Hypothalamic dopamine signalling regulates brown fat thermogenesis

Cintia Folgueira1,2,3, Daniel Beiroa2,3, Begoña Porteiro2,3, Manon Duquenne4, Emma Puighermanal5, Marcos F. Fondevila2,3, Silvia Barja-Fernández1,3, Rosalia Gallego6, René Hernández-Bautista2, Cecilia Castelao1,3, Ana Senra2, Patricia Seoane-Collazo1,2,3, Noemi Gómez-Lado7,8,9, Pablo Aguiar7,8,9, Diana Guallar1,2, Miguel Fidalgo1,2, Amparo Romero-Pico2,3, Roger Adan10, Clemence Blouet11, Jose Luis Labandeira-García12,13, Françoise Jeanrenaud13, Imre Kallo14, Zsolt Liposits14, Javier Salvador2,3,15, Vincent Prevot1,4, Carlos Dieguez2,3, Miguel López2,3, Emmanuel Valjent1,5, Gema Frühbeck1,2,3,15, Luisa M. Seoane1,3*, and Ruben Nogueiras1,2,3*

Dopamine signalling is a crucial part of the brain reward system and can affect feeding behaviour. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after the onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the central nervous system to regulate energy balance.

Obesity has reached epidemic prevalence, and much research has focused on homeostatic and hedonic mechanisms underlying overconsumption of food and the regulation of body weight. Dopamine has the ability to modulate food consumption by both reward (hedonic) and hypothalamic (homeostatic) pathways. Among the five dopamine receptors (D1R, D2R, D3R, D4R and D5R), dopamine signalling through D1R and D2R regulates food intake. The increase in central dopaminergic signalling is often associated with the stimulation of feeding, while its decrease has the opposite effect; however, in the hypothalamus, the effects on food intake depend on the hypothalamic area targeted.

The clinical relevance of the D2R is well characterized and D2R agonists such as bromocriptine and cabergoline, have been widely used for the treatment of prolactinomas. Since 2009, bromocriptine has also been approved in the United States as an adjunctive treatment for type 2 diabetes, as it improves glucose tolerance and reduces fasting and postprandial plasma glucose levels in patients with diabetes. Antipsychotic drugs that block D2R are associated with increased appetite, weight gain and development of diabetes, and morbidly obese humans have less D2R availability. In addition, human studies have shown a higher prevalence of the Taq1A allele for the D2R in obese individuals and genetic variants influencing D2R signalling affect a significant portion of the population. However, the effects of bromocriptine and cabergoline on body weight are contradictory in different studies, albeit most of them non-randomized, reporting either a reduction or no significant effects on body weight or no significant effects on body weight in obese patients or those with type 2 diabetes.

In this study, we found that the central stimulation of D2R increases brown adipose tissue (BAT) activity in lean and DIO rodents in a food intake-independent manner. These central effects are located in GABAergic neurons in the LHA and the neighbouring ZI. D2R triggers orexin signalling, which leads to decreased protein kinase A (PKA) activity, increased phosphodiesterase 3B (PDE3B) activity on PKA, and decreased PI3K activity in the LHA.

1Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo, Hospitalario Universitario de Santiago, Instituto de Investigación Sanitaria, Santiago de Compostela, Santiago de Compostela, Spain. 2CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain. 3CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain. 4Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, University of Lille, CHU Lille, Lille, France. 5IGF, Inserm, CNRS, University of Montpellier, Montpellier, France. 6Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain. 7Group Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela, Santiago de Compostela, Spain. 8Molecular Imaging Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain. 9Nuclear Medicine Department University Clinical Hospital Santiago de Compostela, Santiago de Compostela, Spain. 10Brain Center Rudolf Magnus, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, the Netherlands. 11MRC Metabolic Disease Unit, University of Cambridge Metabolic Research Laboratories, WT-MRC Institute of Metabolic Science, Cambridge, UK. 12Networking Research Center on Neuromodulation, CIBERNED, Madrid, Spain. 13Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland. 14Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HÁS, Budapest, Hungary. 15Department of Endocrinology Nutrition, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain. *e-mail: luisamaria.seoane@usc.es; ruben.nogueiras@usc.es
and reduced ribosomal protein S6 (rpS6) levels. Of note, this thermogenic action depends on the sympathetic nervous system (SNS). Importantly, the clinical relevance of these findings is supported by the fact that patients treated with cabergoline for 12 months showed a significant weight loss, associated with augmented resting energy expenditure (REE), alongside metabolic improvement, through a prolactin-independent mechanism.

Results

Bromocriptine induces negative energy balance and thermogenesis. A single intracerebroventricular (ICV) injection of bromocriptine (40 and 80 µg per rat) significantly decreased body weight after 24h independently of food or water intake, while a dose of 20 µg per rat did not change body weight (Supplementary Fig. 1a–d). The dose of 80 µg per rat elicited a significant early increase in food intake but after 24h the food intake was similar between control and bromocriptine-treated animals. ICV injected bromocriptine-treated rats (40 µg per rat) showed increased energy expenditure (Supplementary Fig. 1e), BAT interscapular temperature (Supplementary Fig. 1f) and stimulation of 2-α-F-fluoro-2-deoxy-2-glucose (18F-FDG) uptake in BAT analysed by positron emission tomography-computed tomography (PET-CT) (Supplementary Fig. 1g); while no changes were found in body temperature or respiratory quotient (Supplementary Fig. 1h–i). Consistently, the analysis of histological sections revealed smaller lipid droplets in adipocytes of BAT from bromocriptine-treated rats (Supplementary Fig. 1j), increased BAT UCP1 protein levels (Supplementary Fig. 1k) and increased tolerance to cold exposure (Supplementary Fig. 1l). As expected, the central activation of D2R stimulated locomotor activity in the short-term (Supplementary Fig. 1m). To determine the relevance of physical activity on energy expenditure in relation to non-physical activity mechanisms (for example, resting metabolic rate), we performed correlations and found that energy expenditure and locomotor activity were positively correlated in the dark phase (right panel) but not in the light phase (left panel) (Supplementary Fig. 1n). In addition, we have also analysed energy expenditure (kcal h −1) during 2h of the light phase when animals were less active. During these 2h of the light phase, we did not see any difference in energy expenditure between vehicle and bromocriptine-treated rats (Supplementary Fig. 1o), suggesting that bromocriptine does not affect resting metabolic rate. Bromocriptine and cabergoline are used in patients with prolactin-secreting pituitary adenomas, but circulating levels of prolactin in rats treated with ICV injected bromocriptine remained unchanged when compared to control groups (Supplementary Fig. 1p).

In addition, we injected prolactin ICV into male mice at two different doses (1 and 10 µg per mouse) and after 24h (when bromocriptine caused a significant reduction in body weight independent of food intake), we failed to find any statistically significant effect on body weight and food intake (Supplementary Fig. 2a,b). In keeping, prolactin ICV did not affect BAT interscapular temperature (Supplementary Fig. 2c). Overall, these results indicate that the central administration of prolactin does not alter BAT activity.

To rule out the possibility that centrally injected bromocriptine leaks out of the central nervous system (CNS) into the circulation and elicits a response by directly acting at a peripheral level, we administered bromocriptine peripherally, using the same dose as the one injected centrally. We were unable to detect changes in food intake, body weight or BAT temperature (Supplementary Fig. 3a–c). Consistent with this, when we injected an adenosinergic vector encoding a short hairpin RNA (shRNA) against D2R in the BAT, the knockdown of D2R specifically in BAT (Supplementary Fig. 3d,e) did not prevent the effects of central bromocriptine on body weight (Supplementary Fig. 3f), food intake (Supplementary Fig. 3g), BAT interscapular temperature (Supplementary Fig. 3h) or BAT UCP1 levels (Supplementary Fig. 3i). In addition, to assess whether the effect of bromocriptine on BAT was sex-dependent or not, we injected a single ICV injection of bromocriptine (40 µg per rat) in females, and found that identically to males, it significantly decreased body weight and white fat mass after 24h, concomitant with increased BAT interscapular temperature, and this effect was again independent of food intake (Supplementary Fig. 4a–c).

