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Abstract
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1 Introduction

It has been observed in many settings that people have a limited capacity for attention, and this

has a strong impact on their decision-making. For example, Chetty et al. (2009) demonstrate that

consumers underreact to non-salient sales taxes; De los Santos et al. (2012) show that people only

visit a small number of websites before making online purchases; and Allcott and Taubinsky (2015)

provide evidence that people do not fully account for energy efficiency when making purchasing

decisions about light bulbs.1 Several laboratory experiments have demonstrated evidence of limited

attention, including Gabaix et al. (2006), Caplin and Martin (2017), and Dean and Neligh (2019).

An increasingly common explanation for this phenomenon is the theory of rational inattention

(Sims, 2003, 2006; Caplin and Dean, 2015; Matějka and McKay, 2015). This theory posits that

people rationally choose the information to which they attend, trading off the costs of paying more

attention with the ensuing benefits of better decisions. This decision-making process occurs in two

stages. In the first stage, the decision-maker chooses what information to acquire and pays costs

accordingly. In the second stage, the decision-maker uses the information she acquired to make

decisions. Some authors make minimal assumptions on first-stage costs and derive the resulting

behavioral implications (e.g. Caplin and Dean, 2015; Chambers et al., 2019). Other authors assume

a specific functional form for these costs, such as mutual information (Matějka and McKay, 2015;

Steiner et al., 2017; Caplin et al., 2019), or channel capacity (Woodford, 2012a). However, little

is known about what form these costs take in reality, and different assumptions on these costs can

lead to starkly different predictions. For instance, the properties of the information cost function

can determine the multiplicity of equilibria in a global game (Hellwig et al., 2012; Morris and Yang,

2019), or whether financial investments are diversified or concentrated (Van Nieuwerburgh and

Veldkamp, 2010).

In this paper, we use a laboratory experiment to investigate these first-stage information costs,2

a crucial input for a rational inattention framework. Subjects complete a series of tasks where

they must identify the numerosity of an arrangement of randomly-placed dots, as in Saltzman and

1Other empirical studies that find evidence of limited attention include: Hossain and Morgan (2006), Pope (2009),
Lacetera et al. (2012), and McDevitt (2014) (consumer choice); Bernard and Thomas (1989), Huberman (2001),
DellaVigna and Pollet (2007), Malmendier and Shanthikumar (2007), Hirshleifer et al. (2009), and Ehrmann and
Jansen (2017) (financial markets); Bartoš et al. (2016) (housing and labor); and Ho and Imai (2008) and Shue and
Luttmer (2009) (voting behavior). For a survey that discusses additional field studies, see DellaVigna (2009).

2We also conducted an online experiment, the results of which we report in Supplementary Appendix S5.
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Garner (1948) and Kaufman et al. (1949), but without time pressure. Our tasks are also similar to

the ball-counting tasks of Caplin and Dean (2014) and Dean and Neligh (2019).

This series of tasks has fine-grained variation in the level of potential rewards for a correct

answer. For each reward level, we observe both the correct answer and the subject’s response. We

interrogate these data in two ways: (1) testing various properties of cost functions; (2) determining

which functional forms for information costs are most consistent with observed behavior.3

For the first set of analyses, the data allow us to recover several properties of each subject’s

underlying information cost function. The analyses proceeds hierarchically. For each subject, we

are concerned with: (1) whether an information cost function exists, i.e. whether the subject’s

behavior is consistent with a rational inattention framework; (2) if it exists, whether it produces

behavior that is responsive to incentives; and (3) if it induces responsiveness, whether it is “well-

behaved,” i.e. continuous and convex. In the paper, we derive conditions on subjects’ data for

testing each of these properties.

The reason we are interested in well-behavedness is because continuity and convexity are im-

portant characteristics of many cost functions and are often assumed in economic analysis. The

convexity4 of an information cost function can greatly affect model predictions. For example,

Van Nieuwerburgh and Veldkamp (2010) study a portfolio choice problem in which investors choose

which assets to learn about and how much to learn about each of them. Depending on the convexity

of the investor’s utility and cost functions, it can be optimal for the investor to learn about all avail-

able assets or to simply concentrate their attention on a single asset; utility and cost functions that

imply concave objective functions result in generalized learning, whereas those that imply convex

objective functions result in specialized learning. Convexity also has implications for comparative

statics in a model of rational inattention. As we prove in this paper, continuity and convexity

together imply that gross payoffs (excluding information costs) change continuously in incentives.

This has crucial implications for economic analysis: an elasticity-based approach to welfare anal-

ysis, which is based around local properties of agents’ behavior, can be deeply misleading if there

are discontinuities in that behavior. As an illustration of the importance of these properties, we

3Using fine-grained variation in incentives provides several advantages for the second set of analyses. For details,
please refer to Appendix subsection A4.2.

4Note that a finite, convex function is continuous on the interior of the space on which it is defined; in most cases
of interest, continuity will be a necessary condition for convexity.
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show in Supplementary Appendix S6 that the violation of them can have profound implications in

a simple contracting model.

In our sample, over 85% of subjects exhibit behavior consistent with having an information cost

function, but just over half exhibit responsiveness. We also find that roughly one-third of responsive

subjects (those whose performance on the tasks improves with increasing potential rewards) have

behavior that is consistent with well-behaved cost functions.

The second important set of analyses in our paper fits various classes of cost functions to our

subjects’ data and selects the best fit for each subject. From the accuracy of subjects’ responses for

each reward level, we infer how their performance in the experimental tasks changes with potential

rewards; put differently, we estimate a performance function that traces out the relationship be-

tween the potential reward and the probability of success. From this relationship, we can recover

estimates of the parameters of a subject’s information cost function. Comparing the subjects’ per-

formance functions to those predicted by a range of information cost functions allows us to find the

best fit for each individual.

In this paper, we provide a general result for recovering well-behaved, differentiable information

cost functions from performance functions, and we derive functional forms for the performance

functions associated with a range of information cost functions, some well-behaved and some not. Of

particular interest to us are cost functions that have previously been used in the economic literature:

mutual information (cf. Matějka and McKay, 2015), which is a scaling of the expected reduction

in entropy from a decision-maker’s prior beliefs to their posterior beliefs; Tsallis entropy costs (cf.

Caplin et al., 2019), which generalize mutual information; fixed costs for information acquisition

(e.g. Grossman and Stiglitz, 1980; Barlevy and Veronesi, 2000; Hellwig et al., 2012); and costs for

increasing the precision of normally distributed signals (e.g. Verrecchia, 1982; Van Nieuwerburgh

and Veldkamp, 2010). As we show in the paper: the first implies a logistic performance function;

the second implies a sigmoid, inverse-S, or concave performance function; the third implies a binary

performance function with two levels of performance; and the fourth implies a concave performance

function. Of the set of models we estimate, we find that the data of the subjects who are responsive

to incentives are best fit by one of these four models, with roughly two-thirds of subjects best fit

by the first two models, a quarter of subjects best fit by the third model, and one-seventh of

subjects best fit by the fourth model. Thus, while there is some heterogeneity in the population
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with respect to which cost functions best reflect human behavior, the set of potential cost functions

that we need to consider can reasonably be reduced to four of the cost functions commonly found

in the literature.

The main advantage of using an experiment to characterize information costs is that it allows

us to observe many decisions from the same individual, over a small time frame, in an environment

where we can control the information available to subjects, thereby giving us a rich data set

from which to recover the properties and parameters of each individual’s cost functions. This is

simply not possible with an administrative data set that contains a small number of decisions

made by each individual. The experimental methodology we use is also highly adaptable and can

accommodate a wide range of information acquisition tasks that may be of interests to researchers.

Thus, our approach can be seen as a “testing bed” for theories of limited attention. Specifically

using perceptual tasks with clear correct and incorrect answers, rather than choices between goods

or gambles, allows us to estimate information costs separately from gross utility.

Furthermore, to our knowledge, our paper is the first to use an experiment with fine-grained

variation in incentives to infer properties of information cost functions. This fine-grained variation

is essential for estimating subjects’ performance functions, which is crucial for our model-fitting

exercise. Although several papers have examined competing hypotheses of dynamic evidence ac-

cumulation using perceptual data (e.g. Ratcliff and Smith, 2004; Smith and Krajbich, 2019), and

some have used such data to fit a single model of static information acquisition (e.g. Shaw and

Shaw, 1977; Pinkovskiy, 2009; Cheremukhin et al., 2015; Dean and Neligh, 2019), ours is the first

to run a model selection exercise between a large number of types of cost functions in a static

rational inattention framework.5 Moreover, in contrast to previous experimental work, the tasks in

our experiment involve more than two options, which allows us to differentiate between information

cost functions that are not readily distinguished from each other under simple binary choice.

Our experiment also provides significant advantages relative to experiments that use choice

over gambles to study information costs (e.g. Pinkovskiy, 2009; Cheremukhin et al., 2015). In

5Cheremukhin et al. (2015) assume a specific but flexible functional form for information costs and perform two
types of model selection exercises. One is based on model fits and is used to select between expected utility and
rank-dependent utility. The other is based on parameter estimates and is used to distinguish between additively
separable Shannon entropy-based costs (Matějka and McKay, 2015) and a capacity constraint on mutual information
(Sims, 2003), since the functional form they consider nests the former and approximately nests the latter. This
analysis omits most of the information cost functions considered in our paper.
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a perceptual task, the correct answer is objective and known to the experimenter, whereas in a

choice between gambles, the “correct answer” is determined by the subject’s preferences, which the

experimenter does not directly observe and cannot easily be disentangled from the information costs

entailed by the subject in reaching a decision. Moreover, because of our incentivization scheme, any

subset of perceptual tasks in our experiment can be unambiguously ranked in terms of potential

rewards, which cannot in general be done with choices over gambles. Therefore, using perceptual

tasks allows us to not only more cleanly estimate information costs but also to generate objective

measures of performance and see how they vary with potential rewards, which as we demonstrate

in Section 2 of the paper, is crucial for testing whether subjects even are rationally inattentive (i.e.

have information costs) in the first place.

The remainder of the paper proceeds as follows. Section 2 presents the theoretical framework

that we use in this paper. Section 3 introduces various models of cost functions and applies them

to the tasks of our experiment. Section 4 presents our experimental design. Section 5 presents

and discusses basic experimental results and categorizes subjects according to the behaviors they

exhibit. Section 6 fits various models of cost functions to the subjects’ data and runs a model

selection exercise to determine which is the best fit for each subject. Section 7 concludes. A

more general version of this paper’s theoretical framework, most proofs, experimental instructions,

and robustness checks are included in appendices that can be found in the online supplement.

Additional experimental results and an application to the delegation of investment are presented

in unpublished supplementary appendices.6

2 Theoretical Framework

2.1 Uniform Guess Tasks

In this section, we present a simplified rational inattention framework that is adapted to the tasks

we use in our experiment. A fuller treatment of the theory for a general discrete rational inattention

framework can be found in Appendix A1.

Consider a task where there is some unknown true state of the world θ ∈ Θ that a decision-

maker (DM) has to identify, and learning about the true state is costly. There are n possible states,

6Supplementary appendices can be found at https://sites.google.com/view/ambuj-dewan/research.
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each of which is a priori equally likely, i.e. Pr(θ) = 1
n ∀ θ ∈ Θ. In other words, the DM’s prior

belief on the state of the world is uniform. The DM receives a reward r for correctly identifying the

state and no reward for incorrectly identifying the state. Therefore, the DM’s goal is to maximize

her probability of correctly identifying the state, which we call her performance, net of whatever

costs she incurs in gathering information about the true state. We refer to tasks with this setup as

uniform guess tasks.

The DM’s performance is determined by her choice of information structure, which lists how

likely guessing each state is, given the true state. Denote by a ∈ Θ the DM’s guess of the state.

Formally, an information structure is a collection of conditional probabilities (qi,j), i, j = 1, . . . , n,

where qi,j = Pr(a = θi|θ = θj).

When the DM makes her guess, she has a belief about the likelihoods of each of the possible

states, given by Pr(θ = θi|a = θj). Applying Bayes’ rule, it can be shown that this is equal to

qi,j∑n
k=1 qk,j

. We refer to this probability distribution of the state of the world conditional on the DM’s

guess as her posterior belief.

The DM’s guess is correct when a = θ and is incorrect when a 6= θ. Therefore, her performance

is:

P =
1

n

n∑
i=1

qi,i (1)

The DM’s objective is to choose P maximize:

rP − C(P ) (2)

where r > 0 is the reward, P ∈ [0, 1] is the DM’s chosen performance, and the function C(·) is her

associated cost. Denote by P (r) the DM’s choice of P for a given r, and call the resulting mapping

from reward to performance the performance function.

An example of a uniform guess task is the type of task we implement in our experiment.

In this type of task, which we refer to as the “dots” task, the DM is shown a screen with a

random arrangement of dots. Her goal is to determine the number of dots on the screen, which is

between 38 and 42, inclusive, with each possible number equally likely. She receives a reward r for

correctly guessing the number of dots and no reward otherwise. In our example, information costs
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could include the cost of effort exerted in counting dots, cognitive costs incurred in employing an

estimation heuristic, or the opportunity cost of time spent trying to determine the number of dots.

2.2 Testing for Rational Inattention

In order to be able to say anything about the properties of the DM’s information cost function, one

must first determine whether such a function even exists. As Caplin and Dean (2015) demonstrate

in their Theorem 1, observed behavior is consistent with a rational inattention framework with

additively separable costs if and only if it satisfies their “no improving attention cycles” (NIAC) and

“no improving action switches” (NIAS) conditions. Roughly speaking, NIAC ensures that attention

is allocated efficiently, and NIAS ensures that guesses of the state are made optimally, given the

information that the DM has obtained. We refer the reader to Caplin and Dean (2015) for formal

definitions of these conditions, though the equivalent conditions we present in the propositions of

this subsection will suffice for understanding the present paper.

In uniform guess tasks, the efficient allocation of attention can be thought of as paying more

attention when it is more valuable to do so, i.e. when the rewards are higher. This is formalized in

the following proposition.

Proposition 1. The DM’s behavior is consistent with NIAC iff P (r) is non-decreasing in r.

What NIAC rules out is negative responses to increased incentives, e.g. by being stressed out

by higher stakes.

In a uniform guess task, making optimal guesses means that a correct guess is more likely than

any individual incorrect guess. In other words, the DM cannot perform better by switching her

guesses. This is formalized in the following proposition.

Proposition 2. The DM’s behavior is consistent with NIAS iff ∀ r, ∀x ∈ Θ, and ∀ y ∈ Θ, Pr(θ =

x|a = x) ≥ Pr(θ = y|a = x).

Put differently, NIAS is satisifed in uniform guess tasks if and only if the DM’s empirical

posterior beliefs are maximized at the guessed state. What this rules out is the systematic misuse

of information, e.g. by mentally exchanging two states of the world.

Taking these results together, a DM completing a set of uniform guess tasks is rationally inat-

tentive iff the conditions of Propositions 1 and 2 are satisfied.
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2.3 Responsiveness

A set of behaviors that is trivially consistent with rational inattention is one where the DM selects

the same performance level for each reward. This is consistent with frameworks such as signal

detection theory, where the DM’s information structure is exogenously given. More interesting are

cases where the DM does modify her behavior in response to changes in the level of incentives.

Definition 1. A DM is responsive (to incentives) in a uniform guess task if for some r2 > r1,

P (r2) > P (r1).

Put differently, a DM is responsive to incentives if P (r) exhibits an observable region of strict

increase.

2.4 Continuity and Convexity

Continuity and convexity are assumptions made on costs in much of economic analysis. In a rational

inattention framework, continuity of the cost function implies that gathering a small amount of

additional information increases the total cost of information by only a small amount, and convexity

implies that the marginal cost of information is increasing; the more information is acquired, the

harder it is to acquire additional information. These properties have testable implications for the

DM’s behavior. Denote by P ∗(r) the DM’s optimal choice of performance for each r.

Definition 2. C(·) is well-behaved if it is continuous and convex on [0, 1], is strictly increasing and

strictly convex on
(

1
n , 1
)
, and has a global minimum at 1

n .

Proposition 3. If C(·) is well-behaved, then P ∗(r) is continuous.

Therefore, assuming the DM is utility-maximizing, one can reject the well-behavedness of C(·)

if it is observed that her performance function P (r) is discontinuous.

3 Cost Functions

The space of admissible cost functions is vast. Indeed, any cost function C : [0, 1] −→ R̄ leads

to behavior consistent with NIAS and NIAC. In this subsection, we introduce the classes of cost

functions that are most relevant for our analysis and derive their behavioral implications. We
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also outline how to recover these cost functions from data that fit the corresponding performance

functions.

3.1 A General Recovery Result for Differentiable Cost Functions

If C is differentiable, then the DM’s problem can be solved by appealing to the calculus. Not

only does this allow one to solve for the DM’s optimal performance function, but it also allows an

analyst who does not observe C to recover it from observed behavior.

Proposition 4. Suppose that C is well-behaved and differentiable. Then P ∗(r) = (C ′)−1(r) for all

r such that C ′
(

1
n

)
< r < limx↑1C

′(x). Moreover, P ∗(r) = 1 for r ≥ limx↑1C
′(x).

This follows from taking the first-order condition in the maximization of (2) and the fact that

performance cannot exceed 1. Therefore, assuming the DM is utility-maximizing, her cost function

can be recovered by inverting and integrating her observed performance function, provided that

her performance is strictly increasing and continuous in incentives.

For example, suppose that that C is quadratic:

C(P ) =

 0, P ≤ d

c(P − d)2, P > d
(3)

where 1
n ≤ d < 1. d represents the amount of information that is freely available to the DM, and c

regulates the marginal cost of information. Applying Proposition 4, we have:

P ∗(r) =


r
2c + d, r ≤ 2c(1− d)

1, r > 2c(1− d)
(4)

This performance function is affine (where performance would not exceed 1), and it is depicted

in Figure 1 along with the corresponding cost function.. Note that (3) can be recovered from (4)

by inverting and integrating the non-constant segment. This procedure is general, but it does not

always yield a closed form for the recovered C. For instance, if P ∗(r) is a polynomial of degree 5

or higher (where it is non-constant), then a general algebraic closed form does not exist for C.
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Figure 1: Quadratic costs. The left panel shows the cost function for c = 40 and d = 0.2, and the
right panel shows the resulting performance curves.

3.2 Entropy-Based Cost Functions

One way of modeling the cost of information is to measure how much uncertainty or “randomness”

the DM reduces when she acquires information. Learning is effortful, and greater reductions of

uncertainty require greater effort. The reduction of uncertainty is usually measured as a difference

between her prior uncertainty and her posterior uncertainty. Formally, let H : ∆n−1 −→ R≥0 be

concave. Denoting her belief by p and her information structure by q, this difference is:

H(p)− E[H(p|q)] (5)

In general rational inattention problems, this form of cost for the information structure q is called

posterior-separable (Gentzkow and Kamenica, 2014; Caplin et al., 2019). In uniform guess tasks,

we can write (5) as:

H

(
1

n
, . . . ,

1

n

)
− 1

n

n∑
j=1

[
n∑
i=1

qi,j

]
H

(
q1,j∑n
k=1 qk,j

, . . . ,
qn,j∑n
k=1 qk,j

)
(6)

Of course, the choice of H is important; different H functions measure “randomness” in different
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ways. One popular choice is Shannon entropy (Shannon, 1948). It is defined as follows:

HS(p) := −α
n∑
i=1

pi ln(pi) (7)

where α is a strictly positive constant. The posterior-separable cost function that uses Shannon

entropy is known as mutual information, and it has been widely studied in the literature (Matějka

and McKay, 2015; Caplin et al., 2019). In uniform guess tasks, by substituting (7) into (6), mutual

information can be written as:

α

ln(n) +
1

n

n∑
j=1

n∑
i=1

qi,j ln

(
qi,j∑n
k=1 qk,j

) (8)

There exist several generalizations of Shannon entropy. The one we study here is known as

Tsallis entropy (Tsallis, 1988), and it is defined as follows:

HT (p) :=
α

σ − 1

(
1−

n∑
i=1

pσi

)
(9)

for σ 6= 1, where α and σ are strictly positive constants. It can be shown that HT (p) converges

pointwise to HS(p) as σ → 1. Thus, Tsallis entropy generalizes Shannon entropy. In uniform guess

tasks, by substituting (9) into (6), the posterior-separable cost function that uses it can be written

as:

α

σ − 1

1− n1−σ − 1

n

n∑
j=1

(
n∑
i=1

qi,j

)(
1−

n∑
i=1

(
qi,j∑n
k=1 qk,j

)σ) (10)

for σ 6= 1 and as (8) for σ = 1.

It can be shown that in the case of uniform guess tasks and Tsallis entropy costs, it is optimal

for qi,i to be the same for all i and qi,j to be the same for all i 6= j.7 Therefore, we can rewrite (8)

7For a formal statement and proof of this result, see Lemma A2 in Appendix Subsection A2.5. This implication
does not in general hold empirically; for details, see Appendix S1.
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and (10) in terms of performance as:

C(P ) =


α

σ − 1

[
P σ + (n− 1)1−σ(1− P )σ − n1−σ] , σ 6= 1

α

[
ln(n) + P ln(P ) + (1− P ) ln

(
1− P
n− 1

)]
, σ = 1

(11)

where σ = 1 is the special case of Shannon entropy costs. With this cost function, we can obtain

the optimal performance function that solves (2).

Proposition 5. When n ≥ 3, the performance function associated with Tsallis costs can be char-

acterized as follows:

• For σ 6= 1, the performance function is P ∗(r) = min{P̃ , 1}, where P̃ is a non-negative solution

to r + ασ
σ−1

[(
1−P̃
n−1

)σ−1
− P̃ σ−1

]
= 0.

• For σ = 1, P ∗(r) =
exp( rα)

n−1+exp( rα)
.

Table 1: Properties of Tsallis performance functions for different values of σ

σ Shape = 1 for r ≥ ασ
σ−1

?

(0, 1) Sigmoidal No

1 Logistic No

(1, 2) Sigmoidal Yes

2 Affine Yes

(2, 3) Inverse-S Yes

3 Square root Yes

> 3 Concave Yes

The shapes of these cost functions and the corresponding performance functions are displayed

in Figure 2, and properties of the performance functions are listed in Table 1. The σ parameter

allows for much flexibility in the performance function, with sigmoidal curves for low σ (between

0 and 2) and concave curves for high σ (greater than 3). For sufficiently high σ (greater than 1),

perfect performance is attained for a high enough reward, ασ
σ−1 .

3.3 Normal Signals

Some authors, such as Verrecchia (1982) and Van Nieuwerburgh and Veldkamp (2010), have as-

sumed that the DM receives normally distributed signals about the underlying state of the world,
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Figure 2: Tsallis entropy costs. The left panel shows the cost function for σ ∈
{0.5, 1, 1.5, 2, 2.5, 3, 3.5}, going clockwise, and the right panel shows the resulting performance
curves for those values of σ, going counterclockwise. α is set at 30.

which she uses to update her prior beliefs, and she pays a higher cost for a more precise signal. In

this subsection, we present such a setup.

Let Θ ⊂ R, so that we can order its elements from smallest to largest as θ1 < θ2 < . . . < θn,

and suppose that the DM receives signals m̂ ∼ N(θ, s2) about the state of the world θ. The DM

can choose the precision ζ2 := s−2 of these signals, and she pays a cost K(ζ) accordingly, where K

is increasing, convex, and differentiable.8

Suppose that the distance between consecutive states is constant so that ∃ η such that θi−θi−1 =

2η for i ≥ 2. Then it can be shown that the DM’s problem is:

max
ζ∈[0,∞)

r

n
[2Φ (ζη) + (n− 2) (2Φ (ζη)− 1)]−K(ζ) (12)

Each choice of ζ induces a performance P = P̆ (ζ) := 1
n [2Φ (ζη) + (n− 2) (2Φ (ζη)− 1)]. This

allows us to rewrite (12) in the form of (2) by rewriting the cost of information to be a function of

P rather than ζ. Because it can be shown that P̆ (·) is one-to-one, this is accomplished by setting

8Note that K is defined as a function of the positive square root of the precision. However, for the sake of
parsimony, we will refer to it as the “cost of precision.”
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Figure 3: Normal signals with cost of precision given by K(ζ) = 4ζ2. The left panel shows the cost
function, and the right panel shows the resulting performance curve.

C(P ) = K(P̆−1(P )). It can also be shown that the resulting C(·) is strictly convex. We then have

the following proposition:

Proposition 6. A DM with normal signals and cost of information C(·) such that K(·) is increas-

ing, is convex, and has non-negative third derivative9 has a strictly concave performance function.

This type of performance function is depicted in the right-hand panel of Figure 3, for the case

of linear K.

3.4 Fixed Costs

Another common model of information costs in the literature is “all-or-nothing” costs, where the

DM begins with no information but can become completely informed about the state of the world

if she pays a cost (e.g. Grossman and Stiglitz, 1980; Hellwig et al., 2012). Here, we generalize this

form of costs by allowing for the DM to receive some information for free and pay a fixed cost to

receive more information; we do not stipulate that she must become fully informed.10

9This assumption on the third derivative is a technical assumption. It holds if, for instance, K is linear in precision
(i.e. quadratic in the square root of precision), as we assume later in the paper.

10A similar modeling assumption is made by Admati and Pfleiderer (1988) in an asset market model, where a
trader can choose either to remain uninformed about asset returns or to receive a noisy signal about returns at a
fixed cost.
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We can represent this situation as follows. Let there exist q, q̄ such that 1
n ≤ q < q̄ ≤ 1 and:

C(P ) =


0, P ≤ q

κ, P ∈ (q, q̄]

∞, P > q̄

(13)

According to this cost function, the DM can receive information up to an accuracy of q for free,

but she must pay a fixed cost κ to acquire information up to an accuracy of q̄.

Cost functions with fixed costs such as these can be seen as representing dual-system cognitive

processes (cf. Stanovich and West, 2000; Kahneman, 2003). In such processes, a small amount

of information may be acquired at a very low cost, but there is a fixed cost to acquiring more

information. This implies a discontinuity in the cost function between information structures with

“low” informativeness and those with “high” informativeness.

In uniform guess tasks, the DM is willing to pay the cost κ of acquiring information only when

the rewards are sufficiently high, i.e. when rq̄−κ ≥ rq. This implies a binary performance function:

for r ≤ κ
q̄−q , the DM acquires no information and achieves q, and for r > κ

q̄−q , the DM acquires

enough information to achieve q̄.

Cost functions of this subclass are easily recoverable from data by estimating the relationship

depicted in the right panel of Figure 4 and finding the incentive level threshold at which the DM’s

performance level jumps.

3.5 Other Non-convexities

Other non-convex cost functions can also produce discontinuous performance functions. In fact,

the cost function need not even be discontinuous for this occur. To illustrate this, consider a DM

who has a cost function C that is concave in performance, as depicted in Figure 5.

Net payoffs are maximized when the positive distance between gross payoffs and costs is largest.

For low reward levels (such as r1), this happens at the no-information performance level, 0.2. For

high reward levels (such as r2), this happens at the full-information performance level, 1. In this

manner, just as in the fixed-cost case, a binary performance function obtains, with the DM acquiring

no information if the incentive is low and acquiring full information if the incentive level is high.

More complicated performance functions are also possible. Consider a richer representation
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Figure 4: Fixed cost for information acquisition. The left panel shows the cost function, and the
right panel shows the resulting performance curve. Parameters are κ = 30, q = 0.3, and q̄ = 0.8.

of a dual-system cognitive process (cf. Kahneman, 2003) than was presented in the preceding

subsection:

C(P ) =



0, P ≤ d1

c1(P − d1)2, d1 < P ≤ d2

c1(d2 − d1)2, d2 < P ≤ d3

c2(P − d3)2 + c1(d2 − d1)2, P > d3

(14)

where c1 > 0, c2 > 0, and 1
n ≤ d1 < d2 ≤ d3 < 1. According to this cost function, information

is available for free up to a performance level of d1. In the interval (d1, d2], performance can be

adjusted up to a level of d2. This represents the “automatic” system of the dual-system process,

and can be thought of as a subconscious process to which the brain can variably allocate mental

resources. Exerting effort beyond d2 can be seen as actively thinking about the problem at hand, or

engaging the “controlled” system of the dual-system process. Thinking allows a performance of at

least d3 to be achieved, with higher performance levels attainable with more effort. This “hybrid”

cost function that concatenates two quadratic cost curves induces a discontinuous performance
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function.

Proposition 7. Suppose that:11

d3 ∈
(
c1d1+c2−

√
(c1d1+c2)2+(c1+c2)(c1(1−2d1−(d2−d1)2)−c2)

c1+c2
,
c1d1+c2+

√
(c1d1+c2)2+(c1+c2)(c1(1−2d1−(d2−d1)2)−c2)

c1+c2

)

Then the cost function (14) yields the following performance function:

P ∗(r) =


r

2c1
+ d1 r < δ

min
{

r
2c2

+ d3, 1
}
, r ≥ δ

(15)

where δ = c1(d2−d1)2

d3−d1 if c1 = c2 and δ = 2c1c2
c1−c2

[√
(d3 − d1)2 + (c1−c2)(d2−d1)2

c2
− (d3 − d1)

]
if c1 6= c2.

This performance function consists of two affine segments separated by a jump discontinuity,

and it flattens out once the upper bound of perfect performance is reached. It is depicted in Figure

6 along with its corresponding cost function.

11This condition on d3 ensures that the performance function has two separate regions of strict increase rather
than just one.
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Figure 6: Hybrid costs. The left panel shows the cost function, and the right panel shows the
resulting performance curve. Parameters are c1 = 300, c2 = 100, d1 = 0.2, d2 = 0.45, and d3 = 0.6.

3.6 Summary

Table 2 summarizes the properties of the classes of cost functions discussed in this section and lists

the corresponding performance functions. While each cost function generates a unique performance

function, recovery of a cost function from a performance function is not in general unique, as

illustrated in Subsection 3.5. However, a best-fitting performance function can be selected based

on a DM’s observed behavior, and this datum can be used to determine which of a set of plausible

classes of cost functions could have generated the observed behavior. This is the exercise we perform

in Section 6.

4 Experimental Design

4.1 Description

The experiment we implemented involved a series of perceptual tasks, each for a potential reward.

In each of these tasks, subjects were shown a screen with a random arrangement of dots and were

asked to determine the number of dots on the screen. The number of dots was between 38 and

18



Table 2: Properties of cost functions

Cost Function Continuous Convex Performance Function

Differentiable and well-behaved Yes Yes Inverse of derivative
Quadratic Yes Yes Affine

Tsallis entropy Yes Yes Sigmoid/inverse-S/concave (SIC)
Mutual information Yes Yes Logistic

Normal signals Yes Yes Concave

Dual-process Can be No Discontinuous
Fixed costs No No Binary
Hybrid Yes No Piecewise affine

Note: Performance-function properties of normal-signal costs are for state spaces with equidistant
spacing.

42, inclusive, and each number was equally likely.12 Subjects were informed of these facts; there

was no deception or withholding of information about the structure of the tasks. Subjects also

completed a second set of tasks involving the identification of angles. We refer to the first type of

task as the “dots” task and to the second as the “angle” task. For the sake of brevity, we relegate

the description and results of the “angle” task to Supplementary Appendix S4.

Each task had a potential reward in an experimental currency called “points.” At the start

of each task, subjects were shown this reward, which we refer to as the incentive level, in large

characters for three seconds (e.g. Figure 7), before it was replaced with the random dot arrangement

(e.g. Figure 8). Displaying the incentive level before the dot arrangement ensured that subject

looking at the screen would see the incentive level before being able to start the task. While the

dot arrangement was on screen, the incentive level continued to be displayed to the right of the

screen, ensuring that subjects would not have to memorize this number. Subjects then had as much

time as they desired to determine the number of dots on the screen before proceeding to the next

task. If they answered correctly, then they earned the potential reward; if not, then they earned

no points for that task. Feedback was not given until the end of the experiment.

Subjects completed 200 tasks, each at an integer incentive level between 1 and 100, inclusive.

They were randomly shown either all 100 “dots” tasks or all 100 “angle” tasks first. Blocks of

tasks were balanced by incentive level to ensure roughly the same level of variation in incentives

throughout the experiment. Subjects were first shown each of the 50 odd incentive levels between

12These numerosities were selected to be in line with previous experiments with similar tasks (e.g. Caplin and
Dean, 2014).
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Figure 7: Incentive display for a task

Figure 8: Arrangement of dots for a task
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1 and 100 in a random order, and were then shown each of the 50 even incentive levels between

1 and 100 in a random order. This was repeated (in a different random order) for the next 100

tasks.13

Experimental earnings were determined as follows. One task from the first half the experiment

and one task from the second half of the experiment were randomly selected for payment. The

incentive level of each selected task determined the probability of winning one of two monetary

prizes. For example, if the first selected task had an incentive level of 84 and was answered

correctly, and the second selected task had an incentive level of 33 and was answered incorrectly,

then this would give the subject an 84% probability of winning the first prize and a 0% probability

of winning the second prize. Determining earnings in this manner ensured that expected earnings

were linear in the incentive level, which obviated the need to elicit risk preferences.14 In other words,

this ensured that under the assumption of expected utility theory, the subjects’ utilities (excluding

information costs) were known to us (up to a multiplicative constant).15 Thus, the estimated

relationship between performance and incentive level for each subject could be considered a valid

estimate of their performance function, without the need to apply any additional transformation.

As mentioned above, subjects completed 200 tasks in total: 100 “dots” tasks and 100 “angle”

tasks. They either completed all the “dots” tasks or all the “angle” tasks first, and this order was

randomly determined.16 For 41 subjects, the prizes were $10 US, and for 40 subjects, the prizes

were $20 US. In addition, subjects were paid a $10 participation fee.

All sessions were conducted at the Columbia Experimental Laboratory in the Social Sciences

(CELSS) at Columbia University, using the Qualtrics platform. We ran 8 sessions with a total of

81 subjects, who were recruited via the Online Recruitment System for Economics Experiments

(ORSEE) (Greiner, 2015).

13A detailed explanation of the advantages and disadvantages of this kind of fine-grained incentive structure can be
found in Appendix subsection A4.2. To summarize: while fine-grained incentives present some drawbacks in terms of
testing cost function properties, they provide significant benefits when it comes to recovering a subject’s cost function
from observed behavior.

14This binary lottery incentivization technique was pioneered by Roth and Malouf (1979).
15We relax the assumption of expected utility theory and allow for incentives to be probability-weighted in Appendix

Subsection A4.3. Our qualitative results remain largely unchanged.
16In the online version of this experiment, subjects completed 200 “dots” tasks and no “angle” tasks. Results and

further details can be found in Supplementary Appendix S5.
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4.2 Discussion

Our experimental design has several beneficial features as compared to previous experimental work

in limited attention. Firstly, the departure from experiments involving binary choice with two states

of the world (e.g. Ratcliff and Smith, 2004; Cheremukhin et al., 2015; Dean and Neligh, 2019) allows

for distinguishing between certain types of cost functions in a manner that would otherwise not be

possible. For instance, if there were only two states (i.e. two different possible numbers of dots),

then entropy-based cost functions would not yield performance curves with inflection points, and it

would therefore be difficult to distinguish between Tsallis entropy costs with σ ∈ (0, 2) and normal

signal precision costs. Furthermore, having more than two states, some of which were closer to

each other than others (e.g. 39 is closer to 38 than to 42) allows us to study perceptual distance,

which we discuss further in Supplementary Appendix S1.

Secondly, using perceptual tasks instead of value-based choices, such as choices over gambles

(e.g. Pinkovskiy, 2009; Cheremukhin et al., 2015), allows for cleaner identification of information

costs. On any given trial, the true state of the world is known to the experimenters; we need not

infer it from choice data. Thus, any choice on a subject’s part can be cleanly classified as either a

correct choice or a mistake, and this classification is then used to estimate information costs. This

stands in contrast to experiments with choice over gambles, where it is necessary for the analyst

to simultaneously use choice data to estimate utility parameters and use the estimated utility to

construct the classification of correct responses and mistakes that is used to estimate information

costs.

Moreover, choices over gambles present a couple of conceptual issues in a rational inattention

framework. In such a framework, the amount of attention paid to a particular decision problem

depends on the marginal benefit of selecting one option over another. However, in choices over

gambles, these benefits are not known to the DM ex ante, and practically speaking, they cannot be

calculated independently of knowing which gamble is preferable to another. By contrast, in percep-

tual tasks with known rewards, the marginal benefit of answering correctly relative to answering

incorrectly is known ex ante, regardless of what the correct answer actually is. Furthermore, if util-

ity over gambles (excluding additively separable information costs) deviates from expected utility

theory — for instance, with probability weighting — then this can itself be seen as the result of a

rationally inattentive process (Woodford, 2012b; Steiner and Stewart, 2016), theoretically but not
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necessarily practically distinct from the additively separable information costs that cause choice

mistakes, thereby calling into question the descriptive validity of the model.

Finally, using fine-grained variation in incentives allows us to see how subjects’ behavior changes

in response to small changes in potential rewards. To illustrate, suppose that a subject’s utility

of money were linear, and they were participating in the $10 prize treatment. In that case, since

an incentive level of 63 gives a 1% higher chance of receiving the prize for answering correctly

than an incentive level of 62, the former incentive level is worth 10 cents more to the subject than

the latter. Observing how a subject’s behavior changes in response to these small differences in

incentives allows us to reliably trace out their performance curve and classify that curve according

to the information cost function that generated it.

5 Categorization Results

In this section, we present the first set of results of our laboratory experiments. We perform an

individual-level analysis to classify subjects according to whether their behavior is consistent with

rational inattention, responsiveness to incentives, and well-behavedness of their cost functions.

Additional experimental results related to demographics and aggregate behavior are provided in

Supplementary Appendix S2.

5.1 Choice Data

The data we are most interested in for each task t are the incentive level rt, the true state of nature

θt, and the subject’s response at. For each task, define the subject’s correctness as yt := 1{θt} (at).

That is, yt takes the value 1 if the subject correctly determined the state of the world in task t and

0 otherwise.

We are primarily interested in the relationship between correctness and incentive level. We

can think of the pattern of successes and failures that we observe as being generated by some

underlying data-generating process that for every possible reward level tells us the probability of

answering correctly. We denote this probability by Pt := Pr(yt = 1|rt) = Pr(at = θt|rt) for each

task t; in other words, the underlying data-generating process is the performance function. Using

the correctness data allows us to infer whether subjects have behavior consistent with having an
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Figure 9: Isotone nonparametric regression of correctness on incentive level for Laboratory Subject
10 (Dette et al., 2006). Circles indicate average success rate within each bin of 10 incentives.

information cost function, and if so, what its properties are.

We are able to categorize subjects according to whether their behavior adheres to these prop-

erties. First, we classify them by whether or not they are rationally inattentive. Then, we classify

rationally inattentive subjects by whether or not they are responsive to incentives. This subset of

subjects is the subset of greatest interest to us; these are the subjects for whom we can estimate

performance functions and back out corresponding information cost functions. Finally, we classify

responsive subjects according to whether or not their behavior is consistent with well-behaved cost

functions. This categorization scheme is illustrated in Figure 10.

5.2 Rational Inattentiveness

We now proceed with the individual-level categorization exercise.

Before testing the properties of the subjects’ cost functions, it is necessary to determine whether

there exists a cost function that rationalizes their data in the first place. To that end, we test

the necessary and sufficient “no improving attention cycles” and “no improving action switches”
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Figure 10: Categorization of subjects

conditions by testing the equivalent conditions established in Subsection 2.2.

5.2.1 No Improving Attention Cycles

As demonstrated in Proposition 1, a subject satisfies NIAC in our experiment if and only if their

probability of correctly guessing the state is non-decreasing in the reward. This implies that

rationally inattentive subjects have non-decreasing performance functions.

At this point, a clarification is in order. As we showed in Proposition 1, NIAC holds in a set of

uniform guess tasks iff for any pair of incentive levels (r1, r2) with r1 > r2, we have that P ∗(r1) ≥

P ∗(r2). Observationally, this means that the subject had more correct answers under incentive level

r1 than incentive level r2. However, in our experiment each subject is given each incentive level

only once. Therefore, the empirically-observed probabilities of answering each decision problem

correctly are either 0 or 1. If were to apply the NIAC condition directly to our data, this would

mean that the only subjects whose behavior is consistent with NIAC would be those who always

answer incorrectly up to some incentive threshold after which they always answer correctly. Given

the stochasticity of choice under limited attention, this scenario is implausible.

Therefore, rather than strictly interpreting our data as stochastic choice data and making direct

pairwise comparisons of decision problems to test NIAC, we adopt an estimation-based approach.

We flexibly estimate the performance function given correctness data and see if this estimate is

significantly different from a non-decreasing function, in which case we reject NIAC. In theory,
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unless there is some reward threshold below which the subject is never correct and above which the

subject is always correct, the fit of a monotone performance function can be improved by adding

peaks and troughs. The question, then, that we wish to pose is not whether a non-monotone or

decreasing function can fit the data, but whether we can reject the hypothesis that a non-decreasing

function explains the data.

To test for weak positive monotonicity, we employ a method developed by Doveh et al. (2002)

and compare the estimation of an unrestricted cubic polynomial regression of correctness on in-

centive level for each subject to one with a positive derivative restriction.17 The null hypothesis

for this test is that the response function is monotonic. At the 5% level, we fail to reject positive

monotonicity for 77 out of 81 lab subjects (95.1%).18 Examples of polynomial regressions and

correctness data for two subjects, one who rejects NIAC and one who fails to reject NIAC, are

depicted in Figure 11.

5.2.2 No Improving Action Switches

To test for the second necessary and sufficient condition for rational inattentiveness, NIAS, we

cannot simply simply examine the estimated performance function; following Proposition 2, we

must look at the posterior probabilities of each state given each response. We employ a bootstrap

procedure. For each subject and action, we calculate the empirically observed distribution of true

states, i.e. we calculate Pr(θ = y|a = x) for each x and y.19 We then simulate 499 bootstrap

samples for each distribution. If the most common true state is the one corresponding to the action

in at least 5% of samples for each action for a given subject, then that subject fails to reject NIAS.

In other words, we check that Pr(θ = x|a = x) is maximized at θ = x, for each a = x, in at least

17Several other methods in the statistical and econometric literatures have been devised to test for the monotonicity
of regression, including but not limited to Bowman et al. (1998), Ghosal et al. (2000), Hall and Heckman (2000),
Birke and Dette (2007), and Chetverikov (2019), most of which are nonparametric. We use Doveh et al.’s (2002)
parametric test because it is less prone to rejecting monotonicity when there are outliers, e.g. a lone failure in a
region of success, or vice versa.

18The optimization in the computation of the restricted regression for lab subject 35 failed to converge, and so we
did not perform the test for them. For that subject, a one-tailed t-test of the coefficient on incentive level in a linear
regression of correctness on incentive level failed to reject the null of the coefficient being non-negative at the 5%
level, and so we classify them as having a non-decreasing performance function.

19It should be noted that strictly speaking, the NIAS condition applies separately to each decision problem that
the DM faces. Since each subject faces each incentive level only once, they actually face 100 different decision
problems. For that reason, we test a slightly weaker condition: whether an individual exhibits overall systematic
misuse of information. Overall systematic misuse of information implies systematic misuse of information in at least
one decision problem.
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Figure 11: Unrestricted cubic polynomial regression of correctness on incentive level for Subjects
1 and 19. The former rejects NIAC (and therefore rejects rational inattentiveness), and the latter
fails to reject NIAC. Circles indicate average success rate within each bin of 10 incentives.

5% of samples. Overall, we find that 74 out of 81 (91.3%) laboratory subjects fail to reject NIAS.

Overall, 70 out of 81 (86.4%) laboratory subjects fail to reject both NIAC and NIAS. We refer

to these subjects as “rationally inattentive,” or simply “rational,” subjects.

5.3 Responsiveness

Of the subjects who fail to reject rational inattentiveness, some of them may have flat response

functions, i.e. while they could be rationally inattentive, they do not actually respond to incentives

(within the range of incentives presented to them).

To determine which subjects are responsive to incentives, for each subject who failed to reject

rational inattentiveness, we run a linear weighted least squares regression of correctness on incentive

level and run a one-sided t-test of the coefficient on incentive level with the null of non-positivity,

i.e. non-responsiveness to incentives. However, this is insufficient to capture all responsive subjects;

a subject may be responsive only within a small range of incentives. To address this issue, for each

subject, we repeat this procedure on incentive levels 1 through 50 and on incentive levels 51 through

100.20 If a subject has a significantly positive coefficient on incentive level in any of these three

20Further sample splitting leads to the spurious detection of responsiveness; it leads to some subjects with >95%
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Figure 12: Linear regressions of correctness on incentive level for two subjects. The left panel shows
an unresponsive subject, and the right panel shows a responsive one. Circles indicate average success
rate within each bin of 10 incentives.

regressions, then we classify them as responsive.21

At the 5% significance level, 42 out of 70 lab subjects (60.0%) who fail to reject rational inatten-

tiveness are responsive to incentives. Examples of full-sample linear regressions and correctness data

for two subjects, one who fails to reject non-responsiveness and one who rejects non-responsiveness,

are depicted in Figure 12.

5.4 Well-Behavedness

If the assumptions of Proposition 3 are satisfied, i.e. the cost function is well-behaved, then the

performance function should be continuous in r. Therefore, observing a discontinuity in the per-

formance function indicates a violation of convexity.

Strictly speaking, one cannot definitively observe a discontinuity without an infinite data set;

a continuous function with a sufficiently steep slope at points of potential discontinuity can always

be used to fit finite data. Therefore, for each subject, the question we wish to answer is whether it

success being classified as responsive.
21We must consider the full-sample regressions in tandem with the split-sample regressions. If we considered only

the split-sample regressions, then we would classify subjects who have binary-response performance functions with
thresholds around 50 as non-responsive.
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is more plausible that a discontinuous performance function or a continuous performance function

generated their correctness data. This implies a statistical test where the null hypothesis is that

the performance function belongs to some class of discontinuous functions, and the alternative is

that the performance function belongs to some class of continuous functions.

