �kj 
 of total
degrees for all tasks i and j at either ends of an edge in the network.
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We conclude that ' is given by

' = ∑
m

∑
k

mPout�m�P�kin = k � kout =m�#k

�kout�

= ∑
m

∑
k

mP�m�k�

�kout�
(

e�k' − e−�k'

e�k' − e−�k' + 2re−�k'

)

= f �'�� (18)

where P�kin� kout� is the joint probability distribution
of kin and kout. Consequently, Equation (18) yields a
consistency equation for '. After solving Equation (18)
for ', the average density of unresolved tasks in the
system at equilibrium is evaluated by the relation #=∑

k Pin�k�#k.
Finding an exact solution of Equation (18) can

be difficult, depending on the particular form of
P�kin� kout�. Fortunately, we do not have to solve Equa-
tion (18) explicitly to gain a qualitative understanding
of the underlying PD dynamics. Following the same
argument as in Equation (10), we obtain that

f ′�'��'=0 =
∑
m

∑
k

mP�m�k�

�kout�
(

�k

r

)
= ��kinkout�

r�kout�

= �

r

(
Cov�kin� kout�

k̂
+ k̂

)
� (19)

where �kinkout� denotes the first-order joint moment
of the joint probability distribution P�kin� kout�,
Cov�kin� kout� denotes the covariance9 of the two ran-
dom variables kin and kout, and k̂= �kin� = �kout�. Strik-
ingly, the factors Cov�kin� kout� or �kinkout� in Equation
(19) depend solely on the topology of the network;
thus, showing how the underlying network topology
provides direct information about the characteristics
of the network dynamics. For the general case con-
sidered here, the model exhibits a threshold behav-
ior at f ′�'��'=0 = 1, which implies that an initial seed
of unresolved tasks would lead, at equilibrium, to
the uniformly resolved state if f ′�'��'=0 < 1, i.e., for
��kinkout�< r�kout�. We also note that if kin and kout are
uncorrelated, then �kinkout� = �kin��kout�, from which
we recover the condition ��kin�/r < 1 obtained for
homogeneous random networks (see §5.2).
The above analysis suggests that the dynamic

model does exhibit a threshold behavior, as for homo-
geneous networks. However, for positive covariance
between the two random variables kin and kout, the
range of r −� values for which the system converges
to the uniformly resolved state is more constrained

9 We have shown elsewhere that some directed networks used to
model the topology of the World Wide Web and e-mail networks
yield very large covariance values that go to infinity as the number
of nodes in the network goes to infinity.

Figure 6 Dynamical Behavior of a PD Network with Uncorrelated and
Correlated Topologies
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compared with the corresponding homogeneous situ-
ation (see Figure 6). It is concluded that high covari-
ance values exhibited in PD networks must be com-
pensated for by either reducing the sensitivity of
tasks to their neighbors (reflected by the parameter ��
or by increasing their internal problem-solving rates
(reflected by the parameter r� if the project is expected
to converge to the uniformly resolved state. As men-
tioned in §4.2, the observed low correlation between
the in-degrees and out-degrees of nodes for some PD
networks implies that Cov�kin� kout�/k̂�1 in Equation
(19), and thus the predicted threshold behavior at
��kin�/r = 1 (as for random homogeneous networks)
could still be a good approximation (this is confirmed
by simulations).
The above deterministic analysis has been tested

by simulating the model on the software network
described in §3 with k̂= 3�163. The software network
indicates a high degree of interdependence or covari-
ance between the two random variables kin and kout
(i.e. Cov�kin� kout� ≈ 5�59 and correlation ≈ 0�76�. For
example, for internal completion rates ri = 0�75 ∀ i,
a threshold behavior is predicted at a value of � ≈
0�086, for which

�

r

(
Cov�kin� kout�

k̂
+ k̂

)
= 1�

It is instructive to compare the threshold thus
obtained with the prediction for an uncorrelated ran-
dom network, � ≈ 0�237. The actual measurement of
the threshold has been found at �≈ 0�103, smaller by
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a factor of 2.3 than the value corresponding to uncor-
related random networks (� ≈ 0�237�, and in quite
good agreement with the prediction for correlated
networks (� ≈ 0�086�. The actual threshold appears
to be a bit higher than the prediction for correlated
networks because the mean-field approximation used
to derive the deterministic theory neglected the den-
sity correlations among the different tasks (see the
appendix in Supplement 4) and because the size of
the network is small.