We next investigated if the effects of central bromocriptine may be long-lasting. Therefore, we chronically infused bromocriptine (40 µg per rat) over 2 weeks in rats fed a chow diet. We found that cumulative food intake remained unchanged, while body weight gain was significantly lower in rats treated with bromocriptine (Fig. 1a,b). Histological analyses revealed smaller lipid droplets in BAT of bromocriptine-treated rats, as well as an increased protein content of UCP1, FGF21 and PRDM16 (Fig. 1c,d). β-adrenergic receptors represent a key link involved in the regulation of adipose tissue metabolism by the SNS (refs. 22–24). To determine whether the central bromocriptine action on BAT was mediated by the SNS, we injected the β3-adrenergic receptor-specific antagonist SR59230A (refs. 25–26) and found that it reversed the effects of central bromocriptine on weight gain (Fig. 1a), BAT lipid content and BAT levels of thermogenic markers (Fig. 1c,d). After that, we assessed the efficacy of the chronic central infusion of bromocriptine in diet-induced obese (DIO) rats. Similarly, to the results obtained in rats fed a chow diet, central bromocriptine reduced body weight gain and adiposity in a feeding-independent manner (Fig. 1e–g). Consistently, energy expenditure was also higher (Fig. 1h), with changes neither in respiratory quotient nor locomotor activity (Fig. 1i,j). BAT from bromocriptine-treated DIO rats showed smaller lipid droplets and increased protein content of thermogenic markers (Fig. 1k,l). Moreover, the pharmacological blockade of the β receptor reversed the effects of central bromocriptine on weight gain, adiposity, energy expenditure, as well as BAT morphology and protein levels of UCP1 (Fig. 1f–l). To finally characterize the relevance of the SNS, triple knockout (TKO) (β1-, β2- and β3-adrenergic receptors) mice were

Fig. 1 Chronic central infusion of bromocriptine reduces diet-induced obesity. a–d, Effects of a 14-d ICV infusion of bromocriptine (BC) (40 µg per rat, daily) and subcutaneous injection of SR59230A hydrochloride (3 mg kg −1) on body weight (a); cumulative food intake (n = 8) (b); representative histology of BAT lipid content and quantification of lipid droplet average area (n = 7) (c); scale bars, 200 µm (d); protein levels of BAT UCP1, FGF21, PRDM16 and PGC1α in rats fed a chow diet (n = 7) (d). e–l, Effect of a 10-d ICV infusion of BC (40 µg per rat, daily) and subcutaneous injection of SR59230A hydrochloride (3 mg kg −1) on cumulative food intake (e); body weight change (f); white mass gain (g); energy expenditure (EE) (h); respiratory quotient (RQ) (i); locomotor activity (n = 7 vehicle, n = 8 BC and n = 7 BC + SR59230A hydrochloride treatment) (j); representative histology of BAT lipid content and quantification of lipid droplet average area (n = 7 each treatment) (k); scale bars, 200 µm (k); protein levels of BAT UCP1, FGF21, PRDM16 and PGC1α (n = 7 vehicle, n = 8 BC and n = 7 BC + SR59230A hydrochloride treatment) (l) in rats fed a HFD (m,q). Effect of a 7-d ICV infusion of BC (40 µg per mouse, daily) on body weight change (m); cumulative food intake (n); white mass change (o); representative histology of BAT lipid content and quantification of lipid droplet area, scale bars, 200 µm (p); protein levels of BAT UCP1 (n = 5 WT vehicle and WT BC mice, n = 4 TKO vehicle and n = 6 TKO BC mice) (q). Protein data were expressed in relation (%) to control (vehicle-treated) animals. α-tubulin was used to normalize protein levels. Dividing lines indicate splicings within the same gel. Values are represented as the mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001 (a,f,m).
centrally infused with bromocriptine for 7 d. Bromocriptine did not affect food intake in WT or TKO mice, but significantly decreased body weight gain and white fat mass in WT mice, but not in TKO mice (Fig. 1m–o). In agreement with this, central bromocriptine reduced BAT lipid content and increased BAT UCP1 protein levels in WT but not in TKO mice (Fig. 1p,q).
D2R in the LHA and ZI activates BAT in DIO rats. D2R is widely expressed in the hypothalamus26. Therefore, we examined the specific activation of the dopaminergic system in different hypothalamic sites. We found that a single injection of bromocriptine in the LHA and the ZI (Supplementary Fig. 4f) of rats fed a chow diet decreased body weight and stimulated BAT temperature after 24 h in a feeding-independent manner (Supplementary Fig. 4g–i). In these animals, circulating levels of prolactin did not change significantly compared to control groups (Supplementary Fig. 4j).

When vehicle or bromocriptine were injected in the ventromedial nucleus (VMH) of rats fed a chow diet (Supplementary Fig. 4k), we found that the body weight of vehicle-treated rats decreased after 24 h, but bromocriptine-treated animals lost more weight and showed higher BAT temperature than controls independent of changes in feeding (Supplementary Fig. 4l–n). Notably, the central injection of bromocriptine in the LHA/ZI (Fig. 2a–e), but not within the VMH (Fig. 2f–h), of DIO rats reduced body weight, increased interscapular temperature, reduced the lipid content in BAT and increased BAT UCP1 protein levels without changing food intake (Fig. 2a–h).

We next used a designer receptor exclusively activated by designer drugs (DREADD) approach to specifically activate D2R neurons in the LHA and the ZI. D2R-Cre mice fed a chow diet were bilaterally injected with AAV-hSyn-DIO-hM3D(Gq)-mCherry in the LHA and the ZI, where its expression was located (Fig. 2i). More specifically, D2R-mCherry neurons occupy the LHA area defined by the fornix/perifornical nucleus, the nigrorstratial bundle, cerebellar peduncle and the medial tuberal nucleus. After 3 weeks, activation of hM3D(Gq)-mCherry by intraperitoneal (i.p.) injections of clozapine-N-oxide (CNO) (1 mg kg⁻¹) leads to a decrease in body weight without changes in feeding and water intake (Fig. 2j,k). The decrease in body weight was associated with higher interscapular temperature, energy expenditure and BAT UCP1 protein levels, alongside decreased lipid content in BAT with unaltered body temperature, RQ, locomotor activity, resting metabolic rate or plasma prolactin levels (Fig. 2l–r). When animals were exposed to 4 °C, the group with D2R activated in the LHA/ZI showed a cold resistance as demonstrated by an increased capacity to maintain body and BAT temperature (Fig. 2a).

Since clozapine metabolite rather than CNO has been shown to mediate the activation of DREADD receptor after i.p. injection27 and clozapine has some affinity with D2R, we also performed an independent experiment using this compound. Similar to CNO, the injection of clozapine decreased body weight and stimulated BAT temperature (Supplementary Fig. 4o,q). We next evaluated the phenotype of mice after the chemogenetic activation of D2R neurons at thermoneutrality (30 °C). At 30 °C, the activation of D2R neurons in the LHA and ZI resembled the effects found at 23 °C described above because the mice presented lower body weight, increased interscapular temperature and energy expenditure without changes in body temperature or locomotor activity (Supplementary Fig. 5a–f). We also performed correlations between energy expenditure and locomotor activity but failed to find any correlation (Supplementary Fig. 5g). In addition, energy expenditure did not change during the 2 h of the light phase when animals were less active, suggesting that activation of D2R neurons in the LHA/ZI does not affect resting metabolic rate (Supplementary Fig. 5g).

To test whether D2R neurons located in other hypothalamic areas were also important for the regulation of BAT activity, we performed chemogenetic activation of D2R neurons in the mediobasal hypothalamus (MBH: arcuate nucleus (ARC) + VMH), including the tuberoinfundibular dopamine (TIDA) neurons controlling prolactin secretion from the anterior pituitary28, and in the dorso-medial nucleus of hypothalamus (DMH). We found that chemogenetic activation of D2R neurons in the MBH and DMH did not affect body weight, interscapular temperature or white fat mass (Supplementary Fig. 6).

The effect of bromocriptine on BAT is dependent on D2R in the LHA/ZI. We stereotaxically delivered an adeno viral vector encoding a shRNA against D2R in the LHA/ZI in rats fed a chow diet. Infection efficiency in the LHA and ZI was assessed by expression of green fluorescent protein (GFP) and decreased levels of D2R (Fig. 3a,b). Although the selected titre of the adenoviral vector inhibiting D2R in the LHA/ZI did not affect either body weight or food intake, it attenuated bromocriptine-induced weight loss (Fig. 3c,d). In agreement with these results, the effect of bromocriptine on adiposity, BAT temperature, lipid content and UCP1 levels was absent when D2R was inhibited in the LHA/ZI (Fig. 3e–h). Furthermore, rats receiving bromocriptine in the LHA/ZI displayed a significant increase in c-FOS staining in the raphe pallidus (RPa) and the inferior olive (IO), which was indicative of higher neuronal activation (Fig. 3i).

However, the knockdown of D2R in the VMH (Supplementary Fig. 7a) of rats fed a chow diet did not ameliorate bromocriptine-induced weight loss, adiposity or interscapular temperature (Supplementary Fig. 7b–e). To further confirm the relevance of the LHA/ZI in the actions of bromocriptine, we performed another experiment injecting the adenoviral vector inhibiting D2R in the LHA/ZI (Supplementary Fig. 7f) and 2 weeks later, mice were treated with systemic bromocriptine at a dose higher than the one administered ICV. This i.p. dose (5 mg kg⁻¹) decreased body weight, WAT mass and activated BAT temperature and UCP1 protein levels (Supplementary Fig. 7g–k). However, these effects were completely abolished when the D2R was inhibited in the LHA/ZI (Supplementary Fig. 7g–k).