We test for the presence of a discontinuity by applying a likelihood ratio test. We estimate a

step function of the form:22

Pt = β0 + β11[δ,∞)(rt) (16)

where β0, β1, and δ are the parameters to be estimated and compare its likelihood to an estimation

of the following logistic relationship:

Pt =
β1

1 + exp(−λ(rt − δ))
+ β0 (17)

In (16), δ is the location of the discontinuity, whereas in (17), it is a location parameter that

determines the midpoint of the curve’s upward sloping portion. It can be shown that (16) is the

pointwise limit of (17) as λ goes to infinity. Therefore, (16) can be seen as the restricted null model,

and a likelihood ratio test comparing these models is effectively a test of the null hypothesis that

λ = ∞, i.e. it is a test against the null hypothesis that there is a jump discontinuity. Since we

are performing this test only on responsive subjects, our estimates of β1 for each subject should be

positive, and therefore this procedure should not detect spurious downward jump discontinuities

for those subjects.23

Using this test, at the 5% level we cannot reject that 29 out of 42 responsive lab subjects

(69.0%) have discontinuities in their response functions.24

22We use a variant of the procedure of Bai and Perron (1998) for this estimation, imposing a discontinuity and
determining its location instead of using their algorithm to determine whether such a discontinuity is present.

23Several procedures for detecting discontinuities have been proposed in the econometric literature. See, for exam-
ple, Andrews (1993), Andrews and Ploberger (1994), Bai and Perron (1998), and Porter and Yu (2015). All of these
procedures are designed to detect both positive and negative jump discontinuities, and so they are vulnerable to the
detection of spurious negative jumps in our setting. A clarification is in order here. Bai and Perron (1998) propose
both an estimation procedure and a testing procedure for models with structural breaks with unknown discontinuity
points. We use their estimation procedure to estimate (16), but we do not use their testing procedure.

24As a robustness check, we also ran this test at the 10% level to gain additional statistical power. In this case, we
cannot reject that 27 out of 42 responsive lab subjects (64.2%) are not well-behaved.
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Table 3: Categorization of subjects

Category Of All Subjects Of R.I. Subjects Of Resp. Subjects

All subjects 81 (100%) — —

R.I. subjects 70 (86.4%) 70 (100%) —

Resp. subjects /// 42 (60.0%) 42 (100%)

W.B. subjects /// /// 13 (31.0%)

Note: “R.I.” = rationally inattentive; “Resp.” = responsive; “W.B.” = well-behaved, i.e. subjects
whose behavior is consistent with continuous, convex cost functions. — denotes that the column
category is a subset of the row category, and /// denotes that the row category is defined only on
a subset of the column category.

Table 4: Performance functions estimated and their corresponding cost functions

Cost Function Performance Function Ref.

1 Very high or infinite marginal costs Constant N/A

2 Simple dual-process or concave Binary 3.4/3.5

3 Hybrid dual-process Affine with break 3.5

4 Quadratic in performance Affine (without break) 3.1/3.2

5 Convex on the order of P
3
2 2nd degree polynomial 3.1

6 Convex on the order of P
4
3 3rd degree polynomial 3.1

7 Shannon mutual information Logistic 3.2

8 Posterior-separable with Tsallis entropy Sigmoid/inverse-S/concave (SIC) 3.2

9 Normal signals with linear cost of precision Concave 3.3

Notes: The “Ref.” column indicates in which subsections of Section 3 the relevant theoretical
treatment can be found. Model 1 is included as a robustness check.

5.5 Summary of Categorization

Table 3 summarizes the results of preceding subsections. Each cell indicates the number and

percentage of row category subjects in the column category. It should be noted that the vast

majority (86.4%) of subjects are rationally inattentive, and moreover, most rationally inattentive

subjects are responsive (60.0%).

6 Model Selection

In this section, for each responsive subject we fit several possible parametric functional forms

for performance functions, each of which can be generated by some cost function. These models
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are listed in Table 4.25 Estimating equations, estimation methods, and mappings from estimated

parameters to cost function parameters are detailed in Table 5. In contrast to existing experimental

papers that estimate information costs on laboratory data (e.g. Pinkovskiy, 2009; Cheremukhin

et al., 2015; Dean and Neligh, 2019), we estimate not just models that nest Shannon mutual

information, but also models that do not, such as fixed costs for information (Model 2) and normal

signal costs (Model 9).

Since the models are non-nested and are estimated using different methods, we cannot use a

traditional auxiliary regression method for model selection. To determine which model is the best

fit for each responsive subject, we estimate each model for each such subject and then compare

their Akaike Information Criteria (AIC) (Akaike, 1974), selecting the model that yields the lowest

AIC. The results of this selection are given in Table 6.26

All responsive subjects are best fit by binary (fixed costs), logistic (mutual information), SIC

(Tsallis entropy costs) or concave (normal signals with linear precision cost) performance. The first

implies some sort of non-convexity or discontinuity in the cost function, whereas the latter three

are consistent with convex cost functions. Figures 13, 14, 15, and 16 show what these performance

functions look like for four subjects, each best fit by a different model.

Table 7 shows the average estimated AIC and rank of each model in the selection exercise.27

Models 2 (binary), 7 (logistic), and 8 (SIC) have the lowest ranks on average. Flexible polynomial

fits do quite poorly; the average rank of a cubic performance function (Model 6) is higher than that

of the constant performance model (Model 1).

25The reason that we do not consider the channel capacity cost function is because since the prior distribution in
our task is uniform, channel capacity would be consistent with the same behavior as mutual information (cf. Section
1.2.3 of Woodford, 2012a)

26As a robustness check, we also perform the analysis with the small sample-corrected AIC (AICc), where AICc =

AIC+ 2k(k+1)
T−k−1

, T is the number of tasks, and k is the number of parameters in the model (Technically, the small sample
correction should depend on the underlying model, but this particular correction formula is said to be appropriate
for a wide variety of settings. For more information, refer to Subsection 7.4.1 of Burnham and Anderson, 2002). Our
qualitative findings are completely unaffected. In particular, none of the subjects have a different best-fitting model
under the AICc than under the AIC.

27A lower rank implies a lower AIC and therefore a better fit.
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Ĉ

(P
)

=

    
α̂

σ̂
−

1

[ Pσ̂
+

(n
−

1
)1
−
σ̂

(1
−
P

)σ̂
−
n
1
−
σ̂
] ,

σ̂
6=

1

α̂

[ ln
(n

)
+
P

ln
(P

)
+

(1
−
P

)
ln

( 1
−
P

n
−

1

)] ,
σ̂

=
1

9
C

o
n

ca
v
e

P
t

=
8 5

Φ
( ζ∗ (

r
t
)

2

) −
3 5

,
w

h
er

e
α
ζ
∗

=
2 5
r t
φ
( ζ∗ 2

)
M

L
E

Ĉ
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Table 6: Model Selection for Responsive Subjects

Model Binary (2) Logistic (7) SIC (8) Concave (9)

Number of Subjects 10 (23.8%) 19 (45.2%) 7 (16.7%) 6 (14.3%)

Table 7: Average AIC and Rank for Estimated Models

Model AIC Rank

1 Constant 131.165 7.476

2 Binary 114.060 2.881

3 Affine w/ break 119.982 4.429

4 Affine 117.832 5.833

5 Quadratic 131.123 6.595

6 Cubic 132.929 7.643

7 Logistic 116.008 2.714

8 SIC 113.672 2.310

9 Concave 121.967 5.119

Note that the average AIC and rank for Model 7, the logistic performance function, is only

slightly lower than that of Model 2, the binary performance function, despite the fact that sub-

stantially more subjects are best fit by Model 7 than by Model 2. This may be due to the binary

model being a decent fit when the best-fitting model is logistic, but the logistic model being a poor

fit when the best-fitting model is binary. When the logistic model is the best fit, the average rank

of the binary model is 3.368; however, when the binary model is the best fit, the average rank of

the logistic model is 4.600. Note also that the average rank of Model 9 (normal signals with linear

precision cost) is fairly high at 5.119. This indicates that when Model 9 is not the best fit for a

subject, it is a poor fit.

7 Conclusion

This paper has provided a schema for testing properties of and estimating information cost functions

in a rational inattention framework. To the extent that the presence or absence of characteristics

such as continuity and convexity can have an impact on people’s decisions, it is worth knowing

whether their cost functions satisfy such conditions. Decision-makers’ cost functions are not directly

observable, so instead we must infer their characteristics from observed behavior. We conducted a

set of experiments that allowed us to implement tests of the properties of interest and perform a
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Figure 13: Fits of binary, logistic, SIC, and concave performance for Subject 6, with the best-fitting
binary (fixed cost) model as a solid line. Solid dots indicate correctness for each incentive. Circles
indicate average success rate within each bin of ten incentives.
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Figure 14: Fits of binary, logistic, SIC, and concave performance for Subject 14, with the best-
fitting logistic (Shannon) model as a solid line. Solid dots indicate correctness for each incentive.
Circles indicate average success rate within each bin of ten incentives.
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Figure 15: Fits of binary, logistic, SIC, and concave performance for Subject 34, with the best-
fitting SIC (Tsallis) model as a solid line. Solid dots indicate correctness for each incentive. Circles
indicate average success rate within each bin of ten incentives.
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Figure 16: Fits of binary, logistic, SIC, and concave performance for Subject 66, with the best-
fitting concave (normal) model as a solid line. Solid dots indicate correctness for each incentive.
Circles indicate average success rate within each bin of ten incentives.
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model selection exercise.

These experiments reveal substantial heterogeneity in behavior. Most subjects are rationally

inattentive, but only about half are actually responsive to incentives. Many subjects have behav-

ior that is consistent with continuous, convex cost functions, but a substantial fraction do not.

Moreover, there is considerable heterogeneity in how subjects adjust their attention in response to

incentives, though this heterogeneity is limited to four classes of cost functions: fixed costs, mutual

information, Tsallis entropy costs (which nest mutual information), and normal signals are the only

best-fitting cost functions for responsive subjects in terms of performance.

The fact that there is a significant presence of both binary performance and continuous per-

formance functions in the population has important implications for economic modeling. In Sup-

plementary Appendix S6, we present an application of rational inattention to a principal-agent

framework of investment delegation and show that the principal’s optimal payment schedule cru-

cially depends on the shape of the agent’s information cost function, and moreover, equilibrium

robustness in this model relies on continuity; if an agent’s information cost function is discontinuous,

infinitesimal deviations from the optimal contract can lead to large welfare losses for the principal.

Our experimental results also indicate that if a modeler wishes to use a single cost function for all

agents for the sake of simplicity, then Tsallis costs, which have the lowest average rank and AIC,

may be a good compromise, due to their flexibility.

Three possible avenues for future experimental research present themselves. The first is to obtain

more detailed data on what subjects are actually paying attention to. Eyetracking has already been

used in several economics experiments (e.g. Wang et al., 2010; Krajbich et al., 2010; Arieli et al.,

2011) to track subjects’ gaze, which allows researchers to find out what visual information the

subjects are acquiring. Tracking subjects’ mouse movements in computer-based tasks (e.g. Gabaix

et al., 2006; Reeck et al., 2017) is another potential approach, since those movements indicate to

which areas of their computer monitors they are paying attention. The second is to use choice data

in tandem with reaction time data to fit models of dynamic information acquisition (e.g. Ratcliff

and Smith, 2004; Clithero, 2018; Webb, 2018). This would also allow researchers to determine to

what extent subjects trade off speed and accuracy in their decision-making. The third is to exploit

the structure of the state space and data on subjects’ mistakes to study how subjects perceive

distance and dissimilarity (e.g. Natenzon, 2019; Pomatto et al., 2019).
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A1 A General Discrete Rational Attention Framework

In Section 2 of the paper, we presented a rational inattention framework that applied to a class of

decision problems that we call uniform guess tasks. In this appendix, we present of a general version

of that framework. It applies to decision problems with finite state spaces and action spaces.

A1.1 The Framework

In this framework, there is an unknown state of the world about which an decision-maker (DM)

can choose to acquire information. This information affects her beliefs about the state of the world.

After obtaining this information, she makes a decision that maximizes her payoff given her beliefs.

We model information as a collection of probabilistic mappings from states of the world to a set

of subjective signals. We define an information structure to be a set of conditional distributions

of signals given states. Given a prior belief, observing a signal generates a corresponding posterior

belief over states, and given this posterior belief, the DM maximizes her payoff by selecting an

optimal action. Each information structure has a cost associated with it.

We remain agnostic about what the exact source of information costs is. Information costs

could represent cognitive or physical effort exerted in learning about the true state, as well as the

opportunity cost of time spent doing so.

This framework has several beneficial features. Firstly, it has the same behavioral implications

as the model of posterior-based information costs of Caplin and Dean (2015) (henceforth CD15),
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which means we can apply their necessary and sufficient conditions for models of rational inattention

to the problems we study. This assertion requires careful proof, as well as an explanation of exactly

where our model departs from CD15’s. For the sake of readability, we refer the interested reader to

Appendix Subsection A1.6 for details. Secondly, as in some of the previous literature on stochastic

choice (e.g. McGuire, 1972; Leshno and Spector, 1992), it expresses information structures as

stochastic matrices, which as demonstrated later in the appendix, will permit us to easily compare

information structures and to define a simple geometric notion of convexity of information costs;

this is not possible with the posterior-based approach of CD15. Thirdly, it allows information costs

to depend not just on the beliefs engendered by the information structure, but on how those beliefs

are engendered. Though this does not rationalize any kind of behavior that is not rationalized

under CD15, it allows for the costs leading to certain behaviors to be described more intuitively,

especially those that encode the perception of distance, as we explain in Appendix Subsection A1.6

and Supplementary Appendix S1.A1

Let Θ = {θi}|Θ|i=1 be a finite state space, let M = {mi}|M |i=1 be a finite signal space,A2 and let

A = {ai}|A|i=1 be a finite action space, with |M | ≥ |A| so that there are at least as many signals

as there are actions. Let π = (πi)
n
i=1 ∈ ∆(Θ), where n := |Θ|, be the DM’s prior over Θ. Each

action-state pair (a, θ) has an associated utility u(a, θ). The DM maximizes:

EγπQ
[
E〈π|m〉 [u(a, θ)]

]
− C(π,Q) (A1)

where Q is an information structure (a collection of conditional signal probabilities, given states),

γπQ ∈ ∆(∆(Θ)) is the distribution of posterior beliefs it induces given the prior π, 〈π|m〉 is the

posterior belief associated with signal m, and C is a cost function that depends on both the prior

and the information structure.

As explained above, the DM’s problem has two stages. First, she selects an information structure

A1See Pomatto et al. (2019) for a further discussion of this point.
A2Given that the state space is finite, the finiteness of the signal space is not a substantive restriction. In fact, if we

assume that more informative information structures are costlier (our Assumption E, presented later in the paper),
it can be shown that given a finite state space, a DM never need use more than a finite number of signals. This
follows from Proposition 4 of Kamenica and Gentzkow (2010). They study a game where the information structure
and the action are chosen by different players, but if we assume those players’ preferences are perfectly aligned, then
ignoring information costs, our framework maps onto theirs. By their Proposition 4, if a DM employs an information
structure with an infinite number of signals, then ignoring information costs, she could have done at least as well
with an information structure with a finite number of signals. Moreover, since the former information structure is
more informative than the latter, it is costlier. Therefore, the DM will choose to use a finite number of signals.
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Q. She then observes a signal m according to that information structure, which gives her a posterior

belief 〈π|m〉, derived by Bayes’ rule. Second, given this posterior belief, she chooses an action a to

maximize her expected payoff.

We can express this problem more formally using matrix notation. Let Π = diag(π).A3 Let

U ⊆M|A|×|Θ|(R), and let U ∈ U be a matrix with entries ui,j := u(ai, θj), i.e. the utility of taking

action i in state j. We refer to U as the set of decision problems and to U as a payoff matrix.

Let Q be the space of right-stochastic matrices of dimension |Θ| × |M |, and let D be the space

of right-stochastic matrices of dimension |M | × |A|.A4 C : ∆(Θ) × Q −→ R̄ gives the costA5 of

selecting an information structure from Q, given a prior in ∆(Θ).A6

The decision-maker’s problem, then, is (cf. Leshno and Spector, 1992):A7

max
Q∈Q,D∈D

tr(QDUΠ)− C(π,Q) (A2)

where the entries of Q are qi,j = Pr(mj |θi), i.e. the probably of signal mj in state θi, and the

entries of D are di,j = Pr(aj |mi), i.e. the probability of selecting action aj given signal mi. The

i-th row of Q represents the conditional distribution of signals given state θi, and so Q can be seen

as a collection of signal distributions given states. We refer to D as the decision matrix.

We refer to the maximand in (A2) as the net payoff and its first component as the ex-ante

gross payoff. Specific realizations of this payoff are called the ex-post gross payoff. Where it will

not cause confusion, we will drop the “ex-ante” and “ex-post.”

This setup allows us to index decision problems of the form of (A2) by (π, U). In this paper,

we will hold π fixed, and thus we will simply index decision problems by U where it will cause

no confusion. For a given finite sequence of decision problems {Ui} drawn from U and a given

true state of the world θi, we can observe the action ai chosen by the DM. Using the data set

A3diag(x) is the square matrix that has the entries of x in order on its diagonal and zeroes elsewhere.
A4Some authors require that a stochastic matrix be square. We allow for a stochastic matrix to have different

numbers of rows and columns, provided that all its entries are non-negative and each of its rows sums to 1.
A5R̄ := R∪{−∞,∞} is the set of extended reals. If for some π̃ and Q̃, C(π̃, Q̃) =∞, then the cost of the information

structure Q̃ given π̃ is infinite, and the DM will never select it, provided there is at least one information structure
available at a finite cost. This idea is formalized in Subsection A1.4.

A6In principle, though the cost-function approach implies flexibility in the selection of information structures, it can
accommodate restrictions on the space of available information structures as well. For example, if a modeler wishes
to impose an exogenous process of information acquisition, then he may set the cost of a corresponding information
structure to be finite and the cost of all other information structures to be positive infinity.

A7tr(X) denotes the trace of X, the sum of its diagonal entries.
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{(Ui, θi, ai)} will allow us to infer the properties of C(·, ·). Following CD15, we refer to a data set

of this type as state-dependent stochastic choice data.

In this setup, for each i ∈ {1, . . . , n} and j ∈ {1, . . . , |A|}, πi and uj,i, are exogenous parameters.

For each i ∈ {1, . . . , n}, j ∈ {1, . . . , |A|}, and k ∈ {1, . . . , |M |}, qi,k and dk,j are chosen by subjects.

Though one cannot observe qi,k and dk,j separately, one can estimate the products qi,kdk,j ; if a DM

solves the same decision problem repeatedly, one can observe how often each action is chosen in

each state.A8

A1.2 Testing for Rational Inattention

As CD15 demonstrate, observed behavior is consistent with their model if and only if it satisfies their

“no improving attention cycles” (NIAC) and “no improving action switches” (NIAS) conditions.A9

Their NIAC condition ensures that improvements to gross payoffs cannot be made by reallocating

attention cyclically across decision problems, and their NIAS condition ensures that the DM’s

actions are optimal given the beliefs induced by her chosen information structure. Because our

model is behaviorally equivalent to theirs, NIAC and NIAS are necessary and sufficient conditions

for stochastic choice data to satisfy our model. Put differently, the DM fails to fulfill either of those

two conditions if and only if there does not exist a cost function that rationalizes her stochastic

choice data.

In our notation, the NIAC condition can be expressed as follows. Assume a fixed prior π, and

let U0, U1, . . . , UJ−1 be any subset of two or more of the payoff matrices faced by the DM. Let

Q0, Q1, . . . , QJ−1 and D0, D1, . . . , DJ−1 be the corresponding information structures and decision

matrices selected by the DM, and let Dj
i be a decision matrix that maximizes the gross payoff given

payoff matrix Ui and information structure Qj . Then the NIAC condition states:

J−1∑
j=0

tr (QjDjUjΠ) ≥
J−1∑
j=0

tr
(
Q(j+1) mod JD

(j+1) mod J
j UjΠ

)
(A3)

The NIAS condition can be expressed as follows. Assume a fixed prior π. Then for any payoff

matrix U , let Q∗ be the information structure and D∗ be the decision matrix chosen by the DM.

A8See Section II.A of CD15 for details.
A9The NIAS condition is due to Caplin and Martin (2015). It is the key condition that characterizes their Bayesian

expected utility model.
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Then the NIAS condition states that for any k ∈ {1, . . . , |A|} such that the k-th column of D∗

(denoted by d∗•,k) has at least one nonzero entry and any l ∈ {1, . . . , |A|}:

uk,•ΠQ
∗d∗•,k ≥ ul,•ΠQ∗d∗•,k (A4)

where uk,• and ul,• are the k-th and l-th rows of U , respectively.

Proposition A1. NIAC and NIAS are necessary and sufficient conditions for stochastic choice

data to satisfy (A2).

Proof. This follows directly from Proposition A5 in Appendix Subsection A1.6 and Theorem 1 of

CD15.

A1.3 Responsiveness

A set of behaviors that is trivially consistent with rational inattention is one where the DM’s

behavior is consistent with their posterior beliefs not changing across decision problems; regardless

of the decision problem, she chooses the same information structure. This is consistent with models

such as signal detection theory, where the DM’s information structure is exogenously given. In

particular, it does not become more informative if the DM’s gross reward from choosing an optimal

action increases. In those cases, the DM simply does not respond to changes in the level of incentives

across decision problems. More interesting are cases where the DM does modify her behavior in

response to changes in the level of incentives.

Definition 1. Suppose that a DM is given a set of decision problems U := {U1, U2, . . . UJ}. Further

suppose that ∃U, Ũ ∈ U satisfying the following: for each i ∈ {1, . . . n}, let τi ∈ argmax
j∈{1,...,|A|}

ui,j ;

∀ i ∈ {1, . . . n}, ũi,j ≥ ui,j if j = τi and ũi,j ≤ ui,j if j 6= τi, with at least one strict inequality. Then

we say the DM is responsive (to incentives), or exhibits responsiveness, if her behavior is such that

Pr

(
a ∈ argmax

z∈A
∈ ũ(z, θ)

)
> Pr

(
a ∈ argmax

z∈A
∈ u(z, θ)

)
.

Put differently, a DM is responsive to incentives if for some pair of decision problems, her

probability of taking a (gross) payoff-maximizing action increases when the utility associated with

payoff-maximizing actions increases and the utility associated with non-payoff-maximizing actions

decreases.
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Responsiveness is a fairly intuitive condition for human behavior to fulfill. Roughly speaking,

it says that people perform better (by choosing the best option more often) when the stakes are

higher.

A1.4 Continuity and Convexity

In this subsection, we establish sufficient conditions for a continuous relationship between gross

payoffs and incentives in general rational inattention problems. Roughly speaking, continuity and

convexity of the information cost function imply gross payoffs that are continuous in incentives.

Assumption A. Finiteness. ∃ Q̃ ⊆ Q closed, convex, and non-empty such that ∀π ∈ ∆(Θ),

C(π,Q) is finite for Q ∈ Q̃ and positive infinity otherwise.

This assumption helps ensure that the DM’s decision problem has a solution. We call signal

structures in Q̃ admissible.

Assumption B. Straightforwardness. ∃ % : {1, . . . |M |} −→ {0, . . . |M |} such that:

• |%({1, . . . |M |})| ≤ |A|+ 1, and ∀ i ∈ {1, . . . , |M |}, |%−1(i)| ≤ 1.

• Given U ∈ U and Q ∈ Q̃, ∃Q′ ∈ Q̃ such that:

– ∀ j ∈ {1, . . . , |M |}, if %(j) 6= 0, then q′•,j =
∑

`∈V π,Uj (Q)
q•,`, where V π,U

j (Q) is defined as

a non-empty subset of {k | %(j) ∈ argmaxi zi,k}, Z = (zi,j) := UΠQ, and q•,j and q′•,j

denote the j-th columns of Q and Q′, respectively.

– ∀ j ∈ {1, . . . , |M |}, if %(j) = 0, then q′•,j = ~0.

– ∀h, j ∈ {1, . . . , |M |}, if h 6= j, then V π,U
h (Q) ∩ V π,U

j (Q) = ∅.

Assumption B is a seemingly technical assumption that nonetheless has a simple interpreta-

tion:A10 for any admissible signal structure Q, there is an equivalent admissible signal structure

Q′, in terms of the distribution of actions it induces the DM to take, where each action is induced

by at most one signal. % can be seen as a “standard” prescription given by the signal space: if a

DM receives signal mj according to Q′, then she should take action a%(j). Following Kamenica and

A10Note that B is an assumption on Q̃, and Q̃ can be described as the set where C is finite. Therefore, B is actually
an assumption on the cost function C.
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Gentzkow (2011), we call such Q′ straightforward.A11 A particularly salient example for % in the

case that M = A is the identity mapping, in which case under a straightforward signal structure,

the signal the DM receives is literally the action she should take.

Assumptions A and B need not be onerous. In particular, they are trivially satisfied whenever

Q̃ = Q.

Assumption C. Continuity. C(π,Q) is continuous in its second argument on Q̃.

Continuity is a typical assumption in much of economic analysis. In this case, it implies that

gathering a small amount of additional information increases the total cost of information by only

a small amount. This may seem like an innocuous assumption, but it precludes some plausible cost

functions, such as those with fixed costs for information acquisition, as will be seen in Section 3.

Assumption D. Almost strict convexity. ∀π ∈ ∆(Θ), ∀λ ∈ (0, 1),∀Q1, Q2 ∈ Q̃, C(π, λQ1 +

(1− λ)Q2) ≤ λC(π,Q1) + (1− λ)C(π,Q2), where the inequality is strict except possibly if Q1 and

Q2 induce the same distribution of posteriors.

This notion of convexity can be contrasted with CD15’s. CD15 define a notion of convexity over

the space of distributions of posteriors called “mixture feasibility”;A12 however, it has no empirical

content, because distributions of posteriors and mixtures thereof are observationally equivalent

given choice data. In our framework, cost functions are defined over signal structures instead of

the distributions of posteriors they induce. Since the space of stochastic matrices can be identified

with a subset of Euclidean space, Assumption D gives us an easily interpretable “geometric” notion

of convexity. Moreover, taken in tandem with the other assumptions, Assumption D actually has

empirical content, as shown in Proposition A2, which generalizes Proposition 3 in the paper.

In order to ensure that continuity and almost strict convexity imply continuous gross payoffs,

we require one additional condition.

Assumption E. Monotonicity of information. Let R be a right-stochastic matrix of dimension

|M |× |M |, which we refer to as a garbling matrix. Then for any π ∈ ∆(Θ) and Q ∈ Q̃, C(π,Q) ≥

C(π,QR), provided QR ∈ Q̃.

A11Straightforwardness is also related to the concept of the “revealed information structure” in CD15.
A12Assumption D involves mixtures of conditional signal probabilities, which could yield posteriors not generated by

either information structure in the mixture, whereas mixture feasibility involves mixtures of distributions of posteriors
whose support is the union of the supports of the distributions in the mixture.
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If Q is an information structure and R is a garbling matrix, then Q can be thought of as

containing all the information contained in QR, i.e. QR simply adds noise to Q. In this case, we

shall say that Q Blackwell-dominates QR. As shown by Blackwell (1953), Q yields a (weakly) higher

gross payoff than QR for any decision problem, given an optimal selection of decision matrices.

Therefore, Assumption E implies that if one information structure is more informative than another,

then it is also costlier.A13

Assumption E is equivalent to Condition K1 of CD15, and they show that it is not testable;

any stochastic choice data set that is consistent with some cost function C is also consistent with

some cost function C̃ that satisfies Assumption E. Therefore, requiring it does not eliminate any

additional sets of stochastic choice data from being consistent with a model of rational inattention.

We have now established a set of sufficient conditions that ensure that the DM’s ex-ante gross

payoff is continuous in incentives.

Proposition A2. Suppose that π is fixed and C satisfies Assumptions A, B, C, D, and E. Then

the ex-ante gross payoff is continuous in U .

Proof. First we show that we may assume a fixed decision matrix D′ such that:

• If i ∈ %−1({1, . . . , |M |}), then d′i,%(i) = 1.

• If i ∈ %−1(0), then d′i,1 = 1.

By Assumption A, Q ∈ Q \ Q̃ will never be optimal and can be ignored. Given Q ∈ Q̃ and

U ∈ U , Assumption B tells us that there is a Q′ ∈ Q̃ constructed by summing columns of Q such

that if a%(j) is an action optimally induced by the signals in
{
mk

∣∣∣k ∈ V π,U
j (Q)

}
under Q, then a%(j)

is also an action optimally induced by the signal mj under Q′. Therefore, in constructing D′, it is

optimal for the DM to set d′i,%(i) = 1 if i ∈ %−1({1, . . . , |M |}).

By Assumption B, if i ∈ %−1(0), then q•,i = ~0, and the signal mi is never used by the DM.

Therefore, any assumption can be made about the action taken under this zero-probability event,

and we may set d′i,1 = 1.

Thus, D′ constructed in this manner is in argmaxD tr(Q′DUΠ). Moreover, by construction, for

any θ ∈ Θ, PrπQ(mj |θ) = PrπQ′
(
V π,U
j (Q)

∣∣∣θ), so tr(Q′D′UΠ) = maxD tr(QDUΠ).

A13This assumption does not provide a complete order on information costs, since it is possible that two experiments
are not ranked in the Blackwell sense. In other words, if Q1 and Q2 are information structures of the same dimension,
there does not necessarily exist R of appropriate dimension such that Q1R = Q2 or Q2R = Q1.
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Now we must show that we can restrict our focus to Q′ constructed in this manner. Note that by

construction, Q′ = QP , where P is square and has entries pi,j such that pi,j = 1 if i ∈ V π,U
j (Q) and

pi,j = 0 otherwise.A14 Therefore, it is right-stochastic, and by Assumption E, C(π,Q′) ≤ C(π,Q).

Therefore, we need only consider information structures such that the optimal decision matrix is

fixed as D′.

We may now simply consider the problem:

max
Q∈Q̃

tr(QD′UΠ)− C(π,Q) (A5)

Denote the maximand in (A5) by F (Q). As a consequence of Assumption C, F (Q) is continuous

in Q and U . By Assumption A and the Heine-Borel theorem, Q̃ is compact. Therefore, by the

maximum theorem, the optimal choice of information structure for each payoff matrix, Q∗(U), is

upper hemicontinuous in U .

Since the first term of F (Q) is linear and the second is almost strictly convex by Assumption

D, it inherits its convexity properties from the second term. In other words, F (Q) is almost

strictly concave, with almost strict concavity defined analogously to almost strict convexity. For

each U , either Q∗(U) is unique or it is multivalued. Suppose it is multivalued, and Q∗1, Q
∗
2 ∈

Q∗(U). Then F (Q∗1) = F (Q∗2). If Q∗1 and Q∗2 induce different distributions of posteriors, then

∀λ ∈ (0, 1), F (λQ∗1 + (1− λ)Q∗2) > λF (Q∗1) + (1− λ)F (Q∗2) = F (Q∗1), contradicting the optimality

of Q∗1 and Q∗2.

Now suppose that Q∗1 and Q∗2 induce the same distribution of posteriors and therefore induce the

same gross payoffs. Then either @λ ∈ (0, 1) such that F (λQ∗1+(1−λ)Q∗2) = λF (Q∗1)+(1−λ)F (Q∗2),

in which case the argument of the preceding paragraph applies, or else there does exist such λ, in

which case Q∗(U) 3 Qλ := λQ∗1 +(1−λ)Q∗2 as well. Then, by the linearity of the trace function and

the fact that Q∗1 and Q∗2 induce the same distribution of posteriors, tr(QλD
′UΠ) = tr(Q∗1D

′UΠ) =

tr(Q∗2D
′UΠ).

This implies that tr(Q∗(U)D′UΠ) is single-valued, and since it is the composition of a contin-

uous function (which can be viewed as an upper hemicontinuous correspondence) with an upper

hemicontinuous correspondence, it is itself upper hemicontinuous (cf. Theorem 14.1.5 of Sydsæter

A14P can be seen as the matrix that takes column i of Q to column j of Q′ if pi,j = 1.

9



et al., 2008). Together, its upper hemicontinuity and single-valuedness imply that it is a continuous

function of U , thereby completing the proof.

To summarize the proof, straightforwardness and monotonicity of information ensure that the

decision matrix chosen by the DM can be fixed, which in turn ensures the convexity of the problem.

While almost strict convexity does not ensure a unique solution to the problem, it does ensure that

the optimal ex-ante gross payoff is single-valued, which together with the continuity of the cost

function implies the result.A15

The assumptions necessary for Proposition A2 are satisfied by many different cost functions.

For example, it is easily shown that cost functions that can be expressed as a sum of strictly convex

functions of the entries of a stochastic matrix are almost strictly convex.

A1.5 Uniform Guess Tasks

The general framework presented above can be applied to the uniform guess tasks introduced in

Section 2. In these decision problems, since the DM is trying to determine the true state, we can set

A = Θ. Moreover, U = rIn for some r > 0. Therefore, the DM’s ex-ante gross payoff in this task

can be written as rtr(QDΠ). Since the prior is uniform, P := tr(QDΠ) = 1
ntr(QD) is the ex-ante

probability of correctly guessing the state, or their performance, and the ex-ante gross payoff can

be written as r
ntr(QD).

In Section 2, we defined costs as depending on the performance P rather than the entire infor-

mation structure. We can equivalently define costs on the entire information structure as follows.

Suppose that |Θ|= |M |. Then Q is square, and we can impose that C(π,Q) = Č

(
n∑
i=1

πiqi,i

)
if

Q is such that the diagonal entries of ΠQ are maximal in their columns,A16 and the off-diagonal

entries of Q are fixed fractions of the “remaining” probability in each row.A17 The DM’s optimal

A15At this point, a clarification is in order. Proposition A2 is a statement about what the properties of an information
cost function imply about behavior. To obtain a statement about what behavior implies about the properties of cost
functions, we invoke the contrapositive: if gross payoffs are discontinuous in incentives, then this behavior cannot be
rationalized by an information cost function that satisfies Assumptions C, D, and E simultaneously. However, as we
explained earlier in this subsection, Assumption E is not testable. Therefore, given stochastic choice data, we can
assume the cost function that rationalizes it satisfies Assumption E, and so if we observe that ex-ante gross payoffs
are discontinuous in incentives, then this implies that the DM’s cost function either is discontinuous or fails almost
strict convexity.

A16It can be shown that this implies
n∑
i=1

πiqi,i is at least 1
n

.

A17In an experimental setting these fixed fractions could be estimated from a decision-maker’s distribution of sub-
optimal choices, i.e. mistakes.
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D is then simply the identity matrix, and the argument of Č(·) is equal to their performance P ,

and the DM’s maximand can be expressed as rP − Č(P ).

Stated more formally, fix Ω, an n× n stochastic matrix with zeroes on its diagonal and entries

ωi,j . Then, set Q̃ = {Q | j ∈ argmaxiπiqi,j ∀ j and qi,j = ωi,j(1 − qi,i) for i 6= j}, with C(π,Q) =

Č

(
n∑
i=1

πiqi,i

)
on Q̃ and positive infinity otherwise. It can can shown that if Č is well-behaved, then

the performance function is continuous, thereby proving Proposition 3. We provide the relevant

proof in Appendix Subsection A2.3.

It should also be noted that while Tsallis entropy costs (including mutual information) can be

written as depending directly on performance in uniform guess tasks, we can equivalently work with

the more general definition given in Subsection 3.2. We illustrate this in the proof of Proposition

5 given in Appendix Subsection A2.5.

A1.6 Posterior-Equivalent Information Structures

This appendix subsection formalizes the relationship between information structures defined as

conditional likelihoods on a signal space and information structures defined as distributions of

posterior beliefs, which allows us to clarify the relationship between the present framework and

that of CD15.

The framework outlined in the preceding subsections defines costs jointly on the DM’s prior

belief and information structures as conditional distributions of signals, given states. Defining

information structures in this manner is the approach taken by McGuire (1972) and Leshno and

Spector (1992), among others. From the ex-ante perspective (i.e. before signals are realized),

each information structure corresponds to a distribution of posterior beliefs; each potential signal

has a posterior belief associated with it, and the likelihood of each of these posterior beliefs is

the likelihood of receiving the signal associated with it. If π is a prior belief on Θ and Q is an

information structure that generates signals in M , then the distribution of posteriors γπQ is defined

by:

PrπQ(x) =
∑

j∈{`|∃α∈R>0 s.t. π◦q•,`=αx}

|Θ|∑
i=1

πiqi,j (A6)

where PrπQ(·) denotes the probability of its argument, given prior π and information structure Q,
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x is an element of ∆(Θ), ◦ denotes the Hadamard (component-wise) matrix product, and empty

sums are taken to be zero. Several authors, including Kamenica and Gentzkow (2011) and CD15,

choose to work directly with these distributions of posteriors. In the case of CD15, information

costs are defined on these distributions. From the perspective of pure Bayesian expected utility

maximization (cf. Caplin and Martin, 2015), the two approaches are clearly equivalent in terms of

the behaviors they imply.

From the perspective of rational inattention, however, when information structures have costs

associated with them, this equivalence is less readily established. The cost of a particular dis-

tribution of posteriors may not just depend on the distribution itself, but also on how it was

generated. Consider the following examples. Let Θ = {X,Y } and M = {x, y, z}, both indexed

in those orders. Let π = (0.5, 0.5), and let Q1 =

 0.8 0.2 0

0.2 0.8 0

, Q2 =

 0.2 0.8 0

0.8 0.2 0

, and

Q3 =

 0.8 0.1 0.1

0.2 0.4 0.4

. It is easily verified that each of these information structures generates

the same distribution of posteriors. Under Q1, x was most likely generated by X, and y was most

likely generated by Y . Thus, the signals can be seen as a “natural” interpretation of the states.

By contrast, under Q2, x was most likely generated by Y , and y was most likely generated by

X. This interpretation is “unnatural” and consequently may be more mentally costly for a DM to

process. Now, consider Q3, where again x was most likely generated by X, and y was most likely

generated by Y , but there is also a third signal z generated with positive probability that is most

likely to have been generated by Y . Though y and z both correspond to the same posterior belief,

having to keep track of three signals may be more mentally taxing than keeping track of two, and

so Q3 might be costlier than Q1. These examples serve to illustrate that assigning signals to states

is not merely a matter of indexing when considering information costs; costs may depend on the

interpretability of and meaning implied by an information structure.

This of course raises the question of whether our model implies the potential to accommodate

behaviors that would not be feasible under the posterior-based approach to rational inattention.

That is the problem to which we turn our attention in this appendix. Before proceeding, we require

some preliminaries.
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A1.6.1 Preliminaries

Let Q be a stochastic matrix. Denote its entries by qi,j , its rows by qi,•, and its columns by q•,j .

We define three operations on Q:

1. Q′ is obtained from Q by swapping if q′•,j = q•,k, q
′
•,k = q•,j , and all other columns are the

same.

2. Q′ is obtained from Q by summing if for some j, k such that q•,j = αq•,k for some α > 0,

q′•,j = q•,j + q•,k, q
′
•,k is a column of zeroes, and all other columns are the same.

3. Q′ is obtained from Q by splitting if ∃ k and λ ∈ (0, 1) such that q•,k is a column of zeroes,

q′•,j = λq•,j , q
′
•,k = (1− λ)q•,j , and all other columns are the same.

Note that each of these operations is reversible as one of the other operations. Swapping columns

can be reversed by simply swapping the columns again. Summing columns can be reversed by

splitting the summed column into the summands. Splitting columns can be reversed by summing

the split columns.

Finally, let ♦ be a binary relation on the space of |Θ| × |M | stochastic matrices, defined by

Q♦R iff given some π ∈ int(∆(Θ)) (i.e. π has full support on Θ),A18 Q and R induce the same

distribution of posteriors, i.e. γπQ = γπR. We will say Q and R are posterior-equivalent if Q♦R.

A1.6.2 Posterior Equivalence and the Algebra of Stochastic Matrices

The posterior equivalence relation defined in the previous subsection is independent of the prior;

if two information structures are posterior-equivalent for some prior with full support, then the

posterior equivalence condition holds for all priors with full support. In other words, as the following

proposition shows, two information structures could be said to be posterior-equivalent if they induce

the same distribution of posteriors for any prior with full support on the state space.

Proposition A3. If Q♦R, then γπQ = γπR ∀π ∈ int(∆(Θ)).

A18We require that π have full support, because the probability distribution of signals conditional on a zero-
probability state is irrelevant for determining the distribution of posteriors and can therefore be chosen arbitrarily.
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Proof. (A6) can be rewritten by rearranging the order of summation:

PrπQ(x) =

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx}

qi,j

 (A7)

Now suppose π̄ is a prior that generates posterior equivalence between Q and R, i.e. γπ̄Q = γπ̄R.

Then, for a given posterior x̄, we can write:

|Θ|∑
i=1

π̄i

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}

qi,j

 =

|Θ|∑
i=1

π̄i

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}

ri,j

 (A8)

Since the summands in the inner sums are entries from columns of Q and R whose Hadamard

products with π are multiples of x̄, the respective columns must be multiples of each other. To see

this, suppose that q is one such column of Q and r is one such column of R. Then we can write

π ◦ q = αx̄ and π ◦ r = βx̄ for some α, β > 0. Equivalently, we can write Πq = αx̄ and Πq = βx̄,

where Π = diag(π). Since Π is a diagonal matrix with strictly positive entries on its diagonal, it is

invertible, and we can write q = Π−1(αx̄) and r = Π−1(βx̄). By the linearity of Π−1, we can write

q = αΠ−1x̄ and r = βΠ−1x̄, which implies that q = α
β r.

Therefore, we can write:

∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}

qi,j = κx̄

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}

ri,j

 (A9)

for all i and for some κx̄ > 0. Since π̄i > 0 ∀ i, it must be that κx̄ = 1 or else (A8) could not

hold. Now replace π̄ in (A8) with an arbitrary prior with full support π. Because (A9) holds with

κx̄ = 1, (A8) holds for arbitrary π.

Corollary A1. ♦ is an equivalence relation.

Proof. Reflexivity and symmetry are trivially verified.

For transitivity, suppose that Q♦R and R♦S. Then γπQ = γπR and γπ
′

R = γπ
′

S for some π, π′ with

full support. But by Proposition A3, γπS = γπR = γπQ, which establishes the result.

Now, since we know that posterior equivalence can be established without making reference
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to any specific prior distribution, we can show that Q♦R is equivalent to a set of linear-algebraic

conditions on the relationship between Q and R, written as stochastic matrices. Put differently,

posterior-equivalence is not just a statistical relationship between stochastic matrices, but also an

algebraic one that can be defined without reference to probabilities. To our knowledge, this is a

novel characterization of equivalence of information structures.

Proposition A4. Q♦R iff R can be obtained from Q by a sequence of swapping, summing, and

splitting.

Proof. We begin by proving the ‘if’ direction. We show that an information structure obtained

from another by each of the three column operations in the proposition is posterior-equivalent to

the original information structure.

Swapping. (A6) is unaffected by a change in the order of columns.

Summing. Suppose Q′ is obtained from Q by summing columns j̄ and k̄. Let ȳ =
π◦q•,j̄∑|Θ|
i=1 πiqi,j̄

.

Then:

PrπQ(ȳ) =

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}

qi,j


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}\{j̄,k̄}

qi,j + qi,j̄ + qi,k̄


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}\{j̄,k̄}

q′i,j + q′i,j̄


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}

q′i,j


= PrπQ′(ȳ)

Moreover, since the columns of Q that are not j̄ or k̄ are unaffected by summing, it is obvious that

PrπQ(x) = PrπQ′(x) ∀x 6= ȳ as well.

Splitting. Suppose Q′ is obtained from Q by splitting column j̄ into columns j̄ and k̄. Then
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q′•,j̄ = λq•,j̄ and q′•,k̄ = (1− λ)q•,j̄ for some λ ∈ (0, 1). Let ȳ =
π◦q•,j̄∑|Θ|
i=1 πiqi,j̄

. Then:

PrπQ(ȳ) =

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}

qi,j


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}\{j̄}

qi,j + qi,j̄


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}\{j̄}

qi,j + λqi,j̄ + (1− λ)qi,j̄


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}\{j̄,k̄}

q′i,j + q′i,j̄ + q′i,k̄


=

|Θ|∑
i=1

πi

 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}

q′i,j


= PrπQ′(ȳ)

Moreover, since the columns of Q that are not j̄ or k̄ are unaffected by splitting, it is obvious that

PrπQ(x) = PrπQ′(x) ∀x 6= ȳ as well.

This shows that Q′♦Q if Q′ is obtained from Q by any one of the three column operations.

Since ♦ is transitive, it is therefore true that Q′♦Q if Q′ is obtained from Q by a sequence of the

three column operations. This concludes the proof of the ‘if’ direction.

For the ‘only if’ direction, suppose that Q♦R. Select the leftmost column of Q that is not a

column of zeroes. Sum to it the next leftmost column that is a multiple of it. Repeat until no

more multiples remain. Then repeat this summing process with the next leftmost non-zero column

until all non-zero columns have been exhausted. Call the matrix resulting from this sequence of

summings Q′. Do the same with R, and call the matrix resulting from this sequence of summings

R′.

