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gram has increased average co-pollutant emissions. If anything, average co-pollutant
emissions may have decreased. From the EJ perspective, average co-pollutant emis-
sions at plants located in low-income or minority communities covered by the pro-
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1 Introduction

Cap-and-trade programs have become a popular tool for policy makers who wish to take

steps to mitigate climate change by reducing carbon emissions. This popularity reflects the

fact that cap-and-trade achieves a fixed level of abatement at minimum cost. Carbon cap-

and-trade programs exist in the European Union, California, and Quebec, and are sched-

uled to begin in China.

Environmental justice groups in both California and other jurisdictions have expressed

concerns that cap-and-trade programs may increase pollution levels in disadvantaged com-

munities. In such a case, the aggregate net welfare effects from the policy may be positive,

but some of the distributional consequences may be regressive.2 Carbon dioxide, itself, is

a uniformly mixing pollutant and therefore the spatial distribution of abatement actions,

ultimately, has no relation to the distribution of benefits from the climate change mitiga-

tion objective of the program. However, pollutants that often co-occur with carbon diox-

ide, such as NOx and SOx, do not mix uniformly in the atmosphere. Any redistribution of

carbon emissions as a result of a cap-and-trade program may, in fact, have concurrent ef-

fects on NOx and SOx emissions, and thus have local effects on population exposures. It

is possible for carbon pricing to alter the spatial distribution of co-pollutant damages by

changing the spatial distribution of economic activity.

There is a growing literature on the interaction between carbon pricing and co-polluants

(e.g. Muller (2012), Agee et al. (2014), Fullerton and Muehlegger (2017) Novan (2017)).

The theoretical relationship between co-pollutants and carbon dioxide is ambiguous. NOx

and SOx may be either complements or substitutes, relative to carbon dioxide, which means

that carbon pricing may reduce or increase co-pollutant levels. Additionally, carbon pric-

ing is frequently enacted in a setting where regulations on co-pollutants do not properly

reflect the full damages of their emissions. This incomplete regulation presents an addi-

tional challenge in predicting the effects of carbon-pricing on co-pollutants and creates the

possibility of adverse interactions between carbon pricing and co-pollutant emissions.

In the debate over the renewal of California’s greenhouse-gas permit-trading program,

environmental justice (EJ) concerns have created opposition to the program from sev-

eral environmental groups such as the Sierra Club and the California Environmental Jus-

tice Alliance. EJ concerns about the program are not limited solely to non-profit advo-

cacy groups. Such concerns have also been expressed during the California Air Resource

Board’s (CARB) formal rulemaking process by the board’s official Environmental Jus-

2See: Barboza and Megerian (2017), Guerin (2017), Geuss (2017), Kahn (2016), Mason et al. (2017),
Climate Hawks Vote (2017)
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tice Advisory Committee. In a meeting on February 15th, 2017, the advisory committee

issued a statement criticizing cap-and-trade, stating that the program “does not reflect

best practices in research or serve the interests of poor communities, communities of color,

and indigenous communities in California and around the world.” (California Air Resource

Board (2017))

EJ groups have argued that the ability of firms to reallocate carbon emissions from

plant to plant (by transferring permits) will result in higher levels of pollution in minor-

ity and low-income communities. Such concerns are based on the perception among the

EJ community that dirtier plants, which are disproportionately located in low-income and

minority communities, will increase their emissions when allowed to buy permits, whereas

cleaner plants will respond by lowering their emissions. These concerns tend to be voiced

by non-economists, and thus often do not contain references to formal economic logic.

Such a focus on (absolutely) dirtier plants ignores the important role of marginal abate-

ment costs in determining changes in pollution levels after the introduction of an emissions

trading program.3

Although the arguments by environmental justice groups are not grounded upon formal

economic theory, regressive distributional effects could occur if high-abatement-cost firms

are located in disadvantaged communities. According to economic theory, it is the spatial

distribution of marginal abatement costs among plants that will determine the changes

in pollutants as a result of the program. Low-marginal-abatement-cost firms will have an

incentive to lower their emissions to sell permits to high-marginal-abatement-cost firms.

Thus the core distributional concerns of the EJ groups could be valid if firms with rela-

tively high marginal abatement costs are more likely to be located in disadvantaged com-

munities.4

Instead of market-based methods of regulation, EJ advocacy groups argue for command-

and-control regulation, including per-facility carbon dioxide emission limits in addition to

technology standards. Similar EJ concerns resulted in strong opposition from environmen-

tal groups when the state of Washington included a carbon tax referendum bill in the 2016

election and, the concerns, contributed to the failure of the referendum.

California’s policy makers are required to consider the EJ impacts of both the current

cap-and-trade program and any future programs. By law, all state government organiza-

tions must ensure that environmental regulation does not systematically harm individu-

als on the basis or race of income. U.S. federal regulations have also long required policy

makers to consider the distributional impacts of environmental regulation. Executive Or-

3See Farber (2012) for a detailed discussion of the EJ arguments made against cap-and-trade.
4Section 2 discusses these arguments and the corresponding economic reasoning in more detail.
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der 12898, issued in 1994, requires that the EJ impacts of all environmental regulations

be considered when evaluating policy. An understanding of the distributional impacts of

cap-and-trade programs is therefore important to policy-makers both in California, and for

any future state or federal carbon pricing programs. Even though the economic basis for

these advocacy group arguments is not always clear, and the implicit assumptions may not

demonstratively hold, the question of the EJ impacts of cap-and-trade programs has be-

come central to both the political economy of carbon pricing, and the legal obligations of

policy makers.

There is extensive evidence that existing levels of pollution are often higher in low-

income and minority communities than in other types of communities. However, previ-

ous work on emission markets has found little evidence of systematic differences in policy-

induced abatement levels with respect to spatial variations in race or income. Most no-

tably, Fowlie et al. (2012) study the effects of the Southern California NOx emissions trad-

ing program (RECLAIM). They use a matched difference-in-differences estimator and fail

to reject the null hypothesis of no systematic variation in program benefits according to ei-

ther the racial composition or the income levels of the affected communities. However, the

task of quantifying the change in the spatial distribution of co-pollutants that occur after

the introduction of a carbon emission-permit market has received relatively little attention

in the literature. While portions of my empirical approach will follow Fowlie et al. (2012),

the setting for their paper differs in important ways from the setting for my paper. Fowlie

et al. (2012) consider a permit market program which directly regulates a harmful local

pollutant whereas my paper addresses the effects of a permit market on pollutants that are

not directly covered by the market in question but for which emission levels are none the

less correlated with emissions of the regulated pollutant. There is no theoretical justifica-

tion to believe that the pattern of abatement across areas with different demographics or

income levels will the same in the carbon cap-and-trade program as it was in RECLAIM.

I utilize a dataset of hourly plant-level emissions for all power plants with more than

25 megawatts of capacity across the United States. I observe emissions of CO2, NOx, and

SOx. I combine these emissions data with demographic data from the American Commu-

nity Survey conducted by the U.S. Census, as well as EPA data on the characteristics of

individual power plants. My data set allows me to use non-California entities to help con-

trol for unobserved region-wide shocks that differentially affect communities based on their

income levels or racial composition. Controlling for these region-wide shocks is not possi-

ble in studies that rely solely on administrative data from California’s cap-and-trade pro-

gram.

My empirical strategy first utilizes a semi-parametric matched difference-in-difference
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estimator to construct a control group for each regulated plant in California. There are

many strategies for matching. My initial approach is analogous to that of Fowlie et al.

(2012). I match each treated unit to the closest M controls based on their distance in co-

variate space as defined by the Mahalanobis norm. This and similar estimators are dis-

cussed in Heckman et al. (1997), Heckman et al. (1998), Abadie and Imbens (2006), Abadie

and Imbens (2011) and Haninger et al. (2017). This matching method allows for more

flexibility in constructing counterfactual values than parametric methods, and limits the

influence of non-similar control plants. This method also allows me to construct heteroge-

neous treatment effects which vary systematically with the demographics of nearby com-

munities, permitting a direct test for any adverse environmental justice outcomes of Cali-

fornia’s cap-and-trade program.