D2R action in GABAergic neurons requires orexin to modulate BAT. The LHA and the ZI are mainly composed of multiple neuronal populations expressing different neuropeptides and

Fig. 2 | Stimulation of D2R in the LHA/ZI stimulates BAT activity. a–e. Effect of specifically injecting BC (40 μg per rat) in the LHA/ZI on body weight change (a) and food intake (b) (n = 9 each treatment); infrared thermal images and quantification of BAT interscapular temperature (n = 5) (c); representative histology of BAT lipid content and quantification of lipid droplet average area (n = 5), scale bars, 200 μm (d); protein levels of BAT UCP1 (n = 7) after 24 h (e). f–h. Effect of specifically injecting BC (40 μg per rat) in the VMH on body weight change (f), food intake (g) and infrared thermal images and quantification of BAT interscapular temperature after 24 h (h) (n = 9 each treatment). i. Representative mCherry expression in the hypothalamic LHA/ZI after stereotoxic injection of hSyn-DIO-hM3D(Gq)-mCherry AVV, scale bar, 0.2 mm. j,k. Effect of the stereotoxic injection of hSyn-DIO-Hm3D(Gq)-mCherry AVV in the LHA/ZI of D2R-Cre mice on body weight change (j), food intake and water intake (k). l–u. Infrared thermal images and quantification of BAT interscapular temperature (l), and body temperature (n = 7 per group) (m); respiratory quotient (n); locomotor activity (o); energy expenditure (n = 5) (p); correlation between energy expenditure and locomotor activity in the dark phase, in the light phase and energy expenditure during 2 h of the light phase (Pearson correlation test) (q); representative histology of BAT lipid content (n = 6), scale bars, 200 μm (r); protein levels of BAT UCP1 (s); plasma prolactin levels (n = 7 vehicle and n = 6 CNO) after 24 h (t); and body temperature and BAT interscapular temperature in cold exposure (4 °C) (n = 9) (u). Protein data were expressed in relation (%) to control (vehicle-treated) animals. α-tubulin was used to normalize protein levels. Dividing lines indicate splicings within the same gel. The experiments were repeated five times (i). Data are mean ± s.d. Statistical differences according to a two-sided Student’s t-test (e–h,j,l,m,u) or two-sided Mann–Whitney U-test (a–d,k,n–s).
neurotransmitters. To identify which neuronal populations were expressing D2R, we used a D2R-cre:Ribog mouse line\(^6\). HA immunoreactivity allowing the identification of D2R-positive cells was detected in GABAergic and glutamatergic neurons in the LHA and the ZI, but not in cells expressing MCH or orexin (Fig. 3). To discover the functional relevance of GABAergic and glutamatergic neurons in
the actions of D2R, we over-expressed D2R in these neuronal populations injecting a viral vector (Ad-hSyn-DIO-D2R) in the LHA/ZI of VGlut2-ires-cre and Vgat-ires-cre mice. Fluorescent activated cell sorting (FACS) demonstrated that the virus targeted 198.2 ± 10.2 cells per animal in the LHA/ZI and confirmed D2R expression in GABAergic and glutamatergic neurons (Fig. 4g). The gating strategy for FACS is detailed in Supplementary Fig. 8. We found that overexpression of D2R in GABAergic neurons (Fig. 4f–k), but not glutamatergic cells of the LHA/ZI (Fig. 4a–e), reduced body weight and increased interscapular temperature and UCP1 protein levels independent of food intake. In line with this, the inhibition of D2R in GABAergic neurons of the LHA/ZI using a viral vector expressing a shRNA against D2R (Ad-hSyn-DIO-shD2R) increased body weight and decreased interscapular temperature when compared to control mice (Fig. 4l–o).

Since GABA regulates the activity of different neuronal populations in the LHA, we next tested whether the effects of the hypothalamic dopamine system required orexin or MCH, two neuropeptides known to be involved in thermoregulation3,4. We found that bromocriptine administered ICV increased orexin, but not MCH, messenger RNA levels in the LHA (Supplementary Fig. 9a). Similarly, bromocriptine directly injected in the LHA/ZI augmented orexin protein levels (Supplementary Fig. 9b), the knockdown of D2R in the LHA/ZI prevented bromocriptine-induced orexin protein levels (Supplementary Fig. 9c), and the chemogenetic activation of D2R in LHA/ZI stimulated orexin levels (Supplementary Fig. 9d). The specific isolation of the LHA/ZI was corroborated by measuring protein levels of orexin and MCH, which are specifically located in the LHA and were not detected in the VMH (Supplementary Fig. 9e).

There are no specific markers for the ZI. The isolated micropunches included the LHA and the ZI because, due to their neighbouring localization and the lack of specific markers, it is virtually impossible to separate the ZI from the LHA. Moreover, the specificity of the antibodies for D2R, orexin and MCH were tested in D2R null mice, orexin null mice and rats injected with an MCH antisense oligonucleotide, respectively (Supplementary Fig. 10a).

To investigate the mechanistic link between LHA D2R and the orexin system, we next assessed the effects of central bromocriptine in mice lacking orexin. We found that while bromocriptine decreased body weight in a food-independent manner, increased interscapular temperature, decreased lipid content in BAT and up-regulated BAT UCP1 protein levels in WT mice it was unable to exert these actions in orexin-deficient mice (Fig. 4p–t).

To further characterize the role of orexin as a mediator of dopamine actions, we performed chemogenetic stimulation of D2R neurons in the LHA/ZI and concomitant treatment with the orexin receptor 1 antagonist SB-334867 (ref. 32). Our findings demonstrated that the effects of D2R activation in the LHA/ZI on body weight, interscapular temperature, BAT lipid content and UCP1 levels were completely blocked when SB-334867 was injected ICV (Fig. 4u–x).

PDE3B and PKA mediate the actions of bromocriptine. PKA signalling has been related to non-metabolic dopamine D2R actions in some extrahypothalamic areas33,34. Herein, we measured phosphorylated CAMP response element-binding protein (pCREB) as a marker of PKA activity35. We found that both bromocriptine administered either ICV or in the LHA/ZI (Fig. 5a,b) and chemogenetic activation of D2R in the LHA/ZI (Fig. 5c) decreased pCREB protein levels, an effect that was blunted by the injection of the orexin receptor 1 antagonist (Fig. 5c). This decrease in pCREB levels was also detected after the injection of orexin A, an effect blocked by the orexin receptor 1 antagonist (Fig. 5d). Thus, these data indicate that both bromocriptine and orexin modulate PKA activity.

Central injection of the specific PKA activator Sp-cAMPS (90 ng per rat)36,37, abolished the effects of bromocriptine on body weight, white mass, BAT interscapular temperature, lipid content and UCP1 protein levels in a feeding-independent manner after 24 h (Fig. 5e–j). Furthermore, the administration of the PKA inhibitor H-89 (62 ng per rat)36,38 in the LHA/ZI recapitulated the effects of bromocriptine, since it decreased body weight, white mass and BAT lipid content and stimulated BAT interscapular temperature and UCP1 protein levels (Fig. 5k–p) independent of food intake.

Phosphodiesterases (PDEs) are enzymes that break a phosphodiester bond and are classified in different families. PDE3 is highly sensitive to the inhibition of CAMP hydrolysis by cGMP, and there are 2 PDE isoforms that are encoded by different genes (PDE3A and PDE3B)39. Hypothalamic PDE3B was found to play a relevant role in regulating the action of leptin on feeding40 and insulin41. PDE3B is also related to hypothalamic letpin signalling during the development of diet-induced obesity42. We measured protein levels of PDE3B in the LHA/ZI of mice and found that after the chemogenetic stimulation of D2R in this hypothalamic area, PDE3B levels were increased compared to control mice (Fig. 5q). Then, we injected ICV the PDE3 inhibitor cilostamide at a reported dose (10 μg per mouse)43 that did not affect body weight or food intake (Fig. 5r,s). However, this dose of cilostamide blocked the effects of chemogenetic activation of D2R on body weight and interscapular temperature (Fig. 5t–v). Finally, we injected cilostamide ICV in mice where D2R was over-expressed in GABA neurons injecting the Ad-hSyn-DIO-D2R in the LHA/ZI of Vgat-ires-cre mice; our data showed that cilostamide ameliorated the suppression of body weight and stimulation of BAT activity and increased energy expenditure induced by D2R overexpression in GABA neurons (Fig. 5w–z). Overall, these results indicate that PDE3B mediates the central effects of the hypothalamic dopamine system within LHA/ZI on body weight and BAT activity.

rpS6 in the LHA/ZI modulates the actions of bromocriptine. PKA is known to regulate rpS6 (refs. 44,45). Thereby, we investigated the possibility that rpS6 was mediating the actions of bromocriptine on energy balance. Phosphorylated levels of rpS6 (p-rpS6) were significantly decreased after the injection of bromocriptine ICV (Fig. 6a,b) or in the LHA/ZI (Fig. 6c), an effect that was blunt when D2R was knocked down specifically in the LHA/ZI (Fig. 6d) and when bromocriptine was injected in orexin-deficient mice (Fig. 6e). The chemogenetic activation of D2R in the LHA/ZI also resulted in
lower P-rpS6 protein levels, and this effect was prevented by the antagonism of orexin receptor 1 (Fig. 6f). In line with this, orexin, which also down-regulates P-rpS6 levels failed to do that when the orexin receptor 1 antagonist was given (Fig. 6g). These results suggest that both D2R and orexin signalling were important for the modulation of P-rpS6. Importantly, the effects of bromocriptine on P-rpS6 were specific, because when we measured hypothalamic protein levels of multiple molecules known to have important effects on energy homeostasis such as phosphorylated c-Jun N-terminal kinase (pJNK), JNK, phosphorylated protein kinase B (pAKT), AKT or...
mammalian target of rapamycin (mTOR), they remained unaltered after bromocriptine treatment (Supplementary Fig. 10b). In addition, we found that the administration of H-89 in the LHA/ZI decreased P-rpS6 levels (Fig. 6h) and that the activation of PKA by Sp-cAMPS blunted bromocriptine-induced rpS6 inhibition (Fig. 6i).

