Social Preferences and Social Curiosity

Weiwei Tasch and Daniel Houser

Oct. 2018

Abstract

Social preferences have been implicated in many important economic behaviors. Building on Fehr and Schmidt (1999), we here investigate connections between social preferences and the demand for information about others’ economic decisions and outcomes, which we denote “social curiosity.” Using data from laboratory experiments with sequential public goods games, we estimate guilt and envy at the individual level, and examine their impact on social curiosity. We find that those with greater sensitivity to guilt display greater social curiosity. Further, we find that social curiosity is beneficial in that knowing others’ economic decisions and outcomes promotes cooperation and economic efficiency.

Keywords: Laboratory Experiment, Inequity Aversion, Social Curiosity, Information, Sequential Public Goods Game

JEL codes: C91, D83, D91, H41

Acknowledgment: We are grateful for insightful comments from Cesar Martinelli, Kevin McCabe, Johanna Mollerstrom, Thomas Stratmann, Joachim Winter, Daniel Zizzo, Arthur Dolgopolov, and from participants who attended presentations at George Mason University and Central South University; as well as the 2017 Experimental Public Choice conference, the 2017 meeting of the Economic Science Association, the 2017 meetings of the Southern Economic Association, the 2018 Spring School in Behavioral Economics at UC San Diego, and 2018 Norms and Behavioral Change Workshop at University of Pennsylvania.
I. INTRODUCTION

Understanding connections between social preferences and the demand for information relevant for social comparisons is fundamental to design policies to promote pro-social behaviors. Substantial effort has been directed towards understanding other-regarding preferences for a number of decades (see Guth et al., 1982; Kahneman et al. 1986; Forsythe et al. 1994; Fehr et al. 1993; Berg et al. 1995; Freshman & Segal 2018), including the important model of inequity aversion by Fehr and Schmidt (1999). However, little discussion has surrounded the connection between social preferences and the desire to know others’ economic decisions and outcomes. Here we investigate the connection between inequity aversion, within the context of Fehr and Schmidt (1999), and the demand to know others’ economic decisions and outcomes. We refer to the latter as social curiosity.

Social curiosity may differ among individuals. As compared to those with purely selfish motivations, those sensitive to guilt or envy may benefit more from information about others’ economic outcomes (Bolton 1991; Fehr & Schmidt 1999). The reason is that inequity averse individuals suffer more utility cost as their outcomes differ more from the outcomes of others. To avoid this, those sensitive to guilt and envy may be willing to pay for information about others’ economic outcomes. Here, by “more sensitive,” we refer to agents whose utility is more greatly impacted by departures from equal payoff outcomes.

We investigate the relationship between social preferences and social curiosity using laboratory experiments with a sequential public goods game, first developed by Kurzban and Houser (2005). We show that this game enables individual-level inference about Fehr-Schmidt inequity aversion. Further, by manipulating the pecuniary cost of knowing how others decide, we reveal the relationship between social preferences and social curiosity. In addition, our design allows us to discover the extent to which visibility of economic decisions promotes cooperative outcomes.

Specifically, players in our sequential public goods game (henceforth, SPG) make sequential contributions to an account that provides a return to all group members. In baseline treatments one can view all contributions from all group members prior to making one’s own contribution.
In another treatment players have the option to pay for this information. Importantly, in all treatments all players know the final outcomes of all participants. We show theoretically that this leaves inequity-averse players willing to pay for information about others’ decisions and outcomes.

Consistent with previous literature, we find that people are conditionally cooperative: their contribution decisions are positively dependent on others’ contributions. We further show that guilt and envy parameters are significant predictors of cooperative behavior. Moreover, consistent with our theoretical predictions, we find players more sensitive to guilt are willing to pay more for information about others’ decisions and outcomes. Finally, we find that making information about others’ decisions and outcomes free (i.e. without cost) promotes cooperation.

In sum, our paper makes both theoretical, methodological, and substantive contributions. We present a theoretical analysis that suggests a positive correlation between higher social preferences and higher willingness to pay for information. Methodologically, we introduce a new experiment design that enables joint inference regarding social preference parameters (envy and guilt) and willingness-to-pay for information about others’ economic decisions and outcomes. Substantively, we rigorously demonstrate a positive association between these social preferences and social curiosity, and also show that more easily available information about others generates greater social cooperation. An implication is that pro-social people who are unable to satisfy their social curiosity cooperate less than when information about others’ decisions and outcomes is readily available. Our investigation sheds light on how people with different social preferences are affected by costly barriers to the observability of individuals’ economic behavior—a condition often thought necessary to facilitate pro-social behavior in organizations, labor markets, and for cooperation among social groups (Benabou & Tirole 2006, 2010; Sliwka 2007; Bicchieri, 2013).

The remainder of the paper is organized as follows: Section two reviews literature, and section three presents theoretical models. In section four we discuss the experimental design and procedures. Section five presents the results and our findings, and section six concludes.
2. LITERATURE REVIEW

2.1 Social Preference Models

Fehr and Schmidt (abbreviated as F&S) develop an outcome-based model of inequity-aversion modulated by envy and guilt (see Rabin 1993; Falk & Fischbacher 2006; Dufwenberg & Kirchsteiger 2004; Falk & Fischbacher 2006; Xiao & Bichieri 2009; Falk et al. 2008; Bolton 1991; Bolton & Ockenfels 2000). Our SPG provides a novel alternative to studies that use within-subject designs that employ two different games, such as a binary ultimatum game and a binary dictator game, or involve the choice between different payoff allocations on a budget line to elicit individual envy and guilt coefficients separately (e.g. Andreoni & Miller 2002; Bellemare et al. 2017; Blanco et al. 2011; Bruhin et al. 2018; Fisman 2007). We simultaneously elicit and estimate envy and guilt at the individual level, and use this to draw inferences between social preferences and social curiosity.

2.2 Social Curiosity

Incentives to acquire or avoid information may include 1) whether the revealed information increases utility; 2) whether the information is instrumental to make consequent decisions; and 3) whether it simply reduces uncertainty (Golman et al. 2017; Golman & Loewenstein 2015; Eliaz & Schotter, 2010; Burger 1992 & Skinner 1995, in Prinder 2014, Grossman & Weele Forthcoming; Andreoni et al. 2017). Curiosity is a constituent of our cognition—a desire to learn what is unknown, which may arise from a gap between the information we know and what we want to know. However, while what one knows may be objective, what one wants to know is highly subjective (Loewenstein 1994; Kang et al. 2009; Maw & Maw 1970; Inan 2012; Phillips 2016; Kagan 1972). Upon acquiring information, social curiosity may be instrumental to cooperative behavior if used to enforce an equitable outcome—we denote this type of social curiosity as instrumental curiosity. Information seeking behavior, however, can be incentivized by pure curiosity—a simple desire to avoid the perception that one is out of control with no intention to enforce an equitable outcome. Our experiment enables us to distinguish these types of curiosity as well as their impact on group-level cooperative outcomes.
2.3 Social Comparison

People are sensitive to social comparisons. For example, it is well-established that relative earnings affect job satisfaction (see Fehr & Schmidt, 1999; Agell & Lundborg 1995; Bewley 1998; Clark & Oswald 1996). In recent years, field experimental studies have explored the impact of norm-based strategies on cooperation, coupling norm suggestions with social comparison information. Consequentially, social comparison strategies have been used effectively to help reduce water and energy consumption, and to increase political participation (see Allcott 2011; Ferraro & Price 2013; Ayres at al 2013; Perez-Trugila & Cruces, 2017). The importance of social comparison has also been studied in social psychology (see Festinger 1954; Stouffer 1949; Homans & Merton 1961; Adams 1963) and sociology (see Davis 1959; Pollis 1968; Runciman 1966) for more than half a century. Our work extends this prior research by developing formal links between social preferences and the demand for information about others’ economic decisions and outcomes.