As a second approach, I make use of the synthetic control method developed by Abadie

et al. (2010). This method constructs the counterfactual outcomes for California emis-

sions from the linear combination of control-state emissions that best tracks California

pre-treatment emissions. While I cannot directly compute heterogeneous treatment ef-

fects for each individual plant, I can compare estimates where the sample is restricted to

low-income or high-minority-share communities to the results estimated on the full sample.

My results suggest that, on average, California electricity plants saw a reduction in co-

pollutant emissions due to the carbon cap-and-trade program. The sign and magnitude

of the key coefficient is negative regardless of the specification of the control group and

for both methods, but it is not statistically significant for all possible choices of matched

control groups or for the synthetic control results. Importantly, I find no robust evidence

that this effect varies with either the income or the racial composition of the communities

surrounding the plant. Thus, there is no compelling evidence for adverse environmental

justice impacts for co-pollutants in low-income or high-minority-share communities in Cali-

fornia.

Two previous papers have made attempts to characterize the distribution of gains across

demographics for California’s carbon cap-and-trade program. Cushing et al. (2016) present

statistics from Californian administrative data showing that regulated facilities are more

likely to be located in low-income or minority communities, and that several industries

have experienced increases in both their carbon emissions and their co-pollutant emissions.

However, the Cushing et al. paper consists mainly of summary statistics and includes no

formal statistical analysis. No attempt is made to control for unobserved heterogenity, or

to estimate a causal effect for the program.

Meng (2017) uses CARB administrative data to estimate a difference-in-differences

model to assess the levels of carbon abatement across advantaged and disadvantaged com-
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munities. These administrative data consist of carbon emissions reported to the state of

California to document compliance with the cap-and-trade program. Meng finds no ev-

idence that carbon abatement varies systemically with race or income. Meng also finds

suggestive evidence of perhaps more abatement in low income and minority communities,

but the estimates are not statistically significant at conventional levels.

My approach differs from Meng (2017) in several ways. Meng’s data allow him to see

the full universe of entities regulated under California’s cap-and-trade program, whereas

my data are limited to electricity-generating firms. However, the data used in my paper

have two distinct advantages relative to Meng’s. First, I can directly observe co-pollutant

levels, whereas Meng can observe only carbon emissions and has no data on co-pollutant

emissions. Second, all the firms in Meng’s dataset are located only in California. Thus, his

identification strategy cannot control for national or regional trends unrelated to cap-and-

trade that differentially affected emissions in advantaged and disadvantaged communities.

The data used in my paper are for the entire U.S. so I can use patterns of emissions for

various sets of matched-non-California firms as controls.

The paper is organized as follows. Section 2 outlines the institutional background of the

California cap-and-trade program. Section 3 explains the data and methodology. Section 4

presents the results. Section 5 discusses some limitations of the data and the analysis, and

proposes some additional research that may be appropriate, as more data accumulates in

the coming years and as firms reoptimize their capital stocks over the longer run. Section

6 concludes.

2 Program Background

In 2006 the California legislature passed Assembly Bill 32 (AB32). The law mandated a

reduction in carbon dioxide emissions to 1990 levels by 2020. To meet these goals, Cali-

fornia chose to establish a cap-and-trade program. California also adopted a low-carbon

fuel standard, implemented energy efficiency regulations, and required electrical utilities to

obtain more of their electricity from renewable sources.

In a cap-and-trade program, each firm must surrender a permit for each ton of carbon

dioxide that it emits. The total quantity of permits is capped and firms are allowed to buy

and sell permits for cash payments. A cap-and-trade program achieves a particular level

of abatement at least cost because it allows firms with higher marginal abatement costs to

“bargain” with other firms with lower marginal abatement costs to reduce their emissions

instead. Thus the equilibrium pattern of emissions is determined by the distribution of

marginal abatement costs across firms. Firms with the lowest marginal abatement costs
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will typically do the most abatement, freeing up permits for sale to other firms that have

marginal abatement costs higher than the market price of a permit.

California’s cap-and-trade program began in 2013. The cap was initially set at two per-

cent below 2012 emissions, declined two percent in 2014 and was scheduled to decline by

three percent in each subsequent year (until 2020). The state estimates that the required

decline in emissions represents a 15 percent reduction from the counterfactual “no pro-

gram” trend in emissions. The AB32 program covers carbon dioxide as well as several

other greenhouse gases.5

All electricity producers in California are covered by the program as well as all large in-

dustrial sources emitting more than 25,000 megatons of CO2-equivalent emissions per year.

Fuel suppliers were brought under the cap in 2015. Around 450 entities, in total, were cov-

ered by the program as of 2015. CARB estimates that eighty percent of all Californian

carbon emissions are subject to the cap.6 Permit allocations to large industrial emitters

were initially distributed at no cost to firms, based on the firm’s historical emissions and

the firm’s energy efficiency, but an increasing proportion of permits will be auctioned as

time goes on.7 Electricity generators received free permits on the condition that all prof-

its from the permits must benefit utility rate-payers. Permits may be banked, and firms

may meet part of their compliance obligation by purchasing “offsets” that support other

types of approved carbon-dioxide-reducing projects.8 Permits were initially traded at $22

per ton of CO2-equivalent. However, after some volatility, equilibrium prices fell and even-

tually settled around a price of $12 to $13 a ton by 2014.

As noted in the introduction, the spatial distribution of carbon abatement activity does

not affect the distribution of global benefits from carbon emissions reductions. Carbon

dioxide is considered to be “globally uniformly mixing,” meaning that it spreads evenly

throughout the earth’s atmosphere. It is the global concentration of carbon dioxide that

determines the pace of global warming. Consequently, it does not matter which firm(s)

choose to abate their carbon emissions; all that matters for climate change is the aggre-

gate abatement. This feature of carbon-emissions means that there can be opportunities to

decrease the overall cost of regulation by facilitating the allocation of abatement responsi-

5The full list includes carbon dioxide (CO2), methane (CH4), nitrous oxide (NO2), hydrofluorocarbons
(HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifloride (NF3).

6Sources of greenhouse emissions that remain outside the cap include agriculture and emissions from
residential and commercial sources.

7Increasing auction shares reflect the transition of property rights (to carbon emissions) from firms to
the general population.

8Common offset projects including preserving or planting forests and disposing of certain types of
ozone-depleting gases which also have greenhouse effects. These projects may be located outside of the
state.
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bility towards cost-minimizing locations.

The expected spatial pattern of abatement under a cap-and-trade program is deter-

mined by the spatial pattern in marginal abatement costs. Environmental justice concerns

would be warranted if plants with higher marginal abatement costs are located in disad-

vantaged communities, and if changes in carbon dioxide emissions are strongly correlated

with changes in local co-pollutants. However, if marginal abatement costs are uncorrelated

with characteristics of the surrounding community, then it is unlikely that changes in the

location of carbon emissions, attributable to cap-and-trade, will differentially change co-

pollutants for low-income and minority communities.

Theory is ambiguous on which case will hold. There are three possibilities: (1) dirtier

plants located in disadvantaged communities may not yet have taken full advantage of all

available abatement technologies, implying that marginal abatement costs for these firms

could be lower than for cleaner state-of-the-art plants located in wealthier non-minority

communities; (2) dirtier plants located in low-income communities have higher emissions

because they tend to have higher marginal abatement costs (often implicitly assumed by

those who oppose cap-and-trade programs on EJ grounds); (3) there is simply no corre-

lation between marginal abatement costs and the low-income and minority-shares of sur-

rounding communities. Unfortunately, it is not possible to observe marginal abatement

costs directly in the available data and possible proxies are insufficiently informative, so it

is not possible to simply observe which of (1) through (3) hold.

These environmental justice concerns have taken a central role in the debate about

whether to renew California’s cap-and-trade program after the expiration of AB32 in 2020.

These concerns can also be seen explicitly in the legislation passed. The process to ex-

tend California’s carbon cap-and-trade beyond 2020 began with the passage of a sepa-

rate California Senate bill, SB32, in 2016, which mandated a forty percent reduction in

carbon emissions below 1990 emission levels by 2030. In response to widespread EJ con-

cerns, SB32 explicitly mandates that the emission reductions must be achieved in a “man-

ner that benefits the state’s most disadvantaged communities.” AB 398, which was passed

in 2017, established a more aggressive cap-and-trade system to achive these reductions.