Given that rpS6 was regulated by bromocriptine/orexin/PKA, we next performed a functional study using adenovirus encoding a constitutively active form of S6K (CA-S6K-Ad)61 in the LHA/ZI. We confirmed the efficiency of the viral vector by detecting increased P-rpS6 protein levels 8 d after the stereotaxic administration of CA-S6K-Ad (Fig. 6j). Although the dose of the adenoviral vector activating S6K in the LHA/ZI did not affect food intake or body weight, it attenuated bromocriptine-induced weight loss (Fig. 6k,l), the increase in interscapular temperature (Fig. 6m), the reduction of lipid content in BAT (Fig. 6n) and the up-regulation of BAT UCP1 (Fig. 6o). To note, the activation of S6K did not modify the bromocriptine-induced orexin levels in the LHA/ZI, confirming that rpS6 is downstream orexin (Ad Null LHA/ZI + vehicle ICV: 100 ± 9.1, Ad Null LHA/ZI + bromocriptine (40 ug per rat) ICV: 136.7 ± 9.6, Ad S6K1 LHA/ZI + vehicle ICV:104.0 ± 8.9. Ad S6K1 LHA/ZI + bromocriptine (40 ug per rat) ICV: 126.2 ± 6.8).

Dopamine agonism decreases body weight in patients with hyperprolactinemia. In the retrospective study after one year of cabergoline treatment instauration with 0.5 mg twice weekly all patients normalized the hyperprolactinemia irrespective of sex. Side effects were infrequent and very mild (nausea and postural hypotension) and no patient was withdrawn from the treatment for this reason. A statistically significant decrease in body weight and body mass index (BMI) were observed (Table 1 and Fig. 7a). Note that a huge inter-individual variability in weight loss was evident (Fig. 7a). Of interest, after 12 months of cabergoline treatment, a statistical improvement in glucose metabolism as evidenced by decreases in glucose and insulin concentrations as well as in the homeostatic model assessment insulin resistance (HOMA-IR) index was observed. The same was true for the lipid profile with significant reductions in the levels of triglycerides, total and LDL cholesterol. No sex differences were observed with regards to both the anthropometric and metabolic changes.

Dopamine agonism increases energy expenditure in patients with hyperprolactinemia. To gain more insight into the potential impact of dopamine agonism on body weight, body composition, REE and metabolic changes were analysed in a prospective study in patients with hyperprolactinemia. As observed in the retrospective study one year after cabergoline treatment instauration with 0.5 mg twice weekly all patients normalized the hyperprolactinemia irrespective of sex. Side effects were again infrequent and very mild (nausea, postural hypotension and dizziness) with no patient withdrawing from the treatment. In this case, the statistically significant reduction in body weight and BMI was already observed after 3 months of cabergoline treatment (Fig. 7b) and persisted after 12 months (Table 1). Again, patients exhibited a huge inter-individual variability in weight loss both after 3 and 12 months following cabergoline treatment irrespective of the weight category (Fig. 7b).

The magnitude of weight loss was greater after 3 months when compared to 12 months. Note, following cabergoline treatment body composition analysis showed a significant decrease of both total and visceral adiposity as evidenced by reduction of body fat percentage and waist circumference, respectively (Table 1). In line with the anthropometric changes observed, a statistically significant increase in REE was documented expressed in absolute terms or adjusted by either total body weight or fat-free mass. Importantly, patients showed the REE predicted from the Harris–Benedict equation before starting the cabergoline treatment, however after 3 months of treatment the REE was significantly higher than the theoretical REE (Fig. 7c); and there was a positive correlation between the REE adjusted per body weight after cabergoline treatment and weight loss (Fig. 7d). Cabergoline treatment was followed by a significant improvement in glucose metabolism as evidenced by decreases in glucose and insulin concentrations as well as in the insulin resistance HOMA-IR index, which was already evident after 3 months. Triglyceride concentrations also significantly decreased after 3 and 12 months of cabergoline, although in this case no changes in total, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol levels were observed. As in the retrospective study, no significant differences in the anthropometric, REE and metabolic effects between men and women took place.

Discussion

Our findings indicate that the brain dopamine system directly activates BAT thermogenesis in a feeding-independent manner. More specifically, these actions are mediated by the stimulation of D2R in GABAergic neurons located within the LHA and the ZI, which activates the SNS and ultimately leads to the increase of UCP1, BAT temperature and energy expenditure. This process is mediated by the up-regulation of orexin and PDE3B, which in turn decreases cAMP and the activity of PKA and rpS6. These findings provide information about the brain site and mechanisms by which fat mass decreases in response to the stimulation of CNS D2R activity, independently of anorexigenic actions. We also observed that patients treated with cabergoline, a D2R agonist, for 12 months showed a reduction in BMI and body fat together with an increase in REE and an improvement in glucose and lipid metabolism.

The mechanisms by which central dopamine affects body weight are widely assumed to be related to food intake and reward17,44.
Within the hypothalamus, dopamine levels in the LHA immediately increase in response to feeding and normalize after meal consumption45-47, and injection of D2R antagonists in the LHA reversesamphetamine-induced anorexia48,49. However, dopamine levels in the VMH decrease after feeding and increase during fasting50 and dopamine injection in this area increased meal size while decreasing
meal number11. In line with this, tyrosine hydroxylase neurons of the ARC excited AgRP neurons and inhibited POMC neurons, suggesting that dopamine has anorexigenic action in this hypothalamic site12. More recently, one report has shown that activation of striatal D2R reduced BAT thermogenesis and energy expenditure, and accelerated obesity despite reduced eating13. The study supported the idea that the dopamine system may exert different actions depending on the hypothalamic site. Nevertheless, some reports showed that although chronic obesogenic diets reduce striatal D2R function, striatal D2R down-regulation does not lead to obesity14,15, suggesting that changes in striatal D2R expression could be a consequence rather than the cause of obesity.

In addition to the well-known effects on food intake, the hypothalamic areas where D2R is highly expressed, are also important centres for the control of BAT activity52. Therefore, we hypothesized that D2R stimulation at this level could trigger BAT thermogenesis. We found that chronic central infusion of bromocriptine increases BAT activity and ameliorates diet-induced obesity, independently of feeding. These effects are regulated by the SNS since its pharmacological or genetic disruption blunts bromocriptine-induced effects on BAT. The hypothalamic area responsible for the effects of bromocriptine resides in the LHA and the ZI because pharmacological and chemogenetic stimulation of D2R in these areas reduces HFD-induced adiposity due to increased BAT activity and higher energy expenditure. The chemogenetic stimulation of D2R neurons in the LHA/ZI, but not in the VMH or DMH, also stimulated BAT activity and decreased adiposity in conditions of thermoneutrality. Supporting these data, the loss-of-function of D2R by shRNA in the LHA/ZI was enough to block the actions of central and peripheral bromocriptine on BAT function. Therefore, these results indicate that the site of action of the dopamine system to regulate BAT activity occurs specifically in the LHA/ZI but not in other hypothalamic regions.

In line with this, even though dopamine receptors have been detected in brown adipocytes and dopamine stimulates thermogenesis in these cells7, when we inhibited D2R in BAT, central bromocriptine was still able to decrease body weight and increase BAT temperature. Overall, our in vivo results indicate that the thermogenic action of bromocriptine requires the presence of D2R in the LHA/ZI, while D2Rs located in BAT are not necessary. Previous reports have suggested that the effects on food intake occur in the ARC and VMH and our present findings indicate that chemogenetic activation of D2R in the MBH, which includes ARC and VMH, or in the DMH, does not affect BAT thermogenesis while D2R neurons in the LHA and ZI regulate BAT and increase energy expenditure. Therefore, the effects of dopamine on food intake from those on energy expenditure are dissociated since dopamine requires the ARC to regulate food intake22 and the present study indicates that dopamine actions in the LHA and ZI control BAT activity and energy expenditure.

The LHA and ZI are heterogeneous brain areas containing numerous genetically distinct cell populations that use a plethora of signaling mechanisms. Our findings indicate that D2R is located in both glutamatergic and GABAergic cells, but only genetic manipulation of D2R in GABAergic neurons exert marked effects on body weight. This is of relevance because both GABA neurons and dopamine modulate orexin expression44,45. A key role of orexin is related to energy expenditure via the regulation of thermogenesis11,12,40,41. However, despite these data, it was totally unknown whether the interaction with the central dopamine system could play a significant role in energy homeostasis. To address that possibility, we investigated whether the central thermogenic effect of bromocriptine was associated with orexin function. Our findings indicate that central stimulation of D2R increased orexin expression and that bromocriptine failed to activate BAT thermogenesis in orexin-deficient mice. In agreement with this, the effect of the chemogenetic stimulation of D2R neurons in the LHA/ZI was blunted after the central blockade of the OX1R. Thus, our results indicate that orexin mediates the thermogenic effects of brain D2R stimulation.