3. Theory

In this section we discuss a theoretical model that allows us to simultaneously estimate individual inequity-aversion parameters in the context of F&S (1999). We then present a theoretical analysis that predicts a positive correlation between higher social preferences and higher willingness to pay for information, again based on F&S (1999). Last, we state and discuss four testable hypotheses from the theory.

3.1 Inequity Aversion

In a two-stage SPG, following Kurzban & Houser (2005), n players indexed by $i \in \{1, \ldots, n\}$, decide simultaneously on their contribution levels $g_i \in [0, e]$ to public goods in stage 1. Each player has an endowment e. Stage 2 has multiple rounds—in a round t, a player i, is informed about the contribution vector $(g_{1t-1}, \ldots, g_{nt-1})$, and is able to update her initial/previous contribution decision. The monetary payoff for player i at period t is given by $x_{it} = e - g_{it} + a \left(\sum g_{jt} \right)$, where $1/n < a < 1$. Following F&S (1999), we assume that in addition to individuals
who care only about their monetary payoffs, there are people who dislike inequality in payoffs. Based on the F&S (1999) model, we suggest that a pro-social player \(i\) increases her contribution when she updates her contribution decision to reduce advantageous inequality, and decreases her contribution to reduce disadvantageous inequality. Assuming that before the information is revealed, a pro-social player \(i\) realizes zero disutility caused by inequality in contributions. When information about others’ contributions is available, the difference between player \(i\)’s monetary payoff and player \(j\)’s monetary payoff at round \(t\), \(x_i^t - x_j^t\), is equal to the negative difference between their contributions, \(g_i^t - g_j^t\). For player \(i\), a change in monetary payoff, \(- (1 - a) (g_i^t - g_i^{t-1})\), is equal to the achieved sum of normalized disutility, \(- \alpha_i \left[\frac{1}{n-1} \sum_{j \neq i} \max\{g_j^t - g_i^t, 0\} \right] + \beta_i \left[\frac{1}{n-1} \sum_{j \neq i} \max\{g_i^t - g_j^t, 0\} \right]\), after updating a contribution, where \(\alpha_i\) and \(\beta_i\) are the inequity aversion, envy and guilt parameters, respectively. Thus,

\[
(1) \quad \text{Change in Monetary Payoff} = (- \text{Envy Parameter} \times \text{Disadvantageous inequality} + \text{Guilt Parameter} \times \text{Advantageous inequality}) / n-1
\]

Equation (1) presents the theoretical model that allows us to estimate envy and guilt parameters simultaneously, formal derivations of the equation are presented in Appendix A. A crucial assumption underlying our theory is that each contribution decision (other than the first) is made as though it is the final contribution decision. That is, we assume players are myopic and update their contributions in view of others’ most recent contributions. Thus, we assume players’ strategies are Markovian. One reason we do so is to follow Kurzban and Houser’s approach (2005), who report this fits players’ decisions well (predicts well out of sample). A second reason is that, as a practical matter, the fully specified Bayesian Nash equilibrium is intractable in this environment.

3.2 Social Curiosity and Inequity Aversion

In the context of social dilemmas, we suggest that one may choose strategic ignorance; upon acquiring information, instrumental curiosity motivates information acquiring behavior and it is crucial to cooperative behavior. When information seeking behavior is incentivized by pure
curiosity, the instrumental role to cooperate vanishes.

Furthermore, our theoretical analysis based on the F&S (1999) model suggests that higher sensitivity to guilt and envy are correlated with higher willingness to pay for information when information is costly to access. Let $F(e, g_i^t, G_{-i}^t, c_i, \alpha_i, \beta_i) = Eu_c - Eu_n$ denote the difference between expected utilities when player i pays for information and when she/he does not pay for information, where G_{-i}^t denotes the total contribution made by other players in t. When information about others’ economic outcomes can be acquired only by paying a positive amount of cost, players receive a separate account with a balance equal to the cost for information, c, from which they can pay the cost for information. For player i with $0 < \beta_i < 1$

\[
\frac{dc_i}{d\beta_i} = \frac{-\sum_{j \neq i} \max\{(g_j^t+c_j) - g_i^t, 0\}}{n-1} + \sum_{j=0}^{n-1} \Pr(k = l) \frac{\sum_{j \neq i} \max\{(g_i^t) - (g_j^t + c_j), 0\}}{n-1} > 0,
\]

if $\sum \max\{g_i^t + c_j - g_i^t, 0\} > 0$ in (2). Furthermore, for player i with $1 - a < \beta_i < 1$,

\[
\frac{dc_i}{d\alpha_i} = \frac{-\sum_{j \neq i} \max\{g_i^t - (g_j^t + c_j), 0\}}{n-1} + \sum_{j=0}^{n-1} \Pr(k = l) \frac{\sum_{j \neq i} \max\{g_i^t - (g_j^t + c_j), 0\}}{n-1} > 0,
\]

if $\sum \max\{g_i^t - (g_j^t + c_j), 0\} > 0$ in (3). $\Pr(k = l)$ is the probability that there are l players with $\beta < 1 - a$ in the group, and g_i^t, c_j denote the contribution and cost paying decision made by another player j in the group. A player with $0 < \beta_i < 1$ makes her/his decision about whether to pay for information based on the advantageous inequality in economic outcomes, and the higher the guilt parameter the higher is this player’s willingness to pay the cost of information. Furthermore, a player with $1 - a < \beta_i < 1$ makes her/his decision about whether to pay for information based on the disadvantageous inequality in economic outcomes, and the higher the envy parameter the
higher is this player’s willingness to pay for the cost for information. Detailed analysis is presented in Appendix B.

3.3 Hypotheses

We state four primary hypotheses. Hypothesis 1 is that a low guilt player contributes less than a player with a high guilt parameter, according to Proposition 4 in F&S (1999). Based on Equation (1) and Appendix C, Hypothesis 2 implies a player i with $\beta_i < 1 - a$ makes no changes when facing an updating contribution opportunity; it further implies that a player i with $\beta_i > 1 - a$ makes changes when facing updating contribution decision opportunities based on her social preferences. Based on equations (2) and (3), Hypothesis 3 states a positive relation between inequity aversion and individual cost accepting behavior. Hypothesis 4 is that groups cooperate more when information is freely available than when it is not. We suppose that it is common knowledge that there is p percentage of population with $\beta > 1 - a$.

Hypothesis 1:

(i) for players with $\beta_i < 1 - a$, a dominant strategy is to contribute zero to the public goods;
(ii) players with $\beta_j > 1 - a$ contribute $\beta_j \in [0, e]$ from their endowment to the public goods depending on their beliefs about others’ economic outcomes.