In addition to the cap-and-trade “extension” in AB 398, a separate bill was passed (in

conjunction with the extension) that mandates stricter regulation of local pollutants. As

a condition for their support of the bill, industry groups demanded that no new GHG reg-

ulations could subsequently target entities already participating in the cap-and-trade pro-

gram. This final condition was viewed as an attempt to forestall any traditional command-

and-control regulations, such as plant-specific abatement targets or emissions limits, which

had become a popular policy proposal in environmental justice circles to address their dis-
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tributional concerns.

Thus the distributional effects of changes in co-pollutants has become an important

part of both the political economy and legal obligations of California policy makers. A

better understanding of the pattern of abatement due to California’s cap-and-trade pro-

gram is therefore of first-order importance to policy-makers.

Another factor that could affect the proper function of California’s carbon market is the

potential for out-of-state or out-of-country “leakages” of carbon emissions. Abatement of

carbon emissions in California could be at least partially undone by increases in emissions

outside the state, because carbon pricing would make production outside of California rel-

atively more profitable. Specifically to deter leakage, California freely allocates a portion

of the total number of permits based on a firm’s output and its efficiency relative to the

industry. These criteria act as an output subsidy and encourage firms (and production)

to stay in California instead of moving to an unregulated state.9 Furthermore, California

directly taxes imports of electricity from other states.

3 Data and Empirical Strategy

My dataset consists of plant-level emissions from 2010 to 2016 for almost all power plants

in the continental United States. Emissions data can be retrieved from the EPA’s Clean

Air Market Data (CAMD) which includes all generators with a capacity greater than 25

MWh. These data are collected from continuous emission monitoring systems (CEMS)

which record emissions data at an hourly frequency. All units must report CO2, NOx and

SOx emissions data. These emissions are flows measured at the point of emission from the

plant and do not represent readings or imputations of concentrations from ambient pol-

lution monitors. Wind speed and direction, temperature, precipitation and atmospheric

chemistry, for example, will all affect the “fate and transport” of these emissions and even-

tual exposure of the population to the resulting ambient levels of pollution.

Data on the characteristics of electricity generators have been retrieved from the EPA’s

Emission and Generation Resource Integrated Database (eGRID). eGRID is an extensive

database on both the environmental and the technical characteristics of U.S. electricity

generators. eGRID is published every other year. In years without eGRID data, I assign

plants the characteristics contained in the eGRID release from the previous year. Plant

characteristics that I use in this analysis include the primary fuel type of the plant, the

nameplate capacity, annual net generation, and the heat rate. Nameplate capacity refers

9For a model of the role of output subsidies in preventing leakages see Fischer and Fox (2012)
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to the amount of electricity an electrical plant can generate in a given period of time (usu-

ally in megawatts per hour) and is a proxy for plant size. Heat rate is a measure of the

plant’s efficiency. It reflects how much energy is needed to generate one unit of electricity.

Plants with lower heat rates are more efficient. In addition, latitude and longitude coordi-

nates for the plant’s location are drawn from eGRID.

My demographic data are drawn from the five-year moving average of the American

Community Survey (ACS) data at the census-tract level.10 To study the environmental

justice impacts of the program, I focus on two variables: per-capita income and the pro-

portion of the population which belongs to a minority group.11 Demographic data for the

neighborhood surrounding each plant are based on all census tracts which intersect a one-

mile buffer centered on the plant’s latitude/longitude location.

There are two natural control groups to consider for the California plants: the North

American Electric Reliability Corporation’s (NERC) Western Electricity Coordinating

Council (WECC)12 and the entire set of non-California power plants in the United States.

The WECC enforces many federal regulations and writes rules to ensure power plant com-

pliance across its region. The regulations are designed to ensure equal access to transmis-

sion infrastructure and to minimize the chance of a wide-scale power failure. In addition,

the WECC overlaps with the Western Interconnection. The Western Interconnection is

one of three grid interconnections in the US and covers the portion of the United States

that lies west of the Rocky Mountains.13 Technological constraints make it difficult for

plants inside the Western Interconnection to transmit power to consumers outside of the

interconnection and for firms outside the interconnection to transmit power in.14 Thus

plant inside the interconnection form a market, and experience similar market conditions

and regulations.15 By limiting the sample to the WECC it is less likely that unobserved

demand shocks across regions will bias the results.

10The values I use reflect the terminal year of the five-year window, not the midpoint. This is a nec-
essary compromise because midpoint data for 2016 will not be available until the ACS data for 2018 are
available. I also cannot use earlier years because the five-year ACS only became available in 2010.

11Following Fowlie et al. (2012) I use the proportion of residents who identify as African-American or
Hispanic for the minority variable.

12The NERC is a non-profit collective of electricity-generating firms charged by the federal government
with (a) ensuring reliability throughout the grid by ensuring compliance with federal regulations, and (b)
collecting data.

13Non-California states included in my sample are Arizona, Colorado, Idaho, Montana, New Mexico,
Oregon, Utah, Washington, and Wyoming.

14In recent years there has been a push to better integrate the different interconnections. However,
these projects are either in their early phases or relatively small.

15Note that I use a more-general definition of “market” here, where a market is the set of firms and
buyers whose actions influence the price. Often when people speak of electricity markets, they are refer-
ring to a wholesale market administered by an Independent System Operator(ISO).
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The WECC, however, is an imperfect control group due to the limited number of plants

that are available for use with the matching estimator as potential controls. Matches may

therefore be of lower quality, in the sense that the control plants may differ in covariates.

The estimator may incorrectly estimate the counterfactual for the treated plant. Expand-

ing the control group to include all U.S. plants outside of California could allow a greater

greater pool of potential controls, thus increasing the chance that there are good matches

with similar covariates for each treated unit. Additionally, a greater number of plants will

provide more statistical power and decrease finite sample bias.

Given that there are plausible arguments for the choice of either of these control groups,

I will show estimates using both of these groups. Qualitatively, the signs and magnitudes

of the key parameter estimates do not change with the choice of control groups. The dif-

ference is in the sizes of the standard errors and therefore in the statistical significance of

the results.

I aggregate the hourly raw emissions data for each plant to the cumulative yearly level

for that plant because demographic data are only available on the annual level. The unit

of observation is thus the plant-year. I merge the eGRID data on plant characteristics

with the CAMD emissions data using the Office of Regulatory Information System PLant

(ORISPL) codes. Plants without eGRID information must be dropped from the sample.

Given that California power plants primarily use natural gas instead of coal or oil, I limit

the sample to plants for which primary fuel type is natural gas. Additionally, I balance the

panel, by dropping all plants that do not report emissions for the full seven years of the

sample.16 This leaves me with a total of 69 eligible control plants from the WECC and 662

control plants from the entire United States. There are 86 treated plants in the California

sample.17

Table 1 shows summary statistics for California and the two candidate control groups.

California plants as a group are different than the control plants. They tend to be cleaner

and smaller. The communities surrounding the California plants are more diverse and have

more income than the communities surrounding the rest of the WECC plants. However,

average income levels in communities surrounding plants across the entire U.S. outside

of California do not differ from income levels in the communities surrounding California

16Generally this is because a plant has shutdown. When the plant is in California there is a potential
that this is a result of the cap-and-trade program. If that is the case, this fact will bias my results towards
zero, suggesting smaller abatement then actually occurred.

17In total I exclude 1,768 observations from 368 plants from the overall sample. The plants I exclude
tend to be smaller than the plants included in the sample. Among the controls, the excluded plants tend
to be larger emitters although the plants excluded from the California sample emit at levels similar to the
included California plants. Efficiency measures between dropped and included plants are similar across
both the California and control sample.
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plants.

Figure 1 plots trends in the emissions for the treatment and control groups for both

NOx and SOx and for both the regional and national-level control groups. WECC control

plants for NOx and the national level controls for SOx seem to provide somewhat plausi-

ble control groups as it is arguable that the assumption of parallel prior trends seems to

hold. For the other two sets of trends, it seems like the parallel trends assumption is vio-

lated.

