Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor

Xiaohui Zhang,1,3* Kenneth Halvorsen,2* Cheng-Zhong Zhang,1 Wesley P. Wong,2† Timothy A. Springer2†

Von Willebrand factor (VWF) is the key shear-sensing protein in hemostasis and is especially important in arterial bleeding where shear is high (1). VWF is biosynthesized and stored in the Weibel-Palade bodies of endothelial cells in an ultralarge form (ULVWF). The VWF 240,000 M₀ monomer (Fig. 1A) is concatenated through specific disulfide bonds at both its N and C termini into multimers of up to ~50 × 10⁶ M₀ in ULVWF (1, 2). ULVWF is secreted in response to thrombinogenic stimuli. A portion of secreted ULVWF is bound locally to endothelial cells from which it is released and also through its A3 domain to collagen at sites of tissue injury. Vessel wall–bound VWF multimers, as well as multimers free in the bloodstream, are extended to a length of up to 15 μm by the hydrodynamic forces in shear flow (2). These forces induce a conformational change in VWF that exposes a binding site in the A1 domain for the platelet glycoprotein Ib (GPIb) molecule, which enables formation of a hemostatic platelet plug (1, 3).

Within 2 hours after release from endothelium into the circulation, ULVWF is converted by ADAMTS13 to smaller multimers with a wide range of size distributions that are characteristic of the circulating pool of VWF (4). Because the length of VWF multimers strongly correlates with

1Immune Disease Institute, Harvard Medical School, Boston, MA 02115, USA. 2Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA. 3State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail: springer@idi.harvard.edu or wong@rowland.harvard.edu

References and Notes

10. Materials and methods are available as supporting material on Science Online.
14. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr; and X, any amino acid.
32. We thank I. Rao, A. Hayashi, K. Ishizuka and M. Chakraborty for technical support. We thank N. Shahani and R. Mealer for critically reading the manuscript. We thank E. Fossale and M. Macdonald for generously providing tridimensional cell lines. We thank M. Mutuski for providing SUMO-related constructs, H. Zoghbi for ataxin constructs, S. Li and X. J. Li for purified Htt. J. Nathans for use of his cell culture facility and Alessandro Uziello for providing antibody to Htt. Supported by USPHS grant MH68501 and Research Scientist Award DA00074 (SHS).

Supporting Online Material

www.sciencemag.org/cgi/content/full/324/5932/1327/DC1 Materials and Methods Figs. S1 to S9 References 27 February 2009; accepted 21 April 2009 10.1126/science.1177871
hemostatic potential, cleavage by ADAMTS13 is an important regulatory mechanism. Absence of ADAMTS13 results in increased thrombogenic potential of VWF and thrombotic thromboembolic purpura, a life-threatening disease caused by uncontrolled microvascular thrombosis (5). On the other hand, mutations in the A2 domain that presumably destabilize it cause excessive cleavage by ADAMTS13 and a shift in the size distribution to smaller VWF multimers with less hemostatic potential, resulting in the bleeding disorder known as type 2A von Willebrand disease (3, 6).

VWF is cleaved by ADAMTS13 within the A2 domain at its Tyr¹⁶⁰⁶-Met¹⁶⁰⁶ bond (1, 3, 5, 7, 8). Cleavage is activated by shear when A2 is present in large VWF concatamers, but not when present as the much smaller, isolated domain (5–7). Presumably, this is because the tensile forces acting on proteins in shear flow increase with protein length (9). Shear flow elongates VWF (2), and tensile force exerted on the concatamer is thought to cause conformational changes in A2 domains that enable cleavage (3, 5, 8); the scissile bond is likely buried in the native state (10, 11). Therefore, partial or complete unfolding may be the mechanism for substrate activation (6). Here, by directly applying force with laser tweezers (12, 13) to a single A2 domain, we test the hypothesis that unfolding and folding of the A2 domain may occur at forces that might be experienced by VWF in its transit through the circulation or at sites of hemostasis and thrombosis, and that force acts as a cofactor to unfold A2 for cleavage by ADAMTS13.