Hypothesis 2:

(i) players i with $\beta_i < 1 - a$ make no changes when updating their contribution;
(ii) players j with with $\beta_j > 1 - a$ make changes when updating their contributions. A higher sensitivity to guilt (envy), correlates with a large increase (decrease) in contribution when a player j makes an updated contribution.

Hypothesis 3: When information is costly,

(i) cost accepting behavior is positively correlated with the guilt parameter for all players;
(ii) cost accepting behavior is positively correlated with the envy parameter for players with $1 - a < \beta_i < 1$.

Hypothesis 4:

When information is costly, a player i with $\beta_i < 1 - a$ has an optimal strategy that $g_i = 0$, if all players j with $\beta_j > 1 - a$ do not pay for the information about all contributions from all group members. If all players j with $\beta_j > 1 - a$ pay for the information, however, a player i with $\beta_i < 1 - a$ has an optimal strategy that $g_i > 0$, if $\alpha_i < \{(n-1)[a (pn+1) -1]\} / [(1-p)n-1]$.

Hypothesis 4 implies that when information is universally available there are many steady states with positive total contributions, including one with a socially optimal strategy where every group member contributes their entire endowment. Due to the reciprocal behavior of pro-social players, when contribution is observable, a selfish player has an incentive to contribute if she/he expects to confront a pro-social player with $\beta_i > 1 - a$, since a pro-social player may contribute zero when observing zero other contribution(s). Hypothesis 4 implies that when costs discourage pro-social players from acquiring information, selfish players have no incentive to contribute any positive amount. Detailed analysis for Hypothesis 4 is shown in Appendix D.

4. Experiment Design

4.1 Treatments

Our experiment consists of three treatments in two different environments. The two environments are info-free environment, which has two treatments: All-info and show-info, and info-cost environment, which has one treatment: Info-cost. In info-free environment, information about others’ economic decisions and outcomes is freely available; in the info-cost environment this information must be purchased at a known cost. Under all-info, information about others’ contributions are shown to all; under show-info information is free but to view the information requires clicking the “ShowInfo” buttons. The treatment show-info tests whether individuals are
indeed using information about others’ contributions to make their own decision.

4.2 Design Overview

An SPG experiment includes multiple games; the number of games is predetermined while the number of rounds in each game is randomly predetermined with a four percent probability that a game will end after any round, following Kurzban & Houser (2005). The number of games and number of rounds in a game is unknown to the subjects. Participants are informed, however, by the instructions that there will be a four percent chance that the game will end after any person’s contribution; although each participant will have at least one chance to update their contribution in any given game. Following Kurzban & Houser (2005), each experiment includes ten games, with 16, 7, 23, 32, 32, 34, 4, 17, 31, and 8 rounds, respectively. Players are unaware of the number of rounds included in each game.

There are 12 subjects in each SPG session, organized into three groups of four players, but who are rearranged in each game. Each of the ten games has two stages. As the first stage starts, each player simultaneously decides how much to contribute to a public project from their endowment. The second stage begins immediately after the first stage, in the info-free environment. When the information has a positive cost in the info-cost experiment, however, the players decide whether to accept the cost or not before entering the second stage. In the second stage, with a randomly rotating order among the four players, one player sees the information about the others’ contributions and chooses whether, or/and by how much to update, either by increasing or decreasing the initial contribution decision. Specifically, when information is available one (and only one) player can see her/his own contribution to the group project as well as the contributions from the other three group members in a given round. The contributions of the others are shown to this single player in a random order so that each player’s contribution in each round remains anonymous.
4.3 Features of Design

In an *info-free* environment, we draw connection between estimated individual guilt and envy parameters and cooperation decisions. In an *info-cost* environment, we draw inference about the relationship between estimated individual guilt and envy parameters and social curiosity, measured by the highest willingness to pay for information.²

Information about others’ contributions is free in the first six games of the experiment under both the *info-free* and the *info-cost* environments. In games 3 to 6, updated contribution decisions are used to estimate individual guilt and envy parameters. The estimations are made from more than 30 updated decisions that a subject made in games 3 to 6. Due to the random order of the display of other group members’ contributions, a player will not know who makes what contribution, but they will see the inequality between his/her contribution and others’—thus this allows us to estimate envy and guilt parameters. This is summarized by Figure 1, “Experimental Design.” Table E.1 in Appendix E summarizes the stages of each game in each treatment.

4.4 Cost Parameters

We set endowment, e, equal to 50 experiment dollars (50E$), with the exchange rate of 50E$ = 1 USD. We set the marginal return to investment in a public project, a, equal to 0.5, in a four person public goods game. Our theoretical analysis (see Appendix F) suggests that players with $\beta_i < 1 - a$ will accept the cost for information up to 5E$. We set cost for information, c, to be 0, 1, 5, and 10E$, which are 0, 2%, 10%, and 20% of a player’s endowment in a particular game, converted to 1 cent, 2 cents, 10 cents and 20 cents USD.³

² Similarly, Bruin et al. 2018 make out-of-sample predictions at the individual level across games, using a finite mixture model to endogenize the nature and number of types of social preferences. See Houser et al. (2004) for an early approach to Bayesian finite-mixture modeling for endogenous type-classification.

³ All participants were provided full information about the features of their treatments. Players in *info-cost* were informed there would be positive costs of information during rounds 7-10, while players in *info-free* were aware information would always be free. An alternative of providing vague or incomplete information about costs could create experimenter demand effects when costs are ultimately revealed, and could also perhaps be viewed as deceptive. Regardless, we find no evidence that this difference influenced the distribution of α and β between *info-cost* and *info-free* treatments ($p > 0.6$ in both comparisons; see fn. 6). Furthermore, studies show that social information about others’ behavior does not generate instability in other-regarding preferences (see for example Iriberri & Rey-Biel 2013).
Figure 1. Experimental Design. \(C \) denotes cost for information about others’ economic decisions and outcomes. In info-free environment, this information is freely available in games 1 to 10. In info-cost environment, this information is freely available in games 1 to 6; however, it must be purchased at a known positive cost in games 7 to 10. Cost for information is randomly determined, and set to be 5, 10, 1 and 10E$ in games 7, 8, 9, and 10, respectively.

4.5 Experiment Procedures

The experiments are programmed in z-Tree (Fischbacher, 2007). Our preliminary experiment included 272 participants in 23 sessions. In the info-free environment, eight sessions were completed in all-info, and eight sessions took place in show-info, and the remaining seven sessions were completed in treatment info-cost. Experiments were completed during the Fall, 2016 and Spring and Fall 2017 semesters with participants recruited from George Mason University’s student population, using the recruitment system established for Mason’s Interdisciplinary Center for Economic Science (ICES). The experiments were held at ICES’ Fairfax, VA campus laboratory. In the experiment, participants were seated at computer terminals that were divided by partitions. In each session, participants were first given a hard copy of the
experiment’s instructions to read, after which they were given a quiz to check their understanding of the rules stated in the instructions. After the experiment was completed, participants filled out a hard-copy questionnaire, and received their payment in private. Subjects’ average earning is about 20$ for about 2 hours of participation. Table E.1 in Appendix E summarizes the numbers of sessions and participants in each treatment.