We must now show that Q′ and R′ have the same columns. Since ♦ is an equivalence relation,

and as we showed above, column operations preserve the relation, it must be that Q′♦R′. Therefore,

they induce the same distribution of posteriors. Suppose z̄ is a nonzero column of Q′ that is not

in R′. Then, since both Q′ and R′ were constructed so that none of their nonzero columns are
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multiples of each other, z̄
‖z̄‖1 �∈Supp

(
γπR′
)
, where ‖·‖1 denotes the `1 norm. Thus we have shown

by contradiction that each nonzero column of R′ must be a multiple of only one column in Q′, and

vice versa. Now select a column ȳ of Q′, and consider its multiple ȳ? in R′, where ȳ? = αȳ for

some α > 0. Then for some full-support prior π, PrπQ′
(

ȳ
‖ȳ‖1

)
=
∑|Θ|

i=1 πiȳi, and since ȳ
‖ȳ‖1 = ȳ?

‖ȳ?‖1 ,

PrπR′
(

ȳ
‖ȳ‖1

)
=
∑|Θ|

i=1 πiȳ
?
i = α

∑|Θ|
i=1 πiȳi. Since Q′♦R′, it must be that α = 1. This shows that Q′

and R′ have the same nonzero columns. Since they have the same dimensions, and they are both

stochastic matrices (so that summing over their nonzero columns yields a vector of ones), this must

mean that they have the same number of nonzero columns.

Given that Q′ and R′ have the same columns, it can be shown that one can be obtained from

the other by a sequence of swappings. Select the leftmost column of Q′ and swap it with the column

that has that position in R′. Repeat this process with the next leftmost column until Q′ has been

transformed into R′. Now, note that the sequence of summings that took R to R′ can be reversed

to become a sequence of splittings that takes R′ to R. Concatenating the sequence of summings

that took Q to Q′, the sequence of swappings that took Q′ to R′, and the sequence of splittings

that took R′ to R gives a sequence of summings, swappings, and splittings that takes Q to R. This

concludes the proof.

A1.6.3 Cost Equivalence

We are now prepared to see whether our framework can predict different behavior than that of

CD15. Assuming a finite set of actions, allowing costs to depend on how distributions of posteriors

are generated generalizes CD15; put differently, a version of their model with a finite number of

actions is equivalent to ours with the following assumption.

Assumption F. Cost equivalence. For all priors π, C(π,Q1) = C(π,Q2) whenever Q1♦Q2.

However, as we show below, any behavior that can be rationalized by our model can also be

rationalized by CD15; cost equivalence imposes no additional behavioral restrictions, and it is

therefore untestable. This result allows us to apply CD15’s necessary and sufficient conditions for

rational inattention to our framework without imposing any additional conditions.

Proposition A5. Stochastic choice data are consistent with (A2) iff they are consistent with

CD15.A19

A19Though we have assumed a finite action space in our paper, the proof of Proposition 1 does not rely on this.
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To outline the proof, the ‘if’ direction is obvious, since our model generalizes CD15. To see the

‘only if’ direction, suppose that {(Ui, θi, ai)} can be rationalized by (A2) with some cost function

C(π,Q). Define QγπQ
to be set of information structures that induce the distribution γπQ over

posteriors, and define C̃(π,Q) := min
R∈Qγπ

Q

C(π,R). It is obvious that C̃ satisfies cost equivalence.

Moreover, since a given posterior distribution always induces the same ex-ante gross payoff, the

DM should always choose the lowest-cost way of inducing that posterior distribution. Thus, the

proof boils down to showing that this minimum is well-defined. Details are below.

Proof. The ‘if’ direction is obvious, since our model generalizes CD15 with finite action sets.

The ‘only if’ direction can be seen as follows. Suppose {(Ui, θi, ai)} can be rationalized by (A2)

with some cost function C(π,Q). Since there are finitely many decision problems, C is pinned down

for a finite set of points (i.e. a closed set), and so by the Tietze extension theorem (cf. Rudin,

1974, pg. 422), it may be assumed continuous. Define QγπQ
to be set of information structures that

induce posterior γπQ, and define C̃(π,Q) := min
R∈Qγπ

Q

C(π,R), assuming it is well-defined. γπQ always

induces the same maximum gross payoff, no matter which information structure in QγπQ
generated

it. Therefore, since the DM is a payoff maximizer, for each distribution of posteriors she generates,

she will always select the lowest-cost method of doing so. This implies that behavior that can be

rationalized by C can also be rationalized by C̃, which obviously satisfies cost equivalence.

Now we must verify that C̃ is actually well-defined. Let bπ : Q −→ ∆(∆(Θ)) be the function

that maps an information structure to the distribution of posteriors it induces given prior π. First,

we must show that bπ is continuous when ∆(∆(Θ)) is equipped with the weak-∗ topology, i.e. the

topology of weak convergence of measure.

By Bayes’ rule, Supp(bπ(Q)) =
{(

πsqs,k∑n
l=1 πlql,k

)n
s=1

∣∣∣k ∈ {1, . . . |M |},∑n
l=1 πlql,k > 0

}
, and each

element ζ ∈ Supp(bπ(Q)) is induced with probability
∑

k∈Qζ
∑n

l=1 πlql,k, where Qζ is the set of

columns of Q that generate the posterior ζ.

Consider a sequence of information structures Q1, Q2, . . . ∈ Q converging to Q. We must show

that lim
j→∞

bπ(Qj) = bπ(Q) (in the sense of weak convergence of measure). By Theorem 25.8 of

Billingsley (1995), this is equivalent to showing that lim
j→∞

bπ(Qj)(X) = bπ(Q)(X) for all continuity

Therefore, the use of decision matrices mapping signals to actions can be seen as a notational convenience for the
applications contained in this paper rather than a fundamental part of the model.
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sets X in the Borel σ-algebra of ∆(Θ).A20

Since X is a continuity set, ∂X ∩ Supp(bπ(Q)) = ∅. There are two cases. Either X ∩

Supp(bπ(Q)) = ∅ or int(X) ∩ Supp(bπ(Q)) 6= ∅.

Case 1: X ∩ Supp(bπ(Q)) = ∅. If ∃ J ∈ N such that bπ(Qj)(X) = 0 ∀ j > J , then clearly

lim
j→∞

bπ(Qj)(X) = bπ(Q)(X) = 0. If not, then ∀ J ∈ N, ∃ j > J such that X ∩ Supp(bπ(Qj)) 6=

∅. Suppose, for a contradiction, that lim
j→∞

bπ(Qj)(X) 6= 0. Then ∃ ε > 0 such that ∀ J ∈

N, ∃ j > J such that bπ(Qj)(X) > ε. Therefore, there must exist a subsequence Qjh such that((
πsqs,k∑n
l=1 πlql,k

)n
s=1

)
jh

converges in cl(X) for some k.A21 If it converges to a point in int(X), then

this contradicts the fact that bπ(Q)(X) = 0. If it converges to a point in ∂X, then bπ(Q)(∂X) > 0,

contradicting the fact that X is a continuity set. Thus, lim
j→∞

bπ(Qj)(X) = bπ(Q)(X).

Case 2: int(X) ∩ Supp(bπ(Q)) 6= ∅. Note that since (Qj) is a convergent sequence, each entry

of the matrices in (Qj) also defines a convergent sequence. Then each ((zk)j) := ((
∑n

l=1 πlql,k)j)

is a convergent sequence with limit zk, and each ((yk)j) :=

(((
πsqs,k∑n
l=1 πlql,k

)n
s=1

)
j

)
either converges

to some limit yk (for zk > 0) or else has an undefined limit (when zk = 0).A22 Since they are

continuous functions of the entries of π and (Qj), and because (Qj) is convergent, yk =
(

πsqs,k∑n
l=1 πlql,k

)
(when it exists) and zk =

∑n
l=1 πlql,k, where the entries ql,k are taken from Q. Consider the set

K ⊆ {1, . . . ,M} such that {((yk)j)|k ∈ K} is the collection of sequences that converge to points in

int(X). Then, because int(X) is open, ∀ ε > 0 and ∀ k ∈ K, ∃Nk such that ∀ j > Nk, (yk)j ∈ int(X).

Let N̄ = max
k∈K

Nk. Then ∀ j > N̄, bπ(Qj)(X) ≥ (
∑

k∈K(
∑n

l=1 πlql,k))j .

We now show that bπ(Qj)(X)−
∑

k∈K(
∑n

l=1 πlql,k)j goes to zero as j grows large. Suppose there

does not exist J ∈ N such that this sequence has the value 0 ∀ j > J . Then there must exist a sub-

sequence (Qjh) such that bπ(Qjh)(X)−
∑

k∈K(
∑n

l=1 πlql,k)jh > 0 for all jh. Then for each jh, there

is some k′�∈K such that (yk′)jh ∈ Supp(bπ(Qjh)). Because |M | is finite, we may assume that this k′

is fixed. If ((yk′)jh) is convergent, it must converge in cl(X). If yk′ ∈ int(X), then this contradicts

the fact that k�∈K. If yk′ ∈ ∂X, then this contradicts the fact that X is a continuity set. If ((yk′)jh)

A20A continuity set is a set X whose boundary ∂X has measure zero.
A21We can take k fixed here because even if we construct a subsequence where the sequence of posteriors is constructed

by different columns of Qjh for different sequence elements, we can merely take a subsequence of that subsequence,
but with k fixed.
A22It is possible that (yk)j′ maybe be undefined for some k and j′. This occurs when (zk)j′ = 0. If there are finitely

many such j′, then we can simply consider a sequence (Qj) with these j′ removed. If there are infinitely many such j′,
then (zk)j must converge to zero. Therefore, WLOG, either (Qj) is such that (zk)j 6= 0 ∀ j, k and possibly converges
to zero, or (zk)j definitely converges to zero.
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has no defined limit, then zk′ = 0. Therefore, lim
h→∞

[
bπ(Qjh)(X)−

∑
k∈K(

∑n
l=1 πlql,k)jh

]
= 0.

This establishes the continuity of bπ. Therefore, for a given γ with finite support in ∆(∆(Θ)),

b−1
π ({γ}) is closed (since singletons are closed). Because b−1

π ({γ}) ⊆ Q and Q is a bounded subset of

Mn×|M |(R) (which can be identified with Rn|M |), by the Heine-Borel theorem b−1
π ({γ}) is compact.

In particular QγπQ
is compact, and since C is continuous (fixing π), by the Weierstrass theorem,

it attains its minimum on QγπQ
. Therefore, C̃ is well-defined. This concludes the proof.

A2 Proofs

This appendix contains the proofs omitted from the paper.

A2.1 Proof of Proposition 1

Proof. We begin by proving the “only if” direction. Let r1 ≥ r2 be two possible rewards. Let Qi be

the information structure optimally chosen under reward ri, i = 1, 2. Let Dj
i be the decision matrix

chosen under information structure Qi and reward rj , i, j = 1, 2. Since information structures are

“observed” only up to the actions taken, WLOG, we can assume straightforwardness and take

Di := Di
i = D¬ii , i = 1, 2.

The NIAC condition gives us:

r1tr(Q1D1Π) + r2tr(Q2D2Π) ≥ r2tr(Q1D1Π) + r1tr(Q2D2Π)

=⇒ r1P
∗(r1) + r2P

∗(r2) ≥ r2P
∗(r1) + r1P

∗(r2)

=⇒ (r1 − r2)[P ∗(r1)− P ∗(r2)] ≥ 0 (A10)

Since r1 ≥ r2, in order for (A10) to hold, we require that P ∗(r1) ≥ P ∗(r2). This proves the

“only if” direction.

For the “if” direction, consider a set of reward levels r1 ≥ r2 ≥ . . . ≥ rN and associated

performances P1 ≥ P2 ≥ . . . ≥ PN , where Pi := P ∗(ri). (We can order the performances in this

manner since P ∗ is nondecreasing.)

Consider an assignment of performances to rewards
(
ri, Pσ1(i)

)N
i=1

, where σ1 is a cyclic permu-
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tation. Let σ2 be defined as follows:

σ2(i) :=


1, i = 1

σ1(1), i = σ1
−1(1)

σ1(i), otherwise

Now we compute the difference in total gross payoffs between the assignments defined by σ2

and σ1.

N∑
j=1

rjPσ2(i) −
N∑
j=1

rjPσ1(i)

= r1P1 + rσ1
−1(i)Pσ1(1) −

(
r1Pσ1(1) + rσ1

−1(i)P1

)
=
(
r1 − rσ1

−1(i)

) (
P1 − Pσ1(1)

)
≥ 0, since r1 ≥ rσ1

−1(i) and P1 ≥ Pσ1(1)

Now we repeat this process for j ≥ 2, at each step constructing the permutation σj+1 as follows:

σj+1(i) :=


j, i = j

σj(j), i = σj
−1(j)

σj(i), otherwise

By the preceding argument, the total gross payoffs to the assignment increase (weakly) at each

step. Since there are N rewards, this process must finish in N − 1 steps, ending with σN (i) = i

and the highest possible gross payoff. Since the initial assignment (ri, Pσ1(i))
N
i=1 was arbitrary, this

implies the NIAC condition for our data.

A2.2 Proof of Proposition 2

Proof. Fix some x ∈ A and y ∈ Θ. Then:

Pr(θ = x|a = x) ≥ Pr(θ = y|a = x)

⇐⇒ rPr(θ = x|a = x) + 0 ·
∑
z 6=x

Pr(θ = z|a = x) ≥ rPr(θ = y|a = x) + 0 ·
∑
z 6=y

Pr(θ = z|a = x)
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⇐⇒
∑
z∈Θ

u(x, z) Pr(θ = z|a = x) ≥
∑
z∈Θ

u(y, z) Pr(θ = z|a = x)

⇐⇒
∑
z∈Θ

u(x, z)
Pr(a = x|θ = z) Pr(θ = z)

�����
Pr(a = x)

≥
∑
z∈Θ

u(y, z)
Pr(a = x|θ = z) Pr(θ = z)

�����
Pr(a = x)

⇐⇒ uk,•ΠQ
∗d∗•,k ≥ ul,•ΠQ∗d∗•,k, where x and y are the k-th and l-th elements of Θ, respectively

The last implication holds because the (i, j)-th entry of Q∗D∗ is Pr(aj |θi). Since all these implica-

tions are bidirectional, and x and y were chosen arbitrarily, this completes the proof.

A2.3 Proof of Proposition 3

Proof. We must verify that the cost function Ć(π,Q) induced by C(P ) and the associated Q̃ satisfy

the assumptions A, B, C, D, and E.

Assumption A. Since each maximizer is chosen from a finite set, Q̃ is nonempty.

To verify convexity, let Q1, Q2 ∈ Q̃ with generic entries q1
i,j and q2

i,j , let λ ∈ (0, 1), and let

Qλ := λQ1 + (1 − λ)Q2 with generic entry qλi,j . Consider an off-diagonal entry qλi,j where i 6= j.

Then qλi,j = λq1
i,j+(1−λ)q2

i,j = λωi,j(1−q1
i,i)+(1−λ)ωi,j(1−q2

i,i) = ωi,j(λ(1−q1
i,i)+(1−λ)(1−q2

i,i)) =

ωi,j(1− qλi,i). For a diagonal entry qλj,j , we have:

πjq
`
j,j ≥ πiq`i,j , ∀ i ∈ {1, . . . n}, ` ∈ {1, 2}

=⇒λπjq
1
j,j ≥ λπiq1

i,j and (1− λ)πjq
2
j,j ≥ (1− λ)πiq

2
i,j , ∀ i ∈ {1, . . . n}

=⇒λπjq
1
j,j + (1− λ)πjq

2
j,j ≥ λπiq1

i,j + (1− λ)πkq
2
k,j , ∀ i, k ∈ {1, . . . n}

=⇒πj(λq
1
j,j + (1− λ)q2

j,j) ≥ πi(λq1
i,j + (1− λ)q2

i,j), ∀ i ∈ {1, . . . n}

=⇒πjq
λ
j,j ≥ πiqλi,j , ∀ i ∈ {1, . . . n}

This proves the convexity of Q̃.

To verify closedness, let (Qk) be a sequence in Q̃, where an element of the sequence has

generic entry qki,j . For off-diagonal entries (i 6= j), qki,j = ωi,j(1 − qki,i) ∀ k implies limk→∞ q
k
i,j =

ωi,j(1 − limk→∞ q
k
i,i). For diagonal entries, qkj,j ≥ qki,j ∀ i ∈ {1, . . . , n}, ∀ k implies limk→∞ q

k
j,j ≥

limk→∞ q
k
i,j ∀ i ∈ {1, . . . , n}.
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Assumption B. Q̃ is constructed so that every Q ∈ Q̃ is straightforward.

Assumption C. The continuity of Ć follows from the well-behavedness of C.

Assumption D. We now verify the almost-strict convexity of Ć, using the same notation as

earlier in the proof.

λĆ(π,Q1) + (1− λ)Ć(π,Q2)

=λC

(
n∑
i=1

πiq
1
i,i

)
+ (1− λ)C

(
n∑
i=1

πiq
2
i,i

)

>C

(
λ

n∑
i=1

πiq
1
i,i + (1− λ)

n∑
i=1

πiq
2
i,i

)
, by the strict convexity of C

=C

(
n∑
i=1

πi(λq
1
i,i + (1− λ)q2

i,i)

)

=C

(
n∑
i=1

πiq
λ
i,i

)

= Ć(π,Qλ)

Assumption E. By Blackwell’s theorem (cf. Leshno and Spector, 1992), gross payoffs from

using the information structure QR cannot exceed gross payoffs from using Q. By the definition

of Q̃, gross payoffs are performance multiplicatively scaled by the incentive level. Therefore, the

performance associated with QR must be no greater than the performance associated with Q. Call

these performance levels PR and PQ. PR ≥ 1
n , or else QR would not be in Q̃; it would have to

have a diagonal entry that is not maximal in its column. Therefore, C(PR) ≤ C(PQ) which implies

that Ć(π,QR) ≤ Ć(π,Q).

Since all relevant assumptions hold, Proposition A2 implies the result.

A2.4 Proof of Proposition 4

Proof. By the convexity of C, the DM’s maximand rP −C(P ) is concave. Therefore, local maxima

are global maxima. The first order condition is r = C ′(P ∗). If r ∈
(
C ′
(

1
n

)
, limx↑1C

′(x)
)
, then we

can write P ∗ = (C ′)−1(r), because the strict convexity of C on
(

1
n , 1
)

implies that C ′ is strictly

increasing and therefore invertible on that interval.
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By the differentiability of C, 1
n could not be a global minimum unless C ′

(
1
n

)
= 0, thereby

implying that P ∗(r) ≥ 1
n .

Finally, if r ≥ limx↑1C
′(x), then by concavity and differentiability, the maximand is increasing

to the left of 1. Therefore, it is maximized for P ∗ = 1.

A2.5 Proof of Proposition 5

Before proceeding with the proof, we note that that the σ = 1 case, mutual information, follows

from Proposition 1 of Matějka and McKay (2015). However, for the sake of completness, we provide

a complete, independent proof for all cases here.

Proof. We require a lemma:

Lemma A1. Q can be chosen such that a decision matrix of the form D =

 In

0

 is optimal,

where In denotes the n× n identity matrix.

Proof. Since entropy-based costs are finite for all Q, Assumption B holds.

Therefore, following the proof of Proposition A2, for any Q, ∃R right-stochastic

such that QR is straightforward. Therefore, Q dominates QR in the Blackwell

order (Blackwell, 1953). Posterior-separable cost functions complete the Black-

well order (cf. Subsection 9.3 of Caplin et al., 2019), and entropy-based costs

are posterior-separable (cf. Subsection 8.3 of Caplin et al., 2019). Therefore,

C(π,Q) ≥ C(π,QR), and a straightforward signal is optimal, implying the

result.

Because of this result, for notational convenience, we ignore the unused signals in M and assume

M = Θ for the remainder of the proof, so we can consequently write D = In.

Because D = In, we can write the decision-maker’s problem as:

max
Q∈Q

r

n
tr(Q)− α(H(π)− E[H(π|Q)]) (A11)

subject to
n∑
j=1

qi,j = 1 ∀i (λi)

qi,j ≥ 0 ∀ i, j (µi,j)
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The first-order conditions for (A11) in the case that σ = 1 are:

i = j : r
n − α

[
ln

qi,i∑n
k=1 qk,i

+ 1− n−1∑n
k=1 qk,i

]
− λi + µi,i = 0

i 6= j : −α
[
ln

qi,j∑n
k=1 qk,j

+ 1− n−1∑n
k=1 qk,j

]
− λi + µi,j = 0

(A12)

And in the case that σ 6= 1:

i = j : r
n + α

n(σ−1)

[(
1−

∑n
k=1

(
qk,i∑n
l=1 ql,i

)σ)
+
∑n

h=1 qh,i

(
−σ
(

qi,i∑n
l=1 ql,i

)σ−1
(∑n

l=1 ql,i−qi,i
(
∑n
l=1 ql,i)

2

)
+σ
∑

k 6=i

(
qk,i∑n
l=1 ql,i

)σ−1
(

qk,i

(
∑n
l=1 ql,i)

2

))]
− λi + µi,i = 0

i 6= j : α
n(σ−1)

[(
1−

∑n
k=1

(
qk,j∑n
l=1 ql,j

)σ)
+
∑n

h=1 qh,j

(
−σ
(

qi,j∑n
l=1 ql,j

)σ−1
(∑n

l=1 ql,j−qi,j
(
∑n
l=1 ql,j)

2

)
+σ
∑

k 6=i

(
qk,j∑n
l=1 ql,j

)σ−1
(

qk,j

(
∑n
l=1 ql,j)

2

))]
− λi + µi,j = 0

(A13)

Before proceeding further, we require two additional lemmas:

Lemma A2. ∃ q ∈ [0, 1] such that qi,i = q ∀ i.

Proof. Suppose there were an experiment Q with entries ai,j that solved (A11),

with possibly unequal diagonal entries. Let τk(i) = i + k mod n for k =

0, . . . n−1. Let Qk be the matrix with entries qτk(i),τk(j). That is, Qk cycles the

rows of Q and cycles the entries in each row so that the set of diagonal entries

remains the same. Then, tr(Qk) = tr(Q) ∀ k, and since the prior is uniform,

C(π,Qk) = C(π,Q) ∀ k. Consider the convex combination of experiments

Q′ := 1
n

∑n−1
k=0 Qk. It is obvious that tr(Q) = tr(Q), and the diagonal entries

q′i,i of Q′ are all equal. By the convexity of posterior-separable cost functions,

C(π,Q) ≥ C(π,Q′). Therefore, the same probability of success can be attained

at a (weakly) lower cost with Q′ as compared to Q.

Because the DM’s performance is 1
ntr(Q), this implies that her performance is simply given by

q.

Lemma A3. Either the µ constraints are slack, or Q = In.

Proof. Suppose there were an experiment Q with entries qi,j that solved (A11),
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with some off-diagonal entries possibly not zero. Let:

τk,`(j) =

 j, j = k

j + `+ 1{h: h≤k≤h+` or h≤k+n≤h+`}(j) mod n, j 6= k
(A14)

Let Q` be the matrix with entries qi,τi,`(j). That is, Q` cycles the off-diagonal

entries of each row. Then tr(Q`) = tr(Q) ∀ `, and since the prior is uniform,

C(π,Q`) = C(π,Q) ∀ `. Consider the convex combination of experiments Q′ ≡
1
n

∑n−1
`=0 Q`. It is obvious that tr(Q′) = tr(Q), so that the probability of guessing

the correct state is the same under both experiments. Moreover, in each row

where Q has a non-zero off-diagonal entry, Q′ has no zero off-diagonal entries.

By the convexity of posterior-separable cost functions, C(π,Q) ≥ C(π,Q′).

Therefore, the same probability of success can be attained at a (weakly) lower

cost with Q′ as compared to Q. Because we showed in Lemma A2 that all

diagonal entries could be assumed equal, this shows that eitherQ′ is the identity,

or the non-negativity constraint is slack on all off-diagonal entries, and all such

entries are equal.

Consider the case where σ = 1. Applying Lemma A3, for now we assume that the µ constraints

are slack, so that µi,j = 0 ∀ i, j. Making this assumption allows us to rearrange (A12) by subtraction

as:

r

n
= α

[(
ln

qi,i∑n
k=1 qk,i

− n− 1∑n
k=1 qk,i

)
−
(

ln
qi,j∑n
k=1 qk,j

− n− 1∑n
k=1 qk,j

)]
∀ i, j (A15)

By Lemma A2, ∃ q ∈ [0, 1] such that qi,i = q ∀ i. Since (A15) applies ∀ i, j, this in turn implies that

∃ q̃ such that qi,j = q̃ ∀j 6= i. Because the entries in each row of Q must sum to 1, this implies that

q̃ = 1−q
n−1 . Therefore, (A15) can be rewritten as:

r

αn
= ln q − ln

1− q
n− 1

(A16)
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Rearranging (A16) gives:

q =
exp

(
r
αn

)
n− 1 + exp

(
r
αn

) (A17)

which is a logistic function of r. Therefore, the FOCs have a solution, and by the concavity of

(A11), we need not consider corner solutions. Finally, it is easily observed that q < 1 for all r and

that limr→∞ q = 1.

Now consider the case where σ 6= 1. Applying Lemmas A2 and A3 and assuming an interior

solution, we can rewrite (A13) as:

i = j : r
n + α

n(σ−1)

[
1− qσ − (n− 1)

(
1−q
n−1

)σ
+ σ

(
(n− 1)

(
1−q
n−1

)σ
+ qσ − qσ−1

)]
= λ

i 6= j : α
n(σ−1)

[
1− qσ − (n− 1)

(
1−q
n−1

)σ
+ σ

(
(n− 2)

(
1−q
n−1

)σ
+ qσ −

(
1−q
n−1

)σ−1 (
n−2+q
n−1

))]
= λ

(A18)

By subtraction, (A18) can be rearranged as:

r

n
+

ασ

n(σ − 1)

[(
1− q
n− 1

)σ
+

(
1− q
n− 1

)σ−1(n− 2 + q

n− 1

)
− qσ−1

]
= 0 (A19)

This can be further rearranged as:

r +
ασ

σ − 1

[(
1− q
n− 1

)σ−1

− qσ−1

]
= 0 (A20)

In general, (A20) does not have a closed-form solution for q. However, we can check for which r the

q that solves (A20) is less than 1. For these r, the FOCs are sufficient, by the concavity of (A11).

For other r, we must check corner solutions.

Applying the implicit function theorem to (A20), we have:

dq

dr
=

[
ασ

(
1

n− 1

(
1− q
n− 1

)σ−2

+ qσ−2

)]−1

(A21)

This is strictly positive for q ∈ (0, 1). Note also that if r = 0, then the solution to (A20) is q = 1
n ,

and if σ > 1 and r = ασ
σ−1 , then the solution to (A20) is q = 1. Therefore, for σ > 1, the FOCs are
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sufficient for all r ∈
(

0, ασ
σ−1

)
. For σ > 1 and r ≥ ασ

σ−1 , applying Lemmas A2 and A3, it must be

the case that q = 1.

When σ ∈ (0, 1), limq→∞
ασ

1−σ

[(
1−q
n−1

)σ−1
− qσ−1

]
= ∞, so by the intermediate value theorem,

for any r > 0, ∃ q ∈
[

1
n , 1
]

that solves (A20). Therefore, for σ ∈ (0, 1) the FOCs are always sufficient.

To show that there there is a horizontal asymptote at 1, consider an arbitrary ε > 0. We must

show that there exists r̄ > 0 such that for any r > r̄, the q that solves (A20) is such that 1− q < ε.

Let r̄ = ασ
σ−1 max

{(
ε

n−1

)σ−1
, 1

}
. If ε ≥ 1, then clearly 1− q < ε for every r. If ε < 1, let q′(r) be

such that r = ασ
σ−1

(
1−q′(r)
n−1

)σ−1
for r > r̄, so that 1 − q′(r) < ε. As shown above, the solution to

(A20) is strictly increasing in r. Therefore, because ασ
σ−1

(
1−q
n−1

)σ−1
> ασ

σ−1

[(
1−q
n−1

)σ−1
− qσ−1

]
, the

q that solves (A20) is larger than q′(r), which implies that 1− q < ε, thereby proving the claim of

a horizontal asymptote at 1.

We now turn towards proving the claims made about the concavity/convexity of the performance

function in the proposition. For that, we require an expression for the second derivative of the q

that solves (A20). Differentiating (A21) with respect to r gives:

d2q

dr2
= −σ − 2

ασ

dq

dr

[(
1

n− 1

)σ−1

(1− q)σ−2 + qσ−2

]−2 [
qσ−3 − (1− q)σ−3

(n− 1)σ−1

]
= −ασ(σ − 2)

(
dq

dr

)3 [
qσ−3 − (1− q)σ−3

(n− 1)σ−1

]
(A22)

Consider the case where σ ∈ (0, 1)∪ (1, 2). Since dq
dr is positive, qσ−3 > (<) (1−q)σ−3

(n−1)σ−1 implies that

the performance function is convex (concave). Rearranging, this happens when

q < (>)
[
1 + (n− 1)

σ−1
σ−3

]−1
(A23)

Therefore, the performance function is convex for r such that q <
[
1 + (n− 1)

σ−1
σ−3

]−1
and concave

for r such that q >
[
1 + (n− 1)

σ−1
σ−3

]−1
. Because the performance function is increasing, this implies

a sigmoidal shape, since
[
1 + (n− 1)

σ−1
σ−3

]−1
∈
(

1
n , 1
)
.

Now consider the case where σ ∈ (2, 3). This flips the sign of (A22) from the σ ∈ (0, 1) ∪ (1, 2)

case. Therefore, the performance function is concave for r such that q <
[
1 + (n− 1)

σ−1
σ−3

]−1

and convex for r such that q ∈
([

1 + (n− 1)
σ−1
σ−3

]−1
, 1

)
. Because the performance function is
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increasing, this implies an inverse-S shape, since
[
1 + (n− 1)

σ−1
σ−3

]−1
∈
(

1
n , 1
)
.

Now consider the case where σ > 3. Since σ − 3 > 0, this flips the condition (A23) from the

σ ∈ (2, 3) case, so that q >
[
1 + (n− 1)

σ−1
σ−3

]−1
implies concavity. But σ > 3 also implies that[

1 + (n− 1)
σ−1
σ−3

]−1
> 1

n , so that the performance function is everywhere concave.

We now turn our focus to the special cases not previously covered. When σ = 2, ασ
σ−1 = 2α,

and (A20) can be written as:

r + 2α

[
1− q
n− 1

− q
]

= 0 (A24)

Rearranging, this gives:

q =
n− 1

2αn
r +

1

n
(A25)

This is clearly an affine function of r, and it matches the claim about the performance function

when σ = 2 in the proposition.

When σ = 3, ασ
σ−1 = 3α

2 , and (A20) can be written as:

r +
3α

2

[
(1− q)2

(n− 1)2
− q2

]
= 0 (A26)

Rearranging, this gives:

3αn(n− 2)q2 + 6αq − (3α+ 2r(n− 1)2) = 0 (A27)

Applying the quadratic formula, taking the root associated with the plus sign to ensure increasing

performance, and performing tedious algebraic manipulations, it can be concluded that:

q =
1

n(n− 2)

[
(n− 1)

√
9α2 + 6αn(n− 2)r

3α
− 1

]
(A28)

This is clearly a square-root function of r, and it matches the claim about the performance function

when σ = 3 in the proposition.
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A2.6 Proof of Proposition 6

Proof. Suppose that the DM has been given a uniform guess task and has received a signal m̂. Her

belief that the state of the world is θ is, by Bayes’ rule:

Pr(θ|m̂) =
1
n

1
sφ
(
m̂−θ
s

)∑n
i=1

1
n

1
sφ
(
m̂−θi
s

) =
1
sφ
(
m̂−θ
s

)∑n
i=1

1
sφ
(
m̂−θi
σ

) (A29)

where φ(·) is the standard normal density. Notice that the denominator in (A29) depends only on

m̂; it is the same for all θ. Therefore, if the DM is trying to determine the most likely state given

her signal, she only needs to compare the numerators of (A29) for each possible θ; in other words,

she only needs to find the state that maximizes the conditional probability density of her signal.

Since the normal probability density function is symmetric around its mean, which is also its

mode, the conditional probability density of her signal is maximized at θ1 if m̂ ≤ 1
2(θ1 + θ2), at θi

if m̂ ∈
[

1
2(θi−1 + θi),

1
2(θi + θi+1)

]
for i ∈ {2, 3, . . . , n− 1}, and at θn if m̂ ≥ 1

2(θn−1 + θn).

Because consecutive states are equidistant, if the DM guesses optimally given her signal, her

probabilities of guessing state i given true state j are:

Pr(a = θi|θ = θj) =


Φ (ζη(3− 2j)) , i = 1

Φ (ζη(2(i− j) + 1))− Φ (ζη(2(i− j)− 1)) , i ∈ {2, 3, . . . , n− 1}

1− Φ (ζη(2(n− j)− 1)) , i = n

(A30)

where Φ is the cumulative distribution function of the standard normal distribution. This implies

that the DM’s problem is, as in (12):

max
ζ∈[0,∞)

r

n
[2Φ (ζη) + (n− 2) (2Φ (ζη)− 1)]−K(ζ)

We can rewrite this as:

max
ζ∈[0,∞)

r

n
[(2n− 2)Φ (ζη)− (n− 2)]−K(ζ) (A31)
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The first-order condition is:

F (r, ζ) ≡ (2n− 2)rη

n
φ(ζη)−K ′(ζ) = 0 (A32)

In order to ensure that the first-order condition is sufficient, we verify the second-order condition:

−(2n− 2)rη3

n
ζφ(ζη)−K ′′(ζ) < 0, since ζ is positive

The DM’s performance function is:

P ∗(r) =
1

n
[(2n− 2)Φ(ζ(r)η)− (n− 2)] (A33)

In order to show that P ∗(r) is strictly concave, we compute:

d2P ∗

dr2
=
dP ∗

dr

[
(2n− 2)η

n
φ(ζη)

dζ

dr

]
=− (2n− 2)η3

n
ζφ(ζη)

dζ

dr
+

(2n− 2)η

n
φ(ζη)

d2ζ

dr2
(A34)

In order to determine the sign of (A34), we must compute dζ
dr and d2ζ

dr2 . By the implicit function

theorem:

dζ

dr
=
−∂F
∂r
∂F
∂ζ

=
(2n−2)η

n φ(ζη)
(2n−2)rη3

n ζφ(ζη) +K ′′(ζ)
(A35)

> 0

Differentiating (A35) with respect to r gives:

d2ζ

dr2
=

[
(2n− 2)rη3

n
ζφ(ζη) +K ′′(ζ)

]−2{
−(2n− 2)η3

n
ζφ(ζη)

dζ

dr

(
(2n− 2)rη3

n
ζφ(ζη) +K ′′(ζ)

)
−
[(

(2n− 2)η3

n
ζφ(ζη) +

(2n− 2)rη3

n

dζ

dr
φ(ζη)− (2n− 2)rη5

n
ζ2dζ

dr
φ(ζη) +K ′′′(ζ)

)
×
(

(2n− 2)η

n
φ(ζη)

)]}
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=

[
(2n− 2)rη3

n
ζφ(ζη) +K ′′(ζ)

]−2{
−(2n− 2)η3

n
ζφ(ζη)

dζ

dr
K ′′(ζ)

−
[(

(2n− 2)η3

n
ζφ(ζη) +

(2n− 2)rη3

n

dζ

dr
φ(ζη) +K ′′′(ζ)

)
×
(

(2n− 2)η

n
φ(ζη)

)]}
(A36)

< 0

Substituting (A35) and (A36) back into (A34) gives us that d2P ∗
dr2 < 0, since dζ

dr > 0 and d2ζ
dr2 < 0.

This concludes the proof.

A2.7 Proof of Proposition 7

Proof. We solve the DM’s non-concave maximization problem by reducing it to a finite number of

concave maximization problems. In order to do so, we require a lemma.

Lemma A4. For any r > 0, P ∗(r)�∈ [0, d1] ∪ [d2, d3].

Proof. Because limx↓d1 C
′(P ) = 0, and C(P ) is strictly increasing on d1, d2,

there exists ε > 0 such that if P ∈ (d1, d1 + ε), then rP −C(P ) > rd1 −C(d1).

Moreover, since C(d1) = C(P̀ ) for all P̀ ∈ [0, d1), all P̀ ∈ [0, d1] are suboptimal.

The same argument applies to [d2, d3], mutatis mutandis.

Therefore, the optimal P ∗ for each r lies in (d1, d2)∪(d3, 1], and we can search for the optimal P ∗

separately in (d1, d2) and (d3, 1] and then take the maximum of the two. In each of these intervals,

the DM’s maximization problem is concave, and so the first-order conditions are sufficient if they

can be satisfied on those intervals.

The first-order conditions in (d1, d2) and (d3, 1] yield P ∗L := r
2c1

+ d1 and P ∗H := r
2c2

+ d3,

respectively. Assuming these conditions can be satisfied on their respective intervals, the net utilities

associated with those performance levels are r2

4c1
+ d1r and r2

4c2
+ d3r − c1(d2 − d1)2, respectively.

Therefore, P ∗H � P ∗L iff:

r2

4c2
+ d3r − c1(d2 − d1)2 ≥ r2

4c1
+ d1r

⇐⇒ 1

4

(
c1 − c2

c1c2

)
r2 + (d3 − d1)r − c1(d2 − d1)2 ≥ 0 (A37)
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When c1 = c2, then (A37) can be rearranged as:

r ≥ c1(d2 − d1)2

d3 − d1
= δ (A38)

When c1 6= c2, we find the roots of the quadratic expression in (A37) by applying the quadratic

formula:

2c1c2

c1 − c2

±√(d3 − d1)2 +
(c2 − c1)(d2 − d1)2

c2
− (d3 − d1)

 (A39)

Denote by δ+ the root with the positive square root and δ− the root with the negative square root.

When c1 > c2, δ+ is positive, and δ− is negative. Therefore, since r > 0, we can conclude that

δ = δ+.

When c1 < c2, both δ+ and δ− are positive, and (A37) is satisfied when r ∈ [δ+, δ−].A23

However, by Proposition 1, NIAC would be violated if P ∗(r) ∈ (d1, d2) were optimal for r ≥ δ−, so

again we can conclude that δ = δ+.

Now, note that P ∗L = 1 iff r = 2c1(d2 − d1) := r̄L and P ∗H = 1 iff r = 2c2(1 − d3) = r̄H .

Tedious algebraic manipulations show that δ < r̄L for any parameters satisfying the restrictions

in the definition of C in (14), and δ < r̄H with the additional restriction on d3 provided in the

proposition. This ensures that the DM selects P ∗(r) ∈ (d1, d2) for r < δ, P ∗(r) ∈ (δ3, 1) for

r ∈ [δ, r̄H) and P ∗(r) = 1 for r ≥ r̄H .

A3 Laboratory Experiment Instructions

This appendix contains the instructions that were read out loud to subjects in our laboratory

experiment for the $10 prize treatment, as well as the slides that were displayed to them as the

instructions were read out. Instructions and slides were similarly delivered for the $20 treatment,

mutatis mutandis.

A23Note that δ− > δ+ when c1 < c2.
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A3.1 Oral Instructions

Text in square brackets was not read aloud and was used to remind the person reading the in-

structions of what needed to be done. Text in angle brackets was not read aloud and was used to

indicate which slides should be displayed while the instructions were being read.

〈Slide 2〉Welcome to the Columbia Experimental Laboratory for the Social Sciences

(CELSS)! Your participation in this experiment is much appreciated. During this ses-

sion, we require your complete, undivided attention. As such, we ask that you remain

quiet for the duration of the session, refrain from opening other applications on your

computer, refrain from talking or passing notes to other participants, and put away all

of your possessions, including your cell phones, which must be turned off. Do not touch

the computer terminals until the session begins.

Before we begin, please read and sign both copies of the consent form located at your

terminal. Please hand one signed copy to us, and place the second under your chair; you

may take that copy with you when you have completed the experiment. [COLLECT

CONSENT FORMS AND ENSURE THAT THEY ARE ALL SIGNED AND DATED]

〈Slide 3〉 You will be paid in cash for your participation in this experiment. Payment

will occur in private once you have completed the experiment. This payment will depend

on your own decisions and on chance; different participants may earn different amounts.

During the session, please do not communicate with other subjects, and please do not

write anything down unless we tell you to.

〈Slide 4〉 The currency in this experiment is called “points.” In this experiment, you

will be asked to complete a series of tasks. Each task has a potential reward, in points,

for a correct answer. You will be asked to complete two types of task in this experiment,

which we will refer to as the “dots task” and the “angle task.” You will either complete

all the dots tasks or all the angle tasks first. You will be asked to complete both types

of task 100 times each, once for each of 100 different reward levels for a correct answer.

The reward level will take values between 1 point and 100 points with reward increments

of 1 point. The order in which you will see the tasks corresponding to each reward level

will be random.
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〈Slide 5〉 We will now describe the two types of tasks. At the start of each task, the

reward level will be displayed in large characters for three seconds [SHOW SCREEN-

SHOT OF REWARD LEVEL], after which it will be replaced with an image. The

reward will continue to be displayed in small characters next to the image. 〈Slide 6〉

In the “dots task,” the image that you will be shown is a pattern of dots. [SHOW

SCREENSHOT OF DOTS] You will be asked to determine the number of dots on the

screen. The number of dots will be between 38 and 42, inclusive, and each of those

five numbers will be equally likely. When you are ready to answer, select the option

corresponding to your guess, and then click the submit button. The number of points

you could earn from correctly determining the number of dots is indicated near the

top-right of the screen. [POINT TO REWARD ON SCREENSHOT] There is no time

limit for your response.

〈Slide 7〉 In the “angle” task, the image that you will be shown consists of two

intersecting blue lines of random length. [SHOW SCREENSHOT OF ANGLE] You

will be asked to determine the angle between these two lines. [SHOW ANGLES] The

angle will be 〈Slide 8〉 35 degrees, 〈Slide 9〉 40 degrees, 〈Slide 10〉 45 degrees, 〈Slide 11〉

50 degrees, or 〈Slide 12〉 55 degrees, with each of the five angles equally likely. 〈Slide 13〉

Keep in mind that 0 degrees is the angle between two lines in the exact same position,

and 90 degrees is the angle between two adjacent lines of a rectangle. The reward you

could earn from correctly determining the angle is indicated near the top-right of the

screen as before. [POINT TO REWARD ON SCREENSHOT] There is no time limit

for your response.

〈Slide 14〉 After you have completed all the tasks, the computer will randomly select

one “dots” task and one “angle” task. For each of these two tasks that you answered

correctly, you will receive the corresponding point value.

Your payment for the experiment will be determined as follows. You will be given

a $10 participation fee for completing the experiment. In addition to this fee, you will

have the opportunity to earn up to two additional $10 prizes. The number of points

you earned from each of the selected tasks determines the probability that the computer

will award you these prizes. 〈Slide 15〉 For example, say the selected “dots” task had
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a reward level of 84, and the selected “angle” task had a reward level of 33. If you

answered the selected dots task correctly, this would give you 84 points and therefore

an 84% probability of being awarded the first $10 prize. If you answered the selected

“angle” task incorrectly, this would give you zero points and therefore a 0% probability

of being awarded the second $10 prize.

When you have completed all the tasks, you will be given a brief questionnaire. This

questionnaire will not affect your payment. 〈Slide 16〉 After that, you will be shown a

results screen that looks like this. [RESULTS SCREEN] This screen will show you what

tasks were selected for payment, whether you answered them correctly, and whether you

were awarded the corresponding prizes. At that point, please raise your hand, and we

will give you a receipt form [SHOW FORM] for you to fill out. 〈Slide 17〉 Please write

your terminal number, located at the top-right of your carrel [POINT TO NUMBER

ON CARREL], on the line marked “Computer ID.” If you were awarded both $10 prizes,

please write $20 for “Experimental Earnings” and $30 for “Total.” If you were awarded

one of the two prizes, please write $10 for “Experimental Earnings” and $20 for “Total.”

If you were awarded neither of the prizes, please write $0 for “Experimental Earnings”

and $10 for “Total.” Once you have finished filling out the receipt form, please hand it

to one of the experimenters for verification. We will then give you your earnings, and

you may leave the lab.

Before we proceed, are there any questions? [WAIT FOR QUESTIONS]

We will now begin the experiment. 〈Slide 18〉

A3.2 Slides

Slides were displayed according to the transitions indicated in the instructions given in the preceding

subsection of the appendix.
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Lab Experiment

Experimenters: Ambuj Dewan and Nathaniel Neligh

May 31, 2016

1 / 18

Introduction

I Welcome to CELSS!

I Please remain seated and turn o↵ your cell phones.

I Please read and sign both copies of the consent form located
at your terminal.

2 / 18
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Description and Instructions

I Payment will occur at the end of the session.
I Your payment will depend only on your own decisions and

chance, not the decisions of others.

I Experiment takes place entirely on computer screens.

3 / 18

Description and Instructions

I Will complete a series of tasks for points.

I Two types of task: dots and angle.

I 100 tasks of each type.

I Each task has a reward level.

4 / 18

38



Description and Instructions
Reward Level

5 / 18

Description and Instructions
Dots Task

6 / 18
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Description and Instructions
Angle Task

7 / 18

Description and Instructions
Angle Task – 35�

8 / 18
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Description and Instructions
Angle Task – 40�

9 / 18

Description and Instructions
Angle Task – 45�

10 / 18
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Description and Instructions
Angle Task – 50�

11 / 18

Description and Instructions
Angle Task – 55�

12 / 18
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Description and Instructions
Angle Task

13 / 18

Description and Instructions
Payment

I Can earn $10, $20, or $30.

I The computer randomly selects one “dots” and one “angle”
task.

I You receive the corresponding number of points for a correct
answer.

I The number of points for each task is the probability that the
computer will award you a $10 prize.