6. Simulation Results: Sensitivity and
Robustness of PD

One of the most practical aspects of a product de-
velopment process is whether the total number of
design problems (e.g., unresolved tasks) being solved
remains bounded as the project evolves over time,
and eventually falls below an acceptable threshold
within a specified time frame (Yassine and Braha 2003,
Yassine et al. 2003). To analyze (from a global per-
spective) the performance of product development,
we measure it by the time T ∗ it takes for the PD pro-
cess to reach the uniformly resolved state.10 Because
the characterization of the PD systemwide behavior
depends on the distribution of �is and ris, we con-
sider the special case where the sensitivity and the
internal completion rates are identical across tasks
(�i = � and ri = r ∀ i�.
We confirmed through simulations that the time

it takes for the PD system to reach the uniformly
resolved state increases sharply as the sensitivity and
completion rate parameters, � and r , increase toward
the threshold regime (e.g., the solid line in Figure 6).
Indeed, we note that the exponent in the denomi-
nator of Equation (14) begins to dominate the other
factors for values of t for which �r − �̄�t ≈ 1. Thus,
we expect the inverse of the mean convergence time,
1/T ∗, to grow linearly with the scaled parameter +=
r − �̄ = r − ��kin�—the “threshold gap.” This is illus-
trated in Figure 7 for the pharmaceutical network,
where the inverse of the convergence time 1/T ∗ is
plotted against the threshold gap +, which verifies the
predicted linear dependence of 1/T ∗ on + over a large
range of threshold gap values.
We further examine the dynamics of the PD pro-

cess by analyzing the sensitivity as well as robustness
(error tolerance) of the PD network topology with
respect to internal and external perturbations such as
planned and unplanned design changes. We demon-
strate two important properties of complex PD net-
works: (1) their dynamic behavior is highly insensitive

10 Here we guarantee convergence by proper selection of parame-
ters. In general, we could use a performance measure Tp , where Tp

is the earliest time at which the fraction of resolved tasks is greater
or equal to p.

Figure 7 The Inverse of the Mean Convergence Time, 1/T ∗, for
Different Values of the Threshold Gap �
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Notes. The average number of in coming arcs connected to a node is �kin� =
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from 0 to 0.117 in increments of 0.001, and convergence times were aver-
aged over 100 independent simulation runs. The plot shows a linear relation-
ship (Pearson coefficient R > 0�98, p < 0�001�.

(error tolerant) to random perturbations, yet highly
sensitive (responsive) to perturbations that are tar-
geted at specific tasks; and (2) if wisely exploited,
the sensitivity of PD complex networks to targeted
perturbations can yield great benefits with minimal
effort, yet the sensitivity characteristic may also result
in detrimental effects if not properly controlled.
In the following, perturbations are considered as

either planned or unplanned task modifications that
could affect the performance11 of the PD process.
Planned task modifications are defined as deliberate
improvements of task parameters, and include:12

(1) decreasing the value of sensitivity rates �i, or
(2) increasing the value of internal completion rates ri.
To simulate unplanned task changes, we modified
tasks by impairing their sensitivity or completion-rate
parameters.
We begin by analyzing the effect of planned changes

of tasks on the PD performance. Effective improve-
ment of tasks will preferentially direct resources to the
most “important” tasks (rather than selecting tasks ran-
domly). Hence, we consider the following five task
modification policies: (1) Information-generating pol-
icy: First, modify the task with the highest out-de-
gree, and continue selecting and modifying tasks in
decreasing order of their out-degree connectivity kout.
(2) Information-consuming policy: Same as in 1, but

