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The COVID-19 pandemic, caused by the novel
coronavirus SARS-CoV-2, has already claimed
over 75,000 deaths worldwide [1], and if left
unchecked, will claim many, many more. Mod-
els can help us determine how to stop the spread
of the virus, but it is important to distinguish
between that which models can and cannot pre-
dict. All models’ assumptions fail to describe the
details of most real-world systems, but these sys-
tems may possess large-scale behaviors that do
not depend on all these details [2]. A simple
model that correctly captures these large-scale
behaviors is useful; a complicated model that
gets some details correct but mischaracterizes the
large-scale behaviors is misleading at best. Large-
scale behaviors of the COVID-19 pandemic in-
clude the rate of exponential growth/decay in the
number of active infections in each region, as well
as the transmission rates between regions. The
values of these parameters, both of which can be
controlled with interventions, determine whether
the large-scale behavior of COVID-19 is that of
exponential spread until saturation or exponen-
tial decay until elimination. We may not be able
to precisely predict the trajectory of the epidemic
under any given set of interventions, but we know
that a strong enough set of interventions can en-
sure we are in the latter regime.

Understanding what models cannot predict is some-
times more important than understanding what they can.
For example, in a chaotic system such as the weather,
only very short-term predictions are accurate because
small changes in the present can result in very large
changes in the future. The trajectory of the COVID-
19 pandemic is another example: because the number of
infections depends exponentially on the growth rate of
the epidemic, small inaccuracies in the prediction of the
growth rate will lead to large changes in the number of
deaths after enough time. Furthermore, the growth or
decay rate of the epidemic depends on the precise im-
plementation details of interventions, and a very small
change in the strength of interventions could be the dif-
ference between two hugely different outcomes: exponen-
tial growth until saturation versus exponential decay un-
til elimination. Gaining an approximate understanding
of the trajectory of the epidemic is important, but, when
there is so much uncertainty arising from underlying dis-
ease and social dynamics in addition to the uncertainty
over exactly how interventions will be implemented, de-
tailed refinements to models are not.

More generally, spending effort trying to pin down de-

Transmission between regions

Mean size of regional outbreak

Transmission	between	regions	
M
ea
n	
siz

e	
of
	fu

tu
re
	re

gi
on

al
	o
ut
br
ea
ks
	

Stable	phase:	
Elimination	is	a	
stable	fixed	point		

Unstable	phase:	
Elimination	is	an		
unstable	fixed	point	

FIG. 1. A collection of geographic regions can exist in one
of two phases with respect to COVID-19. If strong enough
lockdown measures (which may include testing/contact trac-
ing/quarantine) are imposed, the virus can be eliminated from
currently infected regions. The question is then whether this
elimination is stable or whether the number of cases will re-
bound after the lockdown is lifted. Whether or not elimi-
nation is stable depends on (1) the average total number of
cases that will result from the disease being transmitted to a
region, which in turn depends on (among other factors) how
quickly regions locally lock down if they are infected or re-
infected, and (2) the probability that an infected individual
in one region will infect an individual in another, which in
turn depends on the rate of travel between regions [4, 5].

tails in models is futile if any accuracy gained is swamped
by uncertainty in the measurements or by inaccuracies in
the core model assumptions. What is the purpose of re-
fining a model by 10% if there is a 50% uncertainty stem-
ming from other aspects or assumptions of the model,
or if there is a relevant behavior of the modeled system
that the model fails to capture all together? Models that
attempt to capture a system’s small-scale detailed be-
havior (e.g. ref. [3]) will inevitably include some details
and leave out others. Depending on which details are
included, such models may mischaracterize the system’s
large-scale behavior, and when they do work, it is often
because their specific assumptions are a special case of
a simpler, more general model. Thus, sometimes it is
not the complicated models but the deceptively simple
ones that are most effective for understanding a system’s
large-scale behavior.
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For COVID-19, one large-scale behavior is an exponen-
tial increase in infections in the absence of intervention
(unless the number of people infected is approaching sat-
uration), with the exact growth rate depending on the
location and the precise details of disease transmission.
Interventions may change this growth rate and strong
enough interventions such as lockdowns may result in an
exponential decay rather than exponential growth. An-
other large-scale behavior is the fact that transmission
is predominantly local, with travel creating the possi-
bility of long-range spread. The number of infections
does not change uniformly all over the world at once
but rather predominantly independently in each region,
with the probability that the disease is transmitted from
one region to another depending on the number of infec-
tions in the first region and the travel rate from the first
to the second among contagious individuals. There are
many small-scale details to the disease transmission pro-
cess, but the large-scale dynamics seem to be captured by
the rate of increase or decrease within a region and the
rates of transmission between regions (both of which may
change over time due to interventions, saturation effects,
or other variations in external conditions). Depending
on the dynamics of these parameters, a collection of re-
gions can exist in one of two phases: a stable phase, in
which the disease dynamics tend towards a stable fixed
point of elimination (i.e. no infected regions), and an
unstable phase, in which the number of infected regions
grows until a saturation point is reached (see fig. 1).1 In
order for a collection of regions to be in the stable phase,
it is not necessary for regions to be under constant lock-
down after they have been cleared of the virus but rather
only for each region to be ready to lockdown in the event
that it is re-infected [5]. If the virus is introduced or
re-introduced into a collection of regions in the unstable
regime, the number of infected regions will exponentially
grow, but if the virus is introduced or re-introduced into
a collection of regions in the stable regime, the system
will return to its eliminated state.