14 / 18
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Description and Instructions
Payment Example

Task Dots Angle

Selected task value 84 points 33 points

Answered correctly? Yes No

Prize probability 84% 0%

15 / 18

Description and Instructions
Results Screen

16 / 18
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Description and Instructions
Receipt Form

17 / 18

EXPERIMENT IN PROGRESS

18 / 18
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Table A1: Categorization of subjects by odd incentives

Category Of All Subjects Of R.I. Subjects Of Resp. Subjects

All subjects 81 (100%) — —

R.I. subjects 60 (74.1%) 60 (100%) —

Resp. subjects /// 32 (45.1%) 32 (100%)

W.B. subjects /// /// 6 (18.8%)

Note: “R.I.” = rationally inattentive; “Resp.” = responsive; “W.B.” = well-behaved, i.e. subjects
whose behavior is consistent with continuous, convex cost functions. — denotes that the column
category is a subset of the row category, and /// denotes that the row category is defined only on
a subset of the column category.

Table A2: Model Selection for Responsive Subjects, Odd Incentives

Model Constant (1) Binary (2) Logistic (7) SIC(8) Concave (9)

Number of Subjects 1 (3.1%) 5 (15.6%) 17 (53.1%) 1 (3.1%) 8 (25.0%)

A4 Robustness Checks and Statistical Power Tests

A4.1 Half-Sample Analysis

As explained in Section 4 of the paper, presenting all the odd incentives followed by all the even

incentives to each subject ensures roughly the same variation in incentives in both halves of the

experiment. This allows us to perform the analyses of Sections 5 and 6 separately on both the odd

incentives and even incentives as a robustness check to account for changes in subjects’ behavior

that may arise from fatigue or learning. Results are summarized in Tables A1 to A4.

We also examine the consistency of categorization between the full sample and the half-samples.

Results for rationality, responsiveness, and well-behavedness are reported in the Venn diagrams of

Figures A1, A2, and A3, respectively. Note that for rationality and responsiveness, a plurality of

Table A3: Categorization of subjects by even incentives

Category Of All Subjects Of R.I. Subjects Of Resp. Subjects

All subjects 81 (100%) — —

R.I. subjects 71 (87.7%) 60 (100%) —

Resp. subjects /// 33 (55.0%) 33 (100%)

W.B. subjects /// /// 9 (27.2%)

Note: “R.I.” = rationally inattentive; “Resp.” = responsive; “W.B.” = well-behaved, i.e. subjects
whose behavior is consistent with continuous, convex cost functions. — denotes that the column
category is a subset of the row category, and /// denotes that the row category is defined only on
a subset of the column category.
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Table A4: Model Selection for Responsive Subjects, Even Incentives

Model Binary (2) Affine (3) Logistic (7) SIC (8) Concave (9)

Number of Subjects 8 (24.2%) 1 (3.0%) 19 (57.6%) 1 (3.0%) 4 (12.1%)

55
(70.5%)

Odd Even

All

10
(12.8%)

2
(2.6%)

1
(1.3%)

3
(3.8%)

5
(6.4%)

2
(2.6%)

Figure A1: Venn diagram of number of subjects classified as rational in each of the samples.
Percentages reported as proportion out of subjects classified as rational in at least one of the
samples (78).

subjects are in the three-way intersection of the Venn diagram (the majority of subjects in the

case of the former). The results for well-behavedness should be interpreted with caution, since the

power of the test is fairly low to begin with (see the next subsection), and removing half the data

would only make the power worse.

In Table A5, we report the correlations between AIC estimates between samples, looking at

each of the subjects who were classified as responsive in at least one sample, the subjects who

were classified as responsive in the full sample of incentives, and the subjects who were classified as

responsive in all three samples (viz. all incentives, odd incentives, and even incentives). Correlations

are fairly high when looking at the subjects who were classified as responsive in at least one sample

or the subjects that are classified as responsive in the full sample of incentives. Correlations are

higher between the full sample and the even incentives (presented to the subjects second) than

between the full sample and the odd incentives (presented to the subjects first). This implies that
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19
(38.8%)

Odd Even

All

8
(16.3%)

12
(24.5%)

0
(0.0%)

3
(6.1%)

5
(10.2%)

2
(4.1%)

Figure A2: Venn diagram of number of subjects classified as responsive in each of the samples.
Percentages reported as proportion out of subjects classified as responsive in at least one of the
samples (49).

1
(4.5%)

Odd Even

All

1
(4.5%)

3
(13.6%)

1
(1.3%)

9
(40.9%)

3
(13.6%)

4
(18.1%)

Figure A3: Venn diagram of number of subjects classified as well-behaved in each of the samples.
Percentages reported as proportion out of subjects classified as well-behaved in at least one of the
samples (22).
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our model selection exercise is more reliable using data from the second half of the experiment,

indicating that subject behavior “stabilized” as the experiment proceeded.

Finally, we report on the consistency of model selection between samples in Tables A6, A7,

and A8. Note that for the most part, a responsive subject categorized according to one kind of

performance function in one sample is more likely to maintain said categorization in another sample

to than to switch to some other given categorization.
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Table A5: Correlations of AIC estimates for each model between samples

All incentives and odd incentives

Responsive in:

Model At least one sample Full sample All three samples

1 (Constant) 0.656 0.675 0.587

2 (Binary) 0.641 0.677 0.375

3 (Affine w/ break) 0.700 0.716 0.732

4 (Affine) 0.701 0.722 0.727

5 (Quadratic) 0.304 0.334 0.604

6 (Cubic) 0.106 0.083 0.202

7 (Logistic) 0.793 0.824 0.809

8 (SIC) 0.808 0.840 0.753

9 (Concave) 0.820 0.846 0.800

All incentives and even incentives

Responsive in:

Model At least one sample Full sample All three samples

1 (Constant) 0.870 0.907 0.739

2 (Binary) 0.851 0.879 0.522

3 (Affine w/ break) 0.869 0.903 0.855

4 (Affine) 0.856 0.898 0.842

5 (Quadratic) 0.745 0.784 0.465

6 (Cubic) 0.644 0.714 0.193

7 (Logistic) 0.723 0.780 0.865

8 (SIC) 0.805 0.849 0.821

9 (Concave) 0.855 0.834 0.834

Odd incentives and even incentives

Responsive in:

Model At least one sample Full sample All three samples

1 (Constant) 0.368 0.392 −0.014

2 (Binary) 0.574 0.589 0.161

3 (Affine w/ break) 0.512 0.530 0.372

4 (Affine) 0.506 0.530 0.355

5 (Quadratic) 0.152 0.156 0.030

6 (Cubic) 0.069 0.057 −0.318

7 (Logistic) 0.397 0.405 0.444

8 (SIC) 0.529 0.539 0.284

9 (Concave) 0.492 0.480 0.366
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Table A6: Two-way table of lowest-AIC model, subjects that are responsive both in the full sample and for odd incentives (27 subjects)

Odd \All 2 (Binary) 7 (Logistic) 8 (SIC) 9 (Concave)
1 (Constant) 1 (100.0%/14.3%/3.7%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 0 (14.3%/14.3%/3.7%)
2 (Binary) 3 (60.0%/42.9%/11.1%) 0 (0.0%/0.0%/0.0%) 2(40.0%/50.0%/7.4%) 0 (0.0%/0.0%/0.0%)
7 (Logistic) 2 (14.3%/28.6%/7.4%) 10 (71.4%/90.9%/37.0%) 2 (14.3%/50.0%/7.4%) 0 (0.0%/0.0%/0.0%)
9 (Concave) 1 (14.3%/14.3%/3.7%) 1 (14.3%/9.1%/3.7%) 0 (0.0%/0.0%/0.0%) 5 (71.4%/100.0%/18.5%)

Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects in both
samples).

Table A7: Two-way table of lowest-AIC model, subjects that are responsive both in the full sample and for even incentives (31 subjects)

Even \All 2 (Binary) 7 (Logistic) 8 (SIC) 9 (Concave)
2 (Binary) 3 (37.5%/42.9%/9.7%) 3 (37.5%/21.4%/9.7%) 1 (12.5%/16.7%/3.2%) 1 (12.5%/25.0%/3.2%)
3 (Affine w/ break) 1 (100.0%/14.3%/3.2%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)
7 (Logistic) 2 (11.8%/28.6%/6.5%) 9 (52.9%/64.3%/29.0%) 5 (29.4%/83.3%/16.1%) 1 (5.9%/25.0%/3.2%)
8 (SIC) 0 (0.0%/0.0%/0.0%) 1 (100.0%/7.1%/3.2%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)
9 (Concave) 1 (25.0%/14.3%/3.2%) 1 (25.0%/7.1%/3.2%) 0 (0.0%/0.0%/0.0%) 2 (50.0%/50.0%/6.5%)

Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects in both
samples).

Table A8: Two-way table of lowest-AIC model, subjects that are responsive for both odd and even incentives (19 subjects)

Even \Odd 2 (Binary) 7 (Logistic) 9 (Concave)
2 (Binary) 1 (25.0%/33.3%/5.3%) 3 (75.0%/27.3%/15.8%) 0 (0.0%/0.0%/0.0%)
3 (Affine w/ break) 1 (100.0%/33.3%/5.3%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)
7 (Logistic) 1 (10.0%/33.3%/5.3%) 7 (70.0%/63.6%/36.8%) 2 (20.0%/40.0%/10.5%)
8 (SIC) 0 (0.0%/0.0%/0.0%) 1 (100.0%/9.1%/5.3%) 0 (0.0%/0.0%/0.0%)
9 (Concave) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 3 (100.0%/60.0%/15.8%)

Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects in both
samples).
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A4.2 Incentive Structure and Simulation Results

Our experiment used a fine-grained incentive structure to study subject behavior. Subjects were

faced with each integer incentive level from 1 to 100. While this can give a better sense of how

behavior responds to incentives than a coarser incentive structure, it comes at the expense of

replication of a task for a given incentive level, thereby sacrificing power for statistical tests. In this

subsection, we conduct simulations to test the power of our statistical test that classifies subjects as

well-behaved or not and the reliability of our classifications of subjects by performance function. We

simulate data for the fine incentive structure used in our experiment, as well as a coarse incentive

structure that uses ten replications of each incentive level that is a multiple of 10 (10 each of 10,

20, 30, etc.) in order to highlight the benefits and drawbacks of our approach.

A4.2.1 Discontinuity Test

Here we present power tests for the discontinuity test introduced in Subsection 5.4. Using both

the fine and the coarse incentive structures, binary data were simulated using the logistic equation

Pt = 0.2+ ϕ
1+exp(−ψ(rt−ξ)) , for various values of ϕ, ψ, and ξ. (Recall that continuity is the alternative

hypothesis in this test.) ϕ controls how high the curve rises from 0.2, ψ controls the slope of the

rise, and ξ is location of the center of the rise. 100 samples were taken for each (ϕ,ψ, ξ) tuple,

and the proportion of samples for which the break was detected was calculated. The results are

summarized in Table A9. The coarse incentive structure generally yields higher power than the

fine one.

A4.2.2 Classification Simulations

We also wish to see how reliable our subject classifications are for both fine and coarse incentives. To

that end, we simulate 100 subjects’ data for various parameter values for each of logistic performance

(mutual information costs), concave performance (normal signal costs), binary performance (fixed

costs), and SIC performance (Tsallis costs), and calculate how many subjects are classified into

each of these performance categories by AIC. Results are reported in Tables A10, A11, A12, and

A13 for both fine and coarse incentives. Note that coarse incentives outperform fine ones when the

true model is SIC, but when the true model is binary, fine incentives and coarse incentives lead

to roughly the same rate of correct classification, and for logistic and concave performance, fine
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Table A9: Power of discontinuity test (fine incentive structure on left, coarse incentive structure
on right)

ξ = 0.05

ϕ \ψ 25 50 75

0.2 0.50 0.27 0.21

0.4 0.48 0.58 0.28

0.6 0.53 0.60 0.43

0.8 0.14 0.49 0.43

ξ = 0.1

ϕ \ψ 25 50 75

0.2 0.32 0.41 0.07

0.4 0.51 0.62 0.21

0.6 0.16 0.32 0.24

0.8 0.00 0.27 0.14

ξ = 0.3

ϕ \ψ 25 50 75

0.2 0.34 0.44 0.11

0.4 0.24 0.62 0.06

0.6 0.00 0.13 0.02

0.8 0.00 0.01 0.00

ξ = 1

ϕ \ψ 25 50 75

0.2 0.35 0.46 0.05

0.4 0.21 0.70 0.01

0.6 0.00 0.06 0.02

0.8 0.00 0.00 0.00

ξ = 4

ϕ \ψ 25 50 75

0.2 0.32 0.53 0.09

0.4 0.16 0.68 0.07

0.6 0.00 0.10 0.02

0.8 0.00 0.00 0.01

ξ = 0.05

ϕ \ψ 25 50 75

0.2 0.74 0.57 0.38

0.4 0.78 0.79 0.65

0.6 0.74 0.84 0.75

0.8 0.17 0.80 0.64

ξ = 0.1

ϕ \ψ 25 50 75

0.2 0.76 0.63 0.33

0.4 0.65 0.88 0.43

0.6 0.43 0.76 0.38

0.8 0.00 0.66 0.19

ξ = 0.3

ϕ \ψ 25 50 75

0.2 0.73 0.70 0.18

0.4 0.53 0.90 0.20

0.6 0.08 0.51 0.17

0.8 0.00 0.07 0.03

ξ = 1

ϕ \ψ 25 50 75

0.2 0.65 0.74 0.18

0.4 0.33 0.95 0.11

0.6 0.05 0.39 0.01

0.8 0.00 0.07 0.00

ξ = 4

ϕ \ψ 25 50 75

0.2 0.64 0.75 0.11

0.4 0.29 0.88 0.07

0.6 0.02 0.48 0.00

0.8 0.00 0.08 0.00
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incentives lead to vastly higher rates of correct classification.

Table A10: Classification simulation results, mutual information (logistic performance) as true
model (fine incentive structure on left, coarse incentive structure on right; α as in Model 7 of Table
5.

α Logistic Concave Binary SIC

10 0.03 0.00 0.96 0.01

15 0.34 0.01 0.59 0.06

30 0.87 0.02 0.04 0.07

45 0.93 0.05 0.02 0.00

60 0.94 0.00 0.02 0.04

α Logistic Concave Binary SIC

10 0.00 0.00 0.98 0.02

15 0.00 0.00 0.69 0.31

30 0.09 0.00 0.04 0.87

45 0.30 0.01 0.01 0.68

60 0.46 0.01 0.01 0.52

Table A11: Classification simulation results, costs linear in precision of normal signal (concave
performance) as true model (fine incentive structure on left, coarse incentive structure on right; α
as in Model 9 of Table 5.

α Logistic Concave Binary SIC

1 0.01 0.34 0.61 0.04

2 0.04 0.79 0.10 0.07

4.5 0.04 0.95 0.00 0.01

7 0.03 0.96 0.00 0.01

10 0.02 0.98 0.00 0.00

α Logistic Concave Binary SIC

1 0.00 0.15 0.76 0.04

2 0.02 0.15 0.12 0.73

4.5 0.00 0.21 0.00 0.79

7 0.07 0.48 0.00 0.45

10 0.12 0.64 0.00 0.24

A4.2.3 Summary

A succinct summary of this appendix subsection would be: coarse incentives are better for testing

the well-behavedness of cost functions; fine incentives are better for estimating and classifying

subjects according to cost functions. Since we conduct both types of analyses in this paper, this

makes the choice of incentive structure somewhat arbitrary. In order to ensure the reliability of

our model selection exercise, we opted for fine-grained variation in incentives.

A4.3 Probability-Weighted Incentives

One of the important aspects of our incentivization scheme is that the incentive level for each trial

is the probability of winning a $10 or $20 prize for a correct answer, depending on the treatment.

This ensures that under the assumptions of expected utility theory, subjects’ utilities are linear in

incentives. However, there is experimental evidence to suggest that decision-makers do not evaluate

probabilities linearly (e.g. Tversky and Kahneman, 1992; Barron and Erev, 2003). For instance,
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Table A12: Classification simulation results, fixed costs (binary performance) as true model (fine
incentive structure on left, coarse incentive structure on right; β1 and δ as in Model 2 of Table 5,
β0 = 0.2)

δ = 25

β1 Logistic Concave Binary SIC

0.2 0.84 0.04 0.02 0.12

0.4 0.34 0.10 0.15 0.41

0.6 0.06 0.09 0.77 0.08

0.8 0.00 0.00 1.00 0.00

δ = 50

β1 Logistic Concave Binary SIC

0.2 0.89 0.01 0.19 0.00

0.4 0.69 0.03 0.28 0.00

0.6 0.14 0.00 0.86 0.00

0.8 0.00 0.00 1.00 0.00

δ = 75

β1 Logistic Concave Binary SIC

0.2 0.71 0.00 0.29 0.00

0.4 0.45 0.02 0.53 0.00

0.6 0.08 0.00 0.92 0.00

0.8 0.00 0.00 1.00 0.00

δ = 25

β1 Logistic Concave Binary SIC

0.2 0.48 0.03 0.00 0.49

0.4 0.11 0.00 0.09 0.80

0.6 0.00 0.01 0.85 0.14

0.8 0.00 0.00 1.00 0.00

δ = 50

β1 Logistic Concave Binary SIC

0.2 0.38 0.00 0.09 0.53

0.4 0.26 0.00 0.25 0.49

0.6 0.00 0.00 0.84 0.07

0.8 0.00 0.00 1.00 0.00

δ = 75

β1 Logistic Concave Binary SIC

0.2 0.55 0.00 0.17 0.28

0.4 0.40 0.00 0.40 0.20

0.6 0.08 0.00 0.91 0.01

0.8 0.00 0.00 1.00 0.00

they may overweight small probabilities. Another possibility is that they treat probability points

similarly to how they treat certain monetary rewards and are risk-averse or risk-seeking over these

incentives. In this subsection, we account for these possibilities in our model selection exercise.A24

In the interest of ensuring the numerical stability of our estimates, we limited ourselves to two,

single-parameter weighting functions. The first is the single-parameter version of Prelec’s (1998)

weighting function.

wPR(r) := exp

(
−
(

ln

(
−r
100

))γ)
(A40)

The second treats probability weighting like a CRRA utility function of incentives:

wRS(r) :=
( r

100

)γ
(A41)

Note that both weighting functions divide incentives by 100 so that they can be properly treated

A24We do not perform corresponding analyses for our tests of cost function properties; continuous, monotonic
probability weighting should not affect the results of those analyses.
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Table A13: Classification simulation results, Tsallis costs (SIC performance) as true model (fine
incentive structure on left, coarse incentive structure on right; α and σ as in Model 8 of Table 5.

α = 75

σ Logistic Concave Binary SIC

0.5 0.91 0.00 0.05 0.04

1.5 0.91 0.03 0.02 0.04

2 0.81 0.04 0.00 0.15

2.5 0.77 0.06 0.00 0.17

4 0.23 0.09 0.32 0.36

α = 200

σ Logistic Concave Binary SIC

0.5 0.77 0.00 0.23 0.00

1.5 0.90 0.01 0.08 0.01

2 0.88 0.00 0.10 0.02

2.5 0.88 0.01 0.00 0.11

4 0.48 0.04 0.00 0.48

α = 2000

σ Logistic Concave Binary SIC

0.5 0.59 0.01 0.39 0.01

1.5 0.51 0.00 0.49 0.00

2 0.70 0.01 0.28 0.01

2.5 0.75 0.00 0.25 0.00

4 0.93 0.00 0.04 0.03

α = 75

σ Logistic Concave Binary SIC

0.5 0.41 0.00 0.01 0.58

1.5 0.32 0.02 0.01 0.65

2 0.15 0.01 0.00 0.84

2.5 0.06 0.00 0.00 0.94

4 0.00 0.01 0.40 0.59

α = 200

σ Logistic Concave Binary SIC

0.5 0.51 0.01 0.21 0.27

1.5 0.54 0.00 0.07 0.39

2 0.58 0.00 0.03 0.39

2.5 0.53 0.00 0.00 0.47

4 0.13 0.01 0.00 0.86

α = 2000

σ Logistic Concave Binary SIC

0.5 0.50 0.00 0.32 0.18

1.5 0.53 0.00 0.31 0.16

2 0.49 0.00 0.25 0.26

2.5 0.49 0.00 0.27 0.24

4 0.44 0.01 0.02 0.53
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as probabilities.

First we estimated each of the models of Section 6 with both probability weighting functions

by maximum likelihood, excluding Models 1 (constant performance) and 2 (binary performance),

because they are non-identified under probability weighting. We then found the best fit for each

responsive subject for each of the two probability weighting schemes. We also found the best fit

for each responsive subject selecting among the eight models with no probability weighting, the six

models with probability weights given by (A40), and the six models with probability weights given

by (A41). Results are summarized in Tables A14 to A17.

From Table A16, note that roughly half of the responsive subjects continue to be best fit by a

model with linear probability weights. The remaining 19 responsive subjects (45.2%) are roughly

evenly split between Prelec and CRRA probability weighting. Moreover, the number of subjects

best fit by binary, logistic/SICA25, and concave performance — 6 (14.3%), 25 (59.5%), and 9

(21.4%), respectively — are nearly the same as in the model selection exercise of Section 6, where

linear probability weights were assumed — 10 (23.8%), 26 (61.9%), and 6 (14.3%), respectively.

Table A17 presents results evaluating the consistency of model selection between the analysis of

Section 6 and this appendix subsection. Note that most responsive subjects, 31 (73.8%), maintain

the same best-fit performance function, even when probability weights are allowed to be non-linear.

Moreover, the maximal entry in each column is the one for the corresponding row, indicating that

not being reclassified is the most common outcome for each best-fit performance function when

switching from only allowing linear weights to allowing Prelec and CRRA weights. This lends

support to the validity of the model selection exercise in the main body of the paper.

A25Recall that logistic performance is a special case of SIC performance, since Shannon entropy is a special case of
Tsallis entropy.
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Table A14: Model selection for responsive subjects, Prelec probability weights

Model Affine (3) Quadratic (5) Cubic (6) Logistic (7) SIC (8) Concave (9)

Number of Subjects 2 (4.8%) 1 (2.4%) 1 (2.4%) 27 (64.3%) 8 (19.0%) 3 (7.1%)

Table A15: Model selection for responsive subjects, CRRA probability weights

Model Affine (3) Cubic (6) Logistic (7) SIC (8) Concave (9)

Number of Subjects 5 (11.9%) 1 (4.2%) 23 (54.8%) 2 (4.8%) 11 (26.2%)

Table A16: Model selection for responsive subjects, all weights

Performance \Weight Linear Prelec CRRA Total

Binary (2) 6 (14.3%) 0 (0.0%) 0 (0.0%) 6 (14.3%)

Affine (3) 0 (0.0%) 1 (2.4%) 0 (0.0%) 1 (2.4%)

Cubic (6) 0 (0.0%) 0 (0.0%) 1 (2.4%) 1 (2.4%)

Logistic (7) 12 (28.6%) 8 (19.0%) 2 (4.8%) 22 (52.4%)

SIC (8) 3 (7.1%) 0 (0.0%) 0 (0.0%) 3 (7.1%)

Concave (9) 2 (4.8%) 2 (4.8%) 5 (11.9%) 9 (21.4%)

Total 23 (54.8%) 11 (21.4%) 8 (19.0%)

Note: Numbers in parentheses are percentages of responsive subjects.

Table A17: Two-way table of model selection, all weights versus linear weights

All Weights \Linear Binary (2) Logistic (7) SIC (8) Concave (9)

Binary (2) 6 (100.0%/60.0%/14.3%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)

Affine (3) 0 (0.0%/0.0%/0.0%) 1 (100.0%/3.4%/2.4%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)

Cubic (6) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 1 (100.0%/14.3%/2.4%) 0 (0.0%/0.0%/0.0%)

Logistic (7) 3 (13.6%/30.0%/7.1%) 16 (72.7%/84.2%/38.1%) 3 (13.6%/42.9%/7.1%) 0 (0.0%/0.0%/0.0%)

SIC (8) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 3 (12.0%/30.0%/7.1%) 0 (0.0%/0.0%/0.0%)

Concave (9) 1 (11.1%/10.0%/2.4%) 2 (22.2%/10.5%/4.8%) 0 (0.0%/0.0%/0.0%) 6 (66.7%/100.0%/14.3%)

Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects).
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A4.4 The Cheremukhin et al. (2015) Generalization of Mutual Information

Cheremukhin et al. (2015) generalize the Shannon entropy-based cost function by allowing for

convex transformations of mutual information. Letting H represent mutual information and as-

suming that perfectly uninformative information structures are free, they define the function by its

derivative:A26

K ′(H) =
θ̄π

arccot(ρ(H − κ̄))
(A42)

where θ̄, ρ, and κ̄ are non-negative parameters. θ̄ is a multiplicative factor that regulates the

marginal cost of information, and ρ regulates the curvature of the derivative. K ′ is relatively flat

for H < κ̄, so a higher ρ indicates a sharper increase in the marginal cost of information going from

H < κ̄ to H > κ̄. Therefore, for large ρ, κ̄ can be interpreted as a capacity constraint on the DM’s

ability to acquire and/or process information.

However, it should be noted that a near-constant marginal cost of information for H < κ̄ is

not the same thing as a near-constant marginal cost of performance; information is non-linear in

performance, as can be seen from (11). Essentially, when ρ is high, the near-constant marginal

cost of information for H < κ̄ makes the cost of performance approximately mutual information

for P ≤ Pκ̄, where Pκ̄ is defined such that ln(5) + Pκ̄ ln(Pκ̄) + (1− Pκ̄) ln
(

1−Pκ̄
4

)
= κ̄. Because the

marginal cost increases sharply above Pκ̄, it is effectively the highest level of performance that the

DM can achieve. Therefore, the DM’s performance is approximately logistic up until the r that

induces Pκ̄, after which it is almost completely flat. Marginal cost curves for different values of θ̄,

κ̄, and ρ are displayed in the left panels of Figures A4, A5, and A6.

By applying the chain rule, we can rewrite (A42) in terms of performance in uniform guess

tasks as:

C ′(P ) =
θ̄π(ln(P )− ln(1− P ) + ln(4))

arccot
(
ρ
(
ln(5) + P ln(P ) + (1− P ) ln

(
1−P

4

)
− κ̄
)) (A43)

Since arccot(0) = π
2 , this model nests mutual information for ρ = 0, taking α = 2θ̄. In general,

A26In the definition of the corresponding function in Equation (7) of Cheremukhin et al. (2015), ρ is the reciprocal of
what it is here. However, the convention we adopt here is consistent with Figure 2 and Footnote 10 of Cheremukhin
et al. (2015), as well as computer code provided by the authors.
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Table A18: Model Selection for Responsive Subjects, Including Cheremukhin et al. (2015) Cost
Functions

Model Binary (2) Logistic (7) SIC (8) Concave (9) CRL

Number of Subjects 10 (23.8%) 18 (42.9%) 6 (14.3%) 5 (11.9%) 3 (7.1%)

(A43) cannot be inverted to obtain a closed form for the performance function. However, the

performance function can be graphed, as it is for various values of θ̄, κ̄, and ρ in the right panels

of Figures A4, A5, and A6.

We estimate two versions of (A43), one with ρ restricted to a value of 600, as in Cheremukhin

et al. (2015), and one where ρ is allowed to vary freely. We refer to the corresponding performance

functions as “capacity-restricted logistic” (CRL) and “generalized logistic” (GL), respectively.

Repeating the model selection exercise of Section 6 with these two additional cost functions

does not substantially alter our results (see Table A18. According to the AIC criterion, no subjects

are best fit by the model with flexibly estimated ρ, and only three subjects are best fit by the model

with restricted ρ. Since the exact choice of ρ was not theoretically motivated aside from being large

enough to make the marginal cost of information nearly vertical to the right of κ̄, we regard the

ρ-restricted model of Cheremukhin et al. (2015) to be a reasonable way of describing these three

subjects’ data that ensures the differentiability of the cost function, but not in a way that strongly

distinguishes predicted behavior from the other cost functions we estimate.

Estimating the flexible-ρ version of (A43) allows us to see if setting a very high ρ is a reasonable

assumption to make for all subjects, as Cheremukhin et al. (2015) do. Figure A7 is a histogram of

log10(1 + ρ̂) for responsive subjects. The estimates in the leftmost bin are actual zeroes, indicating

a constant marginal cost of mutual information. Therefore, 13 responsive subjects would have their

performance estimated to be logistic even under the flexible model. Looking at the second bin,

for an additional 17 subjects, the estimated curvature parameter lies between 0 and 9. Therefore,

the majority of responsive subjects do not have curvature parameters in the ranges suggested by

Cheremukhin et al.’s (2015) results; only five have a ρ̂ that exceeds 99. Our interpretation of these

results is that value-based decision-making and effortful perceptual tasks are not governed by the

same informational processes.

60



1.00 1.05 1.10 1.15

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
Cheremukhin et al. (2015) Information Costs: Marginal Cost Curves

Information

M
ar

gi
na

l C
os

t

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cheremukhin et al. (2015) Information Costs: Performance Curves

Incentive Level
P

er
fo

rm
an

ce

Figure A4: Cheremukhin et al. (2015) costs, n = 5, θ̄ ∈ {5, 10, 20, 30}, ρ = 600, κ̄ = ln(3). The left
panel shows marginal costs with respect to information for increasing values of θ̄ going counter-
clockwise from the bottom-right. The right panel shows performance curves for increasing values
of θ̄ going from the top-left to the bottom-right.
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Figure A5: Cheremukhin et al. (2015) costs, n = 5, θ̄ = 15, ρ = 600, κ̄ ∈
{ln(1.25), ln(2), ln(3.5), ln(5)}. The left panel shows marginal costs with respect to information
for increasing values of κ̄ going from the top-left to the bottom-right. The right panel shows
performance curves for increasing values of κ̄ going from the bottom to the top.
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Figure A6: Cheremukhin et al. (2015) costs, n = 5, θ̄ = 15, ρ ∈ {0, 1, 10, 600}, κ̄ = ln(2). The left
panel shows marginal costs with respect to information for increasing values of ρ going counter-
clockwise from the right. The right panel shows performance curves for increasing values of ρ going
from the bottom to the top, between the points of intersection.
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Figure A7: Histogram of log10(1 + ρ̂) for responsive subjects
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A4.5 Bayesian Hierarchical Modeling

Because we are looking at the population as a mixture of types, it seems natural to approach the data

using a Bayesian hierarchical model. We analyze the data by constructing a hierarchical Bayesian

prior and then determining each subject’s posterior probability of belonging to each type using

Markov Chain Monte Carlo methods. In our analysis, “types” refers to the form of performance

function a subject has, as per the results in Section 6.

The prior distribution has two components: a distribution over the population proportion of

types; and a distribution over performance function parameters for each type. For the distribution

over population proportion of types we choose a Dirichlet distribution with all parameters set to

one. The resulting distribution is uniform over the simplex, and it is considered to be the standard

prior over proportions of types for hierarchical Bayesian analysis.

The parameter prior distributions are constructed in a manner that requires some explanation.

The standard method for generating the prior distribution over parameters within each group

generally involves assuming that the prior over parameters comes from a specific family (like the

normal or beta) and then fitting the hyperparameters of the distribution using maximum likelihood

methods. Unfortunately, this approach is not practical in our setting, because we want our prior

to only include non-decreasing performance functions. The parameter spaces for non-decreasing

affine with break, cubic, and quadratic performance functions have very difficult structures, and so

no standard distribution could be used to cover these spaces.

We instead use a somewhat ad hoc method based on the sequential drawing of model parameters.

There are methods for drawing parameters of non-decreasing performance functions of all the classes

we consider by drawing all of the parameters in a specific order from parameter distributions whose

range depends on the previously drawn parameters. When the range of the parameter distribution

is bounded below, we draw from a transformed gamma distribution, and when it is bounded both

above and below, we draw from a transformed beta distribution. (Full details are available from

the authors on request.) This gives us a method for randomly drawing performance functions.

To calibrate the distributions we draw from, we invert the process, converting the estimated

parameters for each individual and model type (see Section 6) into draws from the transformed

distributions and then inverting the transformation to get a draw from a standard distribution of

the correct type. These draws for each distribution are then collected, and we find model parameters
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that match the mean and variance of the observed distribution. These model parameters are used

to assign a model prior.

Consider the generation of the prior over binary performance functions. The binary model has

three parameters: β1, a low performance level; β2, a high performance level; and δ, the break point

where it switches from one to the other. We can construct a non-decreasing binary performance

function by drawing β1 from one beta distribution (A) on the [0.2, 1] interval, drawing δ from a

beta distribution (B) on the [5, 95] interval, and then drawing β2 from a beta (C) on the [β1, 1]

interval. We draw the function by sampling from beta distributions and then applying the affine

transformation mapping the [0, 1] interval into the correct interval.

To generate the parameters for each of these beta distributions, we look at the parameters

estimated for the binary model for different subjects. For example, to get the parameters for (C),

we convert the estimated β̂2 into draws from a beta by dividing by 1− β̂1 and subtracting β̂1. Then,

we look at the mean and standard deviation of these standard draws for all the subjects examined

and use the resulting moments to fit distribution (C). Note that means and standard deviation

fully pin down a beta distribution or gamma distribution. We then do the same with δ̂ to find the

parameters of (B) and β̂1 to find the parameters of (A).

Note that we do not use all subjects to fit all models, because it makes little sense to use

data from a subject who has a distinctly binary performance function to calibrate the prior for

individuals with a logistic performance function (linear Shannon costs). We instead use the N

subjects best fit by a particular model,using likelihood as a measure of fit, to calibrate the priors

for that model. We vary N and report the results below.

Once the priors have been assigned, the updating process is fairly simple. We employ a very

simple component-wise Metropolis-Hastings algorithm using the prior as our proposal distribution

(cf. Chapter 11 of Gelman et al., 2003). We construct a function f which given a subject i, set

of model parameters m, and probability of each model of type ψ will return the likelihood of that

subject’s observed data given those parameters model probabilities. Note that m includes model

parameters for every model being considered and each subject. Call the parameters for subject i’s

models mi. We then run the following algorithm for each subject i.

1. Pick a random model proportion and set of model parameters for each subject from the

proposal distribution. Call them the current model proportion ψc and set of model parameters
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mc. Get the resulting likelihood f(i, ψc,mc), and call it the comparison likelihood lc.

2. Get a new random model proportion ψn. Check the new likelihood ln = f(i, ψn,mψ).

3. Accept the new proportions with probability min
{

1, lnlc

}
. If the new proportions are accepted,

store ψn,mc in the trace and set ψc = ψn, lc = ln

4. Get a new random set of model parameters for subject 1, m1
n from the prior. Define mn as a

set of parameters that is identical to mc but we replace m1
c with m1

n

5. Check the new likelihood ln = f(i, ψc,mn).

6. Accept the new proportions with probability min
{

1, lnlc

}
. If the new proportions are accepted,

store ψc,mn in the trace and set mc = mn, lc = ln

7. Repeat steps 4–6 for all responsive subjects

8. Repeat steps 2–7 10000 times

We then throw away the early values in the trace. The remaining values provide an approximation

of the posterior for the subject. Note that we do not have to modify or weight the trace values

to get the posterior in the case, because we use the prior distribution as our proposal distribution

(Chib and Greenberg, 1995).

Unfortunately, the resulting distribution over population proportions is difficult to reasonably

visualize. Instead, in Table A19 we report the mean posterior probability for each model for

various values of N . As the table shows, the results are somewhat sensitive to the choice how the

parameter priors are fit. However, there are some consistent findings. In particular, the logistic

(Shannon costs), SIC (Tsallis costs), and cubic (costs on the order of P
4
3 ) models all perform

well across all values of N . The strong performance of the logistic and SIC models is generally

unsurprising. The high performance of the cubic model is more unusual and may be at least in

part due to the somewhat restrictive method we use to draw the monotone cubic performance

function. The binary and affine break models all perform well for some N , but both are sensitive

to assumptions about how the parameter priors are fit. This likely relates to the fact that the

likelihoods for these models are very sensitive to the break location parameter. Constant, linear,

quadratic, and concave (normal signal costs) models never perform well. The general failure of the
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Figure A8: Evolution of likelihood over iterations of the Metropolis-Hastings algorithm
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Table A19: Average posterior probabilities for different values of N

N
10 20 30

Constant 0.016 0.015 0.015
Binary 0.077 0.049 0.108

Affine with Break 0.200 0.052 0.135
Affine 0.038 0.082 0.069

Quadratic 0.047 0.047 0.017
Cubic 0.216 0.285 0.180

Logistic 0.121 0.178 0.253
SIC 0.259 0.265 0.195

Concave 0.022 0.021 0.023

normal model is interesting, and may be related to the high sensitivity in that model to the cost

parameter.

It should be noted that these estimates may not be perfectly reliable for high N . As we can

see from the likelihood graphs in Figure A8, while the process does converge fairly quickly in all

cases, continuing regions of high and low likelihood suggest a multimodal posterior. Metropolis-

Hastings algorithms can sometimes take a very long time to fully cover these types of posteriors,

since transitioning between modes can take many iterations. However, consistency of results accross

multiple runs of the code leads us to believe that this problem does not have a substantial impact

on mean model likelihoods.
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S1 Perceptual Distance

S1.1 Preliminaries

In uniform guess tasks, where the action space is identified with the state space, the “dissimilarity”

between two actions is the same as the “dissimilarity” between the corresponding states. Perceptual

distance refers to the notion that distant states are easier to distinguish from each other than nearby

ones. For example, if Θ = {1, 2, 3, 4, 5}, and the true state is θ = 2, then the DM may be more

likely to answer 1 (which is 1 away from 2) than she is to answer 5 (which is 3 away from 2). This

is especially plausible if the states in Θ represent physical, measurable quantities. To give a more

concrete example, when shopping for televisions, one is much more likely to misperceive a 27-inch

screen as a 23-inch screen than as a 40-inch screen. We formalize this notion below.

Definition 1. Let ρ be a metric on Θ. Then in this task, the DM evinces perceptual distance iff

∀x, y, z ∈ Θ, ρ(x, y) > ρ(x, z) =⇒ Pr(a = y|θ = x) < Pr(a = z|θ = x).

In other words, the DM evinces perceptual distance if for each possible true state, she is more

likely to choose an answer (i.e. an action) close to the true state than one farther away from it.

Though one can define a metric on a given set in many different ways, it makes sense to take ρ

to be a “natural” metric on Θ. For instance, if Θ is a subset of the real line as in the example above,

then absolute value, ρ(x, y) = |x − y|, may be a sensible metric to use. Since the state space in
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our experiment is such a subset, absolute value is the metric we use in analyzing our experimental

results.S1

S1.2 Cost Functions

S1.2.1 Entropy-Based Cost Functions

Recall from the proof of Proposition 5 in Appendix Subsection A2.5 that in a uniform guess task, the

probability of guessing any given incorrect state is independent of the state when the cost function

is entropy-based. What that means is that in our experiment, a subject who whose cost function

is mutual information (implying logistic performance) should not evince perceptual distance. For

example, if the true number of dots is 39, reporting 42 should be just as likely as reporting 38 for an

individual with a mutual information cost function, even though the difference between 42 and 39 is

3, whereas the difference between 38 and 39 is 1. As we explain below, not all subjects with logistic

performance fail to evince the perception of the distance. We can reconcile these observations with

a mutual-information-like cost function that implies logistic performance but depends directly on

performance as in Appendix Subsection A1.5, with Ω chosen to match the observed distribution of

mistakes. See, for instance, (11) in Subsection 3.2 for the relevant functional form.

S1.2.2 Normal signals

In Subsection 3.3, we assumed that adjacent states were equally spaced. The state space in our

experiment also has this property. This assumption of equidistant states allows us to draw some

conclusions about whether a DM who receives normal signals necessarily evinces the perception

of distance. The answer, in general, is no. This is because the lowest possible state θ1 is guessed

for any signal m̂ ≤ 1
2(θ1 + θ2).

S2 If the costs of precision are very high, so that the DM selects

a very low signal precision, then her distribution of signals may have fat enough tails that for

some true state, guessing the lowest state is likelier than guessing the next outermost state, i.e.

Pr
(
m̂ ≤ 1

2(θ1 + θ2)
∣∣θ = θj

)
> Pr

(
m̂ ∈

[
1
2(θ1 + θ2),

1
2(θ2 + θ3)

]∣∣θ = θj
)

for some j ≥ 2.

However, while we cannot conclude that a DM with normal signals necessarily evinces the

perception of distance over the entire state space, we can say that she does if we restrict our focus

S1This would also hold for any strictly monotonically increasing transformation of ρ that preserves its metric
properties on Θ.

S2A symmetric argument applies to the highest possible state.
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to guesses of inner states (i.e. states θ2 to θn−1).

Proposition S1. In a uniform guess task with equidistant states, a DM with normal signals evinces

the perception of distance for guesses of inner states; that is to say, ∀x ∈ Θ and ∀ y, z ∈ Θ\{θ1, θn},

|x− y|> |x− z|=⇒ Pr(a = y|θ = x) < Pr(a = z|θ = x).

Proof. To proceed, we need a lemma:

Lemma S1. Let β, ζ, and η be strictly positive. Then Φ((ξ+ β)ζη)−Φ(ξζη) is strictly decreasing

in ξ for positive ξ and strictly increasing for in ξ for negative ξ.

This lemma is easily proven by differentiating to obtain ζη[φ((ξ + β)ζη) − φ(ξζη)]. Since the

normal density is decreasing on the positive real line and increasing on the negative real line, this

derivative is negative for positive ξ and positive for negative ξ.

For guesses of inner states that are not the true state, the result follows from setting ξ = 2k+ 1

and β = 2 for k 6= −1 and comparing it to the expression in Lemma S1 when ξ = 2k + 3. This

shows that guessing an inner state that is not the true state is likelier than guessing the inner state

that is immediately farther from it. Applying this logic iteratively and exploiting the symmetry of

the normal distribution to compare guesses of inner states on opposite sides of the true state gives

the result.

In order to show that guessing the true state is likelier than guessing any other inner state,

assume that the true state is not θn−1 or θn, so that state immediately above the true state is

also an inner state. (An obvious symmetric argument applies in case the true state is θn−1 or θn.)

Lemma S1 implies that:

Φ(ζη)− Φ(0) > Φ(2ζη)− Φ(ζη) and Φ(ζη)− Φ(0) > Φ(3ζη)− Φ(2ζη)

=⇒ 2[Φ(ζη)− Φ(0)] > Φ(3ζη)− Φ(ζη)

=⇒ Φ(ζη)− Φ(−ζη) > Φ(3ζη)− Φ(ζη)

Since the probability of guessing the true state is at least Φ(ζη)−Φ(−ζη) (the true state could be

the lowest state), combining this implication with the result for inner states that are not the true

state proves the result.
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S1.3 Results

For each subject and trial t, we compute the error distance ρ(at, θt) = |at − θt|. In our experiment

this distance in an integer in {1, 2, 3, 4}. In order to test for perceptual distance, for each responsive

subject we compute the distribution of error distances that would be predicted if the subject were

to be equally likely to make any mistake in each state, given the empirically observed distribution

of true states and the subject’s overall accuracy rate. We then compare the empirically observed

distribution of error distances to this distribution using a chi-squared test.

At the 5% level, we find that 26 out of 42 responsive lab subjects (61.9%) have a distribution of

mistakes that evinces perceptual distance. Of course, the notion that perceptual distance matters

for error distance distributions is not limited to responsive subjects; mutual information implies

responsiveness (i.e. a strictly increasing performance function), so subjects who are not responsive

have already rejected mutual information for other reasons. But as a test of the general notion

that each possible mistake is equally likely given an true state of nature, it is worth running these

tests on the entire pool of rationally inattentive subjects. At the 5% level, we find that 45 out of

70 rationally inattentive lab subjects (64.3%) reject the null hypothesis of not perceiving distance.

S2 Demographics, Aggregate Results, and Categorization

In our experiment, demographic data were collected in a brief post-experiment questionnaire (but

before feedback was given). In this appendix, we provide a summary of these data and aggregate

results of our subjects. We then determine the extent to which demographic covariates predict the

categorization of subjects as rationally inattentive and responsive, as well as what their best-fitting

performance function is.

S2.1 Demographic Data

Table S1 lists basic demographic data for the laboratory subjects. The pool is fairly gender-

balanced;S3 the null of perfect gender balance cannot be rejected (two-sided test of proportions,

p = 0.146). The pool is also highly educated; over 55% of laboratory subjects have completed

S3Subjects were given the option to list their gender as “other/non-binary.” No subjects used this option, though
one subject declined to disclose their gender.
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Table S1: Laboratory Demographics

Number of subjects n = 81

Gender (n = 80) 41.3% male; 58.8% female

Age (n = 80) Average: 23.00; St. dev.: 4.17

Highest level of education achieved (n = 81)
Some post-secondary 44.4%
Completed bachelor’s degree 29.6%
Completed graduate or professional degree 25.9%

Area of study (n = 80)
Economics, psychology, or neuroscience 24.7%

a post-secondary degree. In general, demographic characteristics are not strong determinants of

subjects’ behavior in this experiment.

S2.2 Aggregate Analysis

Table S2 displays a regression of correctness on incentive level. The regression in column 2 includes

demographic covariates, including age (in years) and dummies for maleness, holding at least a

bachelor’s degree, studying economics, psychology, or neuroscience, participating in the $20 prize

treatment, and being shown the “dots” tasks before the “angle” tasks. It also controls for the order

in which tasks were completed.

It is apparent that in the aggregate, performance is higher at higher incentive levels. In particu-

lar, on average each increase of 1 point in incentive level results in a 0.3% increase in the probability

of answering correctly.