Single, N-glycosylated A2 domains coupled to DNA handles through N- and C-terminal Cys tags (fig. S1) were suspended between beads held in a laser trap and micropipette (Fig. 1B). A2 domains were subjected to cycles of force increase, force decrease, and clamping at a low force to enable refolding before the next cycle (Fig. 1C). A2 domain unfolding was marked by abrupt increase in length of the tether between the two beads (Fig. 1C, inset, and 1D, cycle ii). The increase in length at different forces was fitted to the wormlike chain (WLC) model (14) (Fig. 2A), which yielded an A2 contour length of 57 ± 5 nm and a persistence length of 1.1 ± 0.4 nm. A2 N-terminal and C-terminal residues Met¹495 and Ser¹⁶⁷¹ are 1 nm apart in the folded state (15). The total length of 58 ± 5 nm divided by an extension length of 0.36 nm per residue yields unfolding of 161 ± 14 residues. This corresponds well to complete unfolding of the predicted 177-residue A2 domain.

Over a range of force loading rates, unfolding force was determined and plotted against the logarithm of the loading rate (Fig. 2B). The fit to a single-barrier kinetic model (16) yields an unfolding rate in the absence of force, k_{u,0}, of 0.0007 s^{−1} (confidence band of 0.0002 s^{−1} to 0.003 s^{−1}), and a force scale, f₀, which exponentially increases the unfolding rate k_u = k_{u,0} exp(f/f₀), of 1.1 ± 0.2 pN.

A subset of about 20% of unfolding events included a discernible pause [defined by four or more data points at a short-lived (fig. S3), partially unfolded intermediate state], which was directly observed in force-extension curves (Fig. 2C). Fit to the WLC model of the A2 extension distances (Fig. 2C, inset) shows that the intermediate state usually lies 40% of the distance between the fully folded and unfolded states.

During the pause at a clamped force between each cycle of force decrease and increase, the A2 domain had the opportunity to refold (Fig. 1C). Subsequent unfolding revealed folding during the pause (Fig. 1, C and D, cycle ii), whereas a lack of unfolding suggested an absence of refolding...
The binary state of the domain was further confirmed with force extension curves, which have distinct branches for the unfolded and folded states (Fig. 1D). The force dependence of refolding (Fig. 3) was fitted by using maximum likelihood to an f^2 model, which takes into account the soft compliance of the unfolded state ($16-18$): $k_f = k_0^{f}e^{-f^2/(2k_{B}T)}$ (where k is defined as the effective compliance of the unfolded state, k_{B} is the Boltzmann constant, and T is the absolute temperature) (see also fig. S3). We found a refolding rate in the absence of force, $k_0^{f} = 0.54 \pm 0.05$ s$^{-1}$, and compliance, $\kappa = 0.18 \pm 0.04$ pN/nm.

Using the folding and unfolding rates in the absence of force, we can estimate the free energy difference between the two states: $\Delta G = -k_{B}T \ln(k_0^f/k_0^u) = 6.6 \pm 1.5 k_{B}T (3.9 \pm 0.9$ kcal/mol). This is close to the AG of $5.8 \pm 0.8 k_{B}T (3.5 \pm 0.5$ kcal/mol) estimated from urea-induced unfolding of an Escherichia coli A2 fragment (19).

To test the hypothesis that A2 unfolding is required for cleavage by ADAMTS13, A2 was mechanically unfolded in the absence or presence of ADAMTS13 and relaxed to a clamped force of 5 pN (Fig. 4A). At this force, the lifetime of the unfolded state is >140 s, which makes refolding unlikely during the incubation with ADAMTS13. Cleavage by ADAMTS13 was detected as a drop in the rate of force decrease in the tether at 0 pN (Fig. 4A, left). Synchronous rupture at 5 pN, i.e., the background with no enzyme (Fig. 4A, right), was rare (Fig. 4B, inset). In experiments with a lower force ramp, unfolding sometimes did not occur, as shown by lack of the characteristic force-extension signature. No cleavage of folded A2 at 5 pN with 100 nM or 1 nM enzyme was observed.

With unfolded A2 in the presence of enzyme, the fraction of surviving tetthers decreased exponentially with time, which demonstrated first-order reaction kinetics and yielded the time constant τ for cleavage at three different enzyme concentrations (Fig. 4B, inset). The observed enzymatic rate, i.e., reciprocal of τ, was fitted with the single-molecule Michaelis-Menten equation (20), $1/\tau = k_{cat}[ADAMTS13]/([ADAMTS13] + K_M)$ (Fig. 4B).

