CIRCLY – what modulus values for stress dependent materials?

Bruce Chappell
Technical Director
Beca
Continues to be an issue

- 2006 presented on modulus over weak subgrades
- Worth revisiting to try and get consistency in approach
- Peer review work reveals a variety of interpretations
- 2004 Austroads Guide and 2007 NZ Supplement are still NZTA current design documents.
- Austroads Pavement Technology series not approved as the design standard by NZTA, no NZ Supplement, yet.
- Typically issues arise with unbound or modified materials:
 - Under stiff layers
 - Over weak subgrades
- Not enough guidance on FBS layer design to limit stress
Table 6.4(a) and (b) reflect the stress dependency:
- Give maximum vertical modulus of top sub-layer of base aggregate
- Table 6.4 (a) for ‘normal’ standard material
- Table 6.4 (b) for ‘high’ standard material

Table 8.1(d) reflects the possible strength gain for a layer:
- Gives two sub-layering design equations to determine modulus increase above a subgrade
- One for selected subgrade materials (subgrade improvement layer)
 - Modulus gain factor is 2 to the power of (thickness of layer / 150)
- One for granular materials above subgrade, subgrade improvement layer or aggregate layers
 - Modulus gain factor is 2 to the power of (thickness of layer / 125)
An example:
- 150 mm asphalt (E = 2000 MPa)
- 300 mm unbound granular AP40 subbase
- CBR 3% subgrade

Table 6.4 maximum E for subbase is 330 MPa (high std) or 230 MPa (normal standard), however

Table 8.1 modulus is 30 MPa to 160 MPa at top of subbase

E value is often overestimated in these scenarios

Another case is subbase under a 250 mm FBS layer, where Table 6.4 would allow maximum subbase E = 210 MPa
Foamed Bitumen Stabilised Layers

- Do we check the modulus based on strength gain over the layer below? Check NZ Supplement ……
 - Phase 1, high E, ? value? Then reduces to Phase 2 steady state E.
 - No, it is often assumed to be $E = 800 \text{ MPa}$, no sublayering.

- FBS design is not required to obey the Austroads unbound/modified rules, should it be classified as bound?
 - No, it also escapes tensile fatigue scrutiny, ductile behaviour.
 - BUT there must be a limit to what stress it can tolerate

- Question - Will it give the assumed modulus in service?
 - Only if the supporting structure enables compaction to be achieved.
 - Arnold suggests: Limit design stress to 40% of tensile stress at break in flexural beam testing, then it will maintain design E value in service.
Lessons

- We need to have a design methodology that is clear to young designers, currently it has many interpretations.

- The methodology needs to flag limits on modulus gain, both due to stress dependency and gain above layers below.

- More guidance on stress limits in foamed bitumen mechanistic design is required, either limiting tensile stress to less than 50% of rupture stress (give typical values), or limit strength gain above layers below based on Austroads.

- FBS phase 2 strength needs confirmation after construction.
Recommendations

- Check assumptions for layer modulus using Austroads stress dependency and strength gain rules.

- Need guidance to designers in the NZ Supplement for FBS:
 - Ratio of Phase 1 modulus to Phase 2 (assumed 800 MPa) modulus
 - Limits for tensile stress at base of FBS.

- Model expected deflections under known loads. Model an initial higher value for FBS layers (Phase 1 value) for immediate construction verification.

- Use deflection testing for layers in construction to verify the pavement modelled deflections have been achieved.

- For FBS have deflection testing verification after one year to check Phase 2 steady state designed stiffness is achieved.