For the most part, demographic covariates have no significant effect on performance. Moreover,

there is no significant effect of doing the “dots” tasks before the “angle” tasks. However, perfor-

mance does decline slightly over time, indicating that subjects may experience some fatigue.S4

S2.3 Rational Inattentiveness

In Figure S1, we present a histogram of the p-values of the monotonicity test of Doveh et al. (2002)

used to determine whether subjects adhere to the NIAC condition. (Recall from Proposition 1 that

S4The effect of task number on performance vanishes if we only consider the second half of the data, i.e. the last
50 tasks for each subject. (Recall that the first fifty tasks contained the odd-numbered incentives, and the last fifty
tasks contained the even-numbered incentives, so each half of the data contains the same range variation in incentives
as the whole data set.) This is consistent with some portion of the subjects choosing to exert effort early in the
experiment before succumbing to fatigue. We examine the consistency of results between both halves of the data in
the next appendix section.
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Table S2: Regressions of correctness on incentive level and demographic covariates

(1) (2)

Incentive Level 0.003∗∗∗ 0.003∗∗∗

(0.0004) (0.0004)

Age −0.0001
(0.006)

Male 0.004
(0.056)

Bachelor’s −0.062
(0.058)

Econ/Psych/Neuro −0.097∗

(0.054)

$20 Prize 0.023
(0.049)

Dots First 0.049
(0.052)

Task Number −0.001∗∗∗

(0.0003)

Constant 0.425∗∗∗ 0.498∗∗∗

(0.032) (0.140)

Observations 7900 7900
R2 0.03799 0.05635

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.
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this is equivalent to testing for positive monotonicity.) We implemented the test with a significance

level of 5%, so we reject NIAC only for the subjects whose p-values fall in the leftmost cell of the

histogram. Note that roughly half of subjects have p-values below 0.5, whereas the other half have

p-values greater than 0.95. Examination of the data confirm that the p-values for the latter half

of subjects are all indeed 1. This is not surprising: these are the subjects for whom a positive

derivative restriction on their estimated performance is non-binding; their estimated coefficients

are the same regardless of whether the derivative restriction is imposed.

We now turn our focus to the NIAS tests. Recall from Subsubsection 5.2.2 that for each

subject, we run as many hypothesis tests as different actions they took. For most subjects, this

means running 5 tests, but if, for instance, a subject never selected 39, then we would only run 4

tests for them. If a subject rejects the null of posterior maximality at the true state for at least

one action, then we classify them as rejecting NIAS. Therefore, we are interested in the minimum

p-value for each subject. We present a histogram of these p-values in Figure S2. Note that the

distribution of p-values is unimodal, spiking at the right tail of the distribution.

To determine the extent to which demographics predict a subject’s classification as rationally

inattentive, we run a logit regression of an indicator for rational inattentiveness on demographic

covariates. These covariates are age, an indicator for being male, an indicator for having attained

at least a bachelor’s degree, an indicator for studying economics, psychology, or neuroscience, an

indicator for participating in the $20 prize treatment, and an indicator for having done the dots

tasks first. We display the results of this regression in column 1 of Table S3.

Demographic covariates do not seem to be predictive of rational inattentiveness in this particular

subject pool. Neither do experimental variables, such as the higher prize and completing the

dots tasks first. This suggests that for a given set of tasks, rational inattentiveness is an innate

characteristic that is not well captured by demographics, and moreover, it may be difficult to

manipulate experimentally.

S2.4 Responsiveness

We test for responsiveness with three tests, each of which generates a p-value. As explained in

Subsection 5.3, we classify subjects as responsive if they reject the null hypothesis for at least

one of these three tests. In other words, a subject is classified as responsive if the minimum
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Figure S1: Histogram of p-values for the Doveh et al. (2002) test
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Figure S2: Histogram of minimum p-values for the NIAS bootstrap tests
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of these p-values is below 0.05. In Figure S3, we present a histogram of minimum p-values for

the responsiveness tests. This histogram only includes subjects that were classified as rationally

attentive. Note that the distribution appears to be unimodal, spiking at below 0.05.

Histogram of Minimum p−values for Responsiveness Tests
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Figure S3: Histogram of minimum p-values for the responsiveness tests

To determine the extent to which demographics predict responsiveness, we run a logit regression

of an indicator for responsiveness on demographic covariates for the subjects who fail to reject

rational inattentiveness. We display the results of this regression in column 2 of Table S3.

As is the case with rational inattentiveness, demographic covariates are not significant predictors

of responsiveness.

S2.5 Cost Functions

To determine the extent to which demographics predict model selection, we run a multinomial

logit regression of the best-fitting model on the same set of demographic covariates as in previous

subsections, with logistic performance (Model 7, mutual-information costs) as the baseline. This

regression shows us the extent to which these demographic factors affect the likelihood of selecting
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Table S3: Demographics and Categorization: Logit Regressions

Rational Inattentiveness Responsiveness

(1) (2)

Age −0.0002 −0.015
(0.084) (0.064)

Male −0.475 −0.691
(0.718) (0.588)

Bachelor’s 0.963 0.054
(0.804) (0.623)

Econ/Psych/Neuro 0.749 1.261∗

(0.886) (0.704)

$20 Prize 0.128 0.263
(0.714) (0.557)

Dots First −0.602 −0.482
(0.752) (0.562)

Constant 1.726 0.911
(1.939) (1.488)

AIC 74.110 99.128

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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a model that implies a non-convexity or discontinuity in the cost function over one that is consistent

with convexity. We display the results of this regression in Table S4.

As is the case with previous demographic regressions, demographic factors are not significant

predictors. This seems to indicate that not only is rational inattentiveness not well captured by

demographics, so is the nature of one’s cost function for information in a given task.

Table S4: Model Selection and Demographics

Binary (2) SIC (8) Concave (9)

Age −0.288 0.155 −0.322
(0.224) (0.141) (0.250)

Male −0.204 −0.768 0.492
(0.984) (1.270) (1.094)

Bachelor’s −0.245 −0.699 0.387
(1.181) (1.305) (1.431)

Econ/Psych/Neuro −0.056 −0.902 −0.457
(0.968) (1.454) (1.136)

$20 Prize −0.005 −0.743 −1.458
(0.900) (1.296) (1.040)

Dots First −0.153 2.230 −0.267
(0.943) (1.365) (1.169)

Constant 6.076 −5.042 6.739
(4.794) (3.578) (5.245)

AIC 133.323

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

S3 Dynamic Evidence Accumulation and Reaction Times

In the main body of the paper, we focused on static models of information acquisition. However,

information is typically not obtained instantaneously, but rather gathered over a period of time. In

fact, dynamic models of evidence accumulation have a long tradition in mathematical psychology.

In drift-diffusion models (DDMs) (e.g. Ratcliff, 1978; Diederich, 1997), evidence is modeled as a

stochastic process that evolves according to a diffusion process (Smith, 2000), such as Brownian

motion. The decision-maker stops gathering evidence and makes a decision when this process

hits some (possibly time-dependent) boundary. This boundary is often exogenously given, as in
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Ratcliff (1978), implying an exogenous information approach. However, under some conditions,

the boundary can be derived as the result of an optimal stopping problem (e.g. Fudenberg et al.,

2018; Tajima et al., 2016), implying an endogenous information approach. Other endogenous

information approaches consider the optimal selection of the intensity of evidence accumulation

when the stopping rule is exogenously given (e.g. Woodford, 2014) or the optimal selection of both

evidence accumulation intensity and stopping rule (e.g. Moscarini and Smith, 2001). The vast

majority of these dynamic evidence accumulation models restrict their focus to situations where

the decision-maker must choose between two options, though Moscarini and Smith extend their

model to consider situations with multiple discrete choice alternatives.

There is a large literature that uses choice and reaction-time data to compare models of evidence

accumulation. For example, Woodford (2014) presents a model of dynamic evidence accumulation

with mutual-information costs and uses Krajbich et al.’s (2010) data to compare the fit of his

endogenous information model to a DDM with Brownian motion, and as mentioned in the main

body of the paper, Ratcliff and Smith (2004) use data from several experiments to compare the fits

of four different dynamic evidence accumulation models.

In our experiment, in addition to data on subject responses, we also collected data on how much

time subjects spent on each task. We call this the reaction time. A full analysis of how our data fit

dynamic rational inattention models is beyond the scope of this appendix and is indeed the subject

of our ongoing work. Our goal in the remainder of this appendix section is to present evidence that

information acquisition has salient dynamic features.

S3.1 Time and Attention

In the main body of the paper, we remained agnostic about the exact nature of what attention

comprises, and by corollary, we remained agnostic about the exact source of information costs. One

possibility is that attention can be decomposed into a quantity component — time spent on a task

— and a quality component — how much effort is exerted during that time. Here, we provide some

suggestive evidence that attention indeed has a quantity component.

Tables S5 and S6 display linear regressions of reaction time on incentive level and correctness on

incentive level, respectively, aggregating over the subject pool. The coefficients on the dependent

variables in both regressions are positive and significant. In the case of the first regression, this
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Table S5: Linear regression of reaction time on incentive level

Reaction Time

Incentive Level 0.178∗∗∗

(0.017)

Constant 14.159∗∗∗

(1.378)

Observations 8100
R2 0.059

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.

Table S6: Linear regression of correctness on reaction time

Correctness

Reaction Time 0.007∗∗∗

(0.001)

Constant 0.427∗∗∗

(0.036)

Observations 8100
R2 0.096

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.
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indicates that subjects respond to higher incentives by increasing the quantity of attention paid to

the task at hand. In the case of the second regression, this indicates that increasing the quantity

of attention results in higher performance; this is the speed-accuracy trade-off commonly noted in

the literature on perceptual psychology (e.g. Schouten and Bekker, 1967).

S3.2 Dual-Process Mechanisms

As we showed in Section 6, choice data for approximately one-third of responsive subjects are

best fit by binary performance functions. This suggests that these subjects employ two different

strategies for determining the number of dots on the screen — one for low incentives, and one for

high incentives. In this subsection, we provide further suggestive evidence for this hypothesis.

Figure S4 shows the histogram of reaction time on every task for the subject population. The

distribution of reaction times is clearly bimodal. There are at least two possible, non-mutually

exclusive explanations for this. One is that some portion of the subjects simply do not exert any

effort on the task and make a response at the earliest opportunity, while others exert effort in

acquiring information. Another is that subjects have binary performance functions, choosing not

to spend time acquiring information for some incentive levels but choosing to do so for others.

The fact that a significant portion of subjects are best fit by binary performance functions

provides an explanation for the pattern observed in Figure S4. Some subjects make snap decisions

when confronted with low incentives but take the time to acquire information at higher incentive

levels. This can be seen more clearly in Figure S5, which shows the histogram of reaction time on

every task for responsive subjects only. Observe that this histogram is also clearly bimodal.

To interrogate this question further, we run the dip test of Hartigan and Hartigan (1985) on

each subject’s reaction times to determine which ones have multimodal reaction time distributions.

We can reject the null of unimodality at the 5% level for 26 out of 42 responsive subjects (61.9%).

This is more than the number of responsive subjects whose data are best fit by binary performance

functions, meaning that some subjects with logistic, SIC, or concave performance functions do not

have unimodal reaction time distributions. This suggests that rather than continuously adjusting

their quantity of attention as incentive levels increase, some subjects randomize between paying

a high quantity and a low quantity of attention, and the probability of paying a high quantity of

attention increases as incentive levels increase, resulting in a sort of “fuzzy” threshold at which
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Figure S4: Histogram of reaction times for all subjects

Figure S5: Histogram of reaction times for responsive subjects
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they begin paying attention.

A clear analogy can be drawn between these results and concepts from psychophysics (cf.

Chapter 12 of Frisby and Stone, 2010). By observing the probability of responding to or detecting a

stimulus as its intensity is increased, researchers can trace out a “psychometric function.” Classical

psychophysics predicts that this curve is binary: the stimulus is detected with certainty above a

certain threshold intensity and is undetected otherwise. Contrarily, modern psychophysics accounts

for the inherent stochasticity of the human perceptual apparatus and predicts a smoothly increasing,

sigmoidal psychometric curve: as the intensity of the stimulus is increased, the probability of

detecting it increases continuously; there is a wide range of stimulus intensities at which the stimulus

is ex-ante neither detected nor undetected with certainty. In our experiment, the incentive level is

analogous to stimulus intensity, and performance is analogous to the probability of signal detection.

Since there are both subjects with binary performance and subjects with sigmoidal performance

who have bimodal reaction time distributions, one possible explanation is that both types have an

incentive threshold at which they begin exerting effort or paying attention. The binary types are

certain about the location of this threshold, and thus, they behave according to the predictions of

classical psychophysics. The logistic and SIC types with estimated σ̂ ∈ (0, 2) also have a threshold,

but they are less certain about where that threshold is, and the further away they are from that

threshold, the more likely they are to behave in line with the predictions of classical psychophysics.

This produces a sigmoidal performance curve.

On the whole, this evidence suggests that for a large portion of the subject pool (61.9%),

there are two information-acquisition processes that they can employ in this task. Still, there

is a significant portion of the pool (38.1%) that is apparently able to adjust their quantity of

attention continuously. As was the case with previous categorizations of subjects, there is significant

heterogeneity.

S4 Angle Task

In addition to the “dots” tasks discussed in the main body of the paper, laboratory subjects also

completed 100 “angle” tasks. For each of these tasks, subjects were shown a pair of intersecting line
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Figure S6: Angle display for a task

segments of random lengthS5 and orientation and were told to identify the angle between them.

This angle could have been 35◦, 40◦, 45◦, 50◦, or 55◦, with each being equally likely. Subjects

were rewarded for a correct answer and received no reward for an incorrect answer. Therefore, the

“angle” tasks were uniform guess tasks of the same format as the “dots” tasks. Figure S6 shows

what this screen looked like to the subjects.

Table S7 presents linear regressions of correctness on incentive level and demographic covariates

for the entire laboratory subject pool. As was the case with the “dots” task, demographics are not

significant predictors of correctness. However, neither is incentive level. This evidence indicates

that this is not a task in which subjects generally respond to incentives.

S5 Online Experiment

In this appendix, we describe and present results from the online experiments mentioned in the

main body of the paper.

Subjects were recruited using the Amazon Mechanical Turk (MTurk) platformS6 and partic-

S5Giving the arms of the angle random length ensured that subjects could not simply measure the distance between
the endpoints of the arms to estimate the size of the angle.

S6In recent years, many experiments and surveys have been conducted on MTurk. Research has shown that results
from MTurk samples are similar to convenience samples typically used by researchers (e.g. student samples) and
are more representative of the U.S. population, though they also differ markedly in some psychological and political
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Table S7: Linear regression of correctness on incentive level and demographic covariates in the
“angle” tasks

(1) (2)

Incentive Level 0.0001 0.0001
(0.0002) (0.0002)

Age −0.001
(0.002)

Male −0.007
(0.014)

Bachelor’s −0.001
(0.017)

Econ/Psych/Neuro 0.028∗

(0.017)

$20 Prize 0.017
(0.013)

Dots First −0.015
(0.014)

Task Number −0.00001
(0.0002)

Constant 0.444∗∗∗ 0.461∗∗∗

(0.014) (0.036)

Observations 7900 7900
R2 1.16×10−5 0.0009818

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.
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Table S8: Online Demographics

Number of subjects n = 118

Gender (n = 117) 52.5% male; 47.5% female

Age (n = 118) Average: 32.48; St. dev.: 8.88

Highest level of education achieved (n = 118)
Some post-secondary 43.2%
Completed bachelor’s degree 50.0%
Completed graduate or professional degree 6.8%

ipated in the experiment on the Qualtrics platform. A total of 118 subjects completed the ex-

periment. Subjects completed 200 tasks, each of the “dots” type. Roughly half the subjects (57

subjects) were given a participation fee of $3 US and potential monetary prizes of $3, while the

other half (61 subjects) were given a participation fee of $5 US and potential monetary prizes of

$5 US.

S5.1 Demographics

Table S8 lists basic demographic data for the online subjects. The pool is fairly gender-balanced,S7

though it is slightly more male than female, and highly educated; over 55% of the pool has a

post-secondary degree.

The online pool is signficantly different from the laboratory pool in some ways. In particular,

the online pool is significantly older (one-tailed t-test of unpaired samples, p < 0.001) and has a

significantly greater proportion of subjects with bachelor’s degrees but no advanced degrees (one-

sided test of equality of proportions, p = 0.003).

S5.2 Rational Inattentiveness

S5.2.1 No Improving Attention Cycles

We test against weak positive monotonicity using the method of Doveh et al. (2002). At the 5%

level, we fail to reject positive monotonicity for 103 out of 118 online subjects (87.3%).S8

characteristics. See, for example, Berinsky et al. (2012) and Goodman et al. (2013).
S7One online subject declined to disclose their gender.
S8The optimization in the computation of the restricted regression for online subject 93 failed to converge, and so

we did not perform the test for them. That subject has a success rate in the tasks of 99% (i.e. they identify the true
state of nature correctly in 198 out of 200 tasks), and so we include them in the 103 online subjects who fail to reject
positive monotonicity.
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S5.2.2 No Improving Action Switches

We test for NIAS using the bootstrap procedure outlined in Section 5. 82 out of 118 online subjects

(69.5%) fail to reject NIAS.

Overall, this gives us 72 out of 118 online subjects (61.0%) whom we classify as rationally

inattentive. This is a significantly smaller portion than in the laboratory pool (one-sided test of

proportions, p < 0.001).

S5.3 Responsiveness to Incentives

We test for responsiveness using the full-sample and split-sample tests outlined in Section 5. At the

5% significance level 28 out of 72 online subjects (38.8%) who fail to reject rationality are responsive

to incentives. This is a significantly smaller portion than in the laboratory pool (one-sided test of

proportions, p = 0.009).

S5.4 Model Selection

We follow the same model selection procedures as in Section 5. As with the laboratory subjects,

the only models that best fit the subjects are binary response and logistic response. 2 out of 28

responsive subjects (7.1%) are best fit by constant performance, 8 out of 28 responsive subjects

(28.6%) are best fit by binary performance, 17 out of 28 responsive subjects (60.7%) are best

fit by logistic performance, and 1 out of 28 responsive subjects (3.6%) are best fit by the concave

performance function implied by normal signals. No subjects are better fit by the SIC generalization

of logistic performance than by logistic performance itself. Ignoring the subjects who are best fit

by constant response, and collapsing logistic and SIC performance into a single category, these are

similar to the proportions found in the laboratory. This seems to indicate that once the subset of

responsive subjects is identified, the incidence of different types of cost functions within it is stable

across demographic contexts.

S6 Application to the Delegation of Investment

The characteristics of the decision-maker’s cost function can obviously have effects on her own

decisions. But as we show in this appendix section, these characteristics can also have effects on

20



economically-relevant outcomes when there is strategic interaction.

In order to demonstrate this notion, let us consider a situation in which an investor is deciding

which of n options to invest in, and he cannot split his investment across options. Suppose that

only one of these options can be a winner, in which case an investment in it will pay a net return of

x. Losing opportunities pay a net return of zero. This setup has the relevant features of a situation

where the success of an investment depends on the outcome of a contest. Many economic situations,

such as competing to be granted development rights by the government for a plot of land, take the

form of contests. Another salient example is a patent race, where various firms compete to be the

first to patent an invention, such as a drug or a piece of technology.

Suppose that the investor wishes to delegate researching these options to an expert. This is a

common occurrence in reality; people frequently solicit the services of financial advisors, presumably

because it is prohibitively difficult or costly for laypeople to research investment opportunities

themselves, while financial advisors who are trained to seek and interpret financial information can

research these opportunities at a much lower cost.

We can analyze this situation in a simple principal-agent framework, where the investor is

the principal and the expert is the agent.S9 The agent acquires information about the available

investment opportunities at a cost and selects one of the options on the principal’s behalf. Suppose

that the principal employs the agent with a contract that pays r if the agent correctly selects the

winner and zero otherwise.S10 Furthermore, suppose that a priori, each option is equally likely to

be the winner. Then, the agent’s problem can be represented as a uniform guess task, with the

reward for a correct answer being r. Consequently, the principal’s problem is

max
r∈[0,x]

(x− r)P ∗(r) (S1)

where P ∗(r) is the agent’s performance function.

As we established in Proposition 1, if the agent is rationally inattentive, then her performance

function is (weakly) increasing. Thus, the principal faces a trade-off between incentivizing the agent

S9We use male pronouns for the principal and female pronouns for the agent.
S10This type of contract is optimal for the principal if we assume that (a) there is a limited-liability constraint so

that the agent cannot earn a negative payoff in any state of the world, which implies that the principal cannot “sell
the firm” to the agent; and (b) the agent’s cost of an uninformative information structure is zero. As Caplin and Dean
(2015) demonstrate, the latter assumption is without loss of generality; it is not a testable restriction on information
cost functions.
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to acquire better information and giving up a larger portion of his net return upon success. The

exact nature of this trade-off depends on the potential net return x and the agent’s information

cost function. In the following subsections, we analyze the properties of the principal’s optimal

payment strategy r∗ under three of the cost function models fit by our data: S11 fixed costs;

mutual information; and normally-distributed signals.S12

S6.1 Fixed Costs

Suppose the agent has a fixed cost κ for acquiring information. If she pays the cost, then she learns

the winner with certainty. If not, then she learns nothing about the identity of the winner. Thus,

she chooses to acquire information if r − κ ≥ r
n , i.e. when r ≥ κn

n−1 .

Therefore, if x < κn
n−1 , then the reward required to incentivize the agent to acquire information

is higher than the potential net return, so the principal is better off not hiring the agent at all

and simply picking an option at random. If instead x ≥ κn
n−1 , then the principal could incentivize

information acquisition by paying as little as r = κn
n−1 . To ensure that this payment is not so high

than the principal could do better on his own, he requires that x
n ≤ x − κn

n−1 , which holds if and

only if x ≥ κn2

(n−1)2 . But since κn
n−1 <

κn2

(n−1)2 , the principal will not hire the agent unless x ≥ κn2

(n−1)2 .

To summarize: if x < κn2

(n−1)2 , then the principal does not hire the agent and selects an option

at random. If x ≥ κn2

(n−1)2 , then the principal hires the agent and gives her a payment of κn
n−1 , and

the agent picks the winner with certainty. This implies a discontinuity in the principal’s payment

as a function of the potential net return x. Figure S7 shows what this payment scheme looks like

for κ = 40.

S11We exclude Tsallis entropy costs from our analysis since the corresponding performance function does not in
general have a closed form (see Subsection 3.2 of the main paper), and its properties vary substantially with the σ
parameter. However, numerical simulations seem to indicate that the principal’s profit function is strictly quasiconcave
in the reward r paid to the agent (see the proof of Proposition S2 in Subsection S6.2 for why this is important), and
it can be confirmed that this is the case when σ = 2 (i.e. when costs are quadratic).
S12Some caution is required in applying the assumption of normally-distributed signals, because it implies that the

options have some existing ranking, and it is not clear what it means for the options to be “equidistant” from each
other. In any case, if the normal-signals and Tsallis models are excluded from consideration, then in our data, the
best-fitting model for each subject is either binary (fixed costs) or logistic (mutual information). (Results available
from the authors on request.)
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Figure S7: Optimal payment as a function of potential net return, fixed costs

S6.2 Mutual Information

Suppose the agent has a mutual-information cost function with cost parameter α. Then, since her

performance function is logistic (see Proposition 5), the principal chooses r to maximize:

x− r
(n− 1) exp

(
− r
α

)
+ 1

(S2)

If this maximand is strictly quasiconcave, then this problem has a unique solution for each x,

and the maximum theorem guarantees that the principal’s optimal choice of r∗ is continuous in x.

This turns out to be the case.

Proposition S2. If the agent has a mutual information cost function, then the principal’s optimal

payment strategy r∗(x) is continuous.

Proof. The principal’s maximand is:

x− r
(n− 1) exp

(
− r
α

)
+ 1

(S3)

23



As argued above, if this maximand is strictly quasiconcave in r, then this problem has a unique

solution for each x, and since it is continuous in both x and r, the maximum theorem guarantees

that the principal’s optimal payment strategy r∗(x) is continuous. Therefore, it simply remains to

be shown that the maximand is strictly quasiconcave. We begin by differentiating it with respect

to r:

(
x−r−α
α

)
(n− 1) exp

(
− r
α

)
− 1(

(n− 1) exp
(
− r
α

)
+ 1

)2 (S4)

Since the denominator in (S4) is always strictly positive, the sign of (S4) depends only on the sign

of the numerator. The numerator is strictly positive (negative) when:

(
x− r − α

α

)
(n− 1) exp

(
− r
α

)
> (<)1

⇐⇒ (n− 1)

(
x− r − α

α

)
> (<) exp

( r
α

)
(S5)

The LHS of (S5) is strictly decreasing, and diverges to positive infinity as r is taken to negative

infinity and to negative infinity as r is taken to positive infinity. The RHS of (S5) is strictly

increasing, and it approaches zero as r is taken to negative infinity and diverges to positive infinity

as r is taken to positive infinity. Therefore, by the intermediate value theorem, the LHS and RHS

must intersect, and they do so only at a single r.

Therefore, (S3) exhibits a region of strict increase up until the point where (n− 1)
(
x−r−α
α

)
=

exp
(
r
α

)
, after which it is strictly decreasing. Thus, (S3) is strictly quasiconcave.

To provide an example, suppose n = 5, α = 10, and x ∈ [5, 100]. (A graph of the principal’s

maximand (S2) is shown in Figure S8.) For these parameters, r∗(x) is continuous and increasing,

as shown in Figure S9.

S6.3 Normally-Distributed Signals

Suppose that the options are ranked and equidistant on some scale. For example, in the case

of bidding for development rights, the projects could be ranked by the estimated length of time
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Figure S8: Principal’s expected payoff as a function of payment for x = 20, mutual information
costs

Figure S9: Optimal payment as a function of potential net return, mutual information costs
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until project completion.S13 In this case, if the agent’s cost function satisfies the conditions of

Proposition 6, then it can be shown that the principal’s optimal choice of r∗ is continuous in x.

Proposition S3. If the options are ranked and equidistant, and the agent has a convex, increasing

cost of precision of normal signals with non-negative third derivative, then the principal’s optimal

payment strategy r∗(x) is continuous.

Proof.

d2

dr2
[(x− r)P ∗(r)]

=
d

dr
[−P (r) + (x− r) d

dr
P ∗(r)]

= − 2
d

dr
P ∗(r) + (x− r) d

2

dr2
P ∗(r) (S6)

(S6) is negative, since P ∗(r) is strictly increasing and strictly concave, and x > r, so the principal’s

ex-ante expected payoff is strictly concave in r. Therefore, there is a unique r∗ for each x, and by

the maximum theorem, r∗(x) is continuous.

Figure S10 shows what this payment scheme looks like if costs are linear in the precision of

normally-distributed signals, with a marginal cost of precision of 7.5.

S6.4 Welfare and Robustness

The properties of an agent’s information cost function also have implications for the robustness of

the model’s predictions, particularly for the principal’s welfare. If the principal is slightly — even

infinitesimally — misinformed about the parameters of an agent’s cost function, then this can have

major impacts on his welfare if the agent’s cost function is discontinuous.

Consider an agent with a fixed-cost information cost function, with cost parameter κ. Suppose

that the principal believes that the agent’s cost parameter is κ′ := κ − ε, where ε ∈ (0, κ). If the

principal had a correct assessment of the agent’s information costs, then he would pay her κn
n−1 for

a success, causing the agent to acquire information, and earning x− κn
n−1 in expectation. However,

since he misperceives her fixed cost for information acquisition as κ′, he instead offers (κ−ε)n
n−1 . This

S13Shorter completion times mean that the development will be more quickly available for public use, but may also
signal poor craftsmanship.
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Figure S10: Optimal payment as a function of potential net return, normally-distributed signals

is not enough to incentivize the agent to acquire information, resulting in expected earnings of

x
n −

κ−ε
n−1 . The expected welfare loss to the principal from this mistake is therefore (n−1)x

n −κ+ ε
n−1 ;

an arbitrarily small error produces a welfare loss on the order of (n−1)x
n −κ, which can be very large

if x is very large.

By contrast, this does not occur if the agent has a cost function that generates a continuous

performance function. In that case, the continuity of the performance function P ∗(r) implies that

the principal’s welfare (x−r)P ∗(r) is also continuous in r; this is because an agent with continuous

performance does not drastically adjust her behavior in response to small changes in incentives.

Therefore, by continuity, small mistakes on the principal’s part in assessing the agent’s cost function

parameters only produce small welfare losses.

Thus we have shown that the model’s welfare predictions are not robust to small (downward)

perturbations in the principal’s assessment of the agent’s costs when the agent has a discontinuous

cost function. Practically speaking, this means principals must exercise extra caution in a world

where agents have fixed-cost information cost functions, perhaps by intentionally overpaying agents

or by carefully studying them before hiring. Even a small error in designing the payment scheme
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could produce catastrophic welfare losses; a near-optimal contract does not necessarily produce a

near-optimal outcome for the principal. This problem does not present itself when the agent has a

cost function that generates continuous performance.
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A1 A General Discrete Rational Attention Framework


In Section 2 of the paper, we presented a rational inattention framework that applied to a class of


decision problems that we call uniform guess tasks. In this appendix, we present of a general version


of that framework. It applies to decision problems with finite state spaces and action spaces.


A1.1 The Framework


In this framework, there is an unknown state of the world about which an decision-maker (DM)


can choose to acquire information. This information affects her beliefs about the state of the world.


After obtaining this information, she makes a decision that maximizes her payoff given her beliefs.


We model information as a collection of probabilistic mappings from states of the world to a set


of subjective signals. We define an information structure to be a set of conditional distributions


of signals given states. Given a prior belief, observing a signal generates a corresponding posterior


belief over states, and given this posterior belief, the DM maximizes her payoff by selecting an


optimal action. Each information structure has a cost associated with it.


We remain agnostic about what the exact source of information costs is. Information costs


could represent cognitive or physical effort exerted in learning about the true state, as well as the


opportunity cost of time spent doing so.


This framework has several beneficial features. Firstly, it has the same behavioral implications


as the model of posterior-based information costs of Caplin and Dean (2015) (henceforth CD15),
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which means we can apply their necessary and sufficient conditions for models of rational inattention


to the problems we study. This assertion requires careful proof, as well as an explanation of exactly


where our model departs from CD15’s. For the sake of readability, we refer the interested reader to


Appendix Subsection A1.6 for details. Secondly, as in some of the previous literature on stochastic


choice (e.g. McGuire, 1972; Leshno and Spector, 1992), it expresses information structures as


stochastic matrices, which as demonstrated later in the appendix, will permit us to easily compare


information structures and to define a simple geometric notion of convexity of information costs;


this is not possible with the posterior-based approach of CD15. Thirdly, it allows information costs


to depend not just on the beliefs engendered by the information structure, but on how those beliefs


are engendered. Though this does not rationalize any kind of behavior that is not rationalized


under CD15, it allows for the costs leading to certain behaviors to be described more intuitively,


especially those that encode the perception of distance, as we explain in Appendix Subsection A1.6


and Supplementary Appendix S1.A1


Let Θ = {θi}|Θ|i=1 be a finite state space, let M = {mi}|M |i=1 be a finite signal space,A2 and let


A = {ai}|A|i=1 be a finite action space, with |M | ≥ |A| so that there are at least as many signals


as there are actions. Let π = (πi)
n
i=1 ∈ ∆(Θ), where n := |Θ|, be the DM’s prior over Θ. Each


action-state pair (a, θ) has an associated utility u(a, θ). The DM maximizes:


EγπQ
[
E〈π|m〉 [u(a, θ)]


]
− C(π,Q) (A1)


where Q is an information structure (a collection of conditional signal probabilities, given states),


γπQ ∈ ∆(∆(Θ)) is the distribution of posterior beliefs it induces given the prior π, 〈π|m〉 is the


posterior belief associated with signal m, and C is a cost function that depends on both the prior


and the information structure.


As explained above, the DM’s problem has two stages. First, she selects an information structure


A1See Pomatto et al. (2019) for a further discussion of this point.
A2Given that the state space is finite, the finiteness of the signal space is not a substantive restriction. In fact, if we


assume that more informative information structures are costlier (our Assumption E, presented later in the paper),
it can be shown that given a finite state space, a DM never need use more than a finite number of signals. This
follows from Proposition 4 of Kamenica and Gentzkow (2010). They study a game where the information structure
and the action are chosen by different players, but if we assume those players’ preferences are perfectly aligned, then
ignoring information costs, our framework maps onto theirs. By their Proposition 4, if a DM employs an information
structure with an infinite number of signals, then ignoring information costs, she could have done at least as well
with an information structure with a finite number of signals. Moreover, since the former information structure is
more informative than the latter, it is costlier. Therefore, the DM will choose to use a finite number of signals.
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Q. She then observes a signal m according to that information structure, which gives her a posterior


belief 〈π|m〉, derived by Bayes’ rule. Second, given this posterior belief, she chooses an action a to


maximize her expected payoff.


We can express this problem more formally using matrix notation. Let Π = diag(π).A3 Let


U ⊆M|A|×|Θ|(R), and let U ∈ U be a matrix with entries ui,j := u(ai, θj), i.e. the utility of taking


action i in state j. We refer to U as the set of decision problems and to U as a payoff matrix.


Let Q be the space of right-stochastic matrices of dimension |Θ| × |M |, and let D be the space


of right-stochastic matrices of dimension |M | × |A|.A4 C : ∆(Θ) × Q −→ R̄ gives the costA5 of


selecting an information structure from Q, given a prior in ∆(Θ).A6


The decision-maker’s problem, then, is (cf. Leshno and Spector, 1992):A7


max
Q∈Q,D∈D


tr(QDUΠ)− C(π,Q) (A2)


where the entries of Q are qi,j = Pr(mj |θi), i.e. the probably of signal mj in state θi, and the


entries of D are di,j = Pr(aj |mi), i.e. the probability of selecting action aj given signal mi. The


i-th row of Q represents the conditional distribution of signals given state θi, and so Q can be seen


as a collection of signal distributions given states. We refer to D as the decision matrix.


We refer to the maximand in (A2) as the net payoff and its first component as the ex-ante


gross payoff. Specific realizations of this payoff are called the ex-post gross payoff. Where it will


not cause confusion, we will drop the “ex-ante” and “ex-post.”


This setup allows us to index decision problems of the form of (A2) by (π, U). In this paper,


we will hold π fixed, and thus we will simply index decision problems by U where it will cause


no confusion. For a given finite sequence of decision problems {Ui} drawn from U and a given


true state of the world θi, we can observe the action ai chosen by the DM. Using the data set


A3diag(x) is the square matrix that has the entries of x in order on its diagonal and zeroes elsewhere.
A4Some authors require that a stochastic matrix be square. We allow for a stochastic matrix to have different


numbers of rows and columns, provided that all its entries are non-negative and each of its rows sums to 1.
A5R̄ := R∪{−∞,∞} is the set of extended reals. If for some π̃ and Q̃, C(π̃, Q̃) =∞, then the cost of the information


structure Q̃ given π̃ is infinite, and the DM will never select it, provided there is at least one information structure
available at a finite cost. This idea is formalized in Subsection A1.4.


A6In principle, though the cost-function approach implies flexibility in the selection of information structures, it can
accommodate restrictions on the space of available information structures as well. For example, if a modeler wishes
to impose an exogenous process of information acquisition, then he may set the cost of a corresponding information
structure to be finite and the cost of all other information structures to be positive infinity.


A7tr(X) denotes the trace of X, the sum of its diagonal entries.
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{(Ui, θi, ai)} will allow us to infer the properties of C(·, ·). Following CD15, we refer to a data set


of this type as state-dependent stochastic choice data.


In this setup, for each i ∈ {1, . . . , n} and j ∈ {1, . . . , |A|}, πi and uj,i, are exogenous parameters.


For each i ∈ {1, . . . , n}, j ∈ {1, . . . , |A|}, and k ∈ {1, . . . , |M |}, qi,k and dk,j are chosen by subjects.


Though one cannot observe qi,k and dk,j separately, one can estimate the products qi,kdk,j ; if a DM


solves the same decision problem repeatedly, one can observe how often each action is chosen in


each state.A8


A1.2 Testing for Rational Inattention


As CD15 demonstrate, observed behavior is consistent with their model if and only if it satisfies their


“no improving attention cycles” (NIAC) and “no improving action switches” (NIAS) conditions.A9


Their NIAC condition ensures that improvements to gross payoffs cannot be made by reallocating


attention cyclically across decision problems, and their NIAS condition ensures that the DM’s


actions are optimal given the beliefs induced by her chosen information structure. Because our


model is behaviorally equivalent to theirs, NIAC and NIAS are necessary and sufficient conditions


for stochastic choice data to satisfy our model. Put differently, the DM fails to fulfill either of those


two conditions if and only if there does not exist a cost function that rationalizes her stochastic


choice data.


In our notation, the NIAC condition can be expressed as follows. Assume a fixed prior π, and


let U0, U1, . . . , UJ−1 be any subset of two or more of the payoff matrices faced by the DM. Let


Q0, Q1, . . . , QJ−1 and D0, D1, . . . , DJ−1 be the corresponding information structures and decision


matrices selected by the DM, and let Dj
i be a decision matrix that maximizes the gross payoff given


payoff matrix Ui and information structure Qj . Then the NIAC condition states:


J−1∑
j=0


tr (QjDjUjΠ) ≥
J−1∑
j=0


tr
(
Q(j+1) mod JD


(j+1) mod J
j UjΠ


)
(A3)


The NIAS condition can be expressed as follows. Assume a fixed prior π. Then for any payoff


matrix U , let Q∗ be the information structure and D∗ be the decision matrix chosen by the DM.


A8See Section II.A of CD15 for details.
A9The NIAS condition is due to Caplin and Martin (2015). It is the key condition that characterizes their Bayesian


expected utility model.
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Then the NIAS condition states that for any k ∈ {1, . . . , |A|} such that the k-th column of D∗


(denoted by d∗•,k) has at least one nonzero entry and any l ∈ {1, . . . , |A|}:


uk,•ΠQ
∗d∗•,k ≥ ul,•ΠQ∗d∗•,k (A4)


where uk,• and ul,• are the k-th and l-th rows of U , respectively.


Proposition A1. NIAC and NIAS are necessary and sufficient conditions for stochastic choice


data to satisfy (A2).


Proof. This follows directly from Proposition A5 in Appendix Subsection A1.6 and Theorem 1 of


CD15.


A1.3 Responsiveness


A set of behaviors that is trivially consistent with rational inattention is one where the DM’s


behavior is consistent with their posterior beliefs not changing across decision problems; regardless


of the decision problem, she chooses the same information structure. This is consistent with models


such as signal detection theory, where the DM’s information structure is exogenously given. In


particular, it does not become more informative if the DM’s gross reward from choosing an optimal


action increases. In those cases, the DM simply does not respond to changes in the level of incentives


across decision problems. More interesting are cases where the DM does modify her behavior in


response to changes in the level of incentives.


Definition 1. Suppose that a DM is given a set of decision problems U := {U1, U2, . . . UJ}. Further


suppose that ∃U, Ũ ∈ U satisfying the following: for each i ∈ {1, . . . n}, let τi ∈ argmax
j∈{1,...,|A|}


ui,j ;


∀ i ∈ {1, . . . n}, ũi,j ≥ ui,j if j = τi and ũi,j ≤ ui,j if j 6= τi, with at least one strict inequality. Then


we say the DM is responsive (to incentives), or exhibits responsiveness, if her behavior is such that


Pr


(
a ∈ argmax


z∈A
∈ ũ(z, θ)


)
> Pr


(
a ∈ argmax


z∈A
∈ u(z, θ)


)
.


Put differently, a DM is responsive to incentives if for some pair of decision problems, her


probability of taking a (gross) payoff-maximizing action increases when the utility associated with


payoff-maximizing actions increases and the utility associated with non-payoff-maximizing actions


decreases.
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Responsiveness is a fairly intuitive condition for human behavior to fulfill. Roughly speaking,


it says that people perform better (by choosing the best option more often) when the stakes are


higher.


A1.4 Continuity and Convexity


In this subsection, we establish sufficient conditions for a continuous relationship between gross


payoffs and incentives in general rational inattention problems. Roughly speaking, continuity and


convexity of the information cost function imply gross payoffs that are continuous in incentives.


Assumption A. Finiteness. ∃ Q̃ ⊆ Q closed, convex, and non-empty such that ∀π ∈ ∆(Θ),


C(π,Q) is finite for Q ∈ Q̃ and positive infinity otherwise.


This assumption helps ensure that the DM’s decision problem has a solution. We call signal


structures in Q̃ admissible.


Assumption B. Straightforwardness. ∃ % : {1, . . . |M |} −→ {0, . . . |M |} such that:


• |%({1, . . . |M |})| ≤ |A|+ 1, and ∀ i ∈ {1, . . . , |M |}, |%−1(i)| ≤ 1.


• Given U ∈ U and Q ∈ Q̃, ∃Q′ ∈ Q̃ such that:


– ∀ j ∈ {1, . . . , |M |}, if %(j) 6= 0, then q′•,j =
∑


`∈V π,Uj (Q)
q•,`, where V π,U


j (Q) is defined as


a non-empty subset of {k | %(j) ∈ argmaxi zi,k}, Z = (zi,j) := UΠQ, and q•,j and q′•,j


denote the j-th columns of Q and Q′, respectively.


– ∀ j ∈ {1, . . . , |M |}, if %(j) = 0, then q′•,j = ~0.


– ∀h, j ∈ {1, . . . , |M |}, if h 6= j, then V π,U
h (Q) ∩ V π,U


j (Q) = ∅.


Assumption B is a seemingly technical assumption that nonetheless has a simple interpreta-


tion:A10 for any admissible signal structure Q, there is an equivalent admissible signal structure


Q′, in terms of the distribution of actions it induces the DM to take, where each action is induced


by at most one signal. % can be seen as a “standard” prescription given by the signal space: if a


DM receives signal mj according to Q′, then she should take action a%(j). Following Kamenica and


A10Note that B is an assumption on Q̃, and Q̃ can be described as the set where C is finite. Therefore, B is actually
an assumption on the cost function C.
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Gentzkow (2011), we call such Q′ straightforward.A11 A particularly salient example for % in the


case that M = A is the identity mapping, in which case under a straightforward signal structure,


the signal the DM receives is literally the action she should take.


Assumptions A and B need not be onerous. In particular, they are trivially satisfied whenever


Q̃ = Q.


Assumption C. Continuity. C(π,Q) is continuous in its second argument on Q̃.


Continuity is a typical assumption in much of economic analysis. In this case, it implies that


gathering a small amount of additional information increases the total cost of information by only


a small amount. This may seem like an innocuous assumption, but it precludes some plausible cost


functions, such as those with fixed costs for information acquisition, as will be seen in Section 3.


Assumption D. Almost strict convexity. ∀π ∈ ∆(Θ), ∀λ ∈ (0, 1),∀Q1, Q2 ∈ Q̃, C(π, λQ1 +


(1− λ)Q2) ≤ λC(π,Q1) + (1− λ)C(π,Q2), where the inequality is strict except possibly if Q1 and


Q2 induce the same distribution of posteriors.


This notion of convexity can be contrasted with CD15’s. CD15 define a notion of convexity over


the space of distributions of posteriors called “mixture feasibility”;A12 however, it has no empirical


content, because distributions of posteriors and mixtures thereof are observationally equivalent


given choice data. In our framework, cost functions are defined over signal structures instead of


the distributions of posteriors they induce. Since the space of stochastic matrices can be identified


with a subset of Euclidean space, Assumption D gives us an easily interpretable “geometric” notion


of convexity. Moreover, taken in tandem with the other assumptions, Assumption D actually has


empirical content, as shown in Proposition A2, which generalizes Proposition 3 in the paper.


In order to ensure that continuity and almost strict convexity imply continuous gross payoffs,


we require one additional condition.


Assumption E. Monotonicity of information. Let R be a right-stochastic matrix of dimension


|M |× |M |, which we refer to as a garbling matrix. Then for any π ∈ ∆(Θ) and Q ∈ Q̃, C(π,Q) ≥


C(π,QR), provided QR ∈ Q̃.


A11Straightforwardness is also related to the concept of the “revealed information structure” in CD15.
A12Assumption D involves mixtures of conditional signal probabilities, which could yield posteriors not generated by


either information structure in the mixture, whereas mixture feasibility involves mixtures of distributions of posteriors
whose support is the union of the supports of the distributions in the mixture.
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If Q is an information structure and R is a garbling matrix, then Q can be thought of as


containing all the information contained in QR, i.e. QR simply adds noise to Q. In this case, we


shall say that Q Blackwell-dominates QR. As shown by Blackwell (1953), Q yields a (weakly) higher


gross payoff than QR for any decision problem, given an optimal selection of decision matrices.


Therefore, Assumption E implies that if one information structure is more informative than another,


then it is also costlier.A13


Assumption E is equivalent to Condition K1 of CD15, and they show that it is not testable;


any stochastic choice data set that is consistent with some cost function C is also consistent with


some cost function C̃ that satisfies Assumption E. Therefore, requiring it does not eliminate any


additional sets of stochastic choice data from being consistent with a model of rational inattention.


We have now established a set of sufficient conditions that ensure that the DM’s ex-ante gross


payoff is continuous in incentives.


Proposition A2. Suppose that π is fixed and C satisfies Assumptions A, B, C, D, and E. Then


the ex-ante gross payoff is continuous in U .


Proof. First we show that we may assume a fixed decision matrix D′ such that:


• If i ∈ %−1({1, . . . , |M |}), then d′i,%(i) = 1.


• If i ∈ %−1(0), then d′i,1 = 1.


By Assumption A, Q ∈ Q \ Q̃ will never be optimal and can be ignored. Given Q ∈ Q̃ and


U ∈ U , Assumption B tells us that there is a Q′ ∈ Q̃ constructed by summing columns of Q such


that if a%(j) is an action optimally induced by the signals in
{
mk


∣∣∣k ∈ V π,U
j (Q)


}
under Q, then a%(j)


is also an action optimally induced by the signal mj under Q′. Therefore, in constructing D′, it is


optimal for the DM to set d′i,%(i) = 1 if i ∈ %−1({1, . . . , |M |}).