Dopamine has been related with cAMP-dependent signalling. More precisely, the activation of D2R inhibits69 while the D2R antagonist haloperidol promotes the stimulation of cAMP-dependent PKA and increased the phosphorylation of rpS6 in neurons of the striatum70. Moreover, PDE and more precisely PDE3B is highly sensitive to inhibition of cAMP hydrolysis by cGMP71. Hypothalamic PDE3B plays a relevant role in regulating the action of leptin72 and insulin73. Our results indicate that PDE3B mediates the central effects of the dopamine system on body weight and BAT activity. Thus, our current model is that high levels of PDE3B degrade cAMP and these low levels of cAMP subsequently determine the low activity of PKA. Hypothalamic PKA74,75 and rpS676 have been reported to play a relevant role in the control of energy balance, but their role within the LHA is still unexplored. Furthermore, PKA has been identified as a regulator of rpS6 in neuronal cells77. Therefore, we hypothesized that bromocriptine might be using this pathway in the LHA to exert its actions on BAT. Our findings demonstrate that both pharmacological and chemogenetic activation of D2R decreased PKA activity, measured by the surrogate marker pCREB. Accordingly, the direct injection of the PKA inhibitor named H-89 in the LHA/ZI stimulated BAT activity and decreased body weight, and the activation of PKA by Sp-cAMPS totally blunted bromocriptine effects on weight loss, BAT temperature and UCP1 expression. Overall, these results indicate that bromocriptine-mediated actions on BAT activity are mediated by PKA-catalysed phosphorylation of rpS6. In line with our findings, previous studies have shown that the inactivation of central PKA, achieved by the disruption of several of its subunits causes resistance to diet-induced obesity46,47. However, our study addresses the relevant role of PKA in the LHA/ZI.

In line with the findings made in rodents, dopamine agonism in both our retrospective and prospective studies of patients with

Fig. 5 | PKA mediates the effects of bromocriptine on BAT. a–d, Phosphorylated levels of CREB in the LHA/ZI after 2-h ICV (a) and 24-h specific injection of BC (40µg) in the LHA/ZI (n = 7) (b); injection of AAV-hsYN-DIO-hM3D (Gq)-mCherry and the ICV injection of SB-33467 (4µg) (n = 5–6) (c); ICV injection of orexin (OX) (10µg) and SB-33467 (4µg) after 24 h (n = 5–9) (d). e–j, Effect of the ICV injection of BC (40µg) and Sp-cAMPS (90ng) on body weight change (e), food intake (f) and white mass gain (g) (n = 9); and BAT temperature (h) (n = 7–8). i, Histology of BAT lipid content and quantification of lipid droplet area. j, Immunostaining of UCP1 and quantification in BAT (n = 7) after 24 h. k–p, Effect of the LHA/ZI injection of the specific PKA inhibitor H-89 (62ng) on body weight change (k), food intake (l), white mass gain (m) and BAT temperature (n) (n = 11–12); histology of BAT lipid content and quantification of lipid droplet area (n = 10) (o); protein levels of BAT UCP1 (n = 7) after 24 h (p). q, Effect of the injection of AAV-hSyn-DIO-hM3D (Gq)-mCherry in the LHA/ZI of D2R-cre mice on PDE3B levels in the LHA/ZI (n = 6), r,s, Effect of the ICV injection of cistolamide (10µg) on body weight (r) and food intake (s) (n = 7). t–v, Effect of the injection of AAV-hSyn-DIO-Hm3D (Gq)-mCherry in the LHA/ZI of D2R-cre mice and the ICV injection of cistolamide (10µg) on body weight (t), food intake (u) and BAT temperature (v) (n = 6). w–z, Effect of the injection of Ad-hSyn-DIO-EGFP or Ad-hSyn-DIO-D2R-EGFP in the LHA/ZI of Vgat-ires-cre mice and ICV cistolamide (10µg) on body weight (w), food intake (x), BAT temperature (y) and energy expenditure (EE) after 24 h (z) (n = 7–8). Dividing lines indicate splicings within the same gel. α-tubulin, β-actin and GAPDH were used to normalize protein levels. Data are mean ± s.d. Statistical differences according to a two-tailed Student’s t-test (a,b,q–s), a one-way ANOVA followed by Bonferroni post hoc multiple comparison test (c–e,j–w–y), a Kruskal-Wallis followed by Dunn post hoc test for multiple comparison (d,t–v) or two-sided Mann-Whitney U-test (k–p) and ANCOVA with body weight as covariate (z).
hyperprolactinemia have decreased body weight and improved glucose and lipid metabolism. The weight loss was accompanied by a reduction in both total body fat and visceral adiposity. Interestingly, dopamine agonism achieved by cabergoline treatment in patients with hyperprolactinemia resulted in an increase in REE that is consistent with the bromocriptine-induced effects on BAT observed in...
rodents. Moreover, in patients treated with cabergoline, the weight loss is positively correlated to REE. Our observations are in agreement with previous studies of bromocriptine or cabergoline treated patients. Note, while cabergoline decreases body weight in both lean and overweight patients irrespective of BMI a clear variability in this response is observed, and patients with higher BMIs are in a position of losing more excess weight. Our preclinical studies indicate that prolactin is not mediating the effects of bromocriptine nor chemogenetic manipulation of neuroendocrine TIDA neurons on body weight and BAT activity. In line with this, in human studies, it is unlikely that weight loss is secondary to the normalization of prolactin because all the patients with prolactinomas treated with cabergoline showed a normalization in prolactin levels. Despite normalized prolactin levels in all the patients treated with cabergoline, they showed changes in body weight. Therefore, there is no correlation between circulating prolactin levels and body weight.

In summary, this study reveals that the activation of D2R in GABA neurons within the LHA and ZI stimulates orexin and PDE3B, which lowers cAMP levels and inhibits a PKA-RpS6. This increases SNS tone, upregulates BAT thermogenesis and increases energy expenditure, leading to weight loss. In line with this, patients undergoing treatment with the dopamine agonist cabergoline experienced an increase in energy expenditure, leading to total body weight and fat loss. Therefore, this study provides mechanistic insights into the mechanisms taking place at the CNS by which bromocriptine/cabergoline exert their beneficial effects on energy balance and metabolic homeostasis in a clinical setting.

Methods

Animals and diets. Male and female Sprague-Dawley rats (200–250 g; wild type (WT) and triple β-adrenoreceptor (AR) knockout (TKO) male mice (weight 20–25 g, age 8–10 weeks old)32, WT and Drd2-cre male adrenoreceptor (AR) knockout (TKO) male mice (weight 25–30 g, age 10–12 weeks old)32, WT and orexin knockout mouse (null Orex/Hcrt mice, orexin1/hypocretin; B6.129S6-Hcrt1tm1Wjl, The Jackson Laboratory) (weight 25–30 g, age 10–12 weeks old)32, WT and Drd2-cre male mice (C57BL/6, weight 20–25 g, age 8–10 weeks old)32, Vglut2-ires-cre knock-in (C57BL/6) and Vglut2-ires-cre knock-in (C57BL/6) from the Jackson Laboratory (weight 20–25 g, age 8–10 weeks old) were used for each experiment). Male and female Sprague-Dawley rats (200–250 g) and WT and Drd2-cre male mice (vglut2-ires-cre knock-in (C57BL/6)) and Vglut2-ires-cre knock-in (C57BL/6) from the Jackson Laboratory (weight 20–25 g, age 8–10 weeks old)32 were used for each experiment and littermates controls were used in each experiment (Reporting Summary). Except for Drd2-cre:Ribotag mice, all animals were housed in individual cages under controlled conditions of illumination (12 h light:dark cycle), temperature and humidity. The animals were allowed free access to water and a standard laboratory diet (CD) (Scientific Animal Food & Engineering, proteins 16%, carbohydrates 60% and fat 3%) or a high fat diet (HFD) (Research Diets 12492; 60% of calories from fat, 5.24 kcal g–1; Research Diets) for 12 weeks. Food intake and body weight were measured daily during the experimental phase in all experiments. There were no 12 animals per group; the animals were euthanized, and all the tissues were removed rapidly, frozen immediately on dry ice and kept at −80 °C until analysis. All experiments and procedures involved in this study were reviewed and approved by the Ethics Committee of the University of Santiago de Compostela, in accordance with European Union normative for the use of experimental animals.

Body composition and indirect calorimetry. Body composition (white fat mass) was measured using a nuclear magnetic resonance system (Whole-Body Composition Analyzer; EchoMRI). Measurements were performed before surgery and on the last day of the treatment. Energy expenditure, respiratory quotient and locomotor activity were assessed using a calorimetry system (LabMaster; TSE Systems)42–47.

Temperature measurements, thermal imaging, cold exposure and thermo-neutrality. Interscapular temperature was assessed and was visualized using a high-resolution infrared camera (E606x: Compact-Infrared-Thermal Imaging Camera; FLIR) and analysed with a FLIR-Tools specific software package47. Body temperature was recorded with a rectal probe connected to a digital thermometer (BAT-12 Microprobe-Thermometer; Physitemp). After the acute injection of bromocriptine, rats were placed for 6 h in a special room with a stable temperature of 4 °C (ref. 47). D2R-cre mice were moved to a thermo-neutral environment (30 °C with relative humidity of 45–52%) to eliminate the extrametabolism needed to defend the body temperature at lower temperatures47.

ICV treatments. Animals were anesthetized by an i.p. injection of a ketamine-xylazine mixture (ketamine 100 mg kg–1 rat body weight + xylazine 15 mg kg–1 rat body weight; ketamine 8 mg kg–1 mouse body weight + xylazine 3 mg kg–1 mouse body weight). The ICV cannulae aimed at the lateral ventricle were stereotactically implanted in rats using the following coordinates: 1.3 mm posterior to bregma, 1.9 mm lateral to the mid-sagittal suture, and a depth of 2 mm (refs 74–76). Animals received vehicle (DMSO 100 μM) or bromocriptine mesylate (20, 40 or 80 μg per animal; Tocris). In other experiments, the orexin receptor 1 inhibitor (SB-334867; 4 μg per mouse, Tocris), orexin (10 μg per mouse, Bachem)47, the specific PKA activator Sp-cAMPs (90 ng per rat dose; Tocris)47, prolactin (1 or 10 μg per mouse) or clonidine (10 μg per mouse, AlfaAesar) were also administered ICV. For chronic experiments, a catheter tube was connected from the brain infusion cannula to an osmotic minipump flow modulator (model 2002 for a 14-d period with rats and model 1007D for a 7-d period with mice; Alzet Osmotic Pumps). These pumps had a flow rate of 0.5 μl h–1 during the days of treatment. The minipump was inserted in a subcutaneous pocket on the dorsal surface of the animal that we created using blunt dissection and the incision was closed with surgical sutures. After surgery, animals were kept warm until they fully awoke.