As the largest known soluble protein, VWF has more force exerted on it than any other free protein in the vasculature. Hydrodynamics and the overall shape and orientation of VWF multimers in flow are relevant to understanding the tensile force exerted on A2 domains within ULVWF and trimming by ADAMTS13 (5). In shear flow, the rate of fluid flow increases from the wall toward the center (Fig. 5, A and B). VWF multimers, the tensile force on a vessel wall or bridging two platelets free in flow and, at intermediate levels, for VWF bound to a single platelet free in flow (9, 21). Because of weak attractive interactions between domains within each multimer, VWF multimers have an overall compact, yarn-ball-like shape in stasis (2, 22-24). Above a critical shear stress of 50 dyn/cm2 (13), the attractive forces are overcome by hydrodynamic drag, and VWF free in flow periodically elongates and contracts (2, 24) (Fig. 5C). Shear flow can be conceptualized as the superposition of rotational flow and elongational flow (Fig. 5B). The rotational flow causes particles to tumble (Fig. 5C). Tumbling is more evident for polymers such as DNA (25); the attractive forces between VWF monomers appear to keep it largely zipped up during tumbling, with alternating cycles of elongation and compaction that demonstrate tumbling (Fig. 5C) (2, 24).

We apply concepts from the field of polymer dynamics to VWF. For an extended VWF multimer with N monomers, the tensile force on a monomer increases with distance from the nearest end of the multimer (Fig. 5D), and force at the middle of the multimer is proportional to N^2 (Fig. 5D) [see estimation of force within VWF (13)] (26). Force increases with the square of length because both multimer size and the difference in velocity between shear lamina, in which the two ends of the multimer find themselves, increase with length (9, 13, 26). This second-power dependence of catalytic rate on enzyme concentration was fitted with the single-molecule Michaelis-Menten equation (20) (solid line). Data points and standard error were determined from single-parameter exponential fits to the survival fraction as a function of time (inset).
Fig. 5. Model for mechanoenzymatic cleavage of ULVWF in the circulation. (A) Shear flow in a vessel and elongational flow at a site of bleeding. (B) Shear flow may be represented as elongational flow superimposed on rotational flow [modified from (25)]. (C) Cartoon of VWF elongating, compressing, and tumbling in shear flow. (D) Peak force as function of monomer position in a VWF multimer chain of 200, 100, or 50 monomers at 100 dyn/cm2. Dashed line shows the most likely unfolding force for the A2 domain at a loading rate of 25 pN/s. (E) Schematic of VWF, with N-terminal end as triangle, A2 as spring, and C-terminal end as circle. Elongation results in unfolding of some A2 domains, some of which are cleaved (arrows). The resulting fragments are shown.

analysis illustrates the principles that dictate the maximum length of circulating VWF multimers in vivo and suggests that the force on VWF free in the circulation is sufficient to induce unfolding of the A2 domain and cleavage by ADAMTS13.

Another concept from polymer dynamics (25) important for VWF is elongational flow (Fig. 5, A and B). Close to a site of hemorrhage, flow will transition from shear flow, which has both rotational and elongational components (Fig. 5A, left), to elongational flow (Fig. 5A, right). Although the actual flow pattern would be complex, the overall picture is that tumbling and alternating cycles of compression will tend to cease, and VWF will only experience elongation. Alignment of VWF with the principal direction of elongational strain could increase peak tensile force to about 10 times that experienced in shear flow [see force on VWF in elongational flow (13)].

We have definitively established that unfolding is required for cleavage of the A2 domain by ADAMTS13. In a portion of unfolding events, we observed an intriguing transient intermediate state. In VWF A2, the N-terminal β1 strand is central in the fold, whereas the C-terminal α6 helix is peripheral. Therefore, unfolding induced by elongational force will begin at the C terminus (15). Unfolding of 40% of the contour length in the intermediate state would thus correspond to the unfolding of about 70 C-terminal residues, up to and including the β4 strand, which contains the scissile Tyr606–Met606 peptide bond. Studies with peptide fragments show that C-terminal, but not N-terminal, segments distal from the cleavage site are recognized by ADAMTS13 (29). Thus, it is possible that ADAMTS13 could recognize and cleave the intermediate unfolded state.

Our single-molecule k_{cat} for the ADAMTS13 enzyme of 0.14 s$^{-1}$ is in the range of 0.14 to 1.3 s$^{-1}$, determined in bulk phase with unfolded peptide substrates corresponding to the C-terminal 70 residues of A2 (11, 30). However, our K_M of 0.16 μM is lower than previous estimates of 1.7 and 1.6 μM (11, 30). The lower K_M value determined here may reflect a more physiologic state of the substrate. Notably, different domains within ADAMTS13 recognize different portions of the unfolded peptide substrate that are far apart in sequence (29, 30). Whereas peptide substrates have essentially random configurations, tension applied to the unfolded A2 domain partially orders it in one dimension, and this more linear configuration may improve recognition by the different domains within ADAMTS13.