By Assumption B, if i ∈ %−1(0), then q•,i = ~0, and the signal mi is never used by the DM.


Therefore, any assumption can be made about the action taken under this zero-probability event,


and we may set d′i,1 = 1.


Thus, D′ constructed in this manner is in argmaxD tr(Q′DUΠ). Moreover, by construction, for


any θ ∈ Θ, PrπQ(mj |θ) = PrπQ′
(
V π,U
j (Q)


∣∣∣θ), so tr(Q′D′UΠ) = maxD tr(QDUΠ).


A13This assumption does not provide a complete order on information costs, since it is possible that two experiments
are not ranked in the Blackwell sense. In other words, if Q1 and Q2 are information structures of the same dimension,
there does not necessarily exist R of appropriate dimension such that Q1R = Q2 or Q2R = Q1.
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Now we must show that we can restrict our focus to Q′ constructed in this manner. Note that by


construction, Q′ = QP , where P is square and has entries pi,j such that pi,j = 1 if i ∈ V π,U
j (Q) and


pi,j = 0 otherwise.A14 Therefore, it is right-stochastic, and by Assumption E, C(π,Q′) ≤ C(π,Q).


Therefore, we need only consider information structures such that the optimal decision matrix is


fixed as D′.


We may now simply consider the problem:


max
Q∈Q̃


tr(QD′UΠ)− C(π,Q) (A5)


Denote the maximand in (A5) by F (Q). As a consequence of Assumption C, F (Q) is continuous


in Q and U . By Assumption A and the Heine-Borel theorem, Q̃ is compact. Therefore, by the


maximum theorem, the optimal choice of information structure for each payoff matrix, Q∗(U), is


upper hemicontinuous in U .


Since the first term of F (Q) is linear and the second is almost strictly convex by Assumption


D, it inherits its convexity properties from the second term. In other words, F (Q) is almost


strictly concave, with almost strict concavity defined analogously to almost strict convexity. For


each U , either Q∗(U) is unique or it is multivalued. Suppose it is multivalued, and Q∗1, Q
∗
2 ∈


Q∗(U). Then F (Q∗1) = F (Q∗2). If Q∗1 and Q∗2 induce different distributions of posteriors, then


∀λ ∈ (0, 1), F (λQ∗1 + (1− λ)Q∗2) > λF (Q∗1) + (1− λ)F (Q∗2) = F (Q∗1), contradicting the optimality


of Q∗1 and Q∗2.


Now suppose that Q∗1 and Q∗2 induce the same distribution of posteriors and therefore induce the


same gross payoffs. Then either @λ ∈ (0, 1) such that F (λQ∗1+(1−λ)Q∗2) = λF (Q∗1)+(1−λ)F (Q∗2),


in which case the argument of the preceding paragraph applies, or else there does exist such λ, in


which case Q∗(U) 3 Qλ := λQ∗1 +(1−λ)Q∗2 as well. Then, by the linearity of the trace function and


the fact that Q∗1 and Q∗2 induce the same distribution of posteriors, tr(QλD
′UΠ) = tr(Q∗1D


′UΠ) =


tr(Q∗2D
′UΠ).


This implies that tr(Q∗(U)D′UΠ) is single-valued, and since it is the composition of a contin-


uous function (which can be viewed as an upper hemicontinuous correspondence) with an upper


hemicontinuous correspondence, it is itself upper hemicontinuous (cf. Theorem 14.1.5 of Sydsæter


A14P can be seen as the matrix that takes column i of Q to column j of Q′ if pi,j = 1.
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et al., 2008). Together, its upper hemicontinuity and single-valuedness imply that it is a continuous


function of U , thereby completing the proof.


To summarize the proof, straightforwardness and monotonicity of information ensure that the


decision matrix chosen by the DM can be fixed, which in turn ensures the convexity of the problem.


While almost strict convexity does not ensure a unique solution to the problem, it does ensure that


the optimal ex-ante gross payoff is single-valued, which together with the continuity of the cost


function implies the result.A15


The assumptions necessary for Proposition A2 are satisfied by many different cost functions.


For example, it is easily shown that cost functions that can be expressed as a sum of strictly convex


functions of the entries of a stochastic matrix are almost strictly convex.


A1.5 Uniform Guess Tasks


The general framework presented above can be applied to the uniform guess tasks introduced in


Section 2. In these decision problems, since the DM is trying to determine the true state, we can set


A = Θ. Moreover, U = rIn for some r > 0. Therefore, the DM’s ex-ante gross payoff in this task


can be written as rtr(QDΠ). Since the prior is uniform, P := tr(QDΠ) = 1
ntr(QD) is the ex-ante


probability of correctly guessing the state, or their performance, and the ex-ante gross payoff can


be written as r
ntr(QD).


In Section 2, we defined costs as depending on the performance P rather than the entire infor-


mation structure. We can equivalently define costs on the entire information structure as follows.


Suppose that |Θ|= |M |. Then Q is square, and we can impose that C(π,Q) = Č


(
n∑
i=1


πiqi,i


)
if


Q is such that the diagonal entries of ΠQ are maximal in their columns,A16 and the off-diagonal


entries of Q are fixed fractions of the “remaining” probability in each row.A17 The DM’s optimal


A15At this point, a clarification is in order. Proposition A2 is a statement about what the properties of an information
cost function imply about behavior. To obtain a statement about what behavior implies about the properties of cost
functions, we invoke the contrapositive: if gross payoffs are discontinuous in incentives, then this behavior cannot be
rationalized by an information cost function that satisfies Assumptions C, D, and E simultaneously. However, as we
explained earlier in this subsection, Assumption E is not testable. Therefore, given stochastic choice data, we can
assume the cost function that rationalizes it satisfies Assumption E, and so if we observe that ex-ante gross payoffs
are discontinuous in incentives, then this implies that the DM’s cost function either is discontinuous or fails almost
strict convexity.


A16It can be shown that this implies
n∑
i=1


πiqi,i is at least 1
n


.


A17In an experimental setting these fixed fractions could be estimated from a decision-maker’s distribution of sub-
optimal choices, i.e. mistakes.
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D is then simply the identity matrix, and the argument of Č(·) is equal to their performance P ,


and the DM’s maximand can be expressed as rP − Č(P ).


Stated more formally, fix Ω, an n× n stochastic matrix with zeroes on its diagonal and entries


ωi,j . Then, set Q̃ = {Q | j ∈ argmaxiπiqi,j ∀ j and qi,j = ωi,j(1 − qi,i) for i 6= j}, with C(π,Q) =


Č


(
n∑
i=1


πiqi,i


)
on Q̃ and positive infinity otherwise. It can can shown that if Č is well-behaved, then


the performance function is continuous, thereby proving Proposition 3. We provide the relevant


proof in Appendix Subsection A2.3.


It should also be noted that while Tsallis entropy costs (including mutual information) can be


written as depending directly on performance in uniform guess tasks, we can equivalently work with


the more general definition given in Subsection 3.2. We illustrate this in the proof of Proposition


5 given in Appendix Subsection A2.5.


A1.6 Posterior-Equivalent Information Structures


This appendix subsection formalizes the relationship between information structures defined as


conditional likelihoods on a signal space and information structures defined as distributions of


posterior beliefs, which allows us to clarify the relationship between the present framework and


that of CD15.


The framework outlined in the preceding subsections defines costs jointly on the DM’s prior


belief and information structures as conditional distributions of signals, given states. Defining


information structures in this manner is the approach taken by McGuire (1972) and Leshno and


Spector (1992), among others. From the ex-ante perspective (i.e. before signals are realized),


each information structure corresponds to a distribution of posterior beliefs; each potential signal


has a posterior belief associated with it, and the likelihood of each of these posterior beliefs is


the likelihood of receiving the signal associated with it. If π is a prior belief on Θ and Q is an


information structure that generates signals in M , then the distribution of posteriors γπQ is defined


by:


PrπQ(x) =
∑


j∈{`|∃α∈R>0 s.t. π◦q•,`=αx}


|Θ|∑
i=1


πiqi,j (A6)


where PrπQ(·) denotes the probability of its argument, given prior π and information structure Q,
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x is an element of ∆(Θ), ◦ denotes the Hadamard (component-wise) matrix product, and empty


sums are taken to be zero. Several authors, including Kamenica and Gentzkow (2011) and CD15,


choose to work directly with these distributions of posteriors. In the case of CD15, information


costs are defined on these distributions. From the perspective of pure Bayesian expected utility


maximization (cf. Caplin and Martin, 2015), the two approaches are clearly equivalent in terms of


the behaviors they imply.


From the perspective of rational inattention, however, when information structures have costs


associated with them, this equivalence is less readily established. The cost of a particular dis-


tribution of posteriors may not just depend on the distribution itself, but also on how it was


generated. Consider the following examples. Let Θ = {X,Y } and M = {x, y, z}, both indexed


in those orders. Let π = (0.5, 0.5), and let Q1 =


 0.8 0.2 0


0.2 0.8 0


, Q2 =


 0.2 0.8 0


0.8 0.2 0


, and


Q3 =


 0.8 0.1 0.1


0.2 0.4 0.4


. It is easily verified that each of these information structures generates


the same distribution of posteriors. Under Q1, x was most likely generated by X, and y was most


likely generated by Y . Thus, the signals can be seen as a “natural” interpretation of the states.


By contrast, under Q2, x was most likely generated by Y , and y was most likely generated by


X. This interpretation is “unnatural” and consequently may be more mentally costly for a DM to


process. Now, consider Q3, where again x was most likely generated by X, and y was most likely


generated by Y , but there is also a third signal z generated with positive probability that is most


likely to have been generated by Y . Though y and z both correspond to the same posterior belief,


having to keep track of three signals may be more mentally taxing than keeping track of two, and


so Q3 might be costlier than Q1. These examples serve to illustrate that assigning signals to states


is not merely a matter of indexing when considering information costs; costs may depend on the


interpretability of and meaning implied by an information structure.


This of course raises the question of whether our model implies the potential to accommodate


behaviors that would not be feasible under the posterior-based approach to rational inattention.


That is the problem to which we turn our attention in this appendix. Before proceeding, we require


some preliminaries.
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A1.6.1 Preliminaries


Let Q be a stochastic matrix. Denote its entries by qi,j , its rows by qi,•, and its columns by q•,j .


We define three operations on Q:


1. Q′ is obtained from Q by swapping if q′•,j = q•,k, q
′
•,k = q•,j , and all other columns are the


same.


2. Q′ is obtained from Q by summing if for some j, k such that q•,j = αq•,k for some α > 0,


q′•,j = q•,j + q•,k, q
′
•,k is a column of zeroes, and all other columns are the same.


3. Q′ is obtained from Q by splitting if ∃ k and λ ∈ (0, 1) such that q•,k is a column of zeroes,


q′•,j = λq•,j , q
′
•,k = (1− λ)q•,j , and all other columns are the same.


Note that each of these operations is reversible as one of the other operations. Swapping columns


can be reversed by simply swapping the columns again. Summing columns can be reversed by


splitting the summed column into the summands. Splitting columns can be reversed by summing


the split columns.


Finally, let ♦ be a binary relation on the space of |Θ| × |M | stochastic matrices, defined by


Q♦R iff given some π ∈ int(∆(Θ)) (i.e. π has full support on Θ),A18 Q and R induce the same


distribution of posteriors, i.e. γπQ = γπR. We will say Q and R are posterior-equivalent if Q♦R.


A1.6.2 Posterior Equivalence and the Algebra of Stochastic Matrices


The posterior equivalence relation defined in the previous subsection is independent of the prior;


if two information structures are posterior-equivalent for some prior with full support, then the


posterior equivalence condition holds for all priors with full support. In other words, as the following


proposition shows, two information structures could be said to be posterior-equivalent if they induce


the same distribution of posteriors for any prior with full support on the state space.


Proposition A3. If Q♦R, then γπQ = γπR ∀π ∈ int(∆(Θ)).


A18We require that π have full support, because the probability distribution of signals conditional on a zero-
probability state is irrelevant for determining the distribution of posteriors and can therefore be chosen arbitrarily.
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Proof. (A6) can be rewritten by rearranging the order of summation:


PrπQ(x) =


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx}


qi,j


 (A7)


Now suppose π̄ is a prior that generates posterior equivalence between Q and R, i.e. γπ̄Q = γπ̄R.


Then, for a given posterior x̄, we can write:


|Θ|∑
i=1


π̄i


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}


qi,j


 =


|Θ|∑
i=1


π̄i


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}


ri,j


 (A8)


Since the summands in the inner sums are entries from columns of Q and R whose Hadamard


products with π are multiples of x̄, the respective columns must be multiples of each other. To see


this, suppose that q is one such column of Q and r is one such column of R. Then we can write


π ◦ q = αx̄ and π ◦ r = βx̄ for some α, β > 0. Equivalently, we can write Πq = αx̄ and Πq = βx̄,


where Π = diag(π). Since Π is a diagonal matrix with strictly positive entries on its diagonal, it is


invertible, and we can write q = Π−1(αx̄) and r = Π−1(βx̄). By the linearity of Π−1, we can write


q = αΠ−1x̄ and r = βΠ−1x̄, which implies that q = α
β r.


Therefore, we can write:


∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}


qi,j = κx̄


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αx̄}


ri,j


 (A9)


for all i and for some κx̄ > 0. Since π̄i > 0 ∀ i, it must be that κx̄ = 1 or else (A8) could not


hold. Now replace π̄ in (A8) with an arbitrary prior with full support π. Because (A9) holds with


κx̄ = 1, (A8) holds for arbitrary π.


Corollary A1. ♦ is an equivalence relation.


Proof. Reflexivity and symmetry are trivially verified.


For transitivity, suppose that Q♦R and R♦S. Then γπQ = γπR and γπ
′


R = γπ
′


S for some π, π′ with


full support. But by Proposition A3, γπS = γπR = γπQ, which establishes the result.


Now, since we know that posterior equivalence can be established without making reference
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to any specific prior distribution, we can show that Q♦R is equivalent to a set of linear-algebraic


conditions on the relationship between Q and R, written as stochastic matrices. Put differently,


posterior-equivalence is not just a statistical relationship between stochastic matrices, but also an


algebraic one that can be defined without reference to probabilities. To our knowledge, this is a


novel characterization of equivalence of information structures.


Proposition A4. Q♦R iff R can be obtained from Q by a sequence of swapping, summing, and


splitting.


Proof. We begin by proving the ‘if’ direction. We show that an information structure obtained


from another by each of the three column operations in the proposition is posterior-equivalent to


the original information structure.


Swapping. (A6) is unaffected by a change in the order of columns.


Summing. Suppose Q′ is obtained from Q by summing columns j̄ and k̄. Let ȳ =
π◦q•,j̄∑|Θ|
i=1 πiqi,j̄


.


Then:


PrπQ(ȳ) =


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}


qi,j



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}\{j̄,k̄}


qi,j + qi,j̄ + qi,k̄



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}\{j̄,k̄}


q′i,j + q′i,j̄



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}


q′i,j



= PrπQ′(ȳ)


Moreover, since the columns of Q that are not j̄ or k̄ are unaffected by summing, it is obvious that


PrπQ(x) = PrπQ′(x) ∀x 6= ȳ as well.


Splitting. Suppose Q′ is obtained from Q by splitting column j̄ into columns j̄ and k̄. Then
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q′•,j̄ = λq•,j̄ and q′•,k̄ = (1− λ)q•,j̄ for some λ ∈ (0, 1). Let ȳ =
π◦q•,j̄∑|Θ|
i=1 πiqi,j̄


. Then:


PrπQ(ȳ) =


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}


qi,j



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}\{j̄}


qi,j + qi,j̄



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q•,`=αȳ}\{j̄}


qi,j + λqi,j̄ + (1− λ)qi,j̄



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}\{j̄,k̄}


q′i,j + q′i,j̄ + q′i,k̄



=


|Θ|∑
i=1


πi


 ∑
j∈{`|∃α∈R>0 s.t. π◦q′•,`=αȳ}


q′i,j



= PrπQ′(ȳ)


Moreover, since the columns of Q that are not j̄ or k̄ are unaffected by splitting, it is obvious that


PrπQ(x) = PrπQ′(x) ∀x 6= ȳ as well.


This shows that Q′♦Q if Q′ is obtained from Q by any one of the three column operations.


Since ♦ is transitive, it is therefore true that Q′♦Q if Q′ is obtained from Q by a sequence of the


three column operations. This concludes the proof of the ‘if’ direction.


For the ‘only if’ direction, suppose that Q♦R. Select the leftmost column of Q that is not a


column of zeroes. Sum to it the next leftmost column that is a multiple of it. Repeat until no


more multiples remain. Then repeat this summing process with the next leftmost non-zero column


until all non-zero columns have been exhausted. Call the matrix resulting from this sequence of


summings Q′. Do the same with R, and call the matrix resulting from this sequence of summings


R′.


We must now show that Q′ and R′ have the same columns. Since ♦ is an equivalence relation,


and as we showed above, column operations preserve the relation, it must be that Q′♦R′. Therefore,


they induce the same distribution of posteriors. Suppose z̄ is a nonzero column of Q′ that is not


in R′. Then, since both Q′ and R′ were constructed so that none of their nonzero columns are
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multiples of each other, z̄
‖z̄‖1 �∈Supp


(
γπR′
)
, where ‖·‖1 denotes the `1 norm. Thus we have shown


by contradiction that each nonzero column of R′ must be a multiple of only one column in Q′, and


vice versa. Now select a column ȳ of Q′, and consider its multiple ȳ? in R′, where ȳ? = αȳ for


some α > 0. Then for some full-support prior π, PrπQ′
(


ȳ
‖ȳ‖1


)
=
∑|Θ|


i=1 πiȳi, and since ȳ
‖ȳ‖1 = ȳ?


‖ȳ?‖1 ,


PrπR′
(


ȳ
‖ȳ‖1


)
=
∑|Θ|


i=1 πiȳ
?
i = α


∑|Θ|
i=1 πiȳi. Since Q′♦R′, it must be that α = 1. This shows that Q′


and R′ have the same nonzero columns. Since they have the same dimensions, and they are both


stochastic matrices (so that summing over their nonzero columns yields a vector of ones), this must


mean that they have the same number of nonzero columns.


Given that Q′ and R′ have the same columns, it can be shown that one can be obtained from


the other by a sequence of swappings. Select the leftmost column of Q′ and swap it with the column


that has that position in R′. Repeat this process with the next leftmost column until Q′ has been


transformed into R′. Now, note that the sequence of summings that took R to R′ can be reversed


to become a sequence of splittings that takes R′ to R. Concatenating the sequence of summings


that took Q to Q′, the sequence of swappings that took Q′ to R′, and the sequence of splittings


that took R′ to R gives a sequence of summings, swappings, and splittings that takes Q to R. This


concludes the proof.


A1.6.3 Cost Equivalence


We are now prepared to see whether our framework can predict different behavior than that of


CD15. Assuming a finite set of actions, allowing costs to depend on how distributions of posteriors


are generated generalizes CD15; put differently, a version of their model with a finite number of


actions is equivalent to ours with the following assumption.


Assumption F. Cost equivalence. For all priors π, C(π,Q1) = C(π,Q2) whenever Q1♦Q2.


However, as we show below, any behavior that can be rationalized by our model can also be


rationalized by CD15; cost equivalence imposes no additional behavioral restrictions, and it is


therefore untestable. This result allows us to apply CD15’s necessary and sufficient conditions for


rational inattention to our framework without imposing any additional conditions.


Proposition A5. Stochastic choice data are consistent with (A2) iff they are consistent with


CD15.A19


A19Though we have assumed a finite action space in our paper, the proof of Proposition 1 does not rely on this.
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To outline the proof, the ‘if’ direction is obvious, since our model generalizes CD15. To see the


‘only if’ direction, suppose that {(Ui, θi, ai)} can be rationalized by (A2) with some cost function


C(π,Q). Define QγπQ
to be set of information structures that induce the distribution γπQ over


posteriors, and define C̃(π,Q) := min
R∈Qγπ


Q


C(π,R). It is obvious that C̃ satisfies cost equivalence.


Moreover, since a given posterior distribution always induces the same ex-ante gross payoff, the


DM should always choose the lowest-cost way of inducing that posterior distribution. Thus, the


proof boils down to showing that this minimum is well-defined. Details are below.


Proof. The ‘if’ direction is obvious, since our model generalizes CD15 with finite action sets.


The ‘only if’ direction can be seen as follows. Suppose {(Ui, θi, ai)} can be rationalized by (A2)


with some cost function C(π,Q). Since there are finitely many decision problems, C is pinned down


for a finite set of points (i.e. a closed set), and so by the Tietze extension theorem (cf. Rudin,


1974, pg. 422), it may be assumed continuous. Define QγπQ
to be set of information structures that


induce posterior γπQ, and define C̃(π,Q) := min
R∈Qγπ


Q


C(π,R), assuming it is well-defined. γπQ always


induces the same maximum gross payoff, no matter which information structure in QγπQ
generated


it. Therefore, since the DM is a payoff maximizer, for each distribution of posteriors she generates,


she will always select the lowest-cost method of doing so. This implies that behavior that can be


rationalized by C can also be rationalized by C̃, which obviously satisfies cost equivalence.


Now we must verify that C̃ is actually well-defined. Let bπ : Q −→ ∆(∆(Θ)) be the function


that maps an information structure to the distribution of posteriors it induces given prior π. First,


we must show that bπ is continuous when ∆(∆(Θ)) is equipped with the weak-∗ topology, i.e. the


topology of weak convergence of measure.


By Bayes’ rule, Supp(bπ(Q)) =
{(


πsqs,k∑n
l=1 πlql,k


)n
s=1


∣∣∣k ∈ {1, . . . |M |},∑n
l=1 πlql,k > 0


}
, and each


element ζ ∈ Supp(bπ(Q)) is induced with probability
∑


k∈Qζ
∑n


l=1 πlql,k, where Qζ is the set of


columns of Q that generate the posterior ζ.


Consider a sequence of information structures Q1, Q2, . . . ∈ Q converging to Q. We must show


that lim
j→∞


bπ(Qj) = bπ(Q) (in the sense of weak convergence of measure). By Theorem 25.8 of


Billingsley (1995), this is equivalent to showing that lim
j→∞


bπ(Qj)(X) = bπ(Q)(X) for all continuity


Therefore, the use of decision matrices mapping signals to actions can be seen as a notational convenience for the
applications contained in this paper rather than a fundamental part of the model.
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sets X in the Borel σ-algebra of ∆(Θ).A20


Since X is a continuity set, ∂X ∩ Supp(bπ(Q)) = ∅. There are two cases. Either X ∩


Supp(bπ(Q)) = ∅ or int(X) ∩ Supp(bπ(Q)) 6= ∅.


Case 1: X ∩ Supp(bπ(Q)) = ∅. If ∃ J ∈ N such that bπ(Qj)(X) = 0 ∀ j > J , then clearly


lim
j→∞


bπ(Qj)(X) = bπ(Q)(X) = 0. If not, then ∀ J ∈ N, ∃ j > J such that X ∩ Supp(bπ(Qj)) 6=


∅. Suppose, for a contradiction, that lim
j→∞


bπ(Qj)(X) 6= 0. Then ∃ ε > 0 such that ∀ J ∈


N, ∃ j > J such that bπ(Qj)(X) > ε. Therefore, there must exist a subsequence Qjh such that((
πsqs,k∑n
l=1 πlql,k


)n
s=1


)
jh


converges in cl(X) for some k.A21 If it converges to a point in int(X), then


this contradicts the fact that bπ(Q)(X) = 0. If it converges to a point in ∂X, then bπ(Q)(∂X) > 0,


contradicting the fact that X is a continuity set. Thus, lim
j→∞


bπ(Qj)(X) = bπ(Q)(X).


Case 2: int(X) ∩ Supp(bπ(Q)) 6= ∅. Note that since (Qj) is a convergent sequence, each entry


of the matrices in (Qj) also defines a convergent sequence. Then each ((zk)j) := ((
∑n


l=1 πlql,k)j)


is a convergent sequence with limit zk, and each ((yk)j) :=


(((
πsqs,k∑n
l=1 πlql,k


)n
s=1


)
j


)
either converges


to some limit yk (for zk > 0) or else has an undefined limit (when zk = 0).A22 Since they are


continuous functions of the entries of π and (Qj), and because (Qj) is convergent, yk =
(


πsqs,k∑n
l=1 πlql,k


)
(when it exists) and zk =


∑n
l=1 πlql,k, where the entries ql,k are taken from Q. Consider the set


K ⊆ {1, . . . ,M} such that {((yk)j)|k ∈ K} is the collection of sequences that converge to points in


int(X). Then, because int(X) is open, ∀ ε > 0 and ∀ k ∈ K, ∃Nk such that ∀ j > Nk, (yk)j ∈ int(X).


Let N̄ = max
k∈K


Nk. Then ∀ j > N̄, bπ(Qj)(X) ≥ (
∑


k∈K(
∑n


l=1 πlql,k))j .


We now show that bπ(Qj)(X)−
∑


k∈K(
∑n


l=1 πlql,k)j goes to zero as j grows large. Suppose there


does not exist J ∈ N such that this sequence has the value 0 ∀ j > J . Then there must exist a sub-


sequence (Qjh) such that bπ(Qjh)(X)−
∑


k∈K(
∑n


l=1 πlql,k)jh > 0 for all jh. Then for each jh, there


is some k′�∈K such that (yk′)jh ∈ Supp(bπ(Qjh)). Because |M | is finite, we may assume that this k′


is fixed. If ((yk′)jh) is convergent, it must converge in cl(X). If yk′ ∈ int(X), then this contradicts


the fact that k�∈K. If yk′ ∈ ∂X, then this contradicts the fact that X is a continuity set. If ((yk′)jh)


A20A continuity set is a set X whose boundary ∂X has measure zero.
A21We can take k fixed here because even if we construct a subsequence where the sequence of posteriors is constructed


by different columns of Qjh for different sequence elements, we can merely take a subsequence of that subsequence,
but with k fixed.
A22It is possible that (yk)j′ maybe be undefined for some k and j′. This occurs when (zk)j′ = 0. If there are finitely


many such j′, then we can simply consider a sequence (Qj) with these j′ removed. If there are infinitely many such j′,
then (zk)j must converge to zero. Therefore, WLOG, either (Qj) is such that (zk)j 6= 0 ∀ j, k and possibly converges
to zero, or (zk)j definitely converges to zero.
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has no defined limit, then zk′ = 0. Therefore, lim
h→∞


[
bπ(Qjh)(X)−


∑
k∈K(


∑n
l=1 πlql,k)jh


]
= 0.


This establishes the continuity of bπ. Therefore, for a given γ with finite support in ∆(∆(Θ)),


b−1
π ({γ}) is closed (since singletons are closed). Because b−1


π ({γ}) ⊆ Q and Q is a bounded subset of


Mn×|M |(R) (which can be identified with Rn|M |), by the Heine-Borel theorem b−1
π ({γ}) is compact.


In particular QγπQ
is compact, and since C is continuous (fixing π), by the Weierstrass theorem,


it attains its minimum on QγπQ
. Therefore, C̃ is well-defined. This concludes the proof.


A2 Proofs


This appendix contains the proofs omitted from the paper.


A2.1 Proof of Proposition 1


Proof. We begin by proving the “only if” direction. Let r1 ≥ r2 be two possible rewards. Let Qi be


the information structure optimally chosen under reward ri, i = 1, 2. Let Dj
i be the decision matrix


chosen under information structure Qi and reward rj , i, j = 1, 2. Since information structures are


“observed” only up to the actions taken, WLOG, we can assume straightforwardness and take


Di := Di
i = D¬ii , i = 1, 2.


The NIAC condition gives us:


r1tr(Q1D1Π) + r2tr(Q2D2Π) ≥ r2tr(Q1D1Π) + r1tr(Q2D2Π)


=⇒ r1P
∗(r1) + r2P


∗(r2) ≥ r2P
∗(r1) + r1P


∗(r2)


=⇒ (r1 − r2)[P ∗(r1)− P ∗(r2)] ≥ 0 (A10)


Since r1 ≥ r2, in order for (A10) to hold, we require that P ∗(r1) ≥ P ∗(r2). This proves the


“only if” direction.


For the “if” direction, consider a set of reward levels r1 ≥ r2 ≥ . . . ≥ rN and associated


performances P1 ≥ P2 ≥ . . . ≥ PN , where Pi := P ∗(ri). (We can order the performances in this


manner since P ∗ is nondecreasing.)


Consider an assignment of performances to rewards
(
ri, Pσ1(i)


)N
i=1


, where σ1 is a cyclic permu-
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tation. Let σ2 be defined as follows:


σ2(i) :=



1, i = 1


σ1(1), i = σ1
−1(1)


σ1(i), otherwise


Now we compute the difference in total gross payoffs between the assignments defined by σ2


and σ1.


N∑
j=1


rjPσ2(i) −
N∑
j=1


rjPσ1(i)


= r1P1 + rσ1
−1(i)Pσ1(1) −


(
r1Pσ1(1) + rσ1


−1(i)P1


)
=
(
r1 − rσ1


−1(i)


) (
P1 − Pσ1(1)


)
≥ 0, since r1 ≥ rσ1


−1(i) and P1 ≥ Pσ1(1)


Now we repeat this process for j ≥ 2, at each step constructing the permutation σj+1 as follows:


σj+1(i) :=



j, i = j


σj(j), i = σj
−1(j)


σj(i), otherwise


By the preceding argument, the total gross payoffs to the assignment increase (weakly) at each


step. Since there are N rewards, this process must finish in N − 1 steps, ending with σN (i) = i


and the highest possible gross payoff. Since the initial assignment (ri, Pσ1(i))
N
i=1 was arbitrary, this


implies the NIAC condition for our data.


A2.2 Proof of Proposition 2


Proof. Fix some x ∈ A and y ∈ Θ. Then:


Pr(θ = x|a = x) ≥ Pr(θ = y|a = x)


⇐⇒ rPr(θ = x|a = x) + 0 ·
∑
z 6=x


Pr(θ = z|a = x) ≥ rPr(θ = y|a = x) + 0 ·
∑
z 6=y


Pr(θ = z|a = x)
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⇐⇒
∑
z∈Θ


u(x, z) Pr(θ = z|a = x) ≥
∑
z∈Θ


u(y, z) Pr(θ = z|a = x)


⇐⇒
∑
z∈Θ


u(x, z)
Pr(a = x|θ = z) Pr(θ = z)


�����
Pr(a = x)


≥
∑
z∈Θ


u(y, z)
Pr(a = x|θ = z) Pr(θ = z)


�����
Pr(a = x)


⇐⇒ uk,•ΠQ
∗d∗•,k ≥ ul,•ΠQ∗d∗•,k, where x and y are the k-th and l-th elements of Θ, respectively


The last implication holds because the (i, j)-th entry of Q∗D∗ is Pr(aj |θi). Since all these implica-


tions are bidirectional, and x and y were chosen arbitrarily, this completes the proof.


A2.3 Proof of Proposition 3


Proof. We must verify that the cost function Ć(π,Q) induced by C(P ) and the associated Q̃ satisfy


the assumptions A, B, C, D, and E.


Assumption A. Since each maximizer is chosen from a finite set, Q̃ is nonempty.


To verify convexity, let Q1, Q2 ∈ Q̃ with generic entries q1
i,j and q2


i,j , let λ ∈ (0, 1), and let


Qλ := λQ1 + (1 − λ)Q2 with generic entry qλi,j . Consider an off-diagonal entry qλi,j where i 6= j.


Then qλi,j = λq1
i,j+(1−λ)q2


i,j = λωi,j(1−q1
i,i)+(1−λ)ωi,j(1−q2


i,i) = ωi,j(λ(1−q1
i,i)+(1−λ)(1−q2


i,i)) =


ωi,j(1− qλi,i). For a diagonal entry qλj,j , we have:


πjq
`
j,j ≥ πiq`i,j , ∀ i ∈ {1, . . . n}, ` ∈ {1, 2}


=⇒λπjq
1
j,j ≥ λπiq1


i,j and (1− λ)πjq
2
j,j ≥ (1− λ)πiq


2
i,j , ∀ i ∈ {1, . . . n}


=⇒λπjq
1
j,j + (1− λ)πjq


2
j,j ≥ λπiq1


i,j + (1− λ)πkq
2
k,j , ∀ i, k ∈ {1, . . . n}


=⇒πj(λq
1
j,j + (1− λ)q2


j,j) ≥ πi(λq1
i,j + (1− λ)q2


i,j), ∀ i ∈ {1, . . . n}


=⇒πjq
λ
j,j ≥ πiqλi,j , ∀ i ∈ {1, . . . n}


This proves the convexity of Q̃.


To verify closedness, let (Qk) be a sequence in Q̃, where an element of the sequence has


generic entry qki,j . For off-diagonal entries (i 6= j), qki,j = ωi,j(1 − qki,i) ∀ k implies limk→∞ q
k
i,j =


ωi,j(1 − limk→∞ q
k
i,i). For diagonal entries, qkj,j ≥ qki,j ∀ i ∈ {1, . . . , n}, ∀ k implies limk→∞ q


k
j,j ≥


limk→∞ q
k
i,j ∀ i ∈ {1, . . . , n}.
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Assumption B. Q̃ is constructed so that every Q ∈ Q̃ is straightforward.


Assumption C. The continuity of Ć follows from the well-behavedness of C.


Assumption D. We now verify the almost-strict convexity of Ć, using the same notation as


earlier in the proof.


λĆ(π,Q1) + (1− λ)Ć(π,Q2)


=λC


(
n∑
i=1


πiq
1
i,i


)
+ (1− λ)C


(
n∑
i=1


πiq
2
i,i


)


>C


(
λ


n∑
i=1


πiq
1
i,i + (1− λ)


n∑
i=1


πiq
2
i,i


)
, by the strict convexity of C


=C


(
n∑
i=1


πi(λq
1
i,i + (1− λ)q2


i,i)


)


=C


(
n∑
i=1


πiq
λ
i,i


)


= Ć(π,Qλ)


Assumption E. By Blackwell’s theorem (cf. Leshno and Spector, 1992), gross payoffs from


using the information structure QR cannot exceed gross payoffs from using Q. By the definition


of Q̃, gross payoffs are performance multiplicatively scaled by the incentive level. Therefore, the


performance associated with QR must be no greater than the performance associated with Q. Call


these performance levels PR and PQ. PR ≥ 1
n , or else QR would not be in Q̃; it would have to


have a diagonal entry that is not maximal in its column. Therefore, C(PR) ≤ C(PQ) which implies


that Ć(π,QR) ≤ Ć(π,Q).


Since all relevant assumptions hold, Proposition A2 implies the result.


A2.4 Proof of Proposition 4


Proof. By the convexity of C, the DM’s maximand rP −C(P ) is concave. Therefore, local maxima


are global maxima. The first order condition is r = C ′(P ∗). If r ∈
(
C ′
(


1
n


)
, limx↑1C


′(x)
)
, then we


can write P ∗ = (C ′)−1(r), because the strict convexity of C on
(


1
n , 1
)


implies that C ′ is strictly


increasing and therefore invertible on that interval.
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By the differentiability of C, 1
n could not be a global minimum unless C ′


(
1
n


)
= 0, thereby


implying that P ∗(r) ≥ 1
n .


Finally, if r ≥ limx↑1C
′(x), then by concavity and differentiability, the maximand is increasing


to the left of 1. Therefore, it is maximized for P ∗ = 1.


A2.5 Proof of Proposition 5


Before proceeding with the proof, we note that that the σ = 1 case, mutual information, follows


from Proposition 1 of Matějka and McKay (2015). However, for the sake of completness, we provide


a complete, independent proof for all cases here.


Proof. We require a lemma:


Lemma A1. Q can be chosen such that a decision matrix of the form D =


 In


0


 is optimal,


where In denotes the n× n identity matrix.


Proof. Since entropy-based costs are finite for all Q, Assumption B holds.


Therefore, following the proof of Proposition A2, for any Q, ∃R right-stochastic


such that QR is straightforward. Therefore, Q dominates QR in the Blackwell


order (Blackwell, 1953). Posterior-separable cost functions complete the Black-


well order (cf. Subsection 9.3 of Caplin et al., 2019), and entropy-based costs


are posterior-separable (cf. Subsection 8.3 of Caplin et al., 2019). Therefore,


C(π,Q) ≥ C(π,QR), and a straightforward signal is optimal, implying the


result.


Because of this result, for notational convenience, we ignore the unused signals in M and assume


M = Θ for the remainder of the proof, so we can consequently write D = In.


Because D = In, we can write the decision-maker’s problem as:


max
Q∈Q


r


n
tr(Q)− α(H(π)− E[H(π|Q)]) (A11)


subject to
n∑
j=1


qi,j = 1 ∀i (λi)


qi,j ≥ 0 ∀ i, j (µi,j)
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The first-order conditions for (A11) in the case that σ = 1 are:


i = j : r
n − α


[
ln


qi,i∑n
k=1 qk,i


+ 1− n−1∑n
k=1 qk,i


]
− λi + µi,i = 0


i 6= j : −α
[
ln


qi,j∑n
k=1 qk,j


+ 1− n−1∑n
k=1 qk,j


]
− λi + µi,j = 0


(A12)


And in the case that σ 6= 1:


i = j : r
n + α


n(σ−1)


[(
1−


∑n
k=1


(
qk,i∑n
l=1 ql,i


)σ)
+
∑n


h=1 qh,i


(
−σ
(


qi,i∑n
l=1 ql,i


)σ−1
(∑n


l=1 ql,i−qi,i
(
∑n
l=1 ql,i)


2


)
+σ
∑


k 6=i


(
qk,i∑n
l=1 ql,i


)σ−1
(


qk,i


(
∑n
l=1 ql,i)


2


))]
− λi + µi,i = 0


i 6= j : α
n(σ−1)


[(
1−


∑n
k=1


(
qk,j∑n
l=1 ql,j


)σ)
+
∑n


h=1 qh,j


(
−σ
(


qi,j∑n
l=1 ql,j


)σ−1
(∑n


l=1 ql,j−qi,j
(
∑n
l=1 ql,j)


2


)
+σ
∑


k 6=i


(
qk,j∑n
l=1 ql,j


)σ−1
(


qk,j


(
∑n
l=1 ql,j)


2


))]
− λi + µi,j = 0


(A13)


Before proceeding further, we require two additional lemmas:


Lemma A2. ∃ q ∈ [0, 1] such that qi,i = q ∀ i.


Proof. Suppose there were an experiment Q with entries ai,j that solved (A11),


with possibly unequal diagonal entries. Let τk(i) = i + k mod n for k =


0, . . . n−1. Let Qk be the matrix with entries qτk(i),τk(j). That is, Qk cycles the


rows of Q and cycles the entries in each row so that the set of diagonal entries


remains the same. Then, tr(Qk) = tr(Q) ∀ k, and since the prior is uniform,


C(π,Qk) = C(π,Q) ∀ k. Consider the convex combination of experiments


Q′ := 1
n


∑n−1
k=0 Qk. It is obvious that tr(Q) = tr(Q), and the diagonal entries


q′i,i of Q′ are all equal. By the convexity of posterior-separable cost functions,


C(π,Q) ≥ C(π,Q′). Therefore, the same probability of success can be attained


at a (weakly) lower cost with Q′ as compared to Q.


Because the DM’s performance is 1
ntr(Q), this implies that her performance is simply given by


q.


Lemma A3. Either the µ constraints are slack, or Q = In.


Proof. Suppose there were an experiment Q with entries qi,j that solved (A11),
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with some off-diagonal entries possibly not zero. Let:


τk,`(j) =


 j, j = k


j + `+ 1{h: h≤k≤h+` or h≤k+n≤h+`}(j) mod n, j 6= k
(A14)


Let Q` be the matrix with entries qi,τi,`(j). That is, Q` cycles the off-diagonal


entries of each row. Then tr(Q`) = tr(Q) ∀ `, and since the prior is uniform,


C(π,Q`) = C(π,Q) ∀ `. Consider the convex combination of experiments Q′ ≡
1
n


∑n−1
`=0 Q`. It is obvious that tr(Q′) = tr(Q), so that the probability of guessing


the correct state is the same under both experiments. Moreover, in each row


where Q has a non-zero off-diagonal entry, Q′ has no zero off-diagonal entries.


By the convexity of posterior-separable cost functions, C(π,Q) ≥ C(π,Q′).


Therefore, the same probability of success can be attained at a (weakly) lower


cost with Q′ as compared to Q. Because we showed in Lemma A2 that all


diagonal entries could be assumed equal, this shows that eitherQ′ is the identity,


or the non-negativity constraint is slack on all off-diagonal entries, and all such


entries are equal.


Consider the case where σ = 1. Applying Lemma A3, for now we assume that the µ constraints


are slack, so that µi,j = 0 ∀ i, j. Making this assumption allows us to rearrange (A12) by subtraction


as:


r


n
= α


[(
ln


qi,i∑n
k=1 qk,i


− n− 1∑n
k=1 qk,i


)
−
(


ln
qi,j∑n
k=1 qk,j


− n− 1∑n
k=1 qk,j


)]
∀ i, j (A15)


By Lemma A2, ∃ q ∈ [0, 1] such that qi,i = q ∀ i. Since (A15) applies ∀ i, j, this in turn implies that


∃ q̃ such that qi,j = q̃ ∀j 6= i. Because the entries in each row of Q must sum to 1, this implies that


q̃ = 1−q
n−1 . Therefore, (A15) can be rewritten as:


r


αn
= ln q − ln


1− q
n− 1


(A16)


26







Rearranging (A16) gives:


q =
exp


(
r
αn


)
n− 1 + exp


(
r
αn


) (A17)


which is a logistic function of r. Therefore, the FOCs have a solution, and by the concavity of


(A11), we need not consider corner solutions. Finally, it is easily observed that q < 1 for all r and


that limr→∞ q = 1.


Now consider the case where σ 6= 1. Applying Lemmas A2 and A3 and assuming an interior


solution, we can rewrite (A13) as:


i = j : r
n + α


n(σ−1)


[
1− qσ − (n− 1)


(
1−q
n−1


)σ
+ σ


(
(n− 1)


(
1−q
n−1


)σ
+ qσ − qσ−1


)]
= λ


i 6= j : α
n(σ−1)


[
1− qσ − (n− 1)


(
1−q
n−1


)σ
+ σ


(
(n− 2)


(
1−q
n−1


)σ
+ qσ −


(
1−q
n−1


)σ−1 (
n−2+q
n−1


))]
= λ


(A18)


By subtraction, (A18) can be rearranged as:


r


n
+


ασ


n(σ − 1)


[(
1− q
n− 1


)σ
+


(
1− q
n− 1


)σ−1(n− 2 + q


n− 1


)
− qσ−1


]
= 0 (A19)


This can be further rearranged as:


r +
ασ


σ − 1


[(
1− q
n− 1


)σ−1


− qσ−1


]
= 0 (A20)


In general, (A20) does not have a closed-form solution for q. However, we can check for which r the


q that solves (A20) is less than 1. For these r, the FOCs are sufficient, by the concavity of (A11).


For other r, we must check corner solutions.


Applying the implicit function theorem to (A20), we have:


dq


dr
=


[
ασ


(
1


n− 1


(
1− q
n− 1


)σ−2


+ qσ−2


)]−1


(A21)


This is strictly positive for q ∈ (0, 1). Note also that if r = 0, then the solution to (A20) is q = 1
n ,


and if σ > 1 and r = ασ
σ−1 , then the solution to (A20) is q = 1. Therefore, for σ > 1, the FOCs are
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sufficient for all r ∈
(


0, ασ
σ−1


)
. For σ > 1 and r ≥ ασ


σ−1 , applying Lemmas A2 and A3, it must be


the case that q = 1.


When σ ∈ (0, 1), limq→∞
ασ


1−σ


[(
1−q
n−1


)σ−1
− qσ−1


]
= ∞, so by the intermediate value theorem,


for any r > 0, ∃ q ∈
[


1
n , 1
]


that solves (A20). Therefore, for σ ∈ (0, 1) the FOCs are always sufficient.


To show that there there is a horizontal asymptote at 1, consider an arbitrary ε > 0. We must


show that there exists r̄ > 0 such that for any r > r̄, the q that solves (A20) is such that 1− q < ε.


Let r̄ = ασ
σ−1 max


{(
ε


n−1


)σ−1
, 1


}
. If ε ≥ 1, then clearly 1− q < ε for every r. If ε < 1, let q′(r) be


such that r = ασ
σ−1


(
1−q′(r)
n−1


)σ−1
for r > r̄, so that 1 − q′(r) < ε. As shown above, the solution to


(A20) is strictly increasing in r. Therefore, because ασ
σ−1


(
1−q
n−1


)σ−1
> ασ


σ−1


[(
1−q
n−1


)σ−1
− qσ−1


]
, the


q that solves (A20) is larger than q′(r), which implies that 1− q < ε, thereby proving the claim of


a horizontal asymptote at 1.


We now turn towards proving the claims made about the concavity/convexity of the performance


function in the proposition. For that, we require an expression for the second derivative of the q


that solves (A20). Differentiating (A21) with respect to r gives:


d2q


dr2
= −σ − 2


ασ


dq


dr


[(
1


n− 1


)σ−1


(1− q)σ−2 + qσ−2


]−2 [
qσ−3 − (1− q)σ−3


(n− 1)σ−1


]
= −ασ(σ − 2)


(
dq


dr


)3 [
qσ−3 − (1− q)σ−3


(n− 1)σ−1


]
(A22)


Consider the case where σ ∈ (0, 1)∪ (1, 2). Since dq
dr is positive, qσ−3 > (<) (1−q)σ−3


(n−1)σ−1 implies that


the performance function is convex (concave). Rearranging, this happens when


q < (>)
[
1 + (n− 1)


σ−1
σ−3


]−1
(A23)


Therefore, the performance function is convex for r such that q <
[
1 + (n− 1)


σ−1
σ−3


]−1
and concave


for r such that q >
[
1 + (n− 1)


σ−1
σ−3


]−1
. Because the performance function is increasing, this implies


a sigmoidal shape, since
[
1 + (n− 1)


σ−1
σ−3


]−1
∈
(


1
n , 1
)
.