Peripheral treatments. For peripheral treatments, rats and mice received i.p. administered bromocriptine (40 μg per rat, mice 5 μg kg–1). Mice received i.p. administered CNO (1 mg kg–1, Sigma-Aldrich) and clozapine (1 mg kg–1, Sigma-Aldrich)47. Pharmacological inactivation of β3-adrenoreceptor was performed by subcutaneous administration of the specific antagonist SR59230A (Tocris) at a dose of 3 mg kg–1 (ref. 47).

Stereotaxic microinjections in specific hypothalamic nuclei. Rats were placed in a stereotactic frame (David Kopf Instruments) under ketamine-xylazine anaesthetics. Bromocriptine (40 μg per rat) and the specific PKA inhibitor H-89 (62 ng per rat; Sigma Chemicals) were injected stereotactically with a 25-gauge needle (Hamilton) connected to a 1 μl syringe. We targeted the LHA/ZI and the VMH area47. The coordinates used to reach the LHA/ZI in rats were (anterior to the bregma (AP), −2.85 mm; lateral to the sagittal suture (L), ±2.2 mm; and ventral from the surface of the skull (DV), −8.1 mm) and to reach the VMH were AP, −1.25 mm; L, ±1.1 mm; DV, −5.2 mm, to reach the MBH were AP, −1.5 mm; L, −2.8 mm; DV, −5 mm). The incision was closed with sutures and acetylsalicylic acid (Bayer, Leverkusen, Germany) 150 mg kg–1 was injected i.p. after surgery as a painkiller.

Stereotaxic microinjection of adenoaviral expression vectors. Adenoviral vectors D2R knockdown (3.5 × 1010 plaque-forming units (p.f.u.) ml–1) or the vector controls (3.5 × 1010 p.f.u. ml–1)79 and adenoaviral vectors containing the constitutively active form of 56K1 (4.77 × 1010 p.f.u. ml–1) or null controls (1.0 × 1010 p.f.u. ml–1) were used. To modify the expression of D2R specifically in vglut and vglut2 neurons, we injected Ad-hsyn-DIO-D2R-EFGP (1.0 × 1010 p.f.u. ml–1), Ad-hsyn-DIO-shd2R-EFGP (1.0 × 1010 p.f.u. ml–1) and...
Ad-hSyn-DIO-EGFP (1.0 × 10^8 p.f.u. ml⁻¹) (Vector Builder) under cell-specific cre promoters. These viral vectors were injected in the hypothalamic nuclei as described in the previous section.

FACS sorting and quantitative RT-PCR analyses. Viral infection was confirmed using FACS. The tuberal region of the hypothalamus of Vgat-cre + Ad-EGFP LHA/ZI mice were microdissected and enzymatically dissociated using the Papain

Diagram Description

- **Diagram a**: Vehicle ICV 2 h
 - BC (40 µg per rat) ICV 2 h
 - Vehicle ICV 2 h
 - **Vehicle** ICV 2 h
 - **BC** (40 µg per rat) ICV 2 h

- **Diagram b**: Vehicle LHA/ZI
 - BC (40 µg per rat) ICV
 - Vehicle + vehicle ICV

- **Diagram c**: Vehicle LHA/ZI
 - BC (40 µg per rat) ICV
 - Vehicle LHA/ZI

- **Diagram d**: Vehicle LHA/ZI
 - BC (40 µg per rat) ICV
 - Vehicle LHA/ZI

- **Diagram e**: WT vehicle ICV
 - WT BC (40 µg per mouse) ICV
 - OX KO vehicle ICV
 - OX KO BC (40 µg per mouse) ICV

- **Diagram f**: Vehicle ICV + vehicle I.P.
 - Vehicle ICV + BC (40 µg per rat) ICV
 - Vehicle ICV + vehicle ICV

- **Diagram g**: Vehicle ICV
 - OX ICV (10 µg per mouse) ICV
 - SB-334867 (4 µg per mouse) ICV

- **Diagram h**: Vehicle LHA/ZI
 - H-89 (62 ng per rat) LHA/ZI

- **Diagram i**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

- **Diagram j**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

- **Diagram k**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

- **Diagram l**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

- **Diagram m**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

- **Diagram n**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

- **Diagram o**: Vehicle LHA/ZI
 - Ad null LHA/ZI rat
 - Ad S6K1 LHA/ZI rat

Graphs and Data

- Interscapular temperature (°C)
 - 26°C 39°C

- Area (µm²)
 - 200 µm 400 µm

- BAT UCP1 protein levels
 - 100 200 300

- 24 h body weight change (g)
 - 0 5 10 15

- 24 h cumulative food intake (g)
 - 0 10 20 30

- BAT UCP1 protein levels
 - 0 50 100 150

- BAT UCP1 protein levels
 - 0 50 100 150
Table 1 | Clinical, anthropometric and metabolic characteristics of patients with hyperprolactinemia before and after one year of treatment with cabergoline

<table>
<thead>
<tr>
<th>Condition or variable</th>
<th>Patients at diagnosis</th>
<th>Cabergoline treatment</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (m/f)</td>
<td>5/26</td>
<td>5/26</td>
<td>0.732</td>
</tr>
<tr>
<td>Age (years)</td>
<td>35 ± 10</td>
<td>36 ± 11</td>
<td>0.846</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>67.5 ± 17.1</td>
<td>64.3 ± 14.2</td>
<td>0.045</td>
</tr>
<tr>
<td>BMI (kg m⁻²)</td>
<td>24.9 ± 5.4</td>
<td>23.8 ± 4.6</td>
<td>0.043</td>
</tr>
<tr>
<td>Prolactin (μg l⁻¹)</td>
<td>99.5 ± 16.7</td>
<td>8.3 ± 9</td>
<td><0.001</td>
</tr>
<tr>
<td>Glucose (mmol l⁻¹)</td>
<td>5.8 ± 1.7</td>
<td>4.6 ± 1.5</td>
<td>0.038</td>
</tr>
<tr>
<td>Insulin (pmol l⁻¹)</td>
<td>92 ± 48</td>
<td>79 ± 54</td>
<td>0.040</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>3.32 ± 2.15</td>
<td>2.26 ± 1.38</td>
<td>0.039</td>
</tr>
<tr>
<td>Triglycerides (mmol l⁻¹)</td>
<td>2.0 ± 0.9</td>
<td>1.3 ± 0.5</td>
<td>0.008</td>
</tr>
<tr>
<td>Total cholesterol (mmol l⁻¹)</td>
<td>5.0 ± 1.1</td>
<td>4.2 ± 0.6</td>
<td>0.041</td>
</tr>
<tr>
<td>LDL cholesterol (mmol l⁻¹)</td>
<td>3.2 ± 1.0</td>
<td>2.1 ± 0.7</td>
<td>0.033</td>
</tr>
<tr>
<td>HDL cholesterol (mmol l⁻¹)</td>
<td>1.1 ± 0.4</td>
<td>1.4 ± 0.5</td>
<td>0.075</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>90 ± 11</td>
<td>84 ± 9</td>
<td>0.047</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>34.7 ± 5.6</td>
<td>29.5 ± 4.2</td>
<td>0.040</td>
</tr>
<tr>
<td>REE (kJ d⁻¹)</td>
<td>5,997 ± 704</td>
<td>6,703 ± 800</td>
<td>0.046</td>
</tr>
<tr>
<td>REE (kJ kg⁻¹ d⁻¹)</td>
<td>85 ± 9.2</td>
<td>104.2 ± 9.8</td>
<td>0.041</td>
</tr>
<tr>
<td>REE (kJ kg⁻¹ fat-free mass d⁻¹)</td>
<td>90.0 ± 7.7</td>
<td>105.4 ± 5.6</td>
<td>0.037</td>
</tr>
<tr>
<td>RQ (vCO₂/vO₂)</td>
<td>0.83 ± 0.06</td>
<td>0.84 ± 0.05</td>
<td>0.621</td>
</tr>
<tr>
<td>Prolactin (μg l⁻¹)</td>
<td>111.5 ± 12.7</td>
<td>9.3 ± 3.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Glucose (mmol l⁻¹)</td>
<td>5.7 ± 0.8</td>
<td>4.1 ± 0.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Insulin (pmol l⁻¹)</td>
<td>93 ± 56</td>
<td>71 ± 44</td>
<td>0.037</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>3.53 ± 1.98</td>
<td>2.15 ± 1.59</td>
<td>0.038</td>
</tr>
<tr>
<td>Triglycerides (mmol l⁻¹)</td>
<td>2.1 ± 1.0</td>
<td>1.1 ± 0.3</td>
<td>0.022</td>
</tr>
<tr>
<td>Total cholesterol (mmol l⁻¹)</td>
<td>5.0 ± 0.9</td>
<td>4.7 ± 0.8</td>
<td>0.278</td>
</tr>
<tr>
<td>LDL cholesterol (mmol l⁻¹)</td>
<td>3.0 ± 1.1</td>
<td>2.6 ± 0.8</td>
<td>0.363</td>
</tr>
<tr>
<td>HDL cholesterol (mmol l⁻¹)</td>
<td>1.0 ± 0.6</td>
<td>1.2 ± 0.7</td>
<td>0.441</td>
</tr>
</tbody>
</table>

