The Pavement Mechanistic Design Workshop May 2008

Assessment of Pavement Layer Quality using CUSUM Analysis
- Quality of Pavement Construction

Presented by
Gary Lin
CUSUM - Principles

- What is the basis of CUSUM analysis
 - Cumulative sum of the differences between the values and the average
 - Golf game analogy

<table>
<thead>
<tr>
<th>Hole</th>
<th>PAR</th>
<th>SCORE</th>
<th>DIFF</th>
<th>CUSUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

CUSUM - Graphical Representation

OPUS
CUSUM – Quality of Pavement Construction

Example – North Shore Busway

- Pavement Quality Review
 - Subbase Compaction
 - Basecourse Compaction
 - Degree of Saturation
 - Benkelman Beam on Basecourse
 - FWD on Chipseal
CUSUM – NSBW Subbase Densities

CUSUM at mean = 2.47 t/m³

Chainage of Busway Main Alignment

Cumulative Densities

CUSUM at mean = 2.47 t/m³

Chainage of Busway Main Alignment
CUSUM – NSBW Subbase Densities

CUSUM at 100% Plateau Density = 2.4t/m3

Cumulative Densities

Chainage of Busway Main Alignment
CUSUM – NSBW Basecourse Densities

CUSUM at Mean = 2.48 t/m³

Chainage on Busway Main Alignment

Cumulative Densities
CUSUM – NSBW Basecourse Densities

CUSUM at 100% Plateau Density = 2.4t/m3

Cumulative Densities vs Chainage on Main Alignment
CUSUM – NSBW Saturation

NSBW Degree of Saturation Histogram

- Degree of Saturation %
- Frequency

![Graph of NSBW Degree of Saturation Histogram](attachment:image.png)
CUSUM – Quality of Pavement Construction

Example – North Shore Busway

- Pavement Quality Review
 - ✔ Subbase Compaction
 - ✔ Basecourse Compaction
 - ✔ Degree of Saturation
CUSUM – NSBW Benkelman Beam