Now consider the case where σ ∈ (2, 3). This flips the sign of (A22) from the σ ∈ (0, 1) ∪ (1, 2)


case. Therefore, the performance function is concave for r such that q <
[
1 + (n− 1)


σ−1
σ−3


]−1


and convex for r such that q ∈
([


1 + (n− 1)
σ−1
σ−3


]−1
, 1


)
. Because the performance function is
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increasing, this implies an inverse-S shape, since
[
1 + (n− 1)


σ−1
σ−3


]−1
∈
(


1
n , 1
)
.


Now consider the case where σ > 3. Since σ − 3 > 0, this flips the condition (A23) from the


σ ∈ (2, 3) case, so that q >
[
1 + (n− 1)


σ−1
σ−3


]−1
implies concavity. But σ > 3 also implies that[


1 + (n− 1)
σ−1
σ−3


]−1
> 1


n , so that the performance function is everywhere concave.


We now turn our focus to the special cases not previously covered. When σ = 2, ασ
σ−1 = 2α,


and (A20) can be written as:


r + 2α


[
1− q
n− 1


− q
]


= 0 (A24)


Rearranging, this gives:


q =
n− 1


2αn
r +


1


n
(A25)


This is clearly an affine function of r, and it matches the claim about the performance function


when σ = 2 in the proposition.


When σ = 3, ασ
σ−1 = 3α


2 , and (A20) can be written as:


r +
3α


2


[
(1− q)2


(n− 1)2
− q2


]
= 0 (A26)


Rearranging, this gives:


3αn(n− 2)q2 + 6αq − (3α+ 2r(n− 1)2) = 0 (A27)


Applying the quadratic formula, taking the root associated with the plus sign to ensure increasing


performance, and performing tedious algebraic manipulations, it can be concluded that:


q =
1


n(n− 2)


[
(n− 1)


√
9α2 + 6αn(n− 2)r


3α
− 1


]
(A28)


This is clearly a square-root function of r, and it matches the claim about the performance function


when σ = 3 in the proposition.
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A2.6 Proof of Proposition 6


Proof. Suppose that the DM has been given a uniform guess task and has received a signal m̂. Her


belief that the state of the world is θ is, by Bayes’ rule:


Pr(θ|m̂) =
1
n


1
sφ
(
m̂−θ
s


)∑n
i=1


1
n


1
sφ
(
m̂−θi
s


) =
1
sφ
(
m̂−θ
s


)∑n
i=1


1
sφ
(
m̂−θi
σ


) (A29)


where φ(·) is the standard normal density. Notice that the denominator in (A29) depends only on


m̂; it is the same for all θ. Therefore, if the DM is trying to determine the most likely state given


her signal, she only needs to compare the numerators of (A29) for each possible θ; in other words,


she only needs to find the state that maximizes the conditional probability density of her signal.


Since the normal probability density function is symmetric around its mean, which is also its


mode, the conditional probability density of her signal is maximized at θ1 if m̂ ≤ 1
2(θ1 + θ2), at θi


if m̂ ∈
[


1
2(θi−1 + θi),


1
2(θi + θi+1)


]
for i ∈ {2, 3, . . . , n− 1}, and at θn if m̂ ≥ 1


2(θn−1 + θn).


Because consecutive states are equidistant, if the DM guesses optimally given her signal, her


probabilities of guessing state i given true state j are:


Pr(a = θi|θ = θj) =



Φ (ζη(3− 2j)) , i = 1


Φ (ζη(2(i− j) + 1))− Φ (ζη(2(i− j)− 1)) , i ∈ {2, 3, . . . , n− 1}


1− Φ (ζη(2(n− j)− 1)) , i = n


(A30)


where Φ is the cumulative distribution function of the standard normal distribution. This implies


that the DM’s problem is, as in (12):


max
ζ∈[0,∞)


r


n
[2Φ (ζη) + (n− 2) (2Φ (ζη)− 1)]−K(ζ)


We can rewrite this as:


max
ζ∈[0,∞)


r


n
[(2n− 2)Φ (ζη)− (n− 2)]−K(ζ) (A31)
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The first-order condition is:


F (r, ζ) ≡ (2n− 2)rη


n
φ(ζη)−K ′(ζ) = 0 (A32)


In order to ensure that the first-order condition is sufficient, we verify the second-order condition:


−(2n− 2)rη3


n
ζφ(ζη)−K ′′(ζ) < 0, since ζ is positive


The DM’s performance function is:


P ∗(r) =
1


n
[(2n− 2)Φ(ζ(r)η)− (n− 2)] (A33)


In order to show that P ∗(r) is strictly concave, we compute:


d2P ∗


dr2
=
dP ∗


dr


[
(2n− 2)η


n
φ(ζη)


dζ


dr


]
=− (2n− 2)η3


n
ζφ(ζη)


dζ


dr
+


(2n− 2)η


n
φ(ζη)


d2ζ


dr2
(A34)


In order to determine the sign of (A34), we must compute dζ
dr and d2ζ


dr2 . By the implicit function


theorem:


dζ


dr
=
−∂F
∂r
∂F
∂ζ


=
(2n−2)η


n φ(ζη)
(2n−2)rη3


n ζφ(ζη) +K ′′(ζ)
(A35)


> 0


Differentiating (A35) with respect to r gives:


d2ζ


dr2
=


[
(2n− 2)rη3


n
ζφ(ζη) +K ′′(ζ)


]−2{
−(2n− 2)η3


n
ζφ(ζη)


dζ


dr


(
(2n− 2)rη3


n
ζφ(ζη) +K ′′(ζ)


)
−
[(


(2n− 2)η3


n
ζφ(ζη) +


(2n− 2)rη3


n


dζ


dr
φ(ζη)− (2n− 2)rη5


n
ζ2dζ


dr
φ(ζη) +K ′′′(ζ)


)
×
(


(2n− 2)η


n
φ(ζη)


)]}
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=


[
(2n− 2)rη3


n
ζφ(ζη) +K ′′(ζ)


]−2{
−(2n− 2)η3


n
ζφ(ζη)


dζ


dr
K ′′(ζ)


−
[(


(2n− 2)η3


n
ζφ(ζη) +


(2n− 2)rη3


n


dζ


dr
φ(ζη) +K ′′′(ζ)


)
×
(


(2n− 2)η


n
φ(ζη)


)]}
(A36)


< 0


Substituting (A35) and (A36) back into (A34) gives us that d2P ∗
dr2 < 0, since dζ


dr > 0 and d2ζ
dr2 < 0.


This concludes the proof.


A2.7 Proof of Proposition 7


Proof. We solve the DM’s non-concave maximization problem by reducing it to a finite number of


concave maximization problems. In order to do so, we require a lemma.


Lemma A4. For any r > 0, P ∗(r)�∈ [0, d1] ∪ [d2, d3].


Proof. Because limx↓d1 C
′(P ) = 0, and C(P ) is strictly increasing on d1, d2,


there exists ε > 0 such that if P ∈ (d1, d1 + ε), then rP −C(P ) > rd1 −C(d1).


Moreover, since C(d1) = C(P̀ ) for all P̀ ∈ [0, d1), all P̀ ∈ [0, d1] are suboptimal.


The same argument applies to [d2, d3], mutatis mutandis.


Therefore, the optimal P ∗ for each r lies in (d1, d2)∪(d3, 1], and we can search for the optimal P ∗


separately in (d1, d2) and (d3, 1] and then take the maximum of the two. In each of these intervals,


the DM’s maximization problem is concave, and so the first-order conditions are sufficient if they


can be satisfied on those intervals.


The first-order conditions in (d1, d2) and (d3, 1] yield P ∗L := r
2c1


+ d1 and P ∗H := r
2c2


+ d3,


respectively. Assuming these conditions can be satisfied on their respective intervals, the net utilities


associated with those performance levels are r2


4c1
+ d1r and r2


4c2
+ d3r − c1(d2 − d1)2, respectively.


Therefore, P ∗H � P ∗L iff:


r2


4c2
+ d3r − c1(d2 − d1)2 ≥ r2


4c1
+ d1r


⇐⇒ 1


4


(
c1 − c2


c1c2


)
r2 + (d3 − d1)r − c1(d2 − d1)2 ≥ 0 (A37)
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When c1 = c2, then (A37) can be rearranged as:


r ≥ c1(d2 − d1)2


d3 − d1
= δ (A38)


When c1 6= c2, we find the roots of the quadratic expression in (A37) by applying the quadratic


formula:


2c1c2


c1 − c2


±√(d3 − d1)2 +
(c2 − c1)(d2 − d1)2


c2
− (d3 − d1)


 (A39)


Denote by δ+ the root with the positive square root and δ− the root with the negative square root.


When c1 > c2, δ+ is positive, and δ− is negative. Therefore, since r > 0, we can conclude that


δ = δ+.


When c1 < c2, both δ+ and δ− are positive, and (A37) is satisfied when r ∈ [δ+, δ−].A23


However, by Proposition 1, NIAC would be violated if P ∗(r) ∈ (d1, d2) were optimal for r ≥ δ−, so


again we can conclude that δ = δ+.


Now, note that P ∗L = 1 iff r = 2c1(d2 − d1) := r̄L and P ∗H = 1 iff r = 2c2(1 − d3) = r̄H .


Tedious algebraic manipulations show that δ < r̄L for any parameters satisfying the restrictions


in the definition of C in (14), and δ < r̄H with the additional restriction on d3 provided in the


proposition. This ensures that the DM selects P ∗(r) ∈ (d1, d2) for r < δ, P ∗(r) ∈ (δ3, 1) for


r ∈ [δ, r̄H) and P ∗(r) = 1 for r ≥ r̄H .


A3 Laboratory Experiment Instructions


This appendix contains the instructions that were read out loud to subjects in our laboratory


experiment for the $10 prize treatment, as well as the slides that were displayed to them as the


instructions were read out. Instructions and slides were similarly delivered for the $20 treatment,


mutatis mutandis.


A23Note that δ− > δ+ when c1 < c2.
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A3.1 Oral Instructions


Text in square brackets was not read aloud and was used to remind the person reading the in-


structions of what needed to be done. Text in angle brackets was not read aloud and was used to


indicate which slides should be displayed while the instructions were being read.


〈Slide 2〉Welcome to the Columbia Experimental Laboratory for the Social Sciences


(CELSS)! Your participation in this experiment is much appreciated. During this ses-


sion, we require your complete, undivided attention. As such, we ask that you remain


quiet for the duration of the session, refrain from opening other applications on your


computer, refrain from talking or passing notes to other participants, and put away all


of your possessions, including your cell phones, which must be turned off. Do not touch


the computer terminals until the session begins.


Before we begin, please read and sign both copies of the consent form located at your


terminal. Please hand one signed copy to us, and place the second under your chair; you


may take that copy with you when you have completed the experiment. [COLLECT


CONSENT FORMS AND ENSURE THAT THEY ARE ALL SIGNED AND DATED]


〈Slide 3〉 You will be paid in cash for your participation in this experiment. Payment


will occur in private once you have completed the experiment. This payment will depend


on your own decisions and on chance; different participants may earn different amounts.


During the session, please do not communicate with other subjects, and please do not


write anything down unless we tell you to.


〈Slide 4〉 The currency in this experiment is called “points.” In this experiment, you


will be asked to complete a series of tasks. Each task has a potential reward, in points,


for a correct answer. You will be asked to complete two types of task in this experiment,


which we will refer to as the “dots task” and the “angle task.” You will either complete


all the dots tasks or all the angle tasks first. You will be asked to complete both types


of task 100 times each, once for each of 100 different reward levels for a correct answer.


The reward level will take values between 1 point and 100 points with reward increments


of 1 point. The order in which you will see the tasks corresponding to each reward level


will be random.
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〈Slide 5〉 We will now describe the two types of tasks. At the start of each task, the


reward level will be displayed in large characters for three seconds [SHOW SCREEN-


SHOT OF REWARD LEVEL], after which it will be replaced with an image. The


reward will continue to be displayed in small characters next to the image. 〈Slide 6〉


In the “dots task,” the image that you will be shown is a pattern of dots. [SHOW


SCREENSHOT OF DOTS] You will be asked to determine the number of dots on the


screen. The number of dots will be between 38 and 42, inclusive, and each of those


five numbers will be equally likely. When you are ready to answer, select the option


corresponding to your guess, and then click the submit button. The number of points


you could earn from correctly determining the number of dots is indicated near the


top-right of the screen. [POINT TO REWARD ON SCREENSHOT] There is no time


limit for your response.


〈Slide 7〉 In the “angle” task, the image that you will be shown consists of two


intersecting blue lines of random length. [SHOW SCREENSHOT OF ANGLE] You


will be asked to determine the angle between these two lines. [SHOW ANGLES] The


angle will be 〈Slide 8〉 35 degrees, 〈Slide 9〉 40 degrees, 〈Slide 10〉 45 degrees, 〈Slide 11〉


50 degrees, or 〈Slide 12〉 55 degrees, with each of the five angles equally likely. 〈Slide 13〉


Keep in mind that 0 degrees is the angle between two lines in the exact same position,


and 90 degrees is the angle between two adjacent lines of a rectangle. The reward you


could earn from correctly determining the angle is indicated near the top-right of the


screen as before. [POINT TO REWARD ON SCREENSHOT] There is no time limit


for your response.


〈Slide 14〉 After you have completed all the tasks, the computer will randomly select


one “dots” task and one “angle” task. For each of these two tasks that you answered


correctly, you will receive the corresponding point value.


Your payment for the experiment will be determined as follows. You will be given


a $10 participation fee for completing the experiment. In addition to this fee, you will


have the opportunity to earn up to two additional $10 prizes. The number of points


you earned from each of the selected tasks determines the probability that the computer


will award you these prizes. 〈Slide 15〉 For example, say the selected “dots” task had
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a reward level of 84, and the selected “angle” task had a reward level of 33. If you


answered the selected dots task correctly, this would give you 84 points and therefore


an 84% probability of being awarded the first $10 prize. If you answered the selected


“angle” task incorrectly, this would give you zero points and therefore a 0% probability


of being awarded the second $10 prize.


When you have completed all the tasks, you will be given a brief questionnaire. This


questionnaire will not affect your payment. 〈Slide 16〉 After that, you will be shown a


results screen that looks like this. [RESULTS SCREEN] This screen will show you what


tasks were selected for payment, whether you answered them correctly, and whether you


were awarded the corresponding prizes. At that point, please raise your hand, and we


will give you a receipt form [SHOW FORM] for you to fill out. 〈Slide 17〉 Please write


your terminal number, located at the top-right of your carrel [POINT TO NUMBER


ON CARREL], on the line marked “Computer ID.” If you were awarded both $10 prizes,


please write $20 for “Experimental Earnings” and $30 for “Total.” If you were awarded


one of the two prizes, please write $10 for “Experimental Earnings” and $20 for “Total.”


If you were awarded neither of the prizes, please write $0 for “Experimental Earnings”


and $10 for “Total.” Once you have finished filling out the receipt form, please hand it


to one of the experimenters for verification. We will then give you your earnings, and


you may leave the lab.


Before we proceed, are there any questions? [WAIT FOR QUESTIONS]


We will now begin the experiment. 〈Slide 18〉


A3.2 Slides


Slides were displayed according to the transitions indicated in the instructions given in the preceding


subsection of the appendix.
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Lab Experiment


Experimenters: Ambuj Dewan and Nathaniel Neligh


May 31, 2016


1 / 18


Introduction


I Welcome to CELSS!


I Please remain seated and turn o↵ your cell phones.


I Please read and sign both copies of the consent form located
at your terminal.


2 / 18
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Description and Instructions


I Payment will occur at the end of the session.
I Your payment will depend only on your own decisions and


chance, not the decisions of others.


I Experiment takes place entirely on computer screens.


3 / 18


Description and Instructions


I Will complete a series of tasks for points.


I Two types of task: dots and angle.


I 100 tasks of each type.


I Each task has a reward level.


4 / 18
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Description and Instructions
Reward Level


5 / 18


Description and Instructions
Dots Task


6 / 18
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Description and Instructions
Angle Task


7 / 18


Description and Instructions
Angle Task – 35�


8 / 18
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Description and Instructions
Angle Task – 40�


9 / 18


Description and Instructions
Angle Task – 45�


10 / 18
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Description and Instructions
Angle Task – 50�


11 / 18


Description and Instructions
Angle Task – 55�


12 / 18
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Description and Instructions
Angle Task


13 / 18


Description and Instructions
Payment


I Can earn $10, $20, or $30.


I The computer randomly selects one “dots” and one “angle”
task.


I You receive the corresponding number of points for a correct
answer.


I The number of points for each task is the probability that the
computer will award you a $10 prize.


14 / 18
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Description and Instructions
Payment Example


Task Dots Angle


Selected task value 84 points 33 points


Answered correctly? Yes No


Prize probability 84% 0%


15 / 18


Description and Instructions
Results Screen


16 / 18
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Description and Instructions
Receipt Form


17 / 18


EXPERIMENT IN PROGRESS


18 / 18
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Table A1: Categorization of subjects by odd incentives


Category Of All Subjects Of R.I. Subjects Of Resp. Subjects


All subjects 81 (100%) — —


R.I. subjects 60 (74.1%) 60 (100%) —


Resp. subjects /// 32 (45.1%) 32 (100%)


W.B. subjects /// /// 6 (18.8%)


Note: “R.I.” = rationally inattentive; “Resp.” = responsive; “W.B.” = well-behaved, i.e. subjects
whose behavior is consistent with continuous, convex cost functions. — denotes that the column
category is a subset of the row category, and /// denotes that the row category is defined only on
a subset of the column category.


Table A2: Model Selection for Responsive Subjects, Odd Incentives


Model Constant (1) Binary (2) Logistic (7) SIC(8) Concave (9)


Number of Subjects 1 (3.1%) 5 (15.6%) 17 (53.1%) 1 (3.1%) 8 (25.0%)


A4 Robustness Checks and Statistical Power Tests


A4.1 Half-Sample Analysis


As explained in Section 4 of the paper, presenting all the odd incentives followed by all the even


incentives to each subject ensures roughly the same variation in incentives in both halves of the


experiment. This allows us to perform the analyses of Sections 5 and 6 separately on both the odd


incentives and even incentives as a robustness check to account for changes in subjects’ behavior


that may arise from fatigue or learning. Results are summarized in Tables A1 to A4.


We also examine the consistency of categorization between the full sample and the half-samples.


Results for rationality, responsiveness, and well-behavedness are reported in the Venn diagrams of


Figures A1, A2, and A3, respectively. Note that for rationality and responsiveness, a plurality of


Table A3: Categorization of subjects by even incentives


Category Of All Subjects Of R.I. Subjects Of Resp. Subjects


All subjects 81 (100%) — —


R.I. subjects 71 (87.7%) 60 (100%) —


Resp. subjects /// 33 (55.0%) 33 (100%)


W.B. subjects /// /// 9 (27.2%)


Note: “R.I.” = rationally inattentive; “Resp.” = responsive; “W.B.” = well-behaved, i.e. subjects
whose behavior is consistent with continuous, convex cost functions. — denotes that the column
category is a subset of the row category, and /// denotes that the row category is defined only on
a subset of the column category.
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Table A4: Model Selection for Responsive Subjects, Even Incentives


Model Binary (2) Affine (3) Logistic (7) SIC (8) Concave (9)


Number of Subjects 8 (24.2%) 1 (3.0%) 19 (57.6%) 1 (3.0%) 4 (12.1%)


55
(70.5%)


Odd Even


All


10
(12.8%)


2
(2.6%)


1
(1.3%)


3
(3.8%)


5
(6.4%)


2
(2.6%)


Figure A1: Venn diagram of number of subjects classified as rational in each of the samples.
Percentages reported as proportion out of subjects classified as rational in at least one of the
samples (78).


subjects are in the three-way intersection of the Venn diagram (the majority of subjects in the


case of the former). The results for well-behavedness should be interpreted with caution, since the


power of the test is fairly low to begin with (see the next subsection), and removing half the data


would only make the power worse.


In Table A5, we report the correlations between AIC estimates between samples, looking at


each of the subjects who were classified as responsive in at least one sample, the subjects who


were classified as responsive in the full sample of incentives, and the subjects who were classified as


responsive in all three samples (viz. all incentives, odd incentives, and even incentives). Correlations


are fairly high when looking at the subjects who were classified as responsive in at least one sample


or the subjects that are classified as responsive in the full sample of incentives. Correlations are


higher between the full sample and the even incentives (presented to the subjects second) than


between the full sample and the odd incentives (presented to the subjects first). This implies that
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19
(38.8%)


Odd Even


All


8
(16.3%)


12
(24.5%)


0
(0.0%)


3
(6.1%)


5
(10.2%)


2
(4.1%)


Figure A2: Venn diagram of number of subjects classified as responsive in each of the samples.
Percentages reported as proportion out of subjects classified as responsive in at least one of the
samples (49).


1
(4.5%)


Odd Even


All


1
(4.5%)


3
(13.6%)


1
(1.3%)


9
(40.9%)


3
(13.6%)


4
(18.1%)


Figure A3: Venn diagram of number of subjects classified as well-behaved in each of the samples.
Percentages reported as proportion out of subjects classified as well-behaved in at least one of the
samples (22).
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our model selection exercise is more reliable using data from the second half of the experiment,


indicating that subject behavior “stabilized” as the experiment proceeded.


Finally, we report on the consistency of model selection between samples in Tables A6, A7,


and A8. Note that for the most part, a responsive subject categorized according to one kind of


performance function in one sample is more likely to maintain said categorization in another sample


to than to switch to some other given categorization.
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Table A5: Correlations of AIC estimates for each model between samples


All incentives and odd incentives


Responsive in:


Model At least one sample Full sample All three samples


1 (Constant) 0.656 0.675 0.587


2 (Binary) 0.641 0.677 0.375


3 (Affine w/ break) 0.700 0.716 0.732


4 (Affine) 0.701 0.722 0.727


5 (Quadratic) 0.304 0.334 0.604


6 (Cubic) 0.106 0.083 0.202


7 (Logistic) 0.793 0.824 0.809


8 (SIC) 0.808 0.840 0.753


9 (Concave) 0.820 0.846 0.800


All incentives and even incentives


Responsive in:


Model At least one sample Full sample All three samples


1 (Constant) 0.870 0.907 0.739


2 (Binary) 0.851 0.879 0.522


3 (Affine w/ break) 0.869 0.903 0.855


4 (Affine) 0.856 0.898 0.842


5 (Quadratic) 0.745 0.784 0.465


6 (Cubic) 0.644 0.714 0.193


7 (Logistic) 0.723 0.780 0.865


8 (SIC) 0.805 0.849 0.821


9 (Concave) 0.855 0.834 0.834


Odd incentives and even incentives


Responsive in:


Model At least one sample Full sample All three samples


1 (Constant) 0.368 0.392 −0.014


2 (Binary) 0.574 0.589 0.161


3 (Affine w/ break) 0.512 0.530 0.372


4 (Affine) 0.506 0.530 0.355


5 (Quadratic) 0.152 0.156 0.030


6 (Cubic) 0.069 0.057 −0.318


7 (Logistic) 0.397 0.405 0.444


8 (SIC) 0.529 0.539 0.284


9 (Concave) 0.492 0.480 0.366
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Table A6: Two-way table of lowest-AIC model, subjects that are responsive both in the full sample and for odd incentives (27 subjects)


Odd \All 2 (Binary) 7 (Logistic) 8 (SIC) 9 (Concave)
1 (Constant) 1 (100.0%/14.3%/3.7%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 0 (14.3%/14.3%/3.7%)
2 (Binary) 3 (60.0%/42.9%/11.1%) 0 (0.0%/0.0%/0.0%) 2(40.0%/50.0%/7.4%) 0 (0.0%/0.0%/0.0%)
7 (Logistic) 2 (14.3%/28.6%/7.4%) 10 (71.4%/90.9%/37.0%) 2 (14.3%/50.0%/7.4%) 0 (0.0%/0.0%/0.0%)
9 (Concave) 1 (14.3%/14.3%/3.7%) 1 (14.3%/9.1%/3.7%) 0 (0.0%/0.0%/0.0%) 5 (71.4%/100.0%/18.5%)


Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects in both
samples).


Table A7: Two-way table of lowest-AIC model, subjects that are responsive both in the full sample and for even incentives (31 subjects)


Even \All 2 (Binary) 7 (Logistic) 8 (SIC) 9 (Concave)
2 (Binary) 3 (37.5%/42.9%/9.7%) 3 (37.5%/21.4%/9.7%) 1 (12.5%/16.7%/3.2%) 1 (12.5%/25.0%/3.2%)
3 (Affine w/ break) 1 (100.0%/14.3%/3.2%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)
7 (Logistic) 2 (11.8%/28.6%/6.5%) 9 (52.9%/64.3%/29.0%) 5 (29.4%/83.3%/16.1%) 1 (5.9%/25.0%/3.2%)
8 (SIC) 0 (0.0%/0.0%/0.0%) 1 (100.0%/7.1%/3.2%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)
9 (Concave) 1 (25.0%/14.3%/3.2%) 1 (25.0%/7.1%/3.2%) 0 (0.0%/0.0%/0.0%) 2 (50.0%/50.0%/6.5%)


Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects in both
samples).


Table A8: Two-way table of lowest-AIC model, subjects that are responsive for both odd and even incentives (19 subjects)


Even \Odd 2 (Binary) 7 (Logistic) 9 (Concave)
2 (Binary) 1 (25.0%/33.3%/5.3%) 3 (75.0%/27.3%/15.8%) 0 (0.0%/0.0%/0.0%)
3 (Affine w/ break) 1 (100.0%/33.3%/5.3%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)
7 (Logistic) 1 (10.0%/33.3%/5.3%) 7 (70.0%/63.6%/36.8%) 2 (20.0%/40.0%/10.5%)
8 (SIC) 0 (0.0%/0.0%/0.0%) 1 (100.0%/9.1%/5.3%) 0 (0.0%/0.0%/0.0%)
9 (Concave) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 3 (100.0%/60.0%/15.8%)


Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects in both
samples).
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A4.2 Incentive Structure and Simulation Results


Our experiment used a fine-grained incentive structure to study subject behavior. Subjects were


faced with each integer incentive level from 1 to 100. While this can give a better sense of how


behavior responds to incentives than a coarser incentive structure, it comes at the expense of


replication of a task for a given incentive level, thereby sacrificing power for statistical tests. In this


subsection, we conduct simulations to test the power of our statistical test that classifies subjects as


well-behaved or not and the reliability of our classifications of subjects by performance function. We


simulate data for the fine incentive structure used in our experiment, as well as a coarse incentive


structure that uses ten replications of each incentive level that is a multiple of 10 (10 each of 10,


20, 30, etc.) in order to highlight the benefits and drawbacks of our approach.


A4.2.1 Discontinuity Test


Here we present power tests for the discontinuity test introduced in Subsection 5.4. Using both


the fine and the coarse incentive structures, binary data were simulated using the logistic equation


Pt = 0.2+ ϕ
1+exp(−ψ(rt−ξ)) , for various values of ϕ, ψ, and ξ. (Recall that continuity is the alternative


hypothesis in this test.) ϕ controls how high the curve rises from 0.2, ψ controls the slope of the


rise, and ξ is location of the center of the rise. 100 samples were taken for each (ϕ,ψ, ξ) tuple,


and the proportion of samples for which the break was detected was calculated. The results are


summarized in Table A9. The coarse incentive structure generally yields higher power than the


fine one.


A4.2.2 Classification Simulations


We also wish to see how reliable our subject classifications are for both fine and coarse incentives. To


that end, we simulate 100 subjects’ data for various parameter values for each of logistic performance


(mutual information costs), concave performance (normal signal costs), binary performance (fixed


costs), and SIC performance (Tsallis costs), and calculate how many subjects are classified into


each of these performance categories by AIC. Results are reported in Tables A10, A11, A12, and


A13 for both fine and coarse incentives. Note that coarse incentives outperform fine ones when the


true model is SIC, but when the true model is binary, fine incentives and coarse incentives lead


to roughly the same rate of correct classification, and for logistic and concave performance, fine
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Table A9: Power of discontinuity test (fine incentive structure on left, coarse incentive structure
on right)


ξ = 0.05


ϕ \ψ 25 50 75


0.2 0.50 0.27 0.21


0.4 0.48 0.58 0.28


0.6 0.53 0.60 0.43


0.8 0.14 0.49 0.43


ξ = 0.1


ϕ \ψ 25 50 75


0.2 0.32 0.41 0.07


0.4 0.51 0.62 0.21


0.6 0.16 0.32 0.24


0.8 0.00 0.27 0.14


ξ = 0.3


ϕ \ψ 25 50 75


0.2 0.34 0.44 0.11


0.4 0.24 0.62 0.06


0.6 0.00 0.13 0.02


0.8 0.00 0.01 0.00


ξ = 1


ϕ \ψ 25 50 75


0.2 0.35 0.46 0.05


0.4 0.21 0.70 0.01


0.6 0.00 0.06 0.02


0.8 0.00 0.00 0.00


ξ = 4


ϕ \ψ 25 50 75


0.2 0.32 0.53 0.09


0.4 0.16 0.68 0.07


0.6 0.00 0.10 0.02


0.8 0.00 0.00 0.01


ξ = 0.05


ϕ \ψ 25 50 75


0.2 0.74 0.57 0.38


0.4 0.78 0.79 0.65


0.6 0.74 0.84 0.75


0.8 0.17 0.80 0.64


ξ = 0.1


ϕ \ψ 25 50 75


0.2 0.76 0.63 0.33


0.4 0.65 0.88 0.43


0.6 0.43 0.76 0.38


0.8 0.00 0.66 0.19


ξ = 0.3


ϕ \ψ 25 50 75


0.2 0.73 0.70 0.18


0.4 0.53 0.90 0.20


0.6 0.08 0.51 0.17


0.8 0.00 0.07 0.03


ξ = 1


ϕ \ψ 25 50 75


0.2 0.65 0.74 0.18


0.4 0.33 0.95 0.11


0.6 0.05 0.39 0.01


0.8 0.00 0.07 0.00


ξ = 4


ϕ \ψ 25 50 75


0.2 0.64 0.75 0.11


0.4 0.29 0.88 0.07


0.6 0.02 0.48 0.00


0.8 0.00 0.08 0.00
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incentives lead to vastly higher rates of correct classification.


Table A10: Classification simulation results, mutual information (logistic performance) as true
model (fine incentive structure on left, coarse incentive structure on right; α as in Model 7 of Table
5.


α Logistic Concave Binary SIC


10 0.03 0.00 0.96 0.01


15 0.34 0.01 0.59 0.06


30 0.87 0.02 0.04 0.07


45 0.93 0.05 0.02 0.00


60 0.94 0.00 0.02 0.04


α Logistic Concave Binary SIC


10 0.00 0.00 0.98 0.02


15 0.00 0.00 0.69 0.31


30 0.09 0.00 0.04 0.87


45 0.30 0.01 0.01 0.68


60 0.46 0.01 0.01 0.52


Table A11: Classification simulation results, costs linear in precision of normal signal (concave
performance) as true model (fine incentive structure on left, coarse incentive structure on right; α
as in Model 9 of Table 5.


α Logistic Concave Binary SIC


1 0.01 0.34 0.61 0.04


2 0.04 0.79 0.10 0.07


4.5 0.04 0.95 0.00 0.01


7 0.03 0.96 0.00 0.01


10 0.02 0.98 0.00 0.00


α Logistic Concave Binary SIC


1 0.00 0.15 0.76 0.04


2 0.02 0.15 0.12 0.73


4.5 0.00 0.21 0.00 0.79


7 0.07 0.48 0.00 0.45


10 0.12 0.64 0.00 0.24


A4.2.3 Summary


A succinct summary of this appendix subsection would be: coarse incentives are better for testing


the well-behavedness of cost functions; fine incentives are better for estimating and classifying


subjects according to cost functions. Since we conduct both types of analyses in this paper, this


makes the choice of incentive structure somewhat arbitrary. In order to ensure the reliability of


our model selection exercise, we opted for fine-grained variation in incentives.


A4.3 Probability-Weighted Incentives


One of the important aspects of our incentivization scheme is that the incentive level for each trial


is the probability of winning a $10 or $20 prize for a correct answer, depending on the treatment.


This ensures that under the assumptions of expected utility theory, subjects’ utilities are linear in


incentives. However, there is experimental evidence to suggest that decision-makers do not evaluate


probabilities linearly (e.g. Tversky and Kahneman, 1992; Barron and Erev, 2003). For instance,
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Table A12: Classification simulation results, fixed costs (binary performance) as true model (fine
incentive structure on left, coarse incentive structure on right; β1 and δ as in Model 2 of Table 5,
β0 = 0.2)


δ = 25


β1 Logistic Concave Binary SIC


0.2 0.84 0.04 0.02 0.12


0.4 0.34 0.10 0.15 0.41


0.6 0.06 0.09 0.77 0.08


0.8 0.00 0.00 1.00 0.00


δ = 50


β1 Logistic Concave Binary SIC


0.2 0.89 0.01 0.19 0.00


0.4 0.69 0.03 0.28 0.00


0.6 0.14 0.00 0.86 0.00


0.8 0.00 0.00 1.00 0.00


δ = 75


β1 Logistic Concave Binary SIC


0.2 0.71 0.00 0.29 0.00


0.4 0.45 0.02 0.53 0.00


0.6 0.08 0.00 0.92 0.00


0.8 0.00 0.00 1.00 0.00


δ = 25


β1 Logistic Concave Binary SIC


0.2 0.48 0.03 0.00 0.49


0.4 0.11 0.00 0.09 0.80


0.6 0.00 0.01 0.85 0.14


0.8 0.00 0.00 1.00 0.00


δ = 50


β1 Logistic Concave Binary SIC


0.2 0.38 0.00 0.09 0.53


0.4 0.26 0.00 0.25 0.49


0.6 0.00 0.00 0.84 0.07


0.8 0.00 0.00 1.00 0.00


δ = 75


β1 Logistic Concave Binary SIC


0.2 0.55 0.00 0.17 0.28


0.4 0.40 0.00 0.40 0.20


0.6 0.08 0.00 0.91 0.01


0.8 0.00 0.00 1.00 0.00


they may overweight small probabilities. Another possibility is that they treat probability points


similarly to how they treat certain monetary rewards and are risk-averse or risk-seeking over these


incentives. In this subsection, we account for these possibilities in our model selection exercise.A24


In the interest of ensuring the numerical stability of our estimates, we limited ourselves to two,


single-parameter weighting functions. The first is the single-parameter version of Prelec’s (1998)


weighting function.


wPR(r) := exp


(
−
(


ln


(
−r
100


))γ)
(A40)


The second treats probability weighting like a CRRA utility function of incentives:


wRS(r) :=
( r


100


)γ
(A41)


Note that both weighting functions divide incentives by 100 so that they can be properly treated


A24We do not perform corresponding analyses for our tests of cost function properties; continuous, monotonic
probability weighting should not affect the results of those analyses.
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Table A13: Classification simulation results, Tsallis costs (SIC performance) as true model (fine
incentive structure on left, coarse incentive structure on right; α and σ as in Model 8 of Table 5.


α = 75


σ Logistic Concave Binary SIC


0.5 0.91 0.00 0.05 0.04


1.5 0.91 0.03 0.02 0.04


2 0.81 0.04 0.00 0.15


2.5 0.77 0.06 0.00 0.17


4 0.23 0.09 0.32 0.36


α = 200


σ Logistic Concave Binary SIC


0.5 0.77 0.00 0.23 0.00


1.5 0.90 0.01 0.08 0.01


2 0.88 0.00 0.10 0.02


2.5 0.88 0.01 0.00 0.11


4 0.48 0.04 0.00 0.48


α = 2000


σ Logistic Concave Binary SIC


0.5 0.59 0.01 0.39 0.01


1.5 0.51 0.00 0.49 0.00


2 0.70 0.01 0.28 0.01


2.5 0.75 0.00 0.25 0.00


4 0.93 0.00 0.04 0.03


α = 75


σ Logistic Concave Binary SIC


0.5 0.41 0.00 0.01 0.58


1.5 0.32 0.02 0.01 0.65


2 0.15 0.01 0.00 0.84


2.5 0.06 0.00 0.00 0.94


4 0.00 0.01 0.40 0.59


α = 200


σ Logistic Concave Binary SIC


0.5 0.51 0.01 0.21 0.27


1.5 0.54 0.00 0.07 0.39


2 0.58 0.00 0.03 0.39


2.5 0.53 0.00 0.00 0.47


4 0.13 0.01 0.00 0.86


α = 2000


σ Logistic Concave Binary SIC


0.5 0.50 0.00 0.32 0.18


1.5 0.53 0.00 0.31 0.16


2 0.49 0.00 0.25 0.26


2.5 0.49 0.00 0.27 0.24


4 0.44 0.01 0.02 0.53
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as probabilities.


First we estimated each of the models of Section 6 with both probability weighting functions


by maximum likelihood, excluding Models 1 (constant performance) and 2 (binary performance),


because they are non-identified under probability weighting. We then found the best fit for each


responsive subject for each of the two probability weighting schemes. We also found the best fit


for each responsive subject selecting among the eight models with no probability weighting, the six


models with probability weights given by (A40), and the six models with probability weights given


by (A41). Results are summarized in Tables A14 to A17.


From Table A16, note that roughly half of the responsive subjects continue to be best fit by a


model with linear probability weights. The remaining 19 responsive subjects (45.2%) are roughly


evenly split between Prelec and CRRA probability weighting. Moreover, the number of subjects


best fit by binary, logistic/SICA25, and concave performance — 6 (14.3%), 25 (59.5%), and 9


(21.4%), respectively — are nearly the same as in the model selection exercise of Section 6, where


linear probability weights were assumed — 10 (23.8%), 26 (61.9%), and 6 (14.3%), respectively.


Table A17 presents results evaluating the consistency of model selection between the analysis of


Section 6 and this appendix subsection. Note that most responsive subjects, 31 (73.8%), maintain


the same best-fit performance function, even when probability weights are allowed to be non-linear.


Moreover, the maximal entry in each column is the one for the corresponding row, indicating that


not being reclassified is the most common outcome for each best-fit performance function when


switching from only allowing linear weights to allowing Prelec and CRRA weights. This lends


support to the validity of the model selection exercise in the main body of the paper.


A25Recall that logistic performance is a special case of SIC performance, since Shannon entropy is a special case of
Tsallis entropy.
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Table A14: Model selection for responsive subjects, Prelec probability weights


Model Affine (3) Quadratic (5) Cubic (6) Logistic (7) SIC (8) Concave (9)


Number of Subjects 2 (4.8%) 1 (2.4%) 1 (2.4%) 27 (64.3%) 8 (19.0%) 3 (7.1%)


Table A15: Model selection for responsive subjects, CRRA probability weights


Model Affine (3) Cubic (6) Logistic (7) SIC (8) Concave (9)


Number of Subjects 5 (11.9%) 1 (4.2%) 23 (54.8%) 2 (4.8%) 11 (26.2%)


Table A16: Model selection for responsive subjects, all weights


Performance \Weight Linear Prelec CRRA Total


Binary (2) 6 (14.3%) 0 (0.0%) 0 (0.0%) 6 (14.3%)


Affine (3) 0 (0.0%) 1 (2.4%) 0 (0.0%) 1 (2.4%)


Cubic (6) 0 (0.0%) 0 (0.0%) 1 (2.4%) 1 (2.4%)


Logistic (7) 12 (28.6%) 8 (19.0%) 2 (4.8%) 22 (52.4%)


SIC (8) 3 (7.1%) 0 (0.0%) 0 (0.0%) 3 (7.1%)


Concave (9) 2 (4.8%) 2 (4.8%) 5 (11.9%) 9 (21.4%)


Total 23 (54.8%) 11 (21.4%) 8 (19.0%)


Note: Numbers in parentheses are percentages of responsive subjects.


Table A17: Two-way table of model selection, all weights versus linear weights


All Weights \Linear Binary (2) Logistic (7) SIC (8) Concave (9)


Binary (2) 6 (100.0%/60.0%/14.3%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)


Affine (3) 0 (0.0%/0.0%/0.0%) 1 (100.0%/3.4%/2.4%) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%)


Cubic (6) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 1 (100.0%/14.3%/2.4%) 0 (0.0%/0.0%/0.0%)


Logistic (7) 3 (13.6%/30.0%/7.1%) 16 (72.7%/84.2%/38.1%) 3 (13.6%/42.9%/7.1%) 0 (0.0%/0.0%/0.0%)


SIC (8) 0 (0.0%/0.0%/0.0%) 0 (0.0%/0.0%/0.0%) 3 (12.0%/30.0%/7.1%) 0 (0.0%/0.0%/0.0%)


Concave (9) 1 (11.1%/10.0%/2.4%) 2 (22.2%/10.5%/4.8%) 0 (0.0%/0.0%/0.0%) 6 (66.7%/100.0%/14.3%)


Data in table’s cells are: Number of subjects (Percentage of row/Percentage of column/Percentage of responsive subjects).
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A4.4 The Cheremukhin et al. (2015) Generalization of Mutual Information


Cheremukhin et al. (2015) generalize the Shannon entropy-based cost function by allowing for


convex transformations of mutual information. Letting H represent mutual information and as-


suming that perfectly uninformative information structures are free, they define the function by its


derivative:A26


K ′(H) =
θ̄π


arccot(ρ(H − κ̄))
(A42)


where θ̄, ρ, and κ̄ are non-negative parameters. θ̄ is a multiplicative factor that regulates the


marginal cost of information, and ρ regulates the curvature of the derivative. K ′ is relatively flat


for H < κ̄, so a higher ρ indicates a sharper increase in the marginal cost of information going from


H < κ̄ to H > κ̄. Therefore, for large ρ, κ̄ can be interpreted as a capacity constraint on the DM’s


ability to acquire and/or process information.


However, it should be noted that a near-constant marginal cost of information for H < κ̄ is


not the same thing as a near-constant marginal cost of performance; information is non-linear in


performance, as can be seen from (11). Essentially, when ρ is high, the near-constant marginal


cost of information for H < κ̄ makes the cost of performance approximately mutual information


for P ≤ Pκ̄, where Pκ̄ is defined such that ln(5) + Pκ̄ ln(Pκ̄) + (1− Pκ̄) ln
(


1−Pκ̄
4


)
= κ̄. Because the


marginal cost increases sharply above Pκ̄, it is effectively the highest level of performance that the


DM can achieve. Therefore, the DM’s performance is approximately logistic up until the r that


induces Pκ̄, after which it is almost completely flat. Marginal cost curves for different values of θ̄,


κ̄, and ρ are displayed in the left panels of Figures A4, A5, and A6.


By applying the chain rule, we can rewrite (A42) in terms of performance in uniform guess


tasks as:


C ′(P ) =
θ̄π(ln(P )− ln(1− P ) + ln(4))


arccot
(
ρ
(
ln(5) + P ln(P ) + (1− P ) ln


(
1−P


4


)
− κ̄
)) (A43)


Since arccot(0) = π
2 , this model nests mutual information for ρ = 0, taking α = 2θ̄. In general,


A26In the definition of the corresponding function in Equation (7) of Cheremukhin et al. (2015), ρ is the reciprocal of
what it is here. However, the convention we adopt here is consistent with Figure 2 and Footnote 10 of Cheremukhin
et al. (2015), as well as computer code provided by the authors.
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Table A18: Model Selection for Responsive Subjects, Including Cheremukhin et al. (2015) Cost
Functions


Model Binary (2) Logistic (7) SIC (8) Concave (9) CRL


Number of Subjects 10 (23.8%) 18 (42.9%) 6 (14.3%) 5 (11.9%) 3 (7.1%)


(A43) cannot be inverted to obtain a closed form for the performance function. However, the


performance function can be graphed, as it is for various values of θ̄, κ̄, and ρ in the right panels


of Figures A4, A5, and A6.


We estimate two versions of (A43), one with ρ restricted to a value of 600, as in Cheremukhin


et al. (2015), and one where ρ is allowed to vary freely. We refer to the corresponding performance


functions as “capacity-restricted logistic” (CRL) and “generalized logistic” (GL), respectively.


Repeating the model selection exercise of Section 6 with these two additional cost functions


does not substantially alter our results (see Table A18. According to the AIC criterion, no subjects


are best fit by the model with flexibly estimated ρ, and only three subjects are best fit by the model


with restricted ρ. Since the exact choice of ρ was not theoretically motivated aside from being large


enough to make the marginal cost of information nearly vertical to the right of κ̄, we regard the


ρ-restricted model of Cheremukhin et al. (2015) to be a reasonable way of describing these three


subjects’ data that ensures the differentiability of the cost function, but not in a way that strongly


distinguishes predicted behavior from the other cost functions we estimate.