5. RESULTS

5.1 Envy & Guilt Parameters

We estimate envy and guilt parameters, using data generated in games 3 to 6, for the 260 subjects who made their updated contributions using information about others’ economic outcomes. We use an econometric model drawn from equation (1) to estimate envy and guilt parameters, \(\alpha_i \) and \(\beta_i \) respectively for a player \(i \). Recall that for player \(i \), a change in monetary payoff, is equal to the achieved sum of normalized disutility, after updating a contribution, thus

\[
- (1 - a) (g_{i,t} - g_{i,t-1}) = - \alpha_i \frac{1}{n - 1} \sum_{j \neq i} \max\{ g_{i,t} - g_{j,t}, 0 \} + \beta_i \frac{1}{n - 1} \sum_{j \neq i} \max\{ g_{j,t} - g_{i,t}, 0 \} + \epsilon_i,
\]

where \(\epsilon_i \) is independent and identically distributed across individuals and periods. Further, consistent with the Fehr-Schmidt theory, we implement the following parameter restrictions: \(\alpha_i \geq 0 \) and \(0 \leq \beta_i < 1 \). The constraint \(\beta_i \leq \alpha_i \) also appears in Fehr-Schmidt, but is relaxed since previous studies found this assumption to be regularly empirically violated (see Bellemare et al. 2008; Blanco et al. 2011). Figure 2 shows the joint \(\alpha_i \) and \(\beta_i \) distribution, with 260 observations; each hollow dot represents an individual’s envy and guilt, \(\alpha \) and \(\beta \), respectively. The line represents \(\alpha = \beta \), and observations to the left of the line have \(\alpha_i < \beta_i \). We found both \(\alpha \) and \(\beta \)

4 In total, 272 subjects participated in the experiments, among which 12 subjects did not look at information in games 3 to 6, and hence do not have estimated envy and guilt parameters.

5 We conducted the estimation using a non-linear regression implemented with the Stata command “nl.”
widely distributed in the population, and there is a strong violation of the F&S assumption that individual envy is greater than or equal to guilt. Many subjects are found to the left of the envy and guilt equal line, similar to the findings in Bellemare et al. (2008), Blanco et al. (2011), and Bruhin et al. (2018). Table 1 presents summary statistics.

![Joint Envy-Guilt (α-β) Distribution](image)

Figure 2. The joint envy - guilt (α - β) distribution. Each hollow circle represents an individual’s envy and guilt, α and β, respectively, parameters in info-free, and each hollow triangle represents an individual’s envy and guilt, α and β, respectively, parameters in info-cost. The envy and guilt parameters are estimated from games 3 to 6. The line represents α = β, observations to the left of the line have have αᵢ < βᵢ. Total observations: 260 (191 in info-free and 69 in info-cost).

<table>
<thead>
<tr>
<th>Table 1. Summary Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Total Participants</td>
</tr>
<tr>
<td>Estimated Envy Parameters</td>
</tr>
<tr>
<td>Estimated Guilt Parameters</td>
</tr>
<tr>
<td>Gender (Female=1, Male=0)</td>
</tr>
<tr>
<td>Field of Studies (Econ&Finance=1, Others=0)</td>
</tr>
</tbody>
</table>
5.2 Predictive Power of Estimated Envy & Guilt Parameters

The estimated α_i and β_i coefficients are considered to be valid, if the cooperative behavior is statistically higher for high-guilt type players (with $\beta_i > 0.5$) than for low-guilt type players (with $\beta_i < 0.5$) in info-free environment. In info-free environment, the mean of high-guilt type players’ contributions at the end of games 7-10, namely 32.4E$, is higher than the mean of low-guilt type players’ contribution, 24.0E$. The difference in contribution behavior between low-guilt and high-guilt players is statistically significant ($p < 0.001$). This result confirms Hypothesis 1. We then test Hypothesis 2 by testing the following model:

\[
Updated \text{ Contribution} = b_0 + b_1 \times \text{Others’ Mean Contribution} - b_2 \times \text{Estimated Envy Parameter} + b_3 \times \text{Estimated Guilt Parameter} + u
\]

Hypothesis 2 predicts that a player with $\beta_i > 0.5$ makes no changes when facing an updating contribution opportunity; it further implies that a player with $\beta_i > 0.5$, makes changes when facing updating contribution decision opportunities based on her social preferences and beliefs about others’ economic behavior and outcomes. As reported in regression (3) in Table 2, with clustering by session, mean updated contribution in games 7 to 10 is significantly positively

\begin{tabular}{lcccc}
Had Economics Courses previously (Yes=1, No=0) & 272 & 0.492 & 0.500 & 0 & 1 \\
Had public goods game before (Yes=1, No=0) & 272 & 0.198 & 0.399 & 0 & 1 \\
\end{tabular}

6 Consistent with the Fehr-Schmidt theory, we group players with $\beta_i < 1-\alpha$ into low-guilt type and players with $\beta_i > 1-\alpha$ into high-guilt type, where $\alpha = 0.5$ in our experiment.

7 An OLS regression, where mean of contribution in games 7 to 10 is the dependent variable, and “Type” (defined by guilt estimates, where a low- and high-guilt type player has $\beta_i < 0.5$ and $\beta_i > 0.5$, respectively), as a dummy independent variable, and other independent variables, including gender, ethnicity, and etc, shows that the high-guilt types contribute 8.4E$ higher than the low-guilt types ($p < 0.001$). Robust standard errors adjusted for clusters by “session.”
correlated with the observed mean contributions from the reference group \((p < 0.001) \), and with the estimated guilt coefficients \((p < 0.001) \), but is, however, significantly negatively correlated with the estimated envy coefficient \((p < 0.01) \). We conclude that the results support Hypothesis 2, which is also in line with Dannenberg et al. (2010) and Kuzban et al.(2001). Thus, the estimated guilt and guilt coefficients predict individuals’ cooperative behavior in the context of Fehr-Schmidt.

Table 2. OLS Regression Analysis Result

<table>
<thead>
<tr>
<th>Dependent Variable: Mean Update Contribution in Games 7 to 10</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of others’ contributions ((b_1))</td>
<td>0.84</td>
<td>0.83</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.062)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>Estimated envy coefficient from games 3 to 6 ((b_2))</td>
<td>-5.81</td>
<td>-6.08</td>
<td>-5.97</td>
</tr>
<tr>
<td></td>
<td>(1.95)</td>
<td>(1.90)</td>
<td>(1.85)</td>
</tr>
<tr>
<td>Estimated guilt coefficient from games 3 to 6 ((b_3))</td>
<td>11.52</td>
<td>11.08</td>
<td>11.80</td>
</tr>
<tr>
<td></td>
<td>(1.80)</td>
<td>(2.07)</td>
<td>(1.83)</td>
</tr>
<tr>
<td>Gender (Female=1, Male=0)</td>
<td>-0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field of studies (Econ &Finance=1, Others=0)</td>
<td>-1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Had economics courses previously (Yes=1, No=0)</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Had public good game (Yes=1, No=0)</td>
<td>3.57</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.74)</td>
<td>(1.83)</td>
<td></td>
</tr>
<tr>
<td>Academic status (Undergrad = 0, Grad=1)</td>
<td>-2.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity (Asian=1, Hispanic=2, Caucasian=3, African American =4, Others=5)</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.39</td>
<td>-0.66</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(1.92)</td>
<td>(2.95)</td>
<td>(1.66)</td>
</tr>
<tr>
<td>Number of Obs.</td>
<td>191</td>
<td>191</td>
<td>191</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.524</td>
<td>0.546</td>
<td>0.533</td>
</tr>
</tbody>
</table>

Robust standard errors adjusted for clusters by “session” are shown in parentheses. The analysis uses observations from info-free, with 192 subjects, among which one subject did not review information.

