BASIC INFORMATION

<table>
<thead>
<tr>
<th>Section Reference (Road & RP)</th>
<th>..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtitle (physical limits)</td>
<td>..</td>
</tr>
<tr>
<td>Length (km)</td>
<td>..</td>
</tr>
</tbody>
</table>

Testing Direction:
- Both Directions
- Increasing RP only
- Decreasing RP only

Lanes to Be Tested:
- Main through lane
- Include passing lane
- Include passing lane and turning lanes

Design Traffic:
- Average 2-way AADT:
- Average ESA/lane/year:

Email Address: ..

DETAILED INFORMATION (Preferred to assist processing and improve model calibration)

Objectives:
- Rehabilitation
- Asset Management/dTIMS
- Construction QA

Design Life:
- 25 yrs
- 20 yrs
- 15 yrs
- 10 yrs
- Other

Testing Interval:
- Project level
- Network level
- Planning level
- (25m staggered between lanes)
- (50m staggered between lanes)
- (100m staggered between lanes)

AS-Built Reliability:
- Uncertain
- Good
- Pits proposed after FWD identifies weak spots
- (expected thicknesses only)
- (test pit logs/as built to be forwarded)

Surfacing:
- Type: Chip-seal
- Friction course
- Asphalitic concrete
- Unsealed

Thickness: mm

Basecourse:
- Type: M/4 unbound granular
- Cement stabilised
- Lime stabilised

Thickness: mm

Subbase:
- Type: Unbound granular
- Stabilised

Thickness: mm

Subgrade:
- Type: Unstabilised
- Stabilised

Present Condition of Subgrade:
- Typical winter state
- Unusually wet
- Dry
- Unusually dry

Compared to winter design state, factor deflections by:
- (x 1.0)
- (x 0.95)
- (x 1.05)
- (x 1.10)

Roughness:
- Present NAASRA: counts.
- Year of last shape correction:
- Terminal Roughness:

Existing Distress:
- None
- Widespread
- Localised

Mode:
- Rutting
- Shoving
- Cracking

Ensure extra tests at stations: ...

Proposed Treatment:
- M/4 unbound granular overlay
- Asphalitic concrete overlay
- Friction course overlay
- Cement stabilisation of basecourse
- Recyling of surface layer
- None - structural evaluation/dTIMS
- None - deterioration monitoring
- None - construction QA

Structural Evaluation Method:
- AUSTROADS
- AUSTROADS/TNZ 1997 supplement

TNZ Method:
- Ratio of future to past traffic (default 3)..............
- Percentage of road now in terminal conditions (default 50)..............

Traffic Control:
- Standard signage and flashing beacons
- Additional shadow vehicle supplied by client
- Additional shadow vehicle to be supplied by T&T
- Attenuator vehicle to be supplied by T&T
- Specific instructions below

Email Address: ..

ESA Calculation:
- Derive average ESA/lane/year from AADT and Design Life above:
- Calculate below
- Don't calculate - use value in basic data above

Percent HCV

ESA/HCV

Growth/yr