VWF will only be exposed to peak shear intermittently during each tumbling cycle and only to high shear during transit through arterioles and capillaries. The lifetime of about 2 s of the unfolded state in the absence of force is longer than the time period of peak force exposure (9, 13) and provides a window of opportunity for cleavage by ADAMTS13. Refolding to the correct low-energy state of the A2 domain after tension is released is another property important for function in vivo. aberrant refolding could permit cleavage by ADAMTS13, as is observed with some A2-domain preparations from E. coli (31).

Our single-molecule enzyme assays suggest that the rate of VWF cleavage is limited by ADAMTS13 concentration in vivo, which, at 6 nM (32), is substantially below the K_M of 160 nM and yields a time scale for cleavage in vivo of ~200 s. Although the numbers may be altered for cleavage of unfolded A2 within intact VWF, these rough estimates are relevant to understanding events in vivo. Thus, over the short time periods of <1 s important in hemostasis, binding of VWF through the A1 domain to GPIb on platelets and through the A3 domain to collagen on the subendothelium should win out over cleavage of the A2 domain by ADAMTS13.

A further wrinkle is added by a cis-proline recently discovered in the A2 structure (15) consistent with a small number of A2 tethers that suddenly stopped refolding and, after a long delay, resumed refolding (13). VWF, bound to platelets at sites of hemorrhage, would be exposed to forces sufficient to accelerate cis-to-trans peptide isomerization (33) in unfolded A2. A trans-proline would be a long-lasting (100- to 1000-s) impediment to refolding that would enhance cleavage by ADAMTS13 during wound repair.

The A2 domain’s unique lack of protection by disulfide bonds within VWF (Fig. 1A) and low resistance to unfolding suggest that A2 has evolved to be the shear bolt domain of VWF. A shear bolt breaks above a designed force threshold, so as to protect other parts of a machine from accidental damage. Similarly, the A2 domain unfolds when present in VWF multimers that experience high-tensile force and is cleaved by ADAMTS13, which results in down-regulation of hemostatic activity.

References and Notes

13. Materials and methods are available as supporting material on Science Online.
Halofuginone Inhibits TH17 Cell Differentiation by Activating the Amino Acid Starvation Response

Mark S. Sundrud, Sergei B. Korolov, Markus Feuerer, Dinis Pedro Calado, Aimee ElHed Kozhaya, Ava Rhule-Smith, Rachel E. Lefebvre, Derya Unutmaz, Ralph Mazitschek, Hanspeter Waldner, Malcolm Whitman, Tracy Keller, Anjana Rao

A central challenge for improving autoimmune therapy is preventing inflammatory pathology without inducing generalized immunosuppression. Th17 (TH17) cells, characterized by their production of interleukin-17, have emerged as important and broad mediators of autoimmunity. Here we show that the small molecule halofuginone (HF) selectively inhibits mice and human TH17 differentiation by activating a cytoprotective signaling pathway, the amino acid starvation response (AAR). Inhibition of TH17 differentiation by HF is rescued by the addition of excess amino acids and is mimicked by AAR activation after selective amino acid depletion. HF also induces the AAR in vivo and protects mice from TH17-associated experimental autoimmune encephalomyelitis. These results indicate that the AAR pathway is a potent and selective regulator of inflammatory T cell differentiation in vivo.

1Department of Pathology, Harvard Medical School and Immune Disease Institute, Boston, MA 02115, USA. 2Section on Immunology and Immunogenetics, Joslin Diabetes Center, Boston, MA 02215, USA. 3Department of Microbiology and The Microbial Pathogenesis Program, New York University School of Medicine, New York, NY 10016, USA. 4Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. 5Chemical Biology Program, Broad Institute, Cambridge, MA 02142, USA. 6Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02124, USA. 7Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02215, USA.

*To whom correspondence should be addressed. E-mail: whitman@hms.harvard.edu (M.W.); tkeller@hms.harvard.edu (T.K.); arao@idi.harvard.edu (A.R.)

References

34. Supported by NIH HL-48675 (T.A.S.), the Rowland Junior Fellows (W.P.W.), and American Heart Association 525918T (X.Z.). The author thank C. Bustamante, S. Marquez, and C. Cecconi for protocols for DNA-protein coupling; J. E. Sadler, D. Schaak, J. Kim, J. Seog, C. Lu, and A. Alexander-Katz for reagents and insightful discussions; and G. Dempsey for work on the early stages of this project.

