2006 NZ Supplement

Ross Peploe, Bartley Consultants
David Alabaster, Transit NZ

• 2006 update of the NZ Supplement to the Austroads Pavement Design Guide
• Updated annually to improve the document & implement recent research
• 2006 update
 – Current draft form
 – Industry comments received
 – Finalised by end of June
Proposed Changes

- Main issues
 - Shift Factors for HMA
 - Pavement considerations for intersections
 - Pavement widenings
 - Water flowing within pavement layers
 - Structural contribution of OGPA
 - Modified aggregate parameters
 - Foamed bitumen stabilisation

Shift Factors for HMA

- Shift Factors for HMA
 - SFs reflect better HMA fatigue performance in the field compared with lab
 - SFs imbedded in Reliability Factors
 - considered to be overly conservative
 - Proposed RFs
 - 3.4 (cf 0.67) @ 97.5% reliability
 - 5.0 (cf 1.0 – 2.5) @ 80 – 95% reliability
Pavements for Intersections

- Pavement considerations for intersections
 - Rutting / heaving common in wheel tracks at intersections
 - slow moving / concentrated loads
 - high shear stresses
 - high temperatures – hot exhaust pipes
 - Guidance given regarding:
 - structural design considerations
 - surface deformation resistance considerations
 - construction considerations

Pavement Widenings

- Pavement widenings
 - Large number of failures at interface between widening & existing pavement
 - excavation removes lateral constraint
 - segregation at interface
 - difficult compaction conditions
 - Recommend modifying upper materials at least to centre line of carriageway
 - continuity across the interface
Water in Pavement Layers

• Water flowing within pavement layers
 – General notes provided regarding water in pavement layers
 • through surface
 • permeable shoulders / berms
 – high side of super-elevated curves
 • within aggregate layers
 – perched on stabilised subbase
 • dams created by patches

Structural Contribution of OGPA

• Structural contribution of OGPA
 – Relatively high elastic modulus values obtained for aged OGPA specimens
 – Design model
 • OGPA over unbound base
 – Consider OGPA layer to be additional base thickness
 • OGPA over structural asphalt base
 – Include OGPA @ 500 – 1,000 MPa depending on speed & temp environment
Modified Aggregate Parameters

- Modified aggregate parameters
 - Aggregates generally should achieve M/4 criteria post modification
 - Allow slightly higher E-values in design
 - establish by:
 - FWD back analysis
 - RLT testing

Foam Bitumen Stabilisation

- Foam bitumen stabilisation
 - Two-phase design analysis
 - Seating-in phase
 - no proven performance criteria for Aust / NZ
 - Steady state phase
 - Effective granular layer
 - \(E = 800 \) MPa as general rule
 - dependent on additives, density, layer composition