CUSUM at Mean Deflection = 0.60mm

Cumulative Deflection

Chainage on Main Alignment
CUSUM – NSBW Benkelman Beam

CUSUM at deflection = 0.75mm

Cumulative Deflection

Chainage on Main Alignment
CUSUM – NSBW FWD

CUSUM

<table>
<thead>
<tr>
<th>location</th>
<th>lane</th>
<th>disp0_reading</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.40</th>
<th>Mean = 0.439</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00</td>
<td>L1</td>
<td>0.65</td>
<td>-0.351</td>
<td>-0.251</td>
<td>-0.151</td>
<td>-0.051</td>
<td>0.049</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>9.01</td>
<td>R1</td>
<td>0.58</td>
<td>-0.635</td>
<td>-0.435</td>
<td>-0.235</td>
<td>-0.035</td>
<td>0.165</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>9.02</td>
<td>L1</td>
<td>0.62</td>
<td>-0.957</td>
<td>-0.657</td>
<td>-0.357</td>
<td>-0.057</td>
<td>0.243</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>9.03</td>
<td>R1</td>
<td>0.57</td>
<td>-1.224</td>
<td>-0.824</td>
<td>-0.424</td>
<td>-0.024</td>
<td>0.376</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>9.04</td>
<td>L1</td>
<td>0.83</td>
<td>-1.749</td>
<td>-1.249</td>
<td>-0.749</td>
<td>-0.249</td>
<td>0.251</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>9.05</td>
<td>R1</td>
<td>0.80</td>
<td>-2.245</td>
<td>-1.645</td>
<td>-1.045</td>
<td>-0.445</td>
<td>0.155</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>9.06</td>
<td>L1</td>
<td>0.63</td>
<td>-2.573</td>
<td>-1.873</td>
<td>-1.173</td>
<td>-0.473</td>
<td>0.227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.07</td>
<td>R1</td>
<td>0.83</td>
<td>-3.101</td>
<td>-2.301</td>
<td>-1.501</td>
<td>-0.701</td>
<td>0.099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.08</td>
<td>L1</td>
<td>0.63</td>
<td>-3.432</td>
<td>-2.532</td>
<td>-1.632</td>
<td>-0.732</td>
<td>0.168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.09</td>
<td>R1</td>
<td>0.55</td>
<td>-3.678</td>
<td>-2.678</td>
<td>-1.678</td>
<td>-0.678</td>
<td>0.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.10</td>
<td>L1</td>
<td>0.61</td>
<td>-3.988</td>
<td>-2.888</td>
<td>-1.788</td>
<td>-0.688</td>
<td>0.412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.11</td>
<td>R1</td>
<td>0.61</td>
<td>-4.301</td>
<td>-3.101</td>
<td>-1.901</td>
<td>-0.701</td>
<td>0.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.12</td>
<td>L1</td>
<td>0.55</td>
<td>-4.551</td>
<td>-3.251</td>
<td>-1.951</td>
<td>-0.651</td>
<td>0.649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.13</td>
<td>R1</td>
<td>0.48</td>
<td>-4.729</td>
<td>-3.329</td>
<td>-1.929</td>
<td>-0.529</td>
<td>0.871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.14</td>
<td>L1</td>
<td>0.41</td>
<td>-4.838</td>
<td>-3.338</td>
<td>-1.838</td>
<td>-0.338</td>
<td>1.162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.15</td>
<td>R1</td>
<td>0.53</td>
<td>-5.063</td>
<td>-3.463</td>
<td>-1.863</td>
<td>-0.263</td>
<td>1.337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.16</td>
<td>L1</td>
<td>0.90</td>
<td>-5.667</td>
<td>-3.967</td>
<td>-2.267</td>
<td>-0.567</td>
<td>1.133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.17</td>
<td>R1</td>
<td>0.53</td>
<td>-5.892</td>
<td>-4.092</td>
<td>-2.292</td>
<td>-0.492</td>
<td>1.308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.18</td>
<td>L1</td>
<td>0.90</td>
<td>-6.493</td>
<td>-4.593</td>
<td>-2.693</td>
<td>-0.793</td>
<td>1.107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.19</td>
<td>R1</td>
<td>0.61</td>
<td>-6.806</td>
<td>-4.806</td>
<td>-2.806</td>
<td>-0.806</td>
<td>1.194</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.20</td>
<td>L1</td>
<td>0.72</td>
<td>-7.227</td>
<td>-5.127</td>
<td>-3.027</td>
<td>-0.927</td>
<td>1.173</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUSUM – NSBW FWD

NSBW FWD CUSUM at 0.4mm

CUSUM Deflection

Chainage

LHS

RHS
CUSUM – NSBW FWD

NSBW FWD CUSUM at 0.5mm

Chainage

CUSUM Deflection

LHS
RHS
CUSUM – NSBW FWD

NSBW FWD CUSUM at 0.6mm

CUSUM Deflection

Chainage

LHS
RHS

CUSUM – NSBW FWD

OPUS
CUSUM – NSBW FWD

NSBW FWD CUSUM at 0.8mm

CUSUM Deflection

LHS

RHS
CUSUM – NSBW FWD

NSBW FWD Deflections

Deflection (mm)

Chainage

LHS
RHS
CUSUM – Quality of Pavement Construction

Example – North Shore Busway

Pavement Quality Review

✓ FWD & Benkelman Beam Deflections
CUSUM – Quality of Pavement Construction

- Example – UHC: Greenhithe Section
 - Pavement Quality Review
 - Subbase Compaction
 - Basecourse Compaction
 - Degree of Saturation
 - Benkelman Beam on Basecourse
 - FWD on Chipseal
CUSUM – UHC: Greenhithe FWD

Greenhithe FWD Deflections

Deflection (mm)

Chainage

LHS RHS
CUSUM – UHC: Greenhithe FWD

Greenhithe FWD CUSUM at Mean = 0.43mm

CUSUM Deflection

Chainage

LHS RHS

OPUS
CUSUM – UHC: Greenhithe FWD

Greenhithe FWD CUSUM at 0.5mm
CUSUM – UHC: Greenhithe FWD

Greenhithe FWD CUSUM at 0.6mm

CUSUM Deflection

Chainage

CUSUM Deflection

Chainage

LHS

RHS

OPUS
CUSUM – Quality of Pavement Construction

- Example – UHC: Greenhithe Section
 - Pavement Quality Review
 - FWD Deflections
CUSUM – Quality of Pavement Construction

- CUSUM Analysis is a useful tool to:
 - monitor the consistency in quality of pavement construction.
 - identify possible future areas to monitor.