WC, waist circumference; RQ, respiratory quotient; vCO₂/vO₂, dimensionless ratio between carbon dioxide production and oxygen consumption; comparison of baseline with (a) 3 months following cabergoline treatment initiation and (b) 12 months after cabergoline treatment start; according to a two-sided Student’s t-tests between pre- and post-treatment values and Wilcoxon signed-rank test. Data are mean ± s.d.
Fig. 7 | Cabergoline decreases body weight and increases REE in patients. a, Waterfall plot of the body weight changes experimented by each patient (1–31) of the retrospective study between baseline and following 0.5 mg twice weekly cabergoline treatment for 12 months. b, Waterfall plot of the body weight changes experimented by each patient (1–21) of the prospective study during the first 3 months of cabergoline treatment instauration with 0.5 mg cabergoline twice weekly. c, REE in patients before and after cabergoline treatment compared to the REE predicted from the Harris–Benedict equation. d, Correlation between REE and weight loss in patients treated with cabergoline.
PET imaging system. Whole-body micro PET-CT images were acquired with the Albira PET-CT Preclinical Imaging System (Bruker Biospin) and the experimental procedure with rats were performed in the same conditions. BAT area was identified using image tools implemented the AMIDE Software (http://amide.sourceforge.net) to generate a three-dimensional spherical volume of interest with radius of 6 mm and centred on the BAT area. Mean standardized uptake values (SUV) were computed. The PET-CT analysis was performed in the Molecular Imaging Unit of the Department of Nuclear Medicine of University of Santiago de Compostela.

Dissection of brain areas. The brains were removed and immediately frozen and stored at −80°C until further processing. Then, the brain was placed in a brain matrix with a ventral surface on top under a dissecting microscope. The LHA/ZI were removed from the whole hypothalamus by cutting between the lateral ventricle and the third ventricle and the depth of each section was between 1.3 and 1.7 mm from bregma.

Western blot analysis. Tissues were homogenized using a TissueLyser II (Qiagen) and stored at −80°C until further processing. The brain was placed in a brain matrix with a ventral surface on top under a dissecting microscope. The LHA/ZI sections were identified using a mouse brain atlas and rabbit anti-VGlut2 (1:500, Synaptic Systems, 135402), anti-VGat (1:1,000, Synaptic Systems, MMS-101R), chicken anti-GFP (1:500, Life technologies (A10262), antibodies.

Molecular Imaging Unit of the Department of Nuclear Medicine of University of Santiago de Compostela. Dissection of brain areas. The brains were removed and immediately frozen and stored at −80°C until further processing. Then, the brain was placed in a brain matrix with a ventral surface on top under a dissecting microscope. The LHA/ZI sections were identified using a mouse brain atlas and rabbit anti-VGlut2 (1:500, Synaptic Systems, 135402), anti-VGat (1:1,000, Synaptic Systems, MMS-101R), chicken anti-GFP (1:500, Life technologies (A10262), antihormonal environments.

5% bovine serum albumin blocking buffer. For the detection of proteins, we used horseradish peroxidase-conjugated secondary antibodies (Dako Denmark).

Western blot analysis. Tissues were homogenized using a TissueLyser II (Qiagen) and stored at −80°C until further processing. The brain was placed in a brain matrix with a ventral surface on top under a dissecting microscope. The LHA/ZI sections were identified using a mouse brain atlas and rabbit anti-VGlut2 (1:500, Synaptic Systems, 135402), anti-VGat (1:1,000, Synaptic Systems, MMS-101R), chicken anti-GFP (1:500, Life technologies (A10262), antihormonal environments.

In the prospective study the REE and respiratory quotient were measured.

Histomorphology. BAT samples were fixed for 24 h in 10% formalin buffer and then washed in 95% ethanol and embedded in paraffin by a standard protocol. Sections of 3 μm were made in a microtome and stained with a standard hematoxilin and eosin alcoholic (BioOptica) procedure following manufacturer instructions. Sections were observed and photographed using a Provis AX70 microscope (Olympus).

Immunohistochemistry and immunofluorescence. The detection of UCP1 in BAT was performed using anti-UCP1 (1:500; Abcam) with an anti-rabbit antibody conjugated with Alexa 488 (1:200; Molecular Probes). Images were observed and photographed using a Provis AX70 microscope (Olympus) and were quantified with Framework for Image Dataset Analysis software.

Animal brains were fixed by perfusion after they were immersion-fixed in formalin-calcium for 24 h. They were then dehydrated and embedded in paraffin and were cut and mounted using a thick section of 3 μm (Vibratome Series 1000, The Vibratome Company)22. Sections were incubated overnight at 4°C with anti-phospho-56 ribosomal (Cell Signaling) diluted 1:200 in EnVision Flex Antibody diluent (Dako). After washing, sections were incubated with LSAB-DAKO secondary for 30 min. In addition, brains were processed and immunohistochemistry assays were performed to visualize protein levels of c-FOS (Santa Cruz) at a dilution of 1:500 (ref. 21). Images were observed and photographed using a Provis AX70 microscope (Olympus).

To test specific nuclei injection, we used immunofluorescence. To visualize green positive signals, sections were incubated with rabbit antibody against GFP (1:200; Abcam) and we used a goat anti-rabbit Alexa 488 (1:200; Molecular Probes). Detection of mCherry was performed with an immunofluorescence procedure, using anti-mCherry antibody (1:200; Abcam).

Histomorphology. BAT samples were fixed for 24 h in 10% formalin buffer and then washed in 95% ethanol and embedded in paraffin by a standard protocol. Sections of 3 μm were made in a microtome and stained with a standard hematoxilin and eosin alcoholic (BioOptica) procedure following manufacturer instructions. Sections were observed and photographed using a Provis AX70 microscope (Olympus).

Indirect calorimetry. In the prospective study the REE and respiratory quotient were measured.

In the prospective study the REE and respiratory quotient were measured.

Anthropometry. Body weight was measured with a digital scale to the nearest 0.1 kg. The body height was measured to the nearest 0.1 cm with a Holtain stadiometer (Holtain Ltd.) to calculate the BMI. Waist circumference was determined at the midpoint between the iliac crest and the rib cage on the midaxillary line. Body fat was estimated by air-displacement-plethysmography (Bod-Pod, Life Measurements)74.

Indirect calorimetry. In the prospective study the REE and respiratory quotient were measured.

Blood determinations in rodents. The quantitative determination of mouse or rat prolactin concentrations in plasma was determined by enzyme-linked immunosorbent assays using reagents kits and methods provided by Mybiosourse (catalogue no. MBS 580033).
concentrations were determined by a microprotein chemiluminescent assay (Prolactin II, Elecsys, Cobas E, Roche Diagnostics GmbH) with a normal range of 1–27 pg/mL for women and of 1–20 pg/mL for men together with intra- and interassay CV of 3.3 and 5.9%, respectively. Triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol levels were calculated as previously described.10

Statistical analysis. Results are given as mean ± s.d. Samples or animals were excluded if values were outside ±2-fold s.d. or if an objective experimental difference was observed. All studies were not blinded to investigators or normally randomized. The number of animals used in each study is listed in the figure legends. To test if the populations follows a Gaussian distribution, a normality test was performed (Kolmogorov–Smirnov test for n between 5 and 7; Shapiro–Wilk test for n ≥ 7) (ref. 21). For non-normal distributions, the following were used: Mann–Whitney test was used for two comparison populations, an unpaired t-test (two-tailed for treatment and phenotyping experiment, one-tailed otherwise) were used as indicated in figure legends91–93; for multiple comparison test, a one-way analysis of variance (ANOVA) followed by Bonferroni post hoc multiple comparison test was performed.94

In patients, comparison of changes at baseline and after treatment administration at different time points was carried out by two-tailed paired Student’s t-tests between pre- and post-treatment values and Wilcoxon signed-rank test as appropriate. The calculations were performed using the SPSS/Windos v15.0 statistical package (SPSS (Rept. Ing. Statistical Software)).

In patients, comparison of changes at baseline and after treatment administration at different time points was carried out by two-tailed paired Student’s t-tests between pre- and post-treatment values and Wilcoxon signed-rank test as appropriate. The calculations were performed using the SPSS/Windos v15.0 statistical package (SPSS (Rept. Ing. Statistical Software)).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Received: 14 May 2019; Accepted: 12 July 2019.

Published online: 19 August 2019

References

leading to these results has also received funding from the European Community’s H2020 Framework Programme under the following grant: ERC Synergy Grant-2019-WATCH-810331 to V.P. and R.N. Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBERobn). CIBERobn is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain, which is supported by FEDER funds. This work was supported by Inserm, Fondation pour la Recherche Médicale, ANR-EPITRACES (E.V.).

Author contributions

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42255-019-0099-7.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to L.M.S. or R.N.