11 As before, the performance is measured as the time it takes for
the PD process to reach the uniformly resolved state.
12 Restructuring (redesigning) the task connectivities is another
means for improving performance. Here, we assume a fixed net-
work topology.
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Figure 8 Product Development Performance vs. Fraction of Modified Tasks for Which Internal Completion Rates Are Improved
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Notes. Comparison between five task-modification policies: multiplicative (dotted line), additive (dashed line), information-generating (dashed-dotted line),
information-consuming (solid line), and random �+�. For the nonrandom modification policies, each data point is the average of 1,000 realizations. For the
random modification policy, each point is the average of 30 different modified task selections, performed for 100 independent runs. The average in-degree,
sensitivity rate, internal completion rate prior to modification, and modified internal completion rate are, respectively, as follows: Vehicle: �kin� = 3�475, �=
0�135, r = 0�5, r+ = 1; Software: �kin� = 3�163, �= 0�06, r = 0�5, r+ = 1; Pharmaceutical: �kin� = 6�371, �= 0�065, r = 0�5, r+ = 1; Hospital: �kin� = 9�741,
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modify tasks according to their in-degree kin. (3) Mul-
tiplicative policy: Same as in 1, but modify tasks accord-
ing to the product of their in-degree and out-degree
kinkout. (4) Additive policy: Same as in 1, but mod-
ify tasks according to the sum of their in-degree
and out-degree kin + kout. (5) Random policy: Tasks
are selected randomly, and modified accordingly. The
latter scheme reflects an uninformed modification
strategy.
We examine the sensitivity and robustness of PD

networks with respect to perturbations by studying
how the performance is being affected when a small
fraction, f , of the tasks is modified according to the
task modification policies specified above. In gen-

eral, as seen in Figure 8 and Figure EC.1 (Supple-
ment 1 provided in the e-companion), planned task
modifications tend to increase the performance of
the PD process. However, while the PD performance
increases slowly with f when the random modifica-
tion scheme is applied, a drastically different behavior
is observed when the deliberate modification schemes
are utilized. When tasks are modified preferentially
(by either one of the above modification policies),
the performance of the PD network increases rapidly,
becoming about twice as large as its original value,
even if only 6% of the tasks are modified. This sensi-
tivity to deliberate perturbations is deeply ingrained
in the inhomogeneity property of the in-degree and
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out-degree connectivity distributions of PD networks
as indicated by their long right tails and extremely
large variances (see §4). More specifically, the inho-
mogeneity property related to the out-degree connec-
tivity means that the PD network is dominated by a
few tasks that generate information to a large num-
ber of other neighboring tasks. Similarly, the inho-
mogeneity associated with the in-degree distribution
implies that the PD network is dominated by a few
tasks that consume information from a large num-
ber of neighboring tasks. Consequently, improvement
efforts that are channeled towards these dominating
tasks (e.g., increasing their internal completion rates)
are expected to drastically alter the overall network’s
performance.
The aggregate-based policies (multiplicative and ad-

ditive) seem to generally outperform the single-based
policies (information-generating and information-
consuming). This result is rooted in the nature of the
directed information flows forming the links among
the tasks. While not uniquely affected by either
the in-degree or out-degree connectivity distributions
alone, both distributions are needed to understand
the dynamics of the PD process. Tasks with large in-
and out-degrees have both significant internal com-
plexity associated with assembling the information of
several other tasks, and significant external depend-
ability upon which others rely. Thus, it is plausible to
expect that tasks with large in- and out-degrees could
hamper the PD process.
Figures 8 and EC.1 show that for the vehicle, phar-