Supporting Online Material

www.sciencemag.org/cgi/content/full/324/5932/1330/DC1
Materials and Methods
SOM Text
Figs. S1 to S3
References

14 January 2009; accepted 24 April 2009
10.1126/science.1170905

Naive CD4+ T cells differentiate into diverse effector and regulatory subsets to coordinate immunity to pathogens while establishing peripheral tolerance. Besides TH1 and TH2 effector subsets, which produce interferon-γ (IFN-γ) and interleukin-4 (IL-4), respectively, naive T cells can differentiate into proinflammatory Th1 helper 1 (TH1) cells or tissue-protective induced T regulatory (iTreg) cells (1, 2). TH1 cells are key regulators of autoimmune inflammation; characteristically produce IL-17 (IL-17A), IL-17F, and IL-22; and differentiate in the presence of inflammatory cytokines, such as IL-6 or IL-21, together with transforming growth factor-β (TGF-β) (1, 2).

The small molecule halofuginone (HF) is a derivative of the plant alkaloid febrifugine (3). HF has shown therapeutic promise in animal models of fibrotic disease and a clinical trial for scleroderma (4). HF treatment delayed S-phase entry within 24 hours of TCR activation, these T cells recovered thereafter, showing no defect in expansion kinetics between days 2 and 4 postactivation (fig. S3). Moreover, HF suppressed TH17 differentiation, irrespective of the number of cell divisions completed (fig. 1D), and reduced TH17 differentiation when IFN-γ and IL-4, cytokines that inhibit TH17 differentiation (6), were neutralized by antibodies (fig. S4A).

HF inhibited Il17a and Il17f mRNA production without affecting the expression of IL-2 and tumor necrosis factor, cytokines expressed by all TH17 cells (fig. S4B). HF treatment did not affect the induction of RORγt and RORα, two orphan nuclear receptors induced by TH17 polarizing cytokines that mediate lineage commitment (9, 10) (fig. S4C). Ectopic expression of RORγt in TH1 cells did not override the inhibitory effects of HF on TH17 differentiation (fig. S4D), confirming that RORγt is not sufficient to drive the effector function of TH17 cells (11).

HF did not directly inhibit signaling induced by TGF-β or IL-6, the two principal cytokines that instruct TH17 differentiation. Although high concentrations (>50 nM) of HF were reported to impair TGF-β signaling in fibroblasts (4), low doses of HF that repress TH17 differentiation inhibited neither TGF-β–induced R-Smad2 phosphorylation (fig. S5A) nor a variety of other lymphocyte responses to TGF-β (fig. S5, B to D) (12). In contrast, the type 1 TGF-β receptor kinase inhibitor SB-431542 (fig. S1C) abrogated all responses to TGF-β (fig. S5). Additionally, HF did not inhibit early IL-6–induced STAT3 phosphorylation (where STAT proteins are signal transducers and activators of transcription) (fig. S6), but it did reduce sustained STAT3 activation beginning 12 hours poststimulation (fig. S6), indicating that HF indirectly modulates factors that maintain STAT3 signaling. Consistent with decreased STAT3 activity (13), HF-treated TH17 cells
Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor
Xiaohui Zhang, Kenneth Halvorsen, Cheng-Zhong Zhang, Wesley P. Wong and Timothy A. Springer

Science 324 (5932), 1330-1334.
DOI: 10.1126/science.1170905

Dissecting VWF's Thrombogenic Potential
Von Willebrand factor (VWF) is secreted from cells in an ultralarge form (ULVWF) in response to thrombogenic stimuli. Shear forces expose a binding site for platelets, enabling formation of a hemostatic plug. The thrombogenic potential of VWF correlates with its length and is regulated by proteolytic cleavage of the A2 domain. Zhang et al. (p. 1330; see the Perspective by Gebhardt and Rief) now combine single molecule data and polymer dynamics theory to show that shear forces in the circulation are sufficient to unfold the A2 domain and allow cleavage of multimers with more than about 200 monomers. The A2 domain may thus represent the "shear bolt" of VWF, unfolding when multimers experience high forces to allow cleavage and down-regulation of thrombogenic potential.

References
This article cites 30 articles, 13 of which you can access for free
http://science.sciencemag.org/content/324/5932/1330#BIBL

Permissions
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title Science is a registered trademark of AAAS.