The most simplistic approach to answering the research question poised in this paper

would be to compare the mean emissions before and after the program. Many of the EJ

groups concerned about cap-and-trade in California implicitly make such an argument and

cite research such as Cushing et al. (2016) that follows this method. If I were to replicate

this approach with my data, I would find a statistically insignificant decrease of 10.2 tons

a year in NOX and a statistically significant increase of .062 tons per year for SOx. How-

ever, there are major concerns about the validity of this approach. It is impossible to sepa-

rate the effect of the program from changes in co-pollutant levels that would have occurred

anyway. To get proper estimates of the program’s causal impact, we need to find a proper

control group that would allow us to estimate what would have happened at the California

plant’s under the no-program counterfactual.

The most natural way to construct a counterfactual would be to estimate a simple difference-

in-differences model using plants outside of California as a control group. However, the dif-

fering pre-trends should lead us to approach these simple difference-in-differences results

with caution. Table 2 shows estimates from such a difference-in-differences model with the

WECC plants acting as the control group. Rudimentary difference-in-difference specifi-

cations imply that the California carbon program caused co-pollutants to increase. The

estimates from these specifications are implausibly large, implying an increase of around 3

standard deviations for NOx and close to 100 standard deviations for SOx. The inclusion

of state-by-year time trends causes the results to lose statistical significance. This suggests

that the simple difference-in-differences results (showing an increase in co-pollutants) are

not properly controlling for economic shocks that differentially impact the treatment and

control groups, and that the model does a poor job of adjusting for differences in covari-

ates across treatment and control groups. Even in the most defensible specification, in-

cluding state-specific time trends, the standard errors are large and the thus the parame-

ters are very imprecisely estimated. A more sophisticated method of selecting the control

group could both reduce bias and shrink standard errors by controlling better for differing

pre-trends.

To construct a more-valid control group, I turn to a nearest-neighbor matched difference-
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and-difference estimator. There is a large literature concerning the properties and im-

plementation of this matching estimator (Heckman et al. (1997), Heckman et al. (1998),

Abadie (2005), Abadie and Imbens (2006)m Abadie and Imbens (2011), Fowlie et al. (2012)).

The estimator matches treated units with their nearest neighbors, where “distance” is de-

cided by similarity in covariates. By limiting the control group to the nearest neighbors

of the treated plants, dissimilar control plants that may bias the results are removed from

the estimation. The advantage of a semi-parametric approach, compared to the standard

difference-in-difference model, is that it allows more flexibility in terms of the functional

form of the relationship between the treated and control groups when estimating treat-

ment effects.

Following the potential outcome framework from Rubin (1973), suppose that each plant

has two potential levels of emissions based on its inclusion in a carbon pricing program

like the one in California. Let Yit(1) be the emissions from plant i in time period t under

carbon pricing and Yit(0) represent the emissions under the no-carbon-pricing counterfac-

tual. Let Di = 1 if plant i was actually subject to the California cap-and-trade and Di = 0

if it was not. I wish to estimate the average treatment effect on the treated (ATT)

ATT = E[Yi,t(1)− Yi,t(0)|Di = 1] (1)

For the California plants, the econometrican observes only Yit(1) The challenge is to

find a consistent estimator of Yit(0). The semi-parameteric matching estimator uses the M

nearest neighbors in covariate space to estimate Yi,t(0). In other words, the estimator con-

structs a control group for each Californian plant. Distance between plants is measured by

the Mahalanobis norm, which scales the difference in each plant attribute by the standard

deviation of that attribute. This means a higher penalty is assigned to plants which differ

in attributes that do not have much variation than to plants that differ in attributes that

vary widely across the sample.

It can be shown that the ATT can be consistently estimated with

1

Ntreat

 ∑
i∈Itreat

(Yi,t1(1)− Yi,to(0))− 1

M

∑
j∈J (i)

(Yj,t1(0)− Yj,t0(0))

 (2)

Where Itreat is the set of treated plants and Ji is the set of the M closest matches to

plant i from the group of control plants. Yi,t0 is average emissions of plant i in the pre-

treatment period (t = t0) and Yi,t1 indicates the average emissions of plant i after the in-

troduction of the cap-and-trade program (t = t1).

I also implement the finite bias adjustment suggested in Abadie and Imbens (2011).
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This approach uses OLS to adjust for remaining differences in covariates between the treated

entity and the matched control group.

To test for adverse environmental justice effects of the program, I run the following re-

gression.

∆Emissionsi = β0 + β1Treat+ β2Treat× PropMinority

+β3Treat× PerCapitaIncome+ γXi + ηJ (i) + εi (3)

Where the Xi are a set of plant-level controls and ηJ (i) is a match-group fixed effect. The

regression thus compares each treated unit to the within-group variation from the controls

chosen by the semi-parametric matching estimator. The inclusion of interaction terms cap-

tures how changes in co-pollutants vary systematically with demographic characteristics of

the surrounding community.

For robustness, I also estimate a synthetic control model. The synthetic control ap-

proach provides a data-driven method for choosing a control group. Instead of finding

controls based on covariate similarity, as in matching, a synthetic control model finds the

linear combination of controls that best approximates (by minimizing the mean-square

prediction error) the path of California emissions in the before-treatment periods. This lin-

ear combination of controls can then be used as a counterfactual, or “synthetic control”,

for the treated entity. The effect of the policy is the difference between the actual post-

treatment outcome for the treated entity and the outcome predicted by the synthetic con-

trol.

Given that the synthetic control method is designed to analyze only one treated entity,

I aggregate the emissions data to the state level and use average per-plant emissions as my

outcome variable. The synthetic control approach makes no provisions for heterogeneous

treatment effects. However, to test for environmental justice concerns, I can find the pro-

gram’s effect on low-income and high-minority share communities by limiting the sample

to only include these groups.

4 Results

Table 3 shows the estimate of the ATT computed by the semi-parametric matching esti-

mator. The first column of results shows the estimates for the program’s effect on NOx

and the second column of results shows the estimates for the program’s effect on SOx.

Rows 1 and 2 show estimates using the western United States as a control group. Rows

3 and 4 show estimates allowing all (non-California) plants in the United States to be used
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as potential controls. Rows 2 and 4 use the Abadie and Imbens (2011) finite-bias adjust-

ment, whereas Rows 1 and 3 do not. Estimates with and without the bias adjustment are

qualitatively similar.

Regardless of the control group used, the signs of the key parameter estimates in Table

3 suggest that, on average, California’s cap-and-trade program has decreased co-pollutants.

However, the effect is statistically significant only when the control plants outside Cali-

fornia are drawn from the entire rest of the country. This difference could reflect the fact

that, with a larger sample size, there is greater statistical power and thus smaller standard

errors. Even if the difference in standard errors is not due to sample size, there is no evi-

dence that the program, on average, had an adverse effect on co-pollutant emissions.

Figure 2 plots emissions of the treated plants both in California and for those non-

California plants that have been selected at least once as a control. The comparability of

the pre-trends seems to have improved although the NOx pre-trends for the rest of the

U.S. are still an imperfect match to the California trends.

Table 4 shows estimates, for equation 3, for heterogeneous treatment effects by race and

income. Column 1 shows estimates for NOx using the WECC as the control group. Col-

umn 2 shows estimates for SOx, also using the WECC as the control group. Columns 3

and 4 shows estimates for NOx and SOx, respectively, allowing every natural-gas plant in

the US, outside of California, to be used in matching.

The coefficients of interest for the environmental justice implications of the policy are

those on the interaction terms (Treat× Proportion Minority) and (Treat× Per-Capita

Income). These coefficients show how changes in emissions have differed with the racial

composition and income of the surrounding communities. Any statistically significant re-

sults for the estimates of these coefficients would therefore suggest that the gains or losses

do not accrue evenly across income and race.

To test for adverse environmental justice impacts on minority communities, the rele-

vant coefficient to consider is the one on (Treat× Proportion Minority). A positive esti-

mate of this coefficient would imply that minority communities saw additional increases

in co-pollutants as a result of the policy and that the EJ concerns about the program are

supported by the data. A negative coefficient estimate would imply that minority com-

munities saw additional decreases in emissions as a result of the policy. The signs of the

estimates for this coefficient vary by pollutant and control group. All except one are neg-

ative, which would imply disproportionate gains for minority populations from the policy.