maceutical, and hospital networks the performance
of the information-consuming policy (based on in-
degree connectivities) is poor relative to the other
policies. As observed in §4, these networks have
the following properties: (1) the correlation between
the in-degree and out-degree of tasks is small, and
(2) the in-degree distribution has a cutoff that is signif-
icantly lower than the corresponding out-degree cut-
off. This suggests that other networks that satisfy these
properties and utilize the information-consuming pol-
icy might also perform less effectively. Indeed, an
early cutoff of the in-degree distribution (relative to
the out-degree cutoff) implies that tasks with large
incoming connectivities are practically absent. Also, a
lack of degree correlation implies that it is unlikely
that a highly information-generating task (i.e., with
large out-degree connectivity) is also highly informa-
tion consuming (i.e., with high in-degree connectiv-
ity). Consequently, the PD dynamics are generally
expected to be more responsive to modifications that
focus on tasks with high out-degree connectivities.
Finally, we observe that, for the software net-

work, all the “nonrandom” policies perform simi-
larly. This might be expected for networks for which
the in-degree and out-degree connectivities are highly

correlated (e.g., for the software network, the correla-
tion is 0.76).
Next, we analyze the effect of unplanned changes of

tasks (where task parameters are impaired) on the PD
performance. As seen in Figures EC.2 and EC.3 (Sup-
plements 2 and 3, provided in the e-companion), the
PD performance decreases slowly with f when tasks
are changed randomly. On the other hand, a dras-
tically different behavior is observed if unplanned
changes are targeted at central tasks. When tasks are
modified preferentially (by either one of the above
modification policies), the performance of the PD net-
work decreases rapidly, becoming about twice as low
as its original value even if only 6% of the tasks are
modified.
Overall, Figures 8 and EC.1–EC.4 illustrate the dou-

ble-faceted characteristic of PD sensitivity—if wisely
planned, the sensitivity of PD complex networks to
targeted perturbations can yield great benefits with
minimal effort (Figures 8 and EC.1), yet the sensitivity
characteristic may also result in detrimental effects if
not properly controlled (Figures EC.2 and EC.3).

7. Summary and Conclusions
In the last few years, the study of complex network
topologies has become a rapidly advancing area of
research across many fields of science and technology
(Strogatz 2001, Albert and Barabási 2002, Newman
2003). One of the key areas of research is under-
standing the network properties that are optimized
by specific network architectures (Amaral et al. 2000,
Valverde et al. 2002, Cancho and Solé 2003, Mossa
et al. 2002, Shargel et al. 2003). Here, we have ana-
lyzed the statistical properties of real-world networks
of people engaged in product development activities.
We have shown that complex PD networks display
similar statistical patterns to other real-world net-
works of different origins, and have shown how the
underlying network topologies provide direct infor-
mation about the characteristics of PD dynamics. In
particular:
• PD complex networks exhibit the small-world

property, which means that they react rapidly to
changes in design status;
• PD complex networks are characterized by inho-

mogeneous distributions of incoming and outgoing
information flows of tasks. Consequently, PD task net-
works are dominated by a few highly central infor-
mation-consuming and information-generating tasks;
• PD networks exhibit a noticeable asymmetry

(related to the cutoffs) between the distributions of
incoming and outgoing information flows, suggesting
that the incoming capacities of tasks are much more
limited than their counterpart outgoing capacities.
The cutoffs observed in the in-degree and out-degree
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distributions might reflect Herbert Simon’s notion of
bounded rationality (Simon 1998) and its extension to
group-level information processing.
• Focusing engineering and management efforts

on central information-consuming and information-
generating PD tasks will likely improve the perfor-
mance of the overall PD process;
• Failure of central PD tasks affects the vulnerabil-

ity of the overall PD process;
• Positive correlation between the in-degree and

out-degree of a task tends to limit the range of the
parameters’ values for which the system converges to
the uniformly resolved state;
• PD dynamics is highly error tolerant, yet highly

responsive to perturbations that are targeted at spe-
cific tasks.
In the context of product development, what is the