If the large-scale behaviors of a system are correctly
described, specific details can be understood in terms of
their effects on these behaviors. But if a model’s assump-
tions do not yield the same general large-scale behaviors
of the system being modeled, adding additional details
to the model will serve only to create a false sense of
confidence. For example, models using continuous vari-
ables to represent fractions or probabilities of individu-
als being infected may predict that although a lockdown

1 A lockdown within a single geographic region can itself be ana-
lyzed using fig. 1, if each household is considered as a “region.”
In this case, the mean size of an outbreak would be the aver-
age number of individuals within a household expected to get
COVID-19 if one individual in the household is infected, with
the disease transmission between “regions” corresponding to the
probability that an infected individual in one household has of
infecting an indidivdual in a different household. The primary
purpose of a lockdown is to control this probability.

can produce an exponential decline in cases, the num-
ber of cases will inevitably rebound once the lockdown
is lifted. However, the assumption of approximately con-
tinuous behavior breaks down for small numbers of in-
fections (which exponential decline will inevitably bring
about given sufficient time). If small numbers appear
only in the final output of the model, human judgement
can correct for the error (e.g. by interpreting a fraction
of a case in the model as the virus having been elimi-
nated in reality). But if these small numbers arise as
intermediate values in the model, the model will predict
exponential growth once the lockdown is lifted, despite
the fact that the model is no longer valid in this regime
and there may in fact be zero cases.2 A rebound in in-
fections after lockdown measures are lifted is a potential
large-scale behavior of the system, but it is not inevitable
(as predicted by continuous models) but rather depends
on our actions: if interventions strong enough to create
an exponential decay in the number of active infections
are held in place for a sufficient amount of time, the virus
will be eliminated.3

It may be objected that even if the fraction of the popu-
lation infected becomes very small, if the size of the popu-
lation being considered is large enough, then the number
of cases will nonetheless be large enough to be approx-
imated as continuous. However, models often consider
the entire population of a country together. In reality,
disease transmission is far more local (and can be made
even more so with lockdowns and travel reductions) and
so the sizes of the populations for which the models apply
will be far smaller than that of an entire country. Thus,
the locality in the dynamics (the degree of which can be
increased by travel restrictions) makes it more likely that
a small fraction of the population infected in the model
corresponds to the virus being eliminated in reality, and
it also allows for the lockdown to be lifted region by re-
gion, rather than remaining in all regions until the entire
country is cleared of the virus. Ultimately, the specific
detailed assumptions of particular models will vary; what
matters is not the particular assumptions, but whether
or not they appropriately characterize the large-scale be-
haviors described above.

Finally, “What will happen?” is a different question
than “What should we do?” and for COVID-19 the lat-
ter question is far easier to answer than the former. In
the absence of a full understanding of a system’s details,
answering the latter question involves understanding how
our potential actions impact the relevant large-scale pa-
rameters of the system, which for COVID-19 are the rate
of exponential growth or decay in each region and the

2 The virus may still be re-imported, but if elimination is a stable
fixed point of a collection of regions (fig. 1), the number of regions
with non-zero infections will decrease to zero over time.

3 The elimination of the virus can be hastened by testing, contact
tracing, and quarantine, which may become more feasible and/or
effective once the number of infections has been sufficiently re-
duced.
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probabilities of transmission between regions. Even if we
cannot precisely predict the impact of any given inter-
vention, we know of many interventions that will reduce
the rates of transmission within and between regions,
and, based on our empirical understanding of COVID-19
transmission and the fact that some countries have seen
declines in new cases, we know that combining enough of
them together will reduce the rate of transmission suffi-
ciently to achieve exponential decline and stop the out-

break [6]. This, in and of itself, is a simple but powerful
formal model that captures the large-scale behaviors of
interest. The question of the disease trajectory is less
important than the question as to what can be done to
(1) cause an exponential decrease rather than increase in
new infections and (2) cause this decrease to be as fast
as possible. The point is not the specific predictions for
each intervention but that together they can eliminate
the virus.
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