However, none of the four estimates are statistically significant and thus I cannot reject

the null-hypothesis that gains from this policy are unrelated to the racial composition of

the surrounding communities.
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To test the environmental justice concerns along the income dimension, we need to ex-

amine the coefficient on (Treat× Per-Capita Income). Concerns about adverse environ-

mental justice would be valid if the estimates of this coefficient were negative. This would

mean that lower-income communities saw additional increases, or smaller decreases, in

emissions than higher-income communities. Three of the four coefficient estimates are pos-

itive, while one is negative. As before, none of these estimates are statistically significant

and I cannot reject the null hypothesis that emission reductions are unrelated to income.

To summarize: a statistically significant result for either of these coefficients would im-

ply that the pattern of abatement gains differs systematically with the racial and income

characteristics of the community. However, across all pollutants and all control groups, I

find no evidence of adverse environmental justice impacts in either race or income as a re-

sult of California’s cap-and-trade program.

4.1 Robustness Checks

Table 5 displays several robustness checks designed to address possible threats to identi-

fication.18 For comparison, the first two rows of the table reproduce the (bias adjusted)

estimates of the effects of the program from Table 3.

Leakages. One concern is that the program may have affected electricity generators out-

side of California, thereby contaminating the controls. This could occur if, for instance,

the increased cost of carbon made unregulated electricity outside of California more at-

tractive to buyers inside California, causing “leakages.” Given that the structure of the

grid makes it difficult to transfer power outside of the Western Interconnection, I can test

for spillovers by eliminating all WECC plants as potential national-level controls. The key

estimates remain qualitatively similar, with overlapping confidence intervals.

Anticipatory Effects. There may also be some concern that the results may be biased

by anticipatory effects in the lead-up to the introduction of the regulation. Initial permit

allocations were determined in part by a firm’s historical record of emissions, so firms may

have had an incentive to increase their emissions right before the start of the program.

There does seem to be an increase in emissions around the program start date, but this

increase also occurs for both control groups. To test whether these anticipation effects

are significantly biasing my estimates, I drop the year immediately preceding the program

(2012) from the sample ,since emissions in that year where used to determine permit allo-

cations, and rerun the estimator. The results for this robustness test are displayed in rows

18For brevity I only display the ATT estimates. The heterogeneous treatment effects estimates are also
robust and can be found in the appendix.
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4 and 5 of Table 5. The resulting estimates are qualitatively similar and, if anything, sug-

gest that the original estimates may understate the NOx emission reductions due to the

program.

San Onofre Closure. In January 2012, the San Onofre nuclear power plant permanently

closed. San Onofre was a large source of electricity to California that provided eight per-

cent of in-state electricity generation. Its closure increased the demand for electricity from

natural gas plants. As documented in Davis and Hausman (2016), transmission constraints

made it difficult for plants to easily replace the lost generation and therefore San Onofre’s

closure resulted in an increase in emissions and a change in the spatial distribution of elec-

tricity generation across the state. Given that matches are made, in part, based off of a

plant’s emission history between 2010 and 2012, this change could lower the quality of

the matches if a plant’s pre-closure emissions history no longer predicts the plant’s post-

closure behavior. To assess the effect of this closure on the matches made by the estima-

tor, I explore a specification that uses only the post-San Onofre closure, but pre-program,

emissions history to construct matches. The results, in the last two rows of Table 5, re-

main qualitatively similar.

Placebo Tests. One concern is that my results could be due to an overfitting of the

model by my choice of covariates in a way that produces a spurious statistically signifi-

cant result. Figure 3 shows results from 50,000 placebo tests, where “treatment” status

is randomized across all units in the sample. The estimates for the actual set of treated

plants from Table 3 are marked by the thin vertical line. If the estimator is not overfitting,

or otherwise downward biasing the results, the distribution of estimated placebo treatment

e effect sizes should be centered around zero. This is what occurs.

4.2 Synthetic Control

Figure 4 plots the results of the synthetic control model. The data have been disaggre-

gated to the monthly frequency. Actual California emissions are shown by the solid line

and the synthetic control is shown by the dotted line.19 Treatment effects can be com-

puted by examining the distance between the two lines. Table 6 shows yearly averages of

these estimated treatment effects. The estimated effect is much lower than the effect esti-

mated from the matching estimator and is frequently close to zero. There is, however, no

evidence of a damaging increase in co-pollutants.

Inference in synthetic control models is done through a permutation test as suggested

in Abadie et al. (2010). The basic idea of this test is, if the policy had an effect on the

19Weights for the synthetic control can be found in the appendix.
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outcome variable of interest, that there should be an increase in the distance between

the synthetic control and the actual outcome for the treated entity after the start of the

program. Recall that, the synthetic control is constructed to minimize the distance be-

tween the synthetic control and the pre-treatment outcome. If the policy has an effect on

the outcome variable of interest, the policy will change the relationship between the out-

come for the treated entity and the outcome for the synthetic control. In this case, the

goodness-of-fit between the synthetic control and the actual data will deteriorate after the

start of the program. This “forecast deterioration” can be quantified by calculating the ra-

tio of the MSPE of the synthetic control after the treatment period to the MSPE before

the treatment period. A higher MSPE ratio signifies that the program caused a greater

deterioration in the goodness of fit, indicating that the estimate is statistically significant.

How large the MSPE ratio of a given synthetic control needs to be, to achieve statisti-

cal significance, is determined by comparing it to the distribution of placebo MSPE ratios.

In this permutation test, a placebo synthetic control model is estimated for each control

unit wherein that unit designated as the treated entity. If the MSPE ratio for the actual

treated entity is above the (1 − α) percentile of all the placebo MSPE ratios we reject the

null hypothesis that the policy had no effect at the α significance level.

Figure 5 shows the result of this permutation test. The pre-post MSPE ratio for Cal-

ifornia is in the middle of the distribution of the placebo estimates for both pollutants,

suggesting that the policy had no statistically significant effect on co-pollutant emissions.

Table 6 also shows estimates of the cap-and-trade program on low-income and high-

minority-share communities. Figure 6 shows synthetic control results where the sample is

limited to plants for which the surrounding community has an average income below the

California median. Similarly, Figure 7 shows results for plants for which the surrounding

community has a minority share above the California median. The estimates of the pro-

gram’s effect for both restricted samples are small, close to zero and statistically insignifi-

cant.20 Although these comparisons of synthetic control estimates between various samples

lack the formal statistical testing of the matching estimator, these results suggests that

abatement patterns across plants have not differed for plants in communities with lower-

than-average incomes or higher-than-average minority shares, when compared to the state

as a whole.

Lastly, Figure 8 and Figure 9 plot the difference between the actual data and the syn-

thetic control for the California and placebo estimates, and therefore show the treatment

effect. This difference is illustrated for the entire sample as well as the low-income and

high-minority-share restricted samples. The California effect lies in the center of the placebo

20Permutation tests for the restricted samples can be found in the Appendix.
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estimates. These plots can be more intuitive than the permutation-test figures, and they

also show that the synthetic control approach implies a statistically insignificant effect of

the cap-and-trade program on co-pollutants. There is no evidence that this small and sta-

tistically insignificant effect differs for low-income and/or high-minority-share communi-

ties.

5 Caveats and Directions for Future Research

My data sources and statistical approaches have several limitations and qualifications.

First, my analysis focuses on just one sector, electricity generation, and does not take into

account the effect of carbon cap-and-trade on the distribution of pollutants from other

sectors. Within-state electricity generation represents only eleven percent of California’s

greenhouse gas emissions. The other major contributing sectors are transportation (39

percent) and other industrial sources (23 percent). The external validity of my results de-

pends on the degree of similarity in the pattern of abatement in the electricity generation

sector compared to other sectors that also fall under the carbon cap-and-trade program. It

is worth noting, though, that the concerns of environmental justice activists often rely on

general arguments that are not specific to any one sector. Future work could expand this

analysis to address changes in the distribution of co-pollutant abatement in other indus-

tries.

Given the relatively short period of time that has passed since the implementation of

this carbon trading program, my results reflect only the short-run responses of firms and

cannot describe possible long-run effects. For instance, the cap-and-trade program could

affect plant entry and exit decisions differently for clean and dirty plants. Cap-and-trade

could encourage cleaner plants to open, or dirtier plants to close. Thus, long-term co-

pollutant abatement patterns may be different from short-term abatement patterns.