meaning of these patterns? How do they come to be
what they are? We propose several explanations for
these patterns. Successful PD processes in competitive
environments are often characterized by short time
to market, high product performance, and low devel-
opment costs (Clark 1989). In many high-technology
industries, an important trade-off exists between min-
imizing time-to-market and development costs and
maximizing the product performance. In PD task net-
works, accelerating the PD process can be achieved
by cutting out some of the links between the tasks
(Yassine et al. 2003). Although the elimination of
some arcs should result in more rapid PD conver-
gence, this might worsen the performance of the end
system. Consequently, a trade-off exists between the
elimination of task dependencies (speeding up the
process) and the desire to improve the system’s per-
formance through the incorporation of additional task
dependencies. PD networks are likely to be highly
optimized when both PD completion time and prod-
uct performance are accounted for. Recent studies
have shown that an evolutionary algorithm involv-
ing minimization of link density and average distance
between any pair of nodes can lead to nontrivial types
of networks, including truncated scale-free networks,
i.e., p�k� = k−�f �k/k∗� (Valverde et al. 2002, Cancho
and Solé 2003). This might suggest that an evolu-
tionary process that incorporates similar generic opti-
mization mechanisms (e.g., minimizing a weighted
sum of development time and product quality losses)
might lead to the formation of a PD network struc-
ture with the small-world and truncated scale-free
properties.
Another explanation for the characteristic patterns

of PD networks might be related to the close inter-
play between the design structure (product architec-
ture) and the related organization of tasks involved
in the design process. It has been observed that

in many technical systems design tasks are com-
monly organized around the architecture of the prod-
uct (Eppinger et al. 1994). Consequently, there is
a strong association between the information flows
underlying the PD task network and the design net-
work composed of the physical (or logical) com-
ponents of the product and the interfaces between
them. If the task network is a mirror image of the
related design network, it is reasonable that their
large-scale statistical properties might be similar. Evi-
dence for this can be found in recent empirical studies
that show some design networks (electronic circuits,
Ferrer et al. 2001, and software architectures, Valverde
et al. 2002) exhibit small-world and scaling proper-
ties. The scale-free structure of design networks, in
turn, might reflect the strategy adopted by many
firms of reusing existing modules together with newly
developed modules in future product architectures
(Braha and Maimon 1998). Thus, the highly connected
nodes of the scale-free design network tend to be the
most reusable modules. Reusing modules at the prod-
uct architecture level also has a direct effect on the
task level of product development; it allows firms to
reduce the complexity and scope of the product devel-
opment project by exploiting the knowledge embed-
ded in reused modules, and thus significantly reduce
the product development time.
Of greatest significance for the analysis of generic

network architectures, we demonstrated a previously
unreported difference between the distribution of
incoming and outgoing links in a complex network
(see Figure EC.4, which is provided as Supplement 5
in the e-companion, for an analysis of open source
software and electronic circuit networks). Specifically,
we find that the distribution of incoming communica-
tion links always has a cutoff, while outgoing commu-
nication links are scale-free with or without a cutoff.
In the cases studied, when both distributions have
cutoffs, the incoming distribution has a cutoff that
is significantly lower by more than a factor of two.
From a product development viewpoint, the func-
tional significance of this asymmetric topology has
been explained by considering a bounded-rationality
argument originally put forward by Simon in the con-
text of human interactions (Simon 1998). Accordingly,
this asymmetry could be interpreted as indicating a
limitation on the actor’s capacity to process informa-
tion provided by others, rather than the ability to
transmit information over the network. In the latter
case, boundedness is less apparent because the capac-
ity required to transmit information over a network
is often less constrained, especially when it is repli-
cated (e.g., many actors can receive the same informa-
tion from a single actor by broadcast). In light of this
observation, we expect a distinct cutoff distribution
for in-degree as opposed to out-degree distributions
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when the network reflects communication of informa-
tion between human beings as a natural and direct
outcome of Simon’s bounded-rationality argument. It
would be interesting to see whether this property can
be found more generally in other directed human or
nonhuman networks. It seems reasonable to propose
that the asymmetric link distribution is likely to hold
for such networks when nodes represent information
processing elements.
The paper analyzes an intraorganizational network