\(^8\) In a regression (2), we found that gender, academic level, and previous economic study do not play significant roles in predicting individual cooperative behavior.
5.3 Social curiosity

In the info-free environment, all participants display social curiosity. Among 80 subjects in info-cost, 11 players did not acquire the information about others’ economic outcomes at any cost, including zero; 20 players acquired the information when it was free; 20 players acquired the information when it costs 0 and 1E$; 15 players accept any cost that is equal to 5E$ or less (0, 1, and 5E$); and 14 players accept all the costs (including 0, 1, 5 and 10E$).

5.4 Cost Accepting Behavior vs. Guilt Parameter

We group 69 players who had information access in games 3-6 into two types according to their cost accepting actions, by the following criteria: High cost accepting players are willing to pay costs up to 5 and even 10E$; low cost accepting players are willing to pay only 0 or 0 and 1E$. The group of high cost accepting players has a mean of guilt estimated at 0.42; the group of low cost accepting players has a mean of guilt estimated at 0.25; the difference in guilt estimates is 0.17 between the two groups, and statistically significant (p < 0.05, two-tailed t-test). This result confirms Hypothesis 3 (i), that cost accepting behavior is positively correlated with the guilt parameter. We do not, however, observe a statistically significant correlation between cost accepting behavior and envy.9

5.5 Social Curiosity is Instrumental for Conditional Cooperators

Further data analyses suggest that barriers to information may impede players’ willingness to cooperate through the following channels: When social curiosity is a crucial intermediate step for pro-social players to enforce equality, barriers to information raise strategic information ignorance and hinder individuals’ willingness to meet their own social curiosity.

Social curiosity seems to be instrumental for players with preferences (βi > 0.5), and causes

9 We group 69 players into two types according to their cost accepting actions, as in the part for Hypothesis 3 testing, the group of high costs accepting players has a mean of envy estimated at 0.24; the group of low costs accepting players has a mean of envy estimated at less than 0.07; the difference in envy estimates between the two groups is not statistically significant (p = 0.279, t-test). Furthermore, there is no statistically significant predicting power on cost paying behavior from the estimated envy parameters for players with 1 - a < βi < 1.
no effect on contribution behavior for players with pure curiosity and low social preferences ($\beta_i < 0.5$). We denote an absolute change in updated contribution as “Changes in updated contributions.” Specifically,

$$\text{Changes in updated contribution} = \text{Abs} \left(\text{Mean updated contribution in games 7 to 10} - \text{Mean updated contribution in games 3 to 6} \right)$$

We divide 49 players who are willing to pay at least 1E$ for the information in info-cost into two groups according to their social preferences (players who refuse to pay the minimum positive cost for information are considered as showing no social curiosity), see Table 3. Changes in updated contribution made by players with instrumental curiosity are significantly greater than changes made by other players with pure curiosity ($p < 0.05$, Welch’s t-test). Instrumental social curiosity seems to be crucial and instrumental for pro-social players in their cooperative action; but pure curiosity of players with low social preferences has no instrumental effect on their decision to choose cooperative actions.

![Table 3. Changes in Updated Contribution](image)

<table>
<thead>
<tr>
<th>Group</th>
<th>Estimated Guilt Coefficient</th>
<th>Highest Cost for Accepted (E$)</th>
<th>Number of Obs.</th>
<th>Changes in Updated Contribution (E$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental Curiosity</td>
<td>≥ 0.5</td>
<td>1, 5, or 10</td>
<td>18</td>
<td>14.30</td>
</tr>
<tr>
<td>Pure Curiosity</td>
<td>< 0.5</td>
<td>1, 5, or 10</td>
<td>31</td>
<td>6.48</td>
</tr>
</tbody>
</table>

Note: Estimated guilt coefficient are generated using the updated decisions in games 3 to 6.

5.6 Barriers to Information Impede Willingness to Cooperate

We found that while individuals display the same distribution with regard to social preferences, individuals’ cooperative behavior in the info-free environment is significantly higher than in the info-cost environment. And that the mean of game-end contribution in games 7 to 10 in the info-

10 Similarly, Iriberri & Rey-Biel (2013) shows that social information about others’ behavior effects types differently: while subjects classified as other-regarding type behave differently in situations with and without social information, selfish subjects exhibit consistently selfish behavior in both situations.
free environment is significantly higher than in info-cost. This finding is represented in Figure 3. This result confirms Hypothesis 4.11

![Graph showing mean comparisons of info-free and info-cost environments]

Figure 3. Mean Comparisons of Info-free and Info-cost Environments. The left graph shows the means of the game-end contributions in games 3 to 6 in info-free and info-cost respectively; the right graph shows the means of the game-end contributions in games 7 to 10 in info-free and info-cost respectively. In the info-free environment and info-cost environment there are 16 and 7 observations, respectively. Y-axis is the mean of the end contribution from the total endowment of 50E$.

5.7 Players’ Earnings in Info-Cost Environment

We found a statistically significant difference in earnings between subjects who pay and who do not pay for the information ($p < 0.001$, two-tailed t-test).12 In games 7 to 10 in info-cost environment, the earnings by players in games where they do not pay for the information is 71.4E$; and mean earnings among players who pay is 62.8E$. The lower earnings among people who pay is consistent with the view that those more sensitive to guilt and envy are willing to pay to avoid incurring those utility costs.

11 The estimated envy and guilt in info-free and info-cost are the same ($p = 0.895, p = 0.617$, WMW test, respectively), cooperative behavior is different in the two environments, as predicted by Hypothesis 4. The mean of individual contributions at the end of the games 7 to 10 is statistically different in both the info-free and in the info-cost environment with observations 16 and 7 respectively—26.15 E$ in info-free, 12.04 E$ in info-cost ($p < 0.01$, WMW test).

12 The t-test includes all 80 subjects in the info-cost environment.
6. **Conclusion**

In this study we investigated how barriers to information about others’ economic decisions and outcomes affects cooperation among people with different social preferences. We provided a theoretical analysis based on Fehr and Schmidt (1999) showing that greater sensitivity to guilt or envy can be associated with greater willingness to pay for information about others’ economic outcomes. Our laboratory experiments allow us to investigate this relationship empirically, while also informing how departures from complete information impacts cooperation.

In line with the literature, our participants are conditionally cooperative: Their contribution decisions are positively dependent on others’ contributions. Our results go further in demonstrating that one’s inequity aversion is a statistically significant predictor of cooperation, and in the direction that the theory predicts. Specifically, those with greater sensitivity to guilt demonstrate a higher willingness-to-pay for information about others’ economic decisions and outcomes.