The California carbon cap-and-trade program was announced many years before it be-

came law, so there may be reason to believe that there was enough lead time for firms to

invest in abatement capital and other anticipation measures. Unfortunately, no data exists

on this behavior, so I am unable to characterize fully the extent of relevant capital invest-

ment that occurred before or during my sample period. If there was a wave of anticipatory

investment before the start of the program, the direction and degree of bias in my esti-

mates would depend on how the pattern of that investment is related to local income and

demographic characteristics.

Finally, my results may not generalize in a straightforward fashion to other carbon-

dioxide trading programs. California’s inventory of power plants was already much cleaner
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relative to the average grid. This property reflects both a lack of coal generation and long-

standing tighter air quality regulations in general. Carbon cap-and-trade may lead to more

co-pollutant abatement in a jurisdiction that relies more heavily on dirty fuels like coal,

when coal could be easily replaced by generally cleaner fuels like natural gas.

6 Conclusion

Environmental justice advocates have expressed grave concerns about the potential nega-

tive effects of California’s carbon cap and trade program on co-pollutants. Oversimplified

analytical approaches can indeed lead to the impression that co-pollutants have increased

as a result of the introduction of the program. In this paper, however, I address these EJ

concerns using modern econometric program-evaluation methods and detailed data from

the electricity sector. I use both a semi-parametric matching estimator and synthetic con-

trol approach to construct relevant control groups for California’s treated plants in a sys-

tematic data-driven way.

Co-pollutant abatement will be determined by the spatial pattern of carbon abatement

which is in turn determined by spatial pattern of marginal abatement costs. I find no ev-

idence of increase in co-pollutants emissions, or that the changes in these emissions have

varied systematically with the race or income of the communities surrounding these elec-

tricity generating plants. This suggests, that marginal carbon abatement costs do not dif-

fer systematically with the sociodemographic characteristics of the communities that sur-

round these plants. Additionally, I find some evidence (although this inference is not ro-

bust to all plausible specifications) that the program may actually have caused a decrease

in average co-pollutant emissions.

Further work should examine the impact of carbon cap-and-trade programs in other in-

dustries, and in other settings, to ensure that these results hold more generally. Addition-

ally, as more years of data accumulate, researchers will be able to explore the longer-term

impacts of the program, and growing sample sizes will permit greater precision in the key

parameter estimates.

For the electricity sector, at least, my results suggest that policymakers have no ap-

parent basis for worrying about environmental justice concerns relating to the California

carbon cap-and-trade program.
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Tables and Figures

Figure 1: Emissions for Treatment and Control Plants From 2009-2016

(a) NOx Western U.S. (b) SOx Western U.S.

(c) NOx Entire U.S. (d) SOx Entire U.S.

Notes: This figure shows historical emissions for the treated plants as well as the historical emissions for
all control plants.
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Figure 2: Emissions for Treated Plants and Plants Used For Matching

(a) NOx Western U.S. (b) SOx Western U.S.

(c) NOx Entire U.S. (d) SOx Entire U.S.

Notes: This figure shows historical emissions for the treated plants as well as the historical emissions for
all control plants that were matched at least once to a treated plant.

23



Figure 3: Placebo Test for Semi-Parametric Matching Estimator

(a) NOx Western U.S. (b) SOx Western U.S.

(c) NOx Entire U.S. (d) SOx Entire U.S.

Notes: This figure shows ATT estimates from a placebo test of the semi-parametric nearest-neighbor
estimator. “Treatment” status was randomly assigned to a subset of plants from the entire sample. The
vertical red line shows the estimate calculated from designating the actual treated plants as treated.
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Figure 4: Synthetic Control Estimates

(a) NOx (b) SOx

Notes: This figure shows historical emissions from California plants (solid line) and the imputed
counterfactual emissions from the “synthetic control” (dotted line). The distance between the actual and
synthetic control emissions shows the estimated effect of the policy. The vertical red line marks the start
of California’s carbon cap-and-trade policy.

Figure 5: Permutation Test for Synthetic Control

(a) NOx (b) SOx

Notes: This figure shows the distribution of the post-treatment to pre-treatment MSPE ratios for
California and the placebo treated states. The red line shows the MSPE ratio for California.
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Figure 6: Synthetic Control Estimates: Only Low-Income Communities Included

(a) NOx (b) SOx

Notes: This figure shows the results from a synthetic control estimator when the sample is limited to those
plants where the surrounding communities per-capita income is below the California median. The solid
line shows historical California emissions and the dotted line shows the calculated counterfactual emissions
of the “synthetic control”. The difference between both lines is the implied treatment effect. The start of
California’s cap-and-trade program is marked by the red vertical line.

Figure 7: Synthetic Control Estimates: Only High-Minority-Share Communities

(a) NOx (b) SOx

Notes: This figure shows the results from a synthetic control estimator when the sample is limited to those
plants whose communities have proportion of minorities above the Californian median. The solid line
shows historical California emissions and the dotted line shows the calculated counterfactual emissions of
the “synthetic control”. The difference between both lines is the implied treatment effect. The start of
California’s cap-and-trade program is marked by the red vertical line.
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Figure 8: NOx Permutation Test: Difference Between Actual Data and Synthetic Control in
Treated vs Control States

(a) Full Sample (b) Low-Income Communities Only

(c) High-Minority-Share Communities
Only

(d) Low-Income and High-Minority-Share
Communities

Notes: This figure shows the difference between the observed emission data and the estimated synthetic
control counterfactual with each state is designated as the “treated unit”. California is shown as the dark
line.
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Figure 9: SOx Permutation Test: Difference Between Actual Data and Synthetic Control in
Treated vs Control States

(a) Full Sample (b) Low-Income Communities Only

(c) High-Minority-Share Communities
Only

(d) Low-Income and High-Minority-Share
Communities

Notes: This figure shows the difference between the observed emission data and the estimated synthetic
control counterfactual with each state is designated as the “treated unit”. California is shown as the dark
line.
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Table 1: Summary Statistics

CA WECC EntireUS CA−WECC CA− EntireUS
Plant Emissions

NOx Emissions (Tons/Year) 39.3 105.8 198.1 −66.5∗∗∗ −158.8∗∗∗

(124.1) (156.8) (506.2)
SOx Emissions (Tons/Year) 2.33 3.13 36.0 −0.802∗∗∗ −33.7∗∗∗

(4.55) (4.02) (407.1)
CO2 Emissions(Thousands of Tons/Year) 423.7 513.9 609.3 −90.2∗∗∗ −185.6∗∗∗

(623.8) (600.3) (949.2)

Plant Attributes

Nameplate Capacity (MWh) 424.8 476.1 564.6 −51.3∗ −139.7∗∗∗

(548.8) (408.9) (551.9)
Heat Rate (Thousands of Btu/kWh) 9.67 9.35 13.2 0.322∗ −3.48∗

(3.09) (2.72) (144.4)
Annual Net Generation(tWh) 0.96 1.09 1.25 −0.128 −0.294∗∗∗

(1.50) (1.33) (2.04)

Community Characteristics

Proportion Minority 0.491 0.318 0.267 0.174∗∗∗ 0.224∗∗∗

(0.248) (0.215) (0.233)
Per-Capita-Income (Thousands of Dollars) 25.2 21.4 24.8 3.77∗∗∗ 0.33

(11.9) (5.35) (8.19)

n 687 552 5, 241

Average Within-Plant Standard Deviations Over Time
Proportion Minority 0.008 0.007 0.012 0.001 −0.004
Per-Capita-Income 1.36 1.29 1.40 0.072 −0.039

Number of Plants 86 69 662

Notes: Summary statistics for natural gas fired power plants. The treatment group is California.
Two possible control groups shown are the WECC (which includes Arizona, California, Colorado,
Idaho, Montana, New Mexico, Oregon, Utah, Washington, and Wyoming) and all non-California

gas-fired plants in the U.S. Standard errors in parentheses.
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Table 2: Effects on Co-pollutants of California’s
Carbon Cap and Trade: Non-Matched Difference-in-Difference (2010 - 2016)