where PD tasks are nodes. It would be interest-
ing to see if the statistical patterns uncovered for
intraorganizational networks remain invariant when
moving to the interorganizational level, where enter-
prises form the nodes (e.g., supply chain networks;
see Reitman 1997, Nishiguchi and Beaudet 1998).
We conjecture that the level of abstraction will not
significantly change the qualitative structure of the
network’s topology; but may change the embed-
ded parameters underlying the network’s character-
istics (e.g., coefficients and cutoffs of the power-law
distributions). We have identified two generic cate-
gories of network nodes: information-consuming and
information-generating. We believe that this catego-
rization could be expanded by at least three methods:
(1) considering other unit centrality measures (e.g.,
closeness and betweenness centrality; see Wasser-
man and Faust 1999); (2) analyzing the structure of
subgraphs (building blocks) embedded in the net-
works; and (3) assigning richer data structures that
more naturally describe a PD; e.g., adding character-
istics to each task or adding information bandwidth
(weights) to links. Finally, it would be interesting
to see (by direct observations) if the group-level
information-processing capacity reflected by the dis-
tributions’ cutoffs can be extended; e.g., by redesign-
ing the structure or topology of the network or by
incorporating sophisticated information technologies
and transaction protocols.

8. Electronic Companion
An electronic companion to this paper is available
as part of the online version that can be found at
http://mansci.journal.informs.org/.
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Figure EC.1 Product Development Performance vs. Fraction of Modified Tasks for Which Sensitivity Rates Are Improved
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Notes. Comparison between five-task modification policies: Multiplicative (dotted line), additive (dashed line), information-generating (dashed-
dotted line), information-consuming (solid line), and random (+). The average in-degree, internal completion rate, sensitivity rate prior to mod-
ification, and modified sensitivity rate are, respectively, as follows: Vehicle: �kin� = 3�475, r = 0�75, �= 0�2, �− = 0�1; Software: �kin� = 3�163,
r = 0�75, �= 0�1, �− = 0�05; Pharmaceutical: �kin� = 6�371, r = 0�75, �= 0�1, �− = 0�05; Hospital: �kin� = 9�741, r = 0�75, �= 0�05, �− =
0�025.
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Supplement 2. Figure EC.2
Figure EC.2 Product Development Performance vs. Fraction of Modified Tasks for Which Completion Rates Are Impaired
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Notes. Comparison between five-task modification policies: Multiplicative (dotted line), additive (dashed line), information-generating (dashed-
dotted line), information-consuming (solid line), and random (+). The average in-degree, sensitivity rate, internal completion rate prior to modi-
fication, and modified internal completion rate are, respectively, as follows: Vehicle: �kin� = 3�475, �= 0�135, r = 1, r− = 0�5; Software: �kin� =
3�163, �= 0�06, r = 1, r− = 0�5; Pharmaceutical: �kin� = 6�371, �= 0�06, r = 1, r− = 0�5; Hospital: �kin� = 9�741, �= 0�05, r = 1, r− = 0�5.
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Supplement 3. Figure EC.3
Figure EC.3 Product Development Performance vs. Fraction of Modified Tasks for Which Sensitivity Rates Are Impaired
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Notes. Comparison between five-task modification policies: Multiplicative (dotted line), additive (dashed line), information-generating (dashed-
dotted line), information-consuming (solid line), and random (+). The average in-degree, internal completion rate, sensitivity rate prior to mod-
ification, and modified sensitivity rate are, respectively, as follows: Vehicle: �kin� = 3�475, r = 0�75, �= 0�1, �+ = 0�2; Software: �kin� = 3�163,
r = 0�75, � = 0�05, �+ = 0�1; Pharmaceutical: �kin� = 6�371, r = 0�75, � = 0�05, �+ = 0�1; Hospital: �kin� = 9�741, r = 0�75, � = 0�025,
�+ = 0�05.
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Supplement 4. Appendix
The analysis presented in §5.3 neglected the correlations among different tasks’ connectivities. For
completeness, we present in this appendix a brief analysis of the case where there are explicit corre-
lations between pairs of neighboring tasks. First, we modify the dynamical mean-field rate equations
as follows:

d�k�t�

dt
= �1−�k�t�� tanh��k�k�t��−�k�t�r�1− tanh��k�k�t��� ∀k
 (EC1)

where �k�t� is the probability that any given incoming link (arc) to a task with in-degree k originates
from an unresolved task.
It is easy to see that �k is given by