We find overall greater cooperation when information about others’ decisions is more readily available. This finding is anticipated by Bicchieri (2010; 2013), who suggests the creation of positive social norms in social-dilemmas can include transparent information sharing. Our results are consistent with this, in that conditions with open and visible information about others’ behavior were associated with greater pro-social decisions. In view of this, one might consider visibility of information about individuals’ or groups’ economic decisions and outcomes a public good. Further studies are needed to investigate the production or obstruction of such information, and how this might be determined by contexts including the social preferences of a group’s members.

Our study thus suggests a new direction for promoting cooperation within and across societies. While direct incentives based on punishment or reward can be effective, they can also crowd-out pro-social behavior (Benabou & Tirole 2006). This provides room to create mechanisms focused on sharing information about others’ economic decisions and outcomes. While incentive-based mechanisms can require costly monitoring, technological advances may enable information sharing at vastly lower costs, and thus may be an efficient approach for promoting and maintaining large-scale cooperation.

from Phillips, Richard. 2015. Curious about others: Relational and empathetic curiosity for diverse societies.” New Formations 88
Appendix A

In a two-stage SPG, \(n \) players decide simultaneously on their contribution levels \(g^0_i \in [0, e] \) from an endowment of \(e \) to the public good in stage 1. Stage 2 has multiple rounds. In the first round of stage 2, a player \(i \), is informed about the contribution vector \((g^0_1, \ldots, g^0_n)\), and is able to update her/his initial contribution decision \(g^0_i \) to \(g^1_i \). The contribution vector now becomes \((g^1_1, \ldots, g^1_n)\), where \(g^l_i = g^0_i \). In the second round of stage 2, another player \(j \), is informed about the contribution vector \((g^1_1, \ldots, g^1_n)\), and can update her/his initial contribution decision, \(g^1_j \) to \(g^2_j \). The contribution vector becomes \((g^2_1, \ldots, g^2_n)\), where \(g^l_j = g^2_j \). Each round follows another, as one player from the group, in random order, receives information and updates her/his previous contribution decision from \(g^{t-1}_i \) to \(g^t_i \), and the contribution vector after the round \(t \) becomes \((g^t_1, \ldots, g^t_n)\).

When information about others’ contributions is available and free, the difference between player \(i \)'s monetary payoff and player \(j \)'s monetary payoff at round \(t \), \(x^t_i - x^t_j \), is equal to the negative difference between their contributions, \(g^t_i - g^t_j \), or \(x^t_i - x^t_j = g^t_i - g^t_j \), and player \(i \)'s utility function is given by A1,

\[
\begin{align*}
(A1) \quad u_i(x^t_i, \{x^t_j\}_{j \neq i}) &= e - g^t_i + a (g^t_i + \sum_{j \neq i} g^t_j) - \alpha_i/(n-1) \sum_{j \neq i} \max\{g^t_i - g^t_j, 0\} \\
&\quad - \beta_i/(n-1) \sum_{j \neq i} \max\{g^t_j - g^t_i, 0\},
\end{align*}
\]

where \(\sum_{j \neq i} g^t_i = \sum_{j \neq i} g^{t-1}_j \), and \(g^{t-1}_i \) becomes available information and known by player \(i \) only in round \(t \). A change in contribution from \(g^{t-1}_i \) to \(g^t_i \) causes a change in player \(i \)'s monetary payoffs by \(- (1 - a) (g^t_i - g^{t-1}_i) \). Thus, one more unit in contribution to the public good occurred when player \(i \) updates her decision, creates a marginal monetary payoff loss of \(1 - a \) for player \(i \). Conversely, by decreasing one unit contribution to the public good, player \(i \) gains \(1 - a \) in her monetary payoff.

We assume that each contribution decision (other than the first) is made as though it is the final contribution decision. That is, we assume players are myopic and update their contributions in view of others’ most recent contributions. Thus, we assume players’ strategies are Markovian.
The F&S (1999) model suggests that for a pro-social player \(i \) with \(\beta_i > 1-a \), the contribution to the public good should be positively correlated with guilt parameter \(\beta_i \), and negatively correlated with envy parameter \(\alpha_i \). We further suggest that pro-social player \(i \) increases her contribution when she updates her contribution decision to reduce advantageous inequality, and decreases her contribution to reduce disadvantage inequality.

Assuming that before the information is revealed, a pro-social player \(i \) realizes zero disutility cased by inequality in contribution. After learning the inequality in contribution, for player \(i \), a change in monetary payoff, \(-(1-a) (g^i_t - g^{i-1}_t) \), is equal to the achieved sum of normalized disutility, minimized after updating contribution, \(-\frac{\alpha_i}{(n-1)} \sum_{j \neq i} \max \{ g^i_t - g^j_t, 0 \} + \frac{\beta_i}{(n-1)} \sum_{j \neq i} \max \{ g^j_t - g^i_t, 0 \} \), after updating a contribution, where we assume \(\alpha_i \) and \(\beta_i \) are the inequity aversion, envy and guilt parameters. An increase (decrease) in contribution after updating, is negatively (positively) correlated with the term, \(\beta_i / (n-1) \sum_{j \neq i} \max \{ g^j_t - g^i_t, 0 \} \), the disutility from the advantageous inequality, which is the product of guilt parameter and the normalized advantageous inequality. An increase (decrease) in contribution after updating, is positively (negatively) correlated with the term, \(\alpha_i / (n-1) \sum_{j \neq i} \max \{ g^i_t - g^j_t, 0 \} \), the disutility from disadvantageous inequality, which is the product of envy parameter and the normalized disadvantageous inequality.

\[
(A2)\quad -(1-a) (g^i_t - g^{i-1}_t) = -\frac{\alpha_i}{n-1} \sum_{j \neq i} \max \{ g^i_t - g^j_t, 0 \} + \frac{\beta_i}{n-1} \sum_{j \neq i} \max \{ g^j_t - g^i_t, 0 \}
\]

Equation (A2) estimates envy and guilt parameters when information about others’ economic outcome is freely available for the players.

QED
Appendix B

Case 1. Player i has $\beta_i > 1 - a$. Denote c_i and c_j as the cost for information accepted by players i and j, respectively; c is the available balance/fund in an information cost account for every player. Let G_j to denote the total contribution made by other players. Following F&S (1999),

$$x_i = e - g_i + a (g_i + G_j) + (c - c_i)$$
$$x_j = e - g_j + a (g_j + G_j) + (c - c_j)$$

and

(B1) $u_i(x_i, \{x_j\}_{j \neq i}) = x_i - \alpha_i/(n-1)\max\{x_j - x_i, 0\} - \beta_i/(n-1)\max\{x_i - x_j, 0\}$

Let $F(e, g_i, G_j, c_i, \alpha_i, \beta_i) = E u_c - E u_n$, where $E u_c$ and $E u_n$ are the expected utility when player i pays and does not pay the cost for information about others’ contributions and hence economic outcomes, respectively. Suppose that it is common knowledge that there is p percentage of population with $\beta > 1 - a$, and $1-p$ percentage of population with $\beta < 1 - a$. We denote $\Pr(k = l)$ as the probability that there are l players with $\beta < 1 - a$ in the group. F, thus, represents the difference in player i’s expected utility with and without information, given