Estimating the flexible-ρ version of (A43) allows us to see if setting a very high ρ is a reasonable


assumption to make for all subjects, as Cheremukhin et al. (2015) do. Figure A7 is a histogram of


log10(1 + ρ̂) for responsive subjects. The estimates in the leftmost bin are actual zeroes, indicating


a constant marginal cost of mutual information. Therefore, 13 responsive subjects would have their


performance estimated to be logistic even under the flexible model. Looking at the second bin,


for an additional 17 subjects, the estimated curvature parameter lies between 0 and 9. Therefore,


the majority of responsive subjects do not have curvature parameters in the ranges suggested by


Cheremukhin et al.’s (2015) results; only five have a ρ̂ that exceeds 99. Our interpretation of these


results is that value-based decision-making and effortful perceptual tasks are not governed by the


same informational processes.
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Figure A4: Cheremukhin et al. (2015) costs, n = 5, θ̄ ∈ {5, 10, 20, 30}, ρ = 600, κ̄ = ln(3). The left
panel shows marginal costs with respect to information for increasing values of θ̄ going counter-
clockwise from the bottom-right. The right panel shows performance curves for increasing values
of θ̄ going from the top-left to the bottom-right.
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Figure A5: Cheremukhin et al. (2015) costs, n = 5, θ̄ = 15, ρ = 600, κ̄ ∈
{ln(1.25), ln(2), ln(3.5), ln(5)}. The left panel shows marginal costs with respect to information
for increasing values of κ̄ going from the top-left to the bottom-right. The right panel shows
performance curves for increasing values of κ̄ going from the bottom to the top.
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Figure A6: Cheremukhin et al. (2015) costs, n = 5, θ̄ = 15, ρ ∈ {0, 1, 10, 600}, κ̄ = ln(2). The left
panel shows marginal costs with respect to information for increasing values of ρ going counter-
clockwise from the right. The right panel shows performance curves for increasing values of ρ going
from the bottom to the top, between the points of intersection.
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Figure A7: Histogram of log10(1 + ρ̂) for responsive subjects
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A4.5 Bayesian Hierarchical Modeling


Because we are looking at the population as a mixture of types, it seems natural to approach the data


using a Bayesian hierarchical model. We analyze the data by constructing a hierarchical Bayesian


prior and then determining each subject’s posterior probability of belonging to each type using


Markov Chain Monte Carlo methods. In our analysis, “types” refers to the form of performance


function a subject has, as per the results in Section 6.


The prior distribution has two components: a distribution over the population proportion of


types; and a distribution over performance function parameters for each type. For the distribution


over population proportion of types we choose a Dirichlet distribution with all parameters set to


one. The resulting distribution is uniform over the simplex, and it is considered to be the standard


prior over proportions of types for hierarchical Bayesian analysis.


The parameter prior distributions are constructed in a manner that requires some explanation.


The standard method for generating the prior distribution over parameters within each group


generally involves assuming that the prior over parameters comes from a specific family (like the


normal or beta) and then fitting the hyperparameters of the distribution using maximum likelihood


methods. Unfortunately, this approach is not practical in our setting, because we want our prior


to only include non-decreasing performance functions. The parameter spaces for non-decreasing


affine with break, cubic, and quadratic performance functions have very difficult structures, and so


no standard distribution could be used to cover these spaces.


We instead use a somewhat ad hoc method based on the sequential drawing of model parameters.


There are methods for drawing parameters of non-decreasing performance functions of all the classes


we consider by drawing all of the parameters in a specific order from parameter distributions whose


range depends on the previously drawn parameters. When the range of the parameter distribution


is bounded below, we draw from a transformed gamma distribution, and when it is bounded both


above and below, we draw from a transformed beta distribution. (Full details are available from


the authors on request.) This gives us a method for randomly drawing performance functions.


To calibrate the distributions we draw from, we invert the process, converting the estimated


parameters for each individual and model type (see Section 6) into draws from the transformed


distributions and then inverting the transformation to get a draw from a standard distribution of


the correct type. These draws for each distribution are then collected, and we find model parameters
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that match the mean and variance of the observed distribution. These model parameters are used


to assign a model prior.


Consider the generation of the prior over binary performance functions. The binary model has


three parameters: β1, a low performance level; β2, a high performance level; and δ, the break point


where it switches from one to the other. We can construct a non-decreasing binary performance


function by drawing β1 from one beta distribution (A) on the [0.2, 1] interval, drawing δ from a


beta distribution (B) on the [5, 95] interval, and then drawing β2 from a beta (C) on the [β1, 1]


interval. We draw the function by sampling from beta distributions and then applying the affine


transformation mapping the [0, 1] interval into the correct interval.


To generate the parameters for each of these beta distributions, we look at the parameters


estimated for the binary model for different subjects. For example, to get the parameters for (C),


we convert the estimated β̂2 into draws from a beta by dividing by 1− β̂1 and subtracting β̂1. Then,


we look at the mean and standard deviation of these standard draws for all the subjects examined


and use the resulting moments to fit distribution (C). Note that means and standard deviation


fully pin down a beta distribution or gamma distribution. We then do the same with δ̂ to find the


parameters of (B) and β̂1 to find the parameters of (A).


Note that we do not use all subjects to fit all models, because it makes little sense to use


data from a subject who has a distinctly binary performance function to calibrate the prior for


individuals with a logistic performance function (linear Shannon costs). We instead use the N


subjects best fit by a particular model,using likelihood as a measure of fit, to calibrate the priors


for that model. We vary N and report the results below.


Once the priors have been assigned, the updating process is fairly simple. We employ a very


simple component-wise Metropolis-Hastings algorithm using the prior as our proposal distribution


(cf. Chapter 11 of Gelman et al., 2003). We construct a function f which given a subject i, set


of model parameters m, and probability of each model of type ψ will return the likelihood of that


subject’s observed data given those parameters model probabilities. Note that m includes model


parameters for every model being considered and each subject. Call the parameters for subject i’s


models mi. We then run the following algorithm for each subject i.


1. Pick a random model proportion and set of model parameters for each subject from the


proposal distribution. Call them the current model proportion ψc and set of model parameters
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mc. Get the resulting likelihood f(i, ψc,mc), and call it the comparison likelihood lc.


2. Get a new random model proportion ψn. Check the new likelihood ln = f(i, ψn,mψ).


3. Accept the new proportions with probability min
{


1, lnlc


}
. If the new proportions are accepted,


store ψn,mc in the trace and set ψc = ψn, lc = ln


4. Get a new random set of model parameters for subject 1, m1
n from the prior. Define mn as a


set of parameters that is identical to mc but we replace m1
c with m1


n


5. Check the new likelihood ln = f(i, ψc,mn).


6. Accept the new proportions with probability min
{


1, lnlc


}
. If the new proportions are accepted,


store ψc,mn in the trace and set mc = mn, lc = ln


7. Repeat steps 4–6 for all responsive subjects


8. Repeat steps 2–7 10000 times


We then throw away the early values in the trace. The remaining values provide an approximation


of the posterior for the subject. Note that we do not have to modify or weight the trace values


to get the posterior in the case, because we use the prior distribution as our proposal distribution


(Chib and Greenberg, 1995).


Unfortunately, the resulting distribution over population proportions is difficult to reasonably


visualize. Instead, in Table A19 we report the mean posterior probability for each model for


various values of N . As the table shows, the results are somewhat sensitive to the choice how the


parameter priors are fit. However, there are some consistent findings. In particular, the logistic


(Shannon costs), SIC (Tsallis costs), and cubic (costs on the order of P
4
3 ) models all perform


well across all values of N . The strong performance of the logistic and SIC models is generally


unsurprising. The high performance of the cubic model is more unusual and may be at least in


part due to the somewhat restrictive method we use to draw the monotone cubic performance


function. The binary and affine break models all perform well for some N , but both are sensitive


to assumptions about how the parameter priors are fit. This likely relates to the fact that the


likelihoods for these models are very sensitive to the break location parameter. Constant, linear,


quadratic, and concave (normal signal costs) models never perform well. The general failure of the
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Figure A8: Evolution of likelihood over iterations of the Metropolis-Hastings algorithm
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Table A19: Average posterior probabilities for different values of N


N
10 20 30


Constant 0.016 0.015 0.015
Binary 0.077 0.049 0.108


Affine with Break 0.200 0.052 0.135
Affine 0.038 0.082 0.069


Quadratic 0.047 0.047 0.017
Cubic 0.216 0.285 0.180


Logistic 0.121 0.178 0.253
SIC 0.259 0.265 0.195


Concave 0.022 0.021 0.023


normal model is interesting, and may be related to the high sensitivity in that model to the cost


parameter.


It should be noted that these estimates may not be perfectly reliable for high N . As we can


see from the likelihood graphs in Figure A8, while the process does converge fairly quickly in all


cases, continuing regions of high and low likelihood suggest a multimodal posterior. Metropolis-


Hastings algorithms can sometimes take a very long time to fully cover these types of posteriors,


since transitioning between modes can take many iterations. However, consistency of results accross


multiple runs of the code leads us to believe that this problem does not have a substantial impact


on mean model likelihoods.
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S1 Perceptual Distance


S1.1 Preliminaries


In uniform guess tasks, where the action space is identified with the state space, the “dissimilarity”


between two actions is the same as the “dissimilarity” between the corresponding states. Perceptual


distance refers to the notion that distant states are easier to distinguish from each other than nearby


ones. For example, if Θ = {1, 2, 3, 4, 5}, and the true state is θ = 2, then the DM may be more


likely to answer 1 (which is 1 away from 2) than she is to answer 5 (which is 3 away from 2). This


is especially plausible if the states in Θ represent physical, measurable quantities. To give a more


concrete example, when shopping for televisions, one is much more likely to misperceive a 27-inch


screen as a 23-inch screen than as a 40-inch screen. We formalize this notion below.


Definition 1. Let ρ be a metric on Θ. Then in this task, the DM evinces perceptual distance iff


∀x, y, z ∈ Θ, ρ(x, y) > ρ(x, z) =⇒ Pr(a = y|θ = x) < Pr(a = z|θ = x).


In other words, the DM evinces perceptual distance if for each possible true state, she is more


likely to choose an answer (i.e. an action) close to the true state than one farther away from it.


Though one can define a metric on a given set in many different ways, it makes sense to take ρ


to be a “natural” metric on Θ. For instance, if Θ is a subset of the real line as in the example above,


then absolute value, ρ(x, y) = |x − y|, may be a sensible metric to use. Since the state space in
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our experiment is such a subset, absolute value is the metric we use in analyzing our experimental


results.S1


S1.2 Cost Functions


S1.2.1 Entropy-Based Cost Functions


Recall from the proof of Proposition 5 in Appendix Subsection A2.5 that in a uniform guess task, the


probability of guessing any given incorrect state is independent of the state when the cost function


is entropy-based. What that means is that in our experiment, a subject who whose cost function


is mutual information (implying logistic performance) should not evince perceptual distance. For


example, if the true number of dots is 39, reporting 42 should be just as likely as reporting 38 for an


individual with a mutual information cost function, even though the difference between 42 and 39 is


3, whereas the difference between 38 and 39 is 1. As we explain below, not all subjects with logistic


performance fail to evince the perception of the distance. We can reconcile these observations with


a mutual-information-like cost function that implies logistic performance but depends directly on


performance as in Appendix Subsection A1.5, with Ω chosen to match the observed distribution of


mistakes. See, for instance, (11) in Subsection 3.2 for the relevant functional form.


S1.2.2 Normal signals


In Subsection 3.3, we assumed that adjacent states were equally spaced. The state space in our


experiment also has this property. This assumption of equidistant states allows us to draw some


conclusions about whether a DM who receives normal signals necessarily evinces the perception


of distance. The answer, in general, is no. This is because the lowest possible state θ1 is guessed


for any signal m̂ ≤ 1
2(θ1 + θ2).


S2 If the costs of precision are very high, so that the DM selects


a very low signal precision, then her distribution of signals may have fat enough tails that for


some true state, guessing the lowest state is likelier than guessing the next outermost state, i.e.


Pr
(
m̂ ≤ 1


2(θ1 + θ2)
∣∣θ = θj


)
> Pr


(
m̂ ∈


[
1
2(θ1 + θ2),


1
2(θ2 + θ3)


]∣∣θ = θj
)


for some j ≥ 2.


However, while we cannot conclude that a DM with normal signals necessarily evinces the


perception of distance over the entire state space, we can say that she does if we restrict our focus


S1This would also hold for any strictly monotonically increasing transformation of ρ that preserves its metric
properties on Θ.


S2A symmetric argument applies to the highest possible state.
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to guesses of inner states (i.e. states θ2 to θn−1).


Proposition S1. In a uniform guess task with equidistant states, a DM with normal signals evinces


the perception of distance for guesses of inner states; that is to say, ∀x ∈ Θ and ∀ y, z ∈ Θ\{θ1, θn},


|x− y|> |x− z|=⇒ Pr(a = y|θ = x) < Pr(a = z|θ = x).


Proof. To proceed, we need a lemma:


Lemma S1. Let β, ζ, and η be strictly positive. Then Φ((ξ+ β)ζη)−Φ(ξζη) is strictly decreasing


in ξ for positive ξ and strictly increasing for in ξ for negative ξ.


This lemma is easily proven by differentiating to obtain ζη[φ((ξ + β)ζη) − φ(ξζη)]. Since the


normal density is decreasing on the positive real line and increasing on the negative real line, this


derivative is negative for positive ξ and positive for negative ξ.


For guesses of inner states that are not the true state, the result follows from setting ξ = 2k+ 1


and β = 2 for k 6= −1 and comparing it to the expression in Lemma S1 when ξ = 2k + 3. This


shows that guessing an inner state that is not the true state is likelier than guessing the inner state


that is immediately farther from it. Applying this logic iteratively and exploiting the symmetry of


the normal distribution to compare guesses of inner states on opposite sides of the true state gives


the result.


In order to show that guessing the true state is likelier than guessing any other inner state,


assume that the true state is not θn−1 or θn, so that state immediately above the true state is


also an inner state. (An obvious symmetric argument applies in case the true state is θn−1 or θn.)


Lemma S1 implies that:


Φ(ζη)− Φ(0) > Φ(2ζη)− Φ(ζη) and Φ(ζη)− Φ(0) > Φ(3ζη)− Φ(2ζη)


=⇒ 2[Φ(ζη)− Φ(0)] > Φ(3ζη)− Φ(ζη)


=⇒ Φ(ζη)− Φ(−ζη) > Φ(3ζη)− Φ(ζη)


Since the probability of guessing the true state is at least Φ(ζη)−Φ(−ζη) (the true state could be


the lowest state), combining this implication with the result for inner states that are not the true


state proves the result.
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S1.3 Results


For each subject and trial t, we compute the error distance ρ(at, θt) = |at − θt|. In our experiment


this distance in an integer in {1, 2, 3, 4}. In order to test for perceptual distance, for each responsive


subject we compute the distribution of error distances that would be predicted if the subject were


to be equally likely to make any mistake in each state, given the empirically observed distribution


of true states and the subject’s overall accuracy rate. We then compare the empirically observed


distribution of error distances to this distribution using a chi-squared test.


At the 5% level, we find that 26 out of 42 responsive lab subjects (61.9%) have a distribution of


mistakes that evinces perceptual distance. Of course, the notion that perceptual distance matters


for error distance distributions is not limited to responsive subjects; mutual information implies


responsiveness (i.e. a strictly increasing performance function), so subjects who are not responsive


have already rejected mutual information for other reasons. But as a test of the general notion


that each possible mistake is equally likely given an true state of nature, it is worth running these


tests on the entire pool of rationally inattentive subjects. At the 5% level, we find that 45 out of


70 rationally inattentive lab subjects (64.3%) reject the null hypothesis of not perceiving distance.


S2 Demographics, Aggregate Results, and Categorization


In our experiment, demographic data were collected in a brief post-experiment questionnaire (but


before feedback was given). In this appendix, we provide a summary of these data and aggregate


results of our subjects. We then determine the extent to which demographic covariates predict the


categorization of subjects as rationally inattentive and responsive, as well as what their best-fitting


performance function is.


S2.1 Demographic Data


Table S1 lists basic demographic data for the laboratory subjects. The pool is fairly gender-


balanced;S3 the null of perfect gender balance cannot be rejected (two-sided test of proportions,


p = 0.146). The pool is also highly educated; over 55% of laboratory subjects have completed


S3Subjects were given the option to list their gender as “other/non-binary.” No subjects used this option, though
one subject declined to disclose their gender.


4







Table S1: Laboratory Demographics


Number of subjects n = 81


Gender (n = 80) 41.3% male; 58.8% female


Age (n = 80) Average: 23.00; St. dev.: 4.17


Highest level of education achieved (n = 81)
Some post-secondary 44.4%
Completed bachelor’s degree 29.6%
Completed graduate or professional degree 25.9%


Area of study (n = 80)
Economics, psychology, or neuroscience 24.7%


a post-secondary degree. In general, demographic characteristics are not strong determinants of


subjects’ behavior in this experiment.


S2.2 Aggregate Analysis


Table S2 displays a regression of correctness on incentive level. The regression in column 2 includes


demographic covariates, including age (in years) and dummies for maleness, holding at least a


bachelor’s degree, studying economics, psychology, or neuroscience, participating in the $20 prize


treatment, and being shown the “dots” tasks before the “angle” tasks. It also controls for the order


in which tasks were completed.


It is apparent that in the aggregate, performance is higher at higher incentive levels. In particu-


lar, on average each increase of 1 point in incentive level results in a 0.3% increase in the probability


of answering correctly.


For the most part, demographic covariates have no significant effect on performance. Moreover,


there is no significant effect of doing the “dots” tasks before the “angle” tasks. However, perfor-


mance does decline slightly over time, indicating that subjects may experience some fatigue.S4


S2.3 Rational Inattentiveness


In Figure S1, we present a histogram of the p-values of the monotonicity test of Doveh et al. (2002)


used to determine whether subjects adhere to the NIAC condition. (Recall from Proposition 1 that


S4The effect of task number on performance vanishes if we only consider the second half of the data, i.e. the last
50 tasks for each subject. (Recall that the first fifty tasks contained the odd-numbered incentives, and the last fifty
tasks contained the even-numbered incentives, so each half of the data contains the same range variation in incentives
as the whole data set.) This is consistent with some portion of the subjects choosing to exert effort early in the
experiment before succumbing to fatigue. We examine the consistency of results between both halves of the data in
the next appendix section.
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Table S2: Regressions of correctness on incentive level and demographic covariates


(1) (2)


Incentive Level 0.003∗∗∗ 0.003∗∗∗


(0.0004) (0.0004)


Age −0.0001
(0.006)


Male 0.004
(0.056)


Bachelor’s −0.062
(0.058)


Econ/Psych/Neuro −0.097∗


(0.054)


$20 Prize 0.023
(0.049)


Dots First 0.049
(0.052)


Task Number −0.001∗∗∗


(0.0003)


Constant 0.425∗∗∗ 0.498∗∗∗


(0.032) (0.140)


Observations 7900 7900
R2 0.03799 0.05635


Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.
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this is equivalent to testing for positive monotonicity.) We implemented the test with a significance


level of 5%, so we reject NIAC only for the subjects whose p-values fall in the leftmost cell of the


histogram. Note that roughly half of subjects have p-values below 0.5, whereas the other half have


p-values greater than 0.95. Examination of the data confirm that the p-values for the latter half


of subjects are all indeed 1. This is not surprising: these are the subjects for whom a positive


derivative restriction on their estimated performance is non-binding; their estimated coefficients


are the same regardless of whether the derivative restriction is imposed.


We now turn our focus to the NIAS tests. Recall from Subsubsection 5.2.2 that for each


subject, we run as many hypothesis tests as different actions they took. For most subjects, this


means running 5 tests, but if, for instance, a subject never selected 39, then we would only run 4


tests for them. If a subject rejects the null of posterior maximality at the true state for at least


one action, then we classify them as rejecting NIAS. Therefore, we are interested in the minimum


p-value for each subject. We present a histogram of these p-values in Figure S2. Note that the


distribution of p-values is unimodal, spiking at the right tail of the distribution.


To determine the extent to which demographics predict a subject’s classification as rationally


inattentive, we run a logit regression of an indicator for rational inattentiveness on demographic


covariates. These covariates are age, an indicator for being male, an indicator for having attained


at least a bachelor’s degree, an indicator for studying economics, psychology, or neuroscience, an


indicator for participating in the $20 prize treatment, and an indicator for having done the dots


tasks first. We display the results of this regression in column 1 of Table S3.


Demographic covariates do not seem to be predictive of rational inattentiveness in this particular


subject pool. Neither do experimental variables, such as the higher prize and completing the


dots tasks first. This suggests that for a given set of tasks, rational inattentiveness is an innate


characteristic that is not well captured by demographics, and moreover, it may be difficult to


manipulate experimentally.


S2.4 Responsiveness


We test for responsiveness with three tests, each of which generates a p-value. As explained in


Subsection 5.3, we classify subjects as responsive if they reject the null hypothesis for at least


one of these three tests. In other words, a subject is classified as responsive if the minimum
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Figure S1: Histogram of p-values for the Doveh et al. (2002) test
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Figure S2: Histogram of minimum p-values for the NIAS bootstrap tests
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of these p-values is below 0.05. In Figure S3, we present a histogram of minimum p-values for


the responsiveness tests. This histogram only includes subjects that were classified as rationally


attentive. Note that the distribution appears to be unimodal, spiking at below 0.05.


Histogram of Minimum p−values for Responsiveness Tests
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Figure S3: Histogram of minimum p-values for the responsiveness tests


To determine the extent to which demographics predict responsiveness, we run a logit regression


of an indicator for responsiveness on demographic covariates for the subjects who fail to reject


rational inattentiveness. We display the results of this regression in column 2 of Table S3.


As is the case with rational inattentiveness, demographic covariates are not significant predictors


of responsiveness.


S2.5 Cost Functions


To determine the extent to which demographics predict model selection, we run a multinomial


logit regression of the best-fitting model on the same set of demographic covariates as in previous


subsections, with logistic performance (Model 7, mutual-information costs) as the baseline. This


regression shows us the extent to which these demographic factors affect the likelihood of selecting


9







Table S3: Demographics and Categorization: Logit Regressions


Rational Inattentiveness Responsiveness


(1) (2)


Age −0.0002 −0.015
(0.084) (0.064)


Male −0.475 −0.691
(0.718) (0.588)


Bachelor’s 0.963 0.054
(0.804) (0.623)


Econ/Psych/Neuro 0.749 1.261∗


(0.886) (0.704)


$20 Prize 0.128 0.263
(0.714) (0.557)


Dots First −0.602 −0.482
(0.752) (0.562)


Constant 1.726 0.911
(1.939) (1.488)


AIC 74.110 99.128


Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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a model that implies a non-convexity or discontinuity in the cost function over one that is consistent


with convexity. We display the results of this regression in Table S4.


As is the case with previous demographic regressions, demographic factors are not significant


predictors. This seems to indicate that not only is rational inattentiveness not well captured by


demographics, so is the nature of one’s cost function for information in a given task.


Table S4: Model Selection and Demographics


Binary (2) SIC (8) Concave (9)


Age −0.288 0.155 −0.322
(0.224) (0.141) (0.250)


Male −0.204 −0.768 0.492
(0.984) (1.270) (1.094)


Bachelor’s −0.245 −0.699 0.387
(1.181) (1.305) (1.431)


Econ/Psych/Neuro −0.056 −0.902 −0.457
(0.968) (1.454) (1.136)


$20 Prize −0.005 −0.743 −1.458
(0.900) (1.296) (1.040)


Dots First −0.153 2.230 −0.267
(0.943) (1.365) (1.169)


Constant 6.076 −5.042 6.739
(4.794) (3.578) (5.245)


AIC 133.323


Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01


S3 Dynamic Evidence Accumulation and Reaction Times


In the main body of the paper, we focused on static models of information acquisition. However,


information is typically not obtained instantaneously, but rather gathered over a period of time. In


fact, dynamic models of evidence accumulation have a long tradition in mathematical psychology.


In drift-diffusion models (DDMs) (e.g. Ratcliff, 1978; Diederich, 1997), evidence is modeled as a


stochastic process that evolves according to a diffusion process (Smith, 2000), such as Brownian


motion. The decision-maker stops gathering evidence and makes a decision when this process


hits some (possibly time-dependent) boundary. This boundary is often exogenously given, as in
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Ratcliff (1978), implying an exogenous information approach. However, under some conditions,


the boundary can be derived as the result of an optimal stopping problem (e.g. Fudenberg et al.,


2018; Tajima et al., 2016), implying an endogenous information approach. Other endogenous


information approaches consider the optimal selection of the intensity of evidence accumulation


when the stopping rule is exogenously given (e.g. Woodford, 2014) or the optimal selection of both


evidence accumulation intensity and stopping rule (e.g. Moscarini and Smith, 2001). The vast


majority of these dynamic evidence accumulation models restrict their focus to situations where


the decision-maker must choose between two options, though Moscarini and Smith extend their


model to consider situations with multiple discrete choice alternatives.


There is a large literature that uses choice and reaction-time data to compare models of evidence


accumulation. For example, Woodford (2014) presents a model of dynamic evidence accumulation


with mutual-information costs and uses Krajbich et al.’s (2010) data to compare the fit of his


endogenous information model to a DDM with Brownian motion, and as mentioned in the main


body of the paper, Ratcliff and Smith (2004) use data from several experiments to compare the fits


of four different dynamic evidence accumulation models.


In our experiment, in addition to data on subject responses, we also collected data on how much


time subjects spent on each task. We call this the reaction time. A full analysis of how our data fit


dynamic rational inattention models is beyond the scope of this appendix and is indeed the subject


of our ongoing work. Our goal in the remainder of this appendix section is to present evidence that


information acquisition has salient dynamic features.


S3.1 Time and Attention


In the main body of the paper, we remained agnostic about the exact nature of what attention


comprises, and by corollary, we remained agnostic about the exact source of information costs. One


possibility is that attention can be decomposed into a quantity component — time spent on a task


— and a quality component — how much effort is exerted during that time. Here, we provide some


suggestive evidence that attention indeed has a quantity component.


Tables S5 and S6 display linear regressions of reaction time on incentive level and correctness on


incentive level, respectively, aggregating over the subject pool. The coefficients on the dependent


variables in both regressions are positive and significant. In the case of the first regression, this
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Table S5: Linear regression of reaction time on incentive level


Reaction Time


Incentive Level 0.178∗∗∗


(0.017)


Constant 14.159∗∗∗


(1.378)


Observations 8100
R2 0.059


Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.


Table S6: Linear regression of correctness on reaction time


Correctness


Reaction Time 0.007∗∗∗


(0.001)


Constant 0.427∗∗∗


(0.036)


Observations 8100
R2 0.096


Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.
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indicates that subjects respond to higher incentives by increasing the quantity of attention paid to


the task at hand. In the case of the second regression, this indicates that increasing the quantity


of attention results in higher performance; this is the speed-accuracy trade-off commonly noted in


the literature on perceptual psychology (e.g. Schouten and Bekker, 1967).


S3.2 Dual-Process Mechanisms


As we showed in Section 6, choice data for approximately one-third of responsive subjects are


best fit by binary performance functions. This suggests that these subjects employ two different


strategies for determining the number of dots on the screen — one for low incentives, and one for


high incentives. In this subsection, we provide further suggestive evidence for this hypothesis.


Figure S4 shows the histogram of reaction time on every task for the subject population. The


distribution of reaction times is clearly bimodal. There are at least two possible, non-mutually


exclusive explanations for this. One is that some portion of the subjects simply do not exert any


effort on the task and make a response at the earliest opportunity, while others exert effort in


acquiring information. Another is that subjects have binary performance functions, choosing not


to spend time acquiring information for some incentive levels but choosing to do so for others.


The fact that a significant portion of subjects are best fit by binary performance functions


provides an explanation for the pattern observed in Figure S4. Some subjects make snap decisions


when confronted with low incentives but take the time to acquire information at higher incentive


levels. This can be seen more clearly in Figure S5, which shows the histogram of reaction time on


every task for responsive subjects only. Observe that this histogram is also clearly bimodal.


To interrogate this question further, we run the dip test of Hartigan and Hartigan (1985) on


each subject’s reaction times to determine which ones have multimodal reaction time distributions.


We can reject the null of unimodality at the 5% level for 26 out of 42 responsive subjects (61.9%).


This is more than the number of responsive subjects whose data are best fit by binary performance


functions, meaning that some subjects with logistic, SIC, or concave performance functions do not


have unimodal reaction time distributions. This suggests that rather than continuously adjusting


their quantity of attention as incentive levels increase, some subjects randomize between paying


a high quantity and a low quantity of attention, and the probability of paying a high quantity of


attention increases as incentive levels increase, resulting in a sort of “fuzzy” threshold at which
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Figure S4: Histogram of reaction times for all subjects


Figure S5: Histogram of reaction times for responsive subjects
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they begin paying attention.


A clear analogy can be drawn between these results and concepts from psychophysics (cf.


Chapter 12 of Frisby and Stone, 2010). By observing the probability of responding to or detecting a


stimulus as its intensity is increased, researchers can trace out a “psychometric function.” Classical


psychophysics predicts that this curve is binary: the stimulus is detected with certainty above a


certain threshold intensity and is undetected otherwise. Contrarily, modern psychophysics accounts


for the inherent stochasticity of the human perceptual apparatus and predicts a smoothly increasing,


sigmoidal psychometric curve: as the intensity of the stimulus is increased, the probability of


detecting it increases continuously; there is a wide range of stimulus intensities at which the stimulus


is ex-ante neither detected nor undetected with certainty. In our experiment, the incentive level is


analogous to stimulus intensity, and performance is analogous to the probability of signal detection.


Since there are both subjects with binary performance and subjects with sigmoidal performance


who have bimodal reaction time distributions, one possible explanation is that both types have an


incentive threshold at which they begin exerting effort or paying attention. The binary types are


certain about the location of this threshold, and thus, they behave according to the predictions of


classical psychophysics. The logistic and SIC types with estimated σ̂ ∈ (0, 2) also have a threshold,


but they are less certain about where that threshold is, and the further away they are from that


threshold, the more likely they are to behave in line with the predictions of classical psychophysics.


This produces a sigmoidal performance curve.


On the whole, this evidence suggests that for a large portion of the subject pool (61.9%),


there are two information-acquisition processes that they can employ in this task. Still, there


is a significant portion of the pool (38.1%) that is apparently able to adjust their quantity of


attention continuously. As was the case with previous categorizations of subjects, there is significant


heterogeneity.


S4 Angle Task


In addition to the “dots” tasks discussed in the main body of the paper, laboratory subjects also


completed 100 “angle” tasks. For each of these tasks, subjects were shown a pair of intersecting line
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Figure S6: Angle display for a task


segments of random lengthS5 and orientation and were told to identify the angle between them.


This angle could have been 35◦, 40◦, 45◦, 50◦, or 55◦, with each being equally likely. Subjects


were rewarded for a correct answer and received no reward for an incorrect answer. Therefore, the


“angle” tasks were uniform guess tasks of the same format as the “dots” tasks. Figure S6 shows


what this screen looked like to the subjects.


Table S7 presents linear regressions of correctness on incentive level and demographic covariates


for the entire laboratory subject pool. As was the case with the “dots” task, demographics are not


significant predictors of correctness. However, neither is incentive level. This evidence indicates


that this is not a task in which subjects generally respond to incentives.


S5 Online Experiment


In this appendix, we describe and present results from the online experiments mentioned in the


main body of the paper.


Subjects were recruited using the Amazon Mechanical Turk (MTurk) platformS6 and partic-


S5Giving the arms of the angle random length ensured that subjects could not simply measure the distance between
the endpoints of the arms to estimate the size of the angle.


S6In recent years, many experiments and surveys have been conducted on MTurk. Research has shown that results
from MTurk samples are similar to convenience samples typically used by researchers (e.g. student samples) and
are more representative of the U.S. population, though they also differ markedly in some psychological and political
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Table S7: Linear regression of correctness on incentive level and demographic covariates in the
“angle” tasks


(1) (2)


Incentive Level 0.0001 0.0001
(0.0002) (0.0002)


Age −0.001
(0.002)


Male −0.007
(0.014)


Bachelor’s −0.001
(0.017)


Econ/Psych/Neuro 0.028∗


(0.017)


$20 Prize 0.017
(0.013)


Dots First −0.015
(0.014)


Task Number −0.00001
(0.0002)


Constant 0.444∗∗∗ 0.461∗∗∗


(0.014) (0.036)


Observations 7900 7900
R2 1.16×10−5 0.0009818


Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors clustered on subject.
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Table S8: Online Demographics


Number of subjects n = 118


Gender (n = 117) 52.5% male; 47.5% female


Age (n = 118) Average: 32.48; St. dev.: 8.88


Highest level of education achieved (n = 118)
Some post-secondary 43.2%
Completed bachelor’s degree 50.0%
Completed graduate or professional degree 6.8%


ipated in the experiment on the Qualtrics platform. A total of 118 subjects completed the ex-


periment. Subjects completed 200 tasks, each of the “dots” type. Roughly half the subjects (57


subjects) were given a participation fee of $3 US and potential monetary prizes of $3, while the


other half (61 subjects) were given a participation fee of $5 US and potential monetary prizes of


$5 US.


S5.1 Demographics


Table S8 lists basic demographic data for the online subjects. The pool is fairly gender-balanced,S7


though it is slightly more male than female, and highly educated; over 55% of the pool has a


post-secondary degree.


The online pool is signficantly different from the laboratory pool in some ways. In particular,


the online pool is significantly older (one-tailed t-test of unpaired samples, p < 0.001) and has a


significantly greater proportion of subjects with bachelor’s degrees but no advanced degrees (one-


sided test of equality of proportions, p = 0.003).


S5.2 Rational Inattentiveness


S5.2.1 No Improving Attention Cycles


We test against weak positive monotonicity using the method of Doveh et al. (2002). At the 5%


level, we fail to reject positive monotonicity for 103 out of 118 online subjects (87.3%).S8


characteristics. See, for example, Berinsky et al. (2012) and Goodman et al. (2013).
S7One online subject declined to disclose their gender.
S8The optimization in the computation of the restricted regression for online subject 93 failed to converge, and so


we did not perform the test for them. That subject has a success rate in the tasks of 99% (i.e. they identify the true
state of nature correctly in 198 out of 200 tasks), and so we include them in the 103 online subjects who fail to reject
positive monotonicity.
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S5.2.2 No Improving Action Switches


We test for NIAS using the bootstrap procedure outlined in Section 5. 82 out of 118 online subjects


(69.5%) fail to reject NIAS.


Overall, this gives us 72 out of 118 online subjects (61.0%) whom we classify as rationally


inattentive. This is a significantly smaller portion than in the laboratory pool (one-sided test of


proportions, p < 0.001).


S5.3 Responsiveness to Incentives


We test for responsiveness using the full-sample and split-sample tests outlined in Section 5. At the


5% significance level 28 out of 72 online subjects (38.8%) who fail to reject rationality are responsive


to incentives. This is a significantly smaller portion than in the laboratory pool (one-sided test of


proportions, p = 0.009).


S5.4 Model Selection


We follow the same model selection procedures as in Section 5. As with the laboratory subjects,


the only models that best fit the subjects are binary response and logistic response. 2 out of 28


responsive subjects (7.1%) are best fit by constant performance, 8 out of 28 responsive subjects


(28.6%) are best fit by binary performance, 17 out of 28 responsive subjects (60.7%) are best


fit by logistic performance, and 1 out of 28 responsive subjects (3.6%) are best fit by the concave


performance function implied by normal signals. No subjects are better fit by the SIC generalization


of logistic performance than by logistic performance itself. Ignoring the subjects who are best fit


by constant response, and collapsing logistic and SIC performance into a single category, these are


similar to the proportions found in the laboratory. This seems to indicate that once the subset of


responsive subjects is identified, the incidence of different types of cost functions within it is stable


across demographic contexts.


S6 Application to the Delegation of Investment


The characteristics of the decision-maker’s cost function can obviously have effects on her own


decisions. But as we show in this appendix section, these characteristics can also have effects on
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economically-relevant outcomes when there is strategic interaction.


In order to demonstrate this notion, let us consider a situation in which an investor is deciding


which of n options to invest in, and he cannot split his investment across options. Suppose that


only one of these options can be a winner, in which case an investment in it will pay a net return of


x. Losing opportunities pay a net return of zero. This setup has the relevant features of a situation


where the success of an investment depends on the outcome of a contest. Many economic situations,


such as competing to be granted development rights by the government for a plot of land, take the


form of contests. Another salient example is a patent race, where various firms compete to be the


first to patent an invention, such as a drug or a piece of technology.


Suppose that the investor wishes to delegate researching these options to an expert. This is a


common occurrence in reality; people frequently solicit the services of financial advisors, presumably


because it is prohibitively difficult or costly for laypeople to research investment opportunities


themselves, while financial advisors who are trained to seek and interpret financial information can


research these opportunities at a much lower cost.


We can analyze this situation in a simple principal-agent framework, where the investor is


the principal and the expert is the agent.S9 The agent acquires information about the available


investment opportunities at a cost and selects one of the options on the principal’s behalf. Suppose


that the principal employs the agent with a contract that pays r if the agent correctly selects the


winner and zero otherwise.S10 Furthermore, suppose that a priori, each option is equally likely to


be the winner. Then, the agent’s problem can be represented as a uniform guess task, with the


reward for a correct answer being r. Consequently, the principal’s problem is


max
r∈[0,x]


(x− r)P ∗(r) (S1)


where P ∗(r) is the agent’s performance function.


As we established in Proposition 1, if the agent is rationally inattentive, then her performance


function is (weakly) increasing. Thus, the principal faces a trade-off between incentivizing the agent


S9We use male pronouns for the principal and female pronouns for the agent.
S10This type of contract is optimal for the principal if we assume that (a) there is a limited-liability constraint so


that the agent cannot earn a negative payoff in any state of the world, which implies that the principal cannot “sell
the firm” to the agent; and (b) the agent’s cost of an uninformative information structure is zero. As Caplin and Dean
(2015) demonstrate, the latter assumption is without loss of generality; it is not a testable restriction on information
cost functions.
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to acquire better information and giving up a larger portion of his net return upon success. The


exact nature of this trade-off depends on the potential net return x and the agent’s information


cost function. In the following subsections, we analyze the properties of the principal’s optimal


payment strategy r∗ under three of the cost function models fit by our data: S11 fixed costs;


mutual information; and normally-distributed signals.S12


S6.1 Fixed Costs


Suppose the agent has a fixed cost κ for acquiring information. If she pays the cost, then she learns


the winner with certainty. If not, then she learns nothing about the identity of the winner. Thus,


she chooses to acquire information if r − κ ≥ r
n , i.e. when r ≥ κn


n−1 .


Therefore, if x < κn
n−1 , then the reward required to incentivize the agent to acquire information


is higher than the potential net return, so the principal is better off not hiring the agent at all


and simply picking an option at random. If instead x ≥ κn
n−1 , then the principal could incentivize


information acquisition by paying as little as r = κn
n−1 . To ensure that this payment is not so high


than the principal could do better on his own, he requires that x
n ≤ x − κn


n−1 , which holds if and


only if x ≥ κn2


(n−1)2 . But since κn
n−1 <


κn2


(n−1)2 , the principal will not hire the agent unless x ≥ κn2


(n−1)2 .


To summarize: if x < κn2


(n−1)2 , then the principal does not hire the agent and selects an option


at random. If x ≥ κn2


(n−1)2 , then the principal hires the agent and gives her a payment of κn
n−1 , and


the agent picks the winner with certainty. This implies a discontinuity in the principal’s payment


as a function of the potential net return x. Figure S7 shows what this payment scheme looks like


for κ = 40.


S11We exclude Tsallis entropy costs from our analysis since the corresponding performance function does not in
general have a closed form (see Subsection 3.2 of the main paper), and its properties vary substantially with the σ
parameter. However, numerical simulations seem to indicate that the principal’s profit function is strictly quasiconcave
in the reward r paid to the agent (see the proof of Proposition S2 in Subsection S6.2 for why this is important), and
it can be confirmed that this is the case when σ = 2 (i.e. when costs are quadratic).
S12Some caution is required in applying the assumption of normally-distributed signals, because it implies that the


options have some existing ranking, and it is not clear what it means for the options to be “equidistant” from each
other. In any case, if the normal-signals and Tsallis models are excluded from consideration, then in our data, the
best-fitting model for each subject is either binary (fixed costs) or logistic (mutual information). (Results available
from the authors on request.)
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Figure S7: Optimal payment as a function of potential net return, fixed costs


S6.2 Mutual Information


Suppose the agent has a mutual-information cost function with cost parameter α. Then, since her


performance function is logistic (see Proposition 5), the principal chooses r to maximize:


x− r
(n− 1) exp


(
− r
α


)
+ 1


(S2)


If this maximand is strictly quasiconcave, then this problem has a unique solution for each x,


and the maximum theorem guarantees that the principal’s optimal choice of r∗ is continuous in x.


This turns out to be the case.


Proposition S2. If the agent has a mutual information cost function, then the principal’s optimal


payment strategy r∗(x) is continuous.


Proof. The principal’s maximand is:


x− r
(n− 1) exp


(
− r
α


)
+ 1


(S3)


23







As argued above, if this maximand is strictly quasiconcave in r, then this problem has a unique


solution for each x, and since it is continuous in both x and r, the maximum theorem guarantees


that the principal’s optimal payment strategy r∗(x) is continuous. Therefore, it simply remains to


be shown that the maximand is strictly quasiconcave. We begin by differentiating it with respect


to r:


(
x−r−α
α


)
(n− 1) exp


(
− r
α


)
− 1(


(n− 1) exp
(
− r
α


)
+ 1


)2 (S4)


Since the denominator in (S4) is always strictly positive, the sign of (S4) depends only on the sign


of the numerator. The numerator is strictly positive (negative) when:


(
x− r − α


α


)
(n− 1) exp


(
− r
α


)
> (<)1


⇐⇒ (n− 1)


(
x− r − α


α


)
> (<) exp


( r
α


)
(S5)


The LHS of (S5) is strictly decreasing, and diverges to positive infinity as r is taken to negative


infinity and to negative infinity as r is taken to positive infinity. The RHS of (S5) is strictly


increasing, and it approaches zero as r is taken to negative infinity and diverges to positive infinity


as r is taken to positive infinity. Therefore, by the intermediate value theorem, the LHS and RHS


must intersect, and they do so only at a single r.


Therefore, (S3) exhibits a region of strict increase up until the point where (n− 1)
(
x−r−α
α


)
=


exp
(
r
α


)
, after which it is strictly decreasing. Thus, (S3) is strictly quasiconcave.


To provide an example, suppose n = 5, α = 10, and x ∈ [5, 100]. (A graph of the principal’s


maximand (S2) is shown in Figure S8.) For these parameters, r∗(x) is continuous and increasing,


as shown in Figure S9.


S6.3 Normally-Distributed Signals


Suppose that the options are ranked and equidistant on some scale. For example, in the case


of bidding for development rights, the projects could be ranked by the estimated length of time
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Figure S8: Principal’s expected payoff as a function of payment for x = 20, mutual information
costs


Figure S9: Optimal payment as a function of potential net return, mutual information costs
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until project completion.S13 In this case, if the agent’s cost function satisfies the conditions of


Proposition 6, then it can be shown that the principal’s optimal choice of r∗ is continuous in x.


Proposition S3. If the options are ranked and equidistant, and the agent has a convex, increasing


cost of precision of normal signals with non-negative third derivative, then the principal’s optimal


payment strategy r∗(x) is continuous.


Proof.


d2


dr2
[(x− r)P ∗(r)]


=
d


dr
[−P (r) + (x− r) d


dr
P ∗(r)]


= − 2
d


dr
P ∗(r) + (x− r) d


2


dr2
P ∗(r) (S6)


(S6) is negative, since P ∗(r) is strictly increasing and strictly concave, and x > r, so the principal’s


ex-ante expected payoff is strictly concave in r. Therefore, there is a unique r∗ for each x, and by


the maximum theorem, r∗(x) is continuous.


Figure S10 shows what this payment scheme looks like if costs are linear in the precision of


normally-distributed signals, with a marginal cost of precision of 7.5.


S6.4 Welfare and Robustness


The properties of an agent’s information cost function also have implications for the robustness of


the model’s predictions, particularly for the principal’s welfare. If the principal is slightly — even


infinitesimally — misinformed about the parameters of an agent’s cost function, then this can have


major impacts on his welfare if the agent’s cost function is discontinuous.


Consider an agent with a fixed-cost information cost function, with cost parameter κ. Suppose


that the principal believes that the agent’s cost parameter is κ′ := κ − ε, where ε ∈ (0, κ). If the


principal had a correct assessment of the agent’s information costs, then he would pay her κn
n−1 for


a success, causing the agent to acquire information, and earning x− κn
n−1 in expectation. However,


since he misperceives her fixed cost for information acquisition as κ′, he instead offers (κ−ε)n
n−1 . This


S13Shorter completion times mean that the development will be more quickly available for public use, but may also
signal poor craftsmanship.
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Figure S10: Optimal payment as a function of potential net return, normally-distributed signals


is not enough to incentivize the agent to acquire information, resulting in expected earnings of


x
n −


κ−ε
n−1 . The expected welfare loss to the principal from this mistake is therefore (n−1)x


n −κ+ ε
n−1 ;


an arbitrarily small error produces a welfare loss on the order of (n−1)x
n −κ, which can be very large


if x is very large.


By contrast, this does not occur if the agent has a cost function that generates a continuous


performance function. In that case, the continuity of the performance function P ∗(r) implies that


the principal’s welfare (x−r)P ∗(r) is also continuous in r; this is because an agent with continuous


performance does not drastically adjust her behavior in response to small changes in incentives.


Therefore, by continuity, small mistakes on the principal’s part in assessing the agent’s cost function


parameters only produce small welfare losses.


Thus we have shown that the model’s welfare predictions are not robust to small (downward)


perturbations in the principal’s assessment of the agent’s costs when the agent has a discontinuous


cost function. Practically speaking, this means principals must exercise extra caution in a world


where agents have fixed-cost information cost functions, perhaps by intentionally overpaying agents


or by carefully studying them before hiring. Even a small error in designing the payment scheme
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could produce catastrophic welfare losses; a near-optimal contract does not necessarily produce a


near-optimal outcome for the principal. This problem does not present itself when the agent has a


cost function that generates continuous performance.
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