Dependent variable:

NOx Emissions (tons) SOx Emissions(tons)

(1) (2) (3) (4) (5) (6) (7) (8)

CA −223.0 802.7∗ −251.2∗∗ −138.6
(205.7) (411.2) (114.2) (172.1)

CA × Per Cap Inc 145.2∗ 18.8 27.1 44.4∗∗ 142.7 125.1∗

(75.3) (60.5) (56.6) (21.7) (97.8) (69.9)

CA × Prop Minority 19,802.4∗∗ 1,275.5 2,127.8 5,422.2∗ −48.6 −827.0
(9,040.3) (1,834.8) (2,558.0) (2,989.9) (2,827.9) (3,208.4)

Post −609.6∗∗∗ −530.2∗∗∗ −475.9∗∗∗ −1,129.3 −542.9∗∗∗ −508.8∗∗∗ −423.7∗∗∗ −469.3
(185.8) (172.0) (182.7) (705.3) (163.3) (159.7) (140.4) (373.9)

Post × Per Cap Inc 107.5 −114.1∗ −25.2 12.3 −31.1 −14.6
(131.8) (69.3) (71.3) (62.5) (123.0) (115.0)

Post × Prop Minority −5,865.0 350.3 3,942.6 −6,085.9∗ −1,341.0 503.9
(6,493.6) (2,526.9) (3,254.0) (3,308.7) (3,892.8) (4,500.5)

CA × Post 485.6∗∗∗ 363.8∗∗ 474.6∗∗∗ 1,109.9 505.5∗∗∗ 457.8∗∗∗ 438.0∗∗∗ 482.7
(169.6) (155.7) (181.2) (701.3) (163.7) (160.4) (142.9) (379.3)

CA × Post −224.7 117.0∗ 27.2 −76.9 32.8 14.8
× Per Cap Inc (184.2) (69.3) (71.4) (71.2) (122.5) (115.0)

CA × Post −25,883.2 −557.3 −4,113.7 −4,071.1 1,399.2 −503.2
× Prop Minority (17,915.9) (2,534.7) (3,282.6) (6,396.9) (3,897.4) (4,503.2)

Constant −766.6∗∗∗ 2,004.8∗ −85.8 200.0

(282.7) (1,085.6) (164.4) (476.9)
Per Cap Inc −90.7∗∗ −20.1 −27.2 −12.6 −144.0 −125.8∗

(38.6) (60.7) (56.6) (14.4) (98.1) (70.0)

Prop Minority −2,945.8∗∗ −1,095.0 −1,965.4 −101.0 27.8 811.1
(1,303.7) (1,822.0) (2,529.4) (499.0) (2,831.4) (3,211.5)

Fixed Effects No No Yes Yes No No Yes Yes
State Specific Time Trends No No No Yes No No No Yes
Observations 1,329 1,328 1,328 1,328 1,329 1,328 1,328 1,328

Notes: This table shows parameter estimates from a panel diff-in-diff for the effect of California’s
carbon cap-and-trade program conditional on the plants surrounding demographics. Controls
include Primary fuel type and nameplate capacity. All interactions are demeaned. Standard errors,
in parenthesis, are clustered at the plant level.
∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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Table 3: Average Treatment Effect on the Treated Estimates From Matched
Difference-in-Difference For California’s Carbon Cap-and-Trade on Co-pollutants

NOx SOx N-Treated N-Control

Western U.S. −21.4 −0.587 86 69
(16.0) (0.444)

Western U.S.(With Bias Adjustment) −23.5 −0.626 86 69
(15.7) (0.46)

Entire U.S. −22.1∗∗ −0.611 86 662
(9.15) (0.680)

Entire US (With Bias Adjustment) −25.7∗∗∗ −1.22∗ 86 662
(9.35) (0.680)

Notes: This table shows parameter estimates from a nearest-neighbor matched difference-in-
difference estimator. Distance is computed using the Mahalanobis norm based off of efficiency
(heat rate), nameplate capacity and past emission histories.
∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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Table 4: Heterogeneous Treatment Effects

Emissions (Tons/Year)

Western US Western US Entire US Entire US
NOx SOx NOx SOx

(1) (2) (3) (4)

Treat −4,118.36 −33.37 2,868.50 −2,158.89
(3,207.33) (70.11) (2,686.87) (2,670.03)

Proportion Minority 106.13 1.41 −15.29 142.13∗

(124.45) (2.72) (55.19) (84.88)

Per-Capita Income −3.28 −0.09 1.34 3.77∗

(3.62) (0.09) (1.88) (2.15)

Treat× Proportion Minority −178.54 −1.43 117.41 −86.49
(Adverse EJ =⇒ coef > 0 ) (138.92) (3.06) (109.15) (108.21)

Treat× Per-Capita Income 3.86 0.06 1.63 −2.01
(Adverse EJ =⇒ coef < 0 ) (3.66) (0.08) (3.43) (2.92)

Constant 33.76 2.09 −11.60 −61.05
(76.06) (3.29) (70.69) (79.46)

Observations 155 155 748 748

Notes: This table shows estimates of heterogeneous treatment effects. Estimates are computed from
a regression of changes in co-pollutant emissions on demographic variables and a match-group fixed
effect.
∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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Table 5: Robustness Checks

Control Group NOx SOx N-Treated N-Controls

Western US -23.5 -0.626 86 69
(15.7) (0.456)

Entire US −25.7∗∗∗ −1.22∗ 86 662
(9.35) (0.68)

No Western States −26.5∗∗∗ −1.23∗ 86 593
(9.40) (0.690)

No 2012 West −24.1 −0.662 86 69
(18.1) (0.525)

No 2012 Entire US −33.0∗∗∗ −1.23∗ 86 649
(10.8) (0.677)

After San Onofre Close (2012) Only: West −23.6 −1.17∗∗ 86 69
(19.1) (0.474)

After San Onofre Close (2012) Only: Entire U.S. −21.4∗∗∗ −1.47 86 661
(8.19) (3.29)

Notes: This table shows various robustness checks. The first two rows repeat the results shown in Table 3. The
third row drops all WECC plants from the control group to test for spillovers. The fourth and fifth row show
estimates when the year 2012 is dropped from the sample to test for anticipation effects.
∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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Table 6: Synthetic Control Estimates

2013 2014 2015 2016

Full Sample

NOx -1.32 -0.79 -0.69 -0.77

SOx -0.038 -0.003 -0.015 0.0002

Only Low-Income Communities

NOx -0.819 -0.480 -.167 -1.04

SOx 0.015 .017 -0.028 -0.042

Only High-Minority-Share Communities

NOx -1.25 -0.044 -0.052 -1.13

SOx 0.01 0.029 -0.048 -0.061

Notes: This table shows estimates, using the syn-
thetic control method, of the effect of California’s
cap-and-trade program for each year. Only low-
income communities and only high minority share
communities only include communities with in-
come (minority share) below(above) the Califor-
nia median. Inference is done using a permutation
test. None of the results are statistically significant.
Weights for the synthetic control are shown in the
appendix.
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Appendix

Figures A1 and A2 show the results of the permutation test for the synthetic control esti-

mates for low-income and high-minority-share communities respectively. The MSPE ratio

for California is shown by the vertical line. The fact that the Californian MSPE ratio is

smaller than the MSPE ratio of many placebo estimates implies that the synthetic control

estimates are statistically insignificant.

Table A1 shows the non-zero weights on emissions in other states used to construct the

synthetic control for California. The synthetic control is calculated by taking a weighted

average of these control-state emissions.

Table A2 shows nearest-neighbor matched difference-in-difference estimates for the

California carbon cap-and-trade program where “distance” is computed using the simple

propensity score instead of the Mahalanobis norm. The magnitudes of the estimates are

qualitatively similar and the p-values are somewhat lower, resulting in estimates with a

higher degree of statistical significance. Table A3 shows the heterogeneous treatment effect

results obtained from these alternative matches. Like my preferred specification, using the

Mahalanobis norm, I cannot reject the null hypothesis that average emission changes are

invariant to race and income of the surrounding communities associated with the plants

when I instead use the propensity score.