(B2) $E u_c = E \left[x_i - \alpha_i/(n-1)\max\{g_i - (g_i + c_j), 0\} - \beta_i/(n-1)\max\{g_i - g_j, 0\} \right]$

$$= e - g_i + a (g_i + G_j) + (c - c_i) - \alpha_i/(n-1)\max\{g_i - (g_i + c_j), 0\} - \beta_i/(n-1)\max\{g_i - g_j, 0\}$$

(B3) $E u_n = E \left[x_i - \alpha_i/(n-1)\max\{g_i - (g_i + c_j), 0\} - \beta_i/(n-1)\max\{g_i - g_j, 0\} \right]$

$$= e - g_i + a (g_i + G_j) + (c - 0) - \sum_{l=0}^{n-1} \Pr(k = l) [\alpha_i/(n-1)\max\{g_i - (g_j + c_j), 0\} + \beta_i/(n-1)\max\{g_i - g_j, 0\}]$$

We are interested in the effect on cost accepting decision from an increase in the individual’s guilt parameter, β_i. We found, that
\(\frac{dc_i}{d\beta_i} \)

\[= - \left(\frac{\partial F}{\partial \beta_i} \right) / \left(\frac{\partial F}{\partial c_i} \right) \]

\[= \frac{-1}{n-1} \sum \max \left\{ \left(g_i' + c_i \right) - g_i', 0 \right\} + \sum_{l=0}^{n-1} \Pr (k = l) \frac{1}{n-1} \sum \max \left\{ \left(g_i' + c_i \right) - g_i', 0 \right\} \]

\[> 0 \]

if \(\sum \max \left\{ g_{b,j}' + c_i - g_i', 0 \right\} > 0 \). Function B4 suggests that the willingness to pay for the cost for information is an increasing function in the guilt parameters for players with \(\beta_i > 1 - a \) who believe that there is at least one contribution made by others that is bigger than her/his updated contribution in \(t \). By the same procedure, we obtain

(B5)

\(\frac{dc_i}{d\alpha_i} \)

\[= - \left(\frac{\partial F}{\partial \alpha_i} \right) / \left(\frac{\partial F}{\partial c_i} \right) \]

\[= \frac{-1}{n-1} \sum \max \left\{ g_i' - (g_j' + c_j), 0 \right\} + \sum_{l=0}^{n-1} \Pr (k = l) \frac{1}{n-1} \sum \max \left\{ g_i' - (g_j' + c_j), 0 \right\} \]

\[> 0 \]

\(\frac{dc_i}{d\alpha_i} > 0 \), if \(\sum \max \left\{ g_i' - (g_{b,j}' + c_j), 0 \right\} > 0 \). Function B5 suggests that the willingness to pay for information is an increasing function in the envy parameters for players with \(\beta_i > 1 - a \), who believe that there is at least one contribution made by another that is smaller than her/his updated contribution in \(t \). We suggest that \(\sum_{l=0}^{n-1} \Pr (k = l) \left[1/(n-1) \sum \max \left\{ (g_i' + c_j) - g_i', 0 \right\} \right] \) is greater than \(1/(n-1) \sum \max \left\{ (g_i + c_j) - g_i', 0 \right\} \), and \(\sum_{l=0}^{n-1} \Pr (k = l) \left[1/(n-1) \sum \max \left\{ g_i' - (g_j' + c_j), 0 \right\} \right] \) is greater than \(1/(n-1) \sum \max \left\{ g_i' - (g_j + c_j), 0 \right\} \), because player \(i \) experiences less disutility when she has information than when she does not have it, since knowing about others’ economic behavior and outcome allow the player to reduce inequality.
Case 2. Player \(i \) is with \(0 \leq \beta_i < 1 - a \). A pure selfish player has \(\alpha_i = \beta_i = 0 \), and makes zero contributions both in the initial contribution and in the updated contribution decisions. A pure selfish player will not pay for any costs for information but pocket the available balance to the account payable for the cost for information. But a player with \(0 < \beta_i < 1 - a \) may pay the cost for information depending on the magnitude of the cost and her/his belief in others’ economic outcomes. Assuming \(k \) of \(n-1 \) players with \(\beta_i < 1 - a \) contribute \(g_1 = g_2 = \ldots = g_k = 0 \) at \(t-1 \), and \(n-1-k \) players \(j \) are with \(\beta_j > 1 - a \). For player \(i \) with \(\beta_i < 1 - a \),

\[
\frac{dc_i}{d\beta_i} = \frac{- (\partial F/\partial \beta_i)}{(\partial F/\partial c_i)}
\]

\[
= \frac{1}{n-1} \sum_{l=0}^{n-1} \Pr (k = l) \frac{1}{n-1} \sum_{l=0}^{n-1} \max \{ (g_j' + c_j) - g_i', \ 0 \}
\]

\(> 0 \)

Equations B4, B5, and B6 suggest that a player with \(0 < \beta_i < 1 \) makes her/his decision about whether to pay for information based on the advantageous inequality in economic outcomes, and the higher the guilt parameter the higher is this player’s willingness to pay the cost of information. Furthermore, a player with \(1 - a < \beta_i < 1 \) makes her/his decision about whether to pay for information based on the disadvantageous inequality in economic outcomes, and the higher the envy parameter the higher is this player’s willingness to pay for the cost for information.

QED
Appendix C

Part 1. Suppose that in *info-free* environment, \(k \) of player \(i \) is with \(\beta_i < 1 - a \) contributes \(g^{t-1}_i = 0 \) in \(t-1 \). Consider an arbitrary contribution vector \((g^{t-1}_1, g^{t-1}_i, g^{t-1}_{i+1}, \ldots, g^{t-1}_n)\) of other players in \(t-1 \), which is observed by player \(i \) in \(t \) as \((g^t_1, \ldots, g^t_{i-1}, g^t_{i+1}, \ldots, g^t_n)\). Assume that agents are myopic and update their contributions based on inequality in realized payoffs that they observed in the previous round and only the previous round. Suppose that player \(i \) contributes \(g^{t-1}_i = 0 \) in \(t-1 \).

\[
\begin{align*}
u_i(g^{t}_i = g^{t-1}_i = 0) &= e + a \sum g^{t}_i - \beta_i \sum g^{t}_i
\end{align*}
\]

If other players choose \(g^t_i = 0 \), then \(g^t_i \) is optimal. If there is at least one player who choose \(g^t_i > 0 \), if player \(i \) chooses \(g^t_i > 0 \), then

\[
\begin{align*}
u_i(g^t_i > 0) &= e - g^t_i + a g^t_i + a \sum g^{t}_i - \alpha_i \sum g^{t}_i - \beta_i \sum j \neq i (g^t_i - g^t_j) \\
&< \nu_i(g^t_i = 0)
\end{align*}
\]

For player \(i \) \(\beta_i < 1 - a \), a dominant strategy is \(g^t_i = g^{t-1}_i = 0 \).