�k�t�=
∑
j

P �k̃in = j � kin = k��j�t�
 (EC2)

where P�k̃in = j � kin = k� is the probability that an incoming link to a task with in-degree kin = k
originates from another (neighboring) task with in-degree k̃in = j . By plugging the expressions for �k�t�
in (EC1), we obtain a first-order nonlinear system of differential equations,

d�

dt
= f���
 (EC3)

We will analyze the stability of the uniformly resolved state �k = 0 ∀k by using a linearization
technique. More specifically, the uniformly resolved state �= 0 will be unstable if the Jacobian matrix
of f��� at the fixed point �= 0 has positive eigenvalues. The Jacobian matrix of f��� at the fixed point
�= 0 can be shown to be

J ����=0 =


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


�=0

= �A− rI


where A= �akj � is a matrix for which akj = kP�k̃in = j � kin = k�, and I is the identity matrix. Let �∗ be
the largest eigenvalue of the matrix A. Thus, the largest eigenvalue of the Jacobian J ����=0 is ��∗ − r ,
and we conclude that the uniformly resolved state �= 0 is unstable if �> �r/�∗�.
Finally, it is shown that if the correlations among different tasks’ connectivities are neglected we

recover the conditions derived in §5.3. If neighboring tasks are uncorrelated—that is, P�k̃in = j �
kin = k�≈ P�k̃in = j�—we obtain

akj = kP�k̃in = j � kin = k�=∑
m

kP�k̃in = j � k̃out =m
kin = k�P�k̃out =m � kin = k�

≈ ∑
m

kP�k̃in = j � k̃out =m�
mP�k̃out =m�

�k̃out�
=∑

m

mP�k̃in = j
 k̃out =m�
k

�k̃out�



A direct calculation shows that the matrix A thus obtained has the eigenvalue �∗ = �kinkout�/�kout�
with the corresponding eigenvector v= �1
2
 
 
 
 
n− 1
n�. Moreover, it is easy to check that �∗ is the
unique and thus largest eigenvalue of A. Consequently, we conclude that the uniformly resolved state
�= 0 is unstable if

�>
r

�∗ =
r�kout�
�kinkout�

recovering the result established in §5.3.
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Supplement 5. Figure EC.4
Figure EC.4 Degree Distributions for Open Source Software and Electronic Circuit Networks
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Notes. (a and b) Open source software systems: The software system networks were generated from the call graphs of the Linux operating
system kernel, and the MySQL relational database system (version 2.4.19 and version 3.23.32 respectively, data courtesy of Chris Myers, Cornell
University). A call graph is a directed graph that represents calling relationship among subroutines. (c and d) Electronic circuits: The electronic
circuit networks were generated from the ISCAS89 benchmark set of sequential logic electronic circuits. The nodes represent logic gates and
flip-flops (data courtesy of Ron Milo, Weizmann Institute). The log-log plots of the cumulative distributions of incoming and outgoing links show
a power law regime for the out-degree distributions with a fast decaying tail for the in-degree distributions. Similar to the product development
networks (see Figure 3 in main text), the product design networks exhibit a noticeable asymmetry (related to the cut-offs) between the distribu-
tions of incoming and outgoing information flows, suggesting that the incoming capacities of “components” are much more limited than their
counterpart outgoing capacities. These product design networks also exhibit a low correlation between the in-degrees and out-degrees of nodes
as observed for the PD networks.