Peer review information: Primary Handling Editor: Elena Bellafante

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a

Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Microsoft Excel 2010, Image-J software, GraphPad Prism 6 SPSS/Windows version 15.0, Frida software (Framework for Image Dataset Analysis), BD FACSuite Software, FLIR-Tools software version 5.11.16337.1002 and AMIDE 0.6 Software. All of this is also mentioned in the Methods section.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data analysis</td>
<td>Microsoft Excel 2010, Image-J software, GraphPad Prism 6 and SPSS/Windows version 15.0., BD FACSuite Software. All of this is also mentioned in the Methods section.</td>
</tr>
</tbody>
</table>

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All data from this manuscript are available form the corresponding author upon request.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
For animal experiments, sample size was chosen based on similar previous studies of our group and on the basis of literature documentation of similar well-characterized experiments and statistical methods were not used to predetermine sample sizes. We try to use the fewest number of mice to achieve statistical significance without compromising the outcomes. The sample size are provided in figure legends and in the Statistical Analysis section in Methods. Sample size on human data was only limited by availability.

Data exclusions
Samples of animals were excluded whether their values were outside the 2SD range. Criteria were pre-established. See Statistics section. For patients, the inclusion and exclusion criteria and treatment protocol are mentioned in the Statistical Analysis section.

Replication
All attempts to replicate the experiments have been successful. One way to verify the reproducibility of our experiments findings was that in all the experiments in which we activated the dopamine receptor 2 we have observed a significant decrease in body weight, as well as an increase in the intescapular temperature and the protein levels of UCP1.

Randomization
Before start an experiment, all mice groups were made with set of animals of the same sex, age and similar body weight. See Statistical analysis section.

Blinding
For practical reasons, the investigators were not blinded to allocation during experiments and outcome assessment. It is well known that the aim of blinding is to reduce bias due to the knowledge of which intervention is being received by study participants. In many cases, blinding is not possible for example dietary intake in a mice experiment and surgery procedures which are the main experiments in this manuscript. Trying to avoid bias and to achieve treatment balance, the researchers payed big effort randomizing the assignment of each treatment using simple or blocked randomization.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antibodies</td>
</tr>
<tr>
<td></td>
<td>Eukaryotic cell lines</td>
</tr>
<tr>
<td></td>
<td>Palaeontology</td>
</tr>
<tr>
<td></td>
<td>Animals and other organisms</td>
</tr>
<tr>
<td></td>
<td>Human research participants</td>
</tr>
<tr>
<td></td>
<td>Clinical data</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>n/a</th>
<th>Involved in the study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ChiP-seq</td>
</tr>
<tr>
<td></td>
<td>Flow cytometry</td>
</tr>
<tr>
<td></td>
<td>MRI-based neuroimaging</td>
</tr>
</tbody>
</table>

Antibodies

<table>
<thead>
<tr>
<th>Antibodies used</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCP1: 1:5000 WB, 1:500 IHQ, ab23841, Abcam, Cambridge, UK</td>
</tr>
<tr>
<td>Fibroblast Growth Factor-21(FGF21): 1:1000 WB, ab64857, Abcam, Cambridge, UK</td>
</tr>
<tr>
<td>PROM16: 1:1000, ab106410 WB, Abcam, Cambridge, UK</td>
</tr>
<tr>
<td>PGC-1α (H-300): 1:1000, sc-13067 WB, Santa Cruz Biotechnology, CA, USA</td>
</tr>
<tr>
<td>phospho - SAPK/JNK(Thr183/Tyr185): 1:1000 WB, #4671, Cell Signaling, USA</td>
</tr>
<tr>
<td>JNK1/3 (C-17): 1:1000, sc-474 WB, Santa Cruz Biotechnology, CA, USA</td>
</tr>
<tr>
<td>phospho AKT : 1:1000, WB, #9271, Cell Signaling, USA</td>
</tr>
<tr>
<td>AKT: 1:1000, WB, #9272, Cell Signaling, USA</td>
</tr>
<tr>
<td>mTOR: 1:1000, WB, SAB4501038, Sigma- Aldrich, St. Louis, MO</td>
</tr>
<tr>
<td>pro-MCH: 1:1000, WB, sc-28931, Santa Cruz Biotechnology, CA, USA</td>
</tr>
<tr>
<td>phospho-rpS6: 1:1000 WB, 1:200 IHQ #2211, Cell Signaling, USA</td>
</tr>
<tr>
<td>Orexin A: 1:1000 WB, bs-15509R, Bioss Antibodies, Massachusetts, USA</td>
</tr>
<tr>
<td>PDE3B: 1:1000 WB, #PAS-42560, Invitrogen, CA, USA</td>
</tr>
<tr>
<td>Dopamine D2 Receptor: 1:1000 WB, ab85367, Abcam, Cambridge, UK</td>
</tr>
</tbody>
</table>
Validation

All antibodies used in the paper have been validated by the manufacturer and by references. The dilution and the use (Western Blot (WB) or Immunohistochemistry (IHQ) is specified in the previous section. As regards the antibodies used in Western blot in this article, it has been used in both rat and mouse leaving at the appropriate weight in western blot such as shown in the supplement fig 11. The specificity of anti-Dopamine D2 receptor, orexin and MCH antibodies were evaluated using WT and KO mice.

Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Male and female Sprague-Dawley rats (standard laboratory diet (CD): 200-250g and high fat diet (HFD) for 12 weeks: 450-700g were used. WT and triple β-adrenoreceptor (AR) knockout (TKO) male mice (weight 20–25 g, age 8–10 weeks old); WT and orexin knockout male mice (null Ohs/Hcrt mice (orexin/hypocretin; B6.129S6-Hcrttm1Ywa/J, The Jackson Laboratory) (weight 25–30 g, age 10–12 weeks old), WT and Drd2-cre:ribotag mice (weight 20–25 g, age 8–10 weeks old), vglut2-ires-cre knock-in (C57BL/6J) and vglut2-ires-cre knock-in (C57BL/6J) from Jackson Laboratory (weight 20-25g, age 8-10 weeks old) also were used for the experiments. All this information about animal species, sex, strain, provider, etc are mentioned in the Material and Methods section.

Animals

This study did not involve wild animals.

Field-collected samples

This study did not involve field collected samples.

Ethics oversight

All experiments and procedures involved in this study were reviewed and approved by the Ethics Committee of the University of Santiago de Compostela, in accordance with European Union normative for the use of experimental animals.
Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

<table>
<thead>
<tr>
<th>Policy information about studies involving human research participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population characteristics: All patients were of Caucasian origin. Pregnant and lactating women were excluded. Patients with hyperprolactinemia secondary to drugs (including neuroleptics, antidepressants, opiates and gastrointestinal prokinetics) or mixed-secreting tumours or those already receiving dopamine agonists at the first visit to our hospital as well as those not completing a 12-month follow-up period were excluded from the analysis. Patients with multiple pituitary hormone deficiencies and/or the presence of other concomitant causes of overt hypogonadism were excluded to avoid the potential effect of hormonal replacement therapy on body weight control and metabolic changes. In this respect, patients with previously known treatment with hypoglycemic agents to control glucose metabolism abnormalities or anti-obesity drugs for body weight loss were also excluded. After all the exclusions, 31 patients with newly diagnosed prolactinoma comprised the study sample of the retrospective analysis (26 females and 5 males with an age range between 21-61 years). All patients underwent a detailed anamnysis, physical exploration and metabolic evaluation.</td>
</tr>
<tr>
<td>Recruitment: All the patients included were affected by hyperprolactinemia and coming from the Endocrinlogy Department of the University Clinic of Navarra between January 2007 and December 2013. All patients were of Caucasian origin. Pregnant and lactating women were excluded. Patients with hyperprolactinemia secondary to drugs (including neuroleptics, antidepressants, opiates and gastrointestinal prokinetics) or mixed-secreting tumours or those already receiving dopamine agonists at the first visit to our hospital as well as those not completing a 12-month follow-up period were excluded from the analysis. Furthermore, patients with multiple pituitary hormone deficiencies and/or the presence of other concomitant causes of overt hypogonadism were excluded to avoid the potential effect of hormonal replacement therapy on body weight control and metabolic changes. In this respect, patients with previously known treatment with hypoglycemic agents to control glucose metabolism abnormalities or anti-obesity drugs for body weight loss were also excluded.</td>
</tr>
<tr>
<td>Ethics oversight: Clinical studies were approved, from an ethical and scientific standpoint, by the Hospital’s Ethical Committee of the University Clinic of Navarra and were conducted in accordance with the principles of the Declaration of Helsinki with patients giving their informed consent for participation.</td>
</tr>
</tbody>
</table>

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

- **Sample preparation:** The tuberal region of the hypothalamus of Vgat-cre + Ad-EGFP LHA/ZI mice were microdissected and enzymatically dissociated using Papain Dissociation System (Worthington, Lakewood, NJ) to obtain single cell suspensions as described previously.
- **Instrument:** FACS was performed using an EPICS ALTRA Cell Sorter Cytometer device (BD Bioscience).
- **Software:** BD FACSuite Software
- **Cell population abundance:** The sort decision was based on measurements of EGFP fluorescence (excitation: 488 nm; 50 mW; detection: EGFP bandpass 530/30 nm, autofluorescence bandpass 695/40 nm) by comparing cell suspensions from non-infected brain sites and infected brain sites.
- **Gating strategy:** The sort decision was based on measurements of EGFP fluorescence (excitation: 488 nm; 50 mW; detection: EGFP bandpass 530/30 nm, autofluorescence bandpass 695/40 nm) by comparing cell suspensions from non-infected brain sites and infected brain sites.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.