Table A4 shows the estimates for the heterogeneous treatment effect associated with

the robustness checks in Table 5. The results are again qualitatively similar to those in

Table 4.

Lastly Tables A5 and A6 show how the key results vary with the choice of the number

of nearest neighbors. The results are likewise qualitatively similar to those presented in

the body of the paper.
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Appendix Figures and Tables

Figure A1: Permutation Test for Synthetic Control: Low-Income Communities Only

(a) NOx (b) SOx

Notes: This figure shows the distribution of the post-treatment to pre-treatment MSPE ratios for
California and the placebo treated states. The red line shows the MSPE ratio for California. The sample
of plants is limited to those whose surrounding communities have a per-capita income below the median of
Californian plant-adjacent communities.
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Figure A2: Permutation Test for Synthetic Control: Only High-Minority Share
Communities

(a) NOx (b) SOx

Notes: This figure shows the distribution of the post-treatment to pre-treatment MSPE ratios for
California and the placebo treated states. The red line shows the MSPE ratio for California. The sample
is limited to include only plants whose community have a minority share above the median of Californian
plant-adjacent communities.

Table A1: Synthetic Control Weights

Full Sample Low-Income Only High-Minority Share Only

NOx SOx NOx SOx NOx SOx

State Weight State Weight State Weight State Weight State Weight State Weight

NV 0.0964 AZ 0.0267 AR 0.0329 ID 0.131 AL 0.487 AL 0.449
OR 0.127 ID 0.0832 NE 0.478 IL 0.16 MA 0.384 AZ 0.0256
RI 0.124 KS 0.323 NV 0.0782 KY 0.214 NV 0.129 CO 0.01
WA 0.0231 MA 0.001 OR 0.107 NE 0.0536 IL 0.215
WY 0.629 ME 0.0303 WA 0.304 OR 0.177 IN 0.0597

MT 0.214 PA 0.221 NJ 0.001
NH 0.0577 SC 0.0002 NV 0.145
NV 0.0872 TX 0.0419 NY 0.001
OR 0.0669 WA 0.001 SC 0.002
WA 0.109 TX 0.0927
WV 0.001 UT 0.0002

VA 0.0001

Notes: This table shows the weights used to construct the synthetic California used as a counterfactual.

Weights were chosen to minimize the mean square prediction error for the pre-treatment period.
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Table A2: ATT Using The Propensity Score for Matching

Control Group NO∗x SOx N-Treated N-Controls

Western U.S. −25.3 −0.377 86 69
(14.9) (0.314)

Western U.S. (With Bias Adjustment) −26.7∗ −0.356 86 69
(14.4) (0.306)

Entire U.S. −29.0∗∗∗ −0.488∗∗∗ 86 662
(9.01) (0.243)

Entire U.S. (With Bias Adjustment) −32.9∗∗∗ −0.512∗∗ 86 662
(9.26) (0.243)

Notes: This table shows results from a matched difference-in-difference estimator where the nearest-
neighbors are found using the propensity score instead of the Mahalanobis norm.
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Table A3: Heterogeneous Treatment Effects: Propensity Score Matching

Emissions (Tons/Year)

Western US Western US Entire US Entire US
NOx SOx NOx SOx

(1) (2) (3) (4)

Treat −3,137.24 −4.30 1,688.96 −2,524.68
(3,388.25) (78.53) (2,661.72) (2,681.01)

Proportion Minority 166.60 −0.84 −7.90 145.09∗

(142.89) (2.89) (55.55) (84.55)

Per-Capita Income −2.59 −0.20 1.47 3.65∗

(2.24) (0.15) (1.74) (2.13)

Treat× Proportion Minority −134.71 −0.13 69.20 −101.74
(146.66) (3.45) (107.98) (108.63)

Treat× Per-Capita Income 2.73 0.14 1.28 −1.30
(2.48) (0.20) (3.40) (2.98)

Constant −8.86 5.72 −39.15 −92.31
(71.45) (6.12) (61.55) (79.84)

Observations 155 155 748 748

Notes: This table shows estimates of the heterogenous treatment effects using the matches obtained from
propensity score matching obtained from the estimator described in Table A2.
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Table A4: Robustness Table for Heterogeneous Treatment Effects

Dependent variable:

Western U.S. Entire U.S. No Western States No 2012 Post Closing
NOx SOx NOx SOx NOx SOx NOx SOx NOx SOx

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treat −4,011.57 −32.55 2,858.26 −2,296.46 3,900.56 −2,646.48 2,822.03 −289.64 1,557.43 −2,532.94∗

(3,065.11) (68.92) (2,735.31) (2,738.06) (3,248.61) (3,163.29) (2,822.15) (3,108.21) (2,185.34) (1,530.68)

Proportion Minority 100.67 1.57 −13.63 146.18∗ −23.97 163.32∗ −37.55 80.64 5.57 124.05∗

(122.13) (2.82) (55.55) (86.78) (63.20) (95.79) (59.76) (82.23) (54.73) (65.44)

Per-Capita Income −3.64 −0.09 1.33 3.82∗ 1.64 4.46∗ 1.11 1.73 1.71 3.22∗

(3.99) (0.09) (1.89) (2.17) (2.01) (2.44) (2.11) (1.86) (1.45) (1.80)

Treat×
Proportion Minority −174.54 −1.40 117.04 −92.09 156.74 −104.54 115.53 −10.58 63.74 −102.17∗

(133.04) (3.02) (111.17) (111.01) (129.89) (126.23) (114.74) (126.28) (88.75) (61.84)

Treat×
Per-Capita Income 4.15 0.06 1.66 −2.04 2.26 −2.43 2.32 0.51 0.08 −4.08∗∗

(4.06) (0.09) (3.48) (2.97) (3.84) (3.39) (3.72) (3.15) (2.61) (1.86)

Constant 26.03 2.06 −12.94 −62.68 −19.04 −80.83 8.70 30.55 −51.09 −113.77∗∗

(81.30) (3.34) (71.09) (80.83) (77.50) (90.88) (77.61) (83.25) (61.19) (54.07)

Observations 154 154 734 734 666 666 721 721 733 733

Notes: This table fives estimates of heterogeneous treatment effects for each of the robustness checks described in Table 5.
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Table A5: ATT Robustness to Choice of Number of Neighbors

M = 2 M = 3 M = 4 M = 5

Western U.S. NOx −23.2 −23.5 −25.7 −25.6

(17.8) (15.7) (15.0) (15.0)
Western U.S. SOx −0.716 −0.626 −0.634 −0.674

(0.507) (0.456) (0.454) (0.470)

Entire U.S. NOX −23.9 −25.7 −29.3 −28.9
(9.73) (9.35) (9.89) (9.82)

Entire US SOx −0.807 −1.22 0.124 0.305
(0.916) (0.680) (2.25) (2.33)

Notes: This table shows how estimates change with the number of
plants used to construct the counterfactual outcome.
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Table A6: Robustness to Number of Nearest Neighbors: Heterogeneous Treatment
Effects

M = 2 M = 3 M = 4 M = 5

NOx Western U.S.

CA× Prop Minority −126.2 −178.5 −121.1 −98.1
(150.6) (138.9) (159.1) (122.6)

CA× Per Cap Inc 4.327 3.863 2.439 3.683
(3.926) (3.665) (3.355) (3.771)

NOx Entire U.S.

CA× Prop Minority 113.8 117.4 131.0 108.1
(89.75) (109.1) (111.2) (110.0)

CA× Per Cap Inc 1.325 1.625 2.397 1.594
(3.216) (3.432) (3.535) (3.390)

SOx Western U.S.

CA× Prop Minority 1.231 −1.434 −0.076 −1.068
(2.870) (3.065) (2.997) (3.574)

CA× Per Cap Inc 0.036 0.059 0.012 0.083
(0.074) (0.081) (0.085) (0.139)

SOx Entire U.S.

CA× Prop Minority −77.54 −86.49 −44.56 −60.18
(105.7) (108.2) (119.4) (106.2)

CA× Per Cap Inc −1.876 −2.008 −1.645 −1.072
(2.725) (2.925) (2.788) (2.830)

Notes: For the models of heterogenous treatment effects, this table shows how
the estimates change with the number of plants used to construct the counter-
factual outcome.
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