Part 2. Suppose that a players \(j \) is with \(\beta_j > 1 - a \), and contributes a positive amount to the public project in \(t-1 \), \(g \in [0, e] \). Assume that there are \(h \) players, who make higher contributions than player \(j \)'s in \(t-1 \), \(\ h \leq n-k-1 \). Denote the average contribution form these \(h \) players as \(g_h \), and the average contribution form other \(n - k - h - 1 \) players as \(g_l \). Without making changes in updated contribution,

\[
\begin{align*}
u_i(g^t_j = g^{t-1}_j) &= e - g + a g + a G_j - \alpha_i \frac{n-k-h-1}{n-1} (g - g_l) - \alpha_i \frac{k}{n-1} g - \beta_i \frac{h}{n-1} (g_h - g)
\end{align*}
\]
With a change of \(\delta \) in updated contribution,

\[
\begin{align*}
 u_i(g'_j = g^{t+1}_j + \delta) = &\ e - (g_j + \delta) + a \frac{G_j - \alpha_i}{n-1} (g_j + \delta - g_i) - \alpha_i \frac{g_j + \delta}{n-1} - \beta_i \frac{g_h - g_j - \delta}{n-1} \\
 &\ + \delta \left[\frac{(a-1) - \alpha_i}{n-1} + \frac{\beta_i}{n-1} \right]
\end{align*}
\]

Denote \(A = (a-1) - \alpha_i \frac{(n-h-1)}{(n-1)} + \beta_i \frac{h}{(n-1)} \), then

\[
u_i(g'_j = g^{t+1}_j + \delta) = u_i(g'_j = g^{t+1}_j) + \delta A
\]

When \(\delta A > 0 \), a player \(j \) will make a change when updating her contribution either by increasing or by decreasing her contribution, to generate a utility gain. If \(\delta > 0 \) and \(\delta A > 0 \), then there is a utility gain from an increase in the contribution. If \(\delta < 0 \) and \(\delta A > 0 \), then there is a utility gain from a decrease in the contribution. The per unit utility gain, \(A \), is positively (negatively) correlated with \(\beta_i (\alpha_i) \), the guilt (envy) parameter.

QED
Appendix D

Suppose that it is common knowledge that there is \(p \) percentage of population with \(\beta > 1 - a \), and \(1-p \) percentage of population is with \(\beta < 1 - a \). Let \(n \) denote the number of total players in the population. Then there are \((1-p)n\) players \(i \) with \(\beta_i < 1 - a \), and \(pn \) players with \(\beta_j > 1 - a \) in info-cost environment.

Case 1. All players \(j \) with \(\beta_j > 1 - a \) do not pay the cost, and they can not observe \(g_i \), and contribute on average \(\sum g_i / (pn) = g \), where \(g \in [0, e] \). For player \(i \) with \(\beta_i < 1 - a \),

\[
u_i(g_i = 0) = e + a p n g - \beta_i g \frac{p n}{n-1}
\]

and

\[
u_i(g_i > 0) = e - g_i + ag_i + a p n g - \alpha_i \frac{(1-p)n-1}{n-1} g_i - \beta_i \frac{p n}{n-1} (g - g_i)
\]

\(u_i(g_i > 0) \leq u_i(g_i = 0) \) if and only if

\[
\beta_i < \frac{[(1-p)n-1][\alpha_i + (1-a)(n-1)]}{pn}
\]

Since \(\beta_i < 1 - a \), \(u_i(g_i > 0) \leq u_i(g_i = 0) \) for any \(p > 0 \). Player \(i \) has no incentive to contribute any positive amount in info-cost environment when no-one pays the cost for information.

Case 2. All players \(j \) with \(\beta_j > 1 - a \) pay the cost and they observe \(g_i \), and contribute \(g_j = g_i \). For player \(i \) with \(\beta_i < 1 - a \),

\[
u_i(g_i = 0) = e
\]

32
and

\[u_i(g_i > 0) = e - g_i + ag_i + a(p + 1)g - a_i - \frac{(1-p)n-1}{n-1} g_i \]

\[u_i(g_i > 0) > u_i(g_i = 0) \text{ if and only if } \]

\[\alpha_i < \frac{(n-1)[a(p+1)-1]}{(1-p)n-1} \]

Given the parameters used in the experiment, \(n = 4, a = 0.5 \), this result implies that if \(p = 0.4 \) (at least one of the three other group members is with \(\beta_i > 0.5 \)), then all players with \(\beta_i < 0.5 \) will contribute, if they have a low or moderate envy parameter \((\alpha_i < 0.64) \); if \(p = 0.5 \) (two out of three other players are with \(\beta_i > 0.5 \)). However, all players with \(\beta_i < 0.5 \) will contribute only if they do not have a high envy parameter \((\alpha_i < 1.5) \). Further, if \(p = 0.75 \) (all other members in the group are with \(\beta_i > 0.5 \)), a player with \(\beta_i < 0.5 \) will always contribute.

\[\text{QED} \]
Table E. 1 Summary of One Game in Each of the Treatments

<table>
<thead>
<tr>
<th>Information</th>
<th>Info-free Environment</th>
<th>Info-cost Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Info</td>
<td>Freely Available</td>
<td>Must be Purchased at a Known Cost</td>
</tr>
</tbody>
</table>

Players’ Actions & Decisions

<table>
<thead>
<tr>
<th>Stage One*</th>
<th>Before Entering 2nd Stage</th>
<th>Stage Two</th>
</tr>
</thead>
</table>
| Each player simultaneously decides how much to contribute to a public project from an endowment of 50 E$ | No actions or decisions are needed | • Review information about others’ contributions
• Update contribution
• Click the “ShowInfo” buttons to review information about others’ contributions
• Update contribution
If a player pays for information:
• Click the “ShowInfo” buttons to review information about others’ contributions, and
• Update contribution
If a player does not pay for information:
• Update contribution without seeing any information about others’ contributions |

<table>
<thead>
<tr>
<th># of Players in a Group</th>
<th>4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Sessions</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td># of Subjects</td>
<td>96</td>
<td>96</td>
<td>80**</td>
</tr>
</tbody>
</table>

*Numbers of Rounds in Stage One: One. Numbers of Rounds in Stage Two: Multiple, predetermined but unspecified to the players
**Six sessions have 12 participants in each, and one session has 8 participants.
Appendix F

Denote c_i and c_j as the cost for information accepted by players i and j, respectively; c is the available balance/fund in an information cost account for every player. The cost accepted by player i is $c_j = c$ or $c_j = 0$, when the player pays or not pays the cost for information, respectively.

According to Appendix A, for all n players,

\[- (1 - a) (g_i^t - g_i^{t-1}) + c_i\]

\[- \alpha_i \sum_{j \neq i} \max \{ (g_i^t + c_i) - (g_j^t + c_j), 0 \} + \gamma_i \sum_{j \neq i} \max \{ (g_j^t + c_j) - (g_i^t + c_i), 0 \}\]

Assume that k of $n-1$ players with $\beta_i < 1 - a$ contribute $g_1 = g_2 = \ldots = g_k = 0$ at t, and $n - k - 1$ players with $\beta_i > 1 - a$ contribute $0 = g_k \leq g_{k+1} \leq \ldots \leq g_n$. According to Proposition in F&S (1999), player i with $\beta_i < 1 - a$ contributes 0 at t, or $g_i^{t-1} = 0$, and make no changes in $t+1$, therefore $g_i^t = 0$. Let $g_{i_{\text{bar}}}^t$ be the average of the contributions that is higher than player i’s contribution. For player i,

\[- (1 - a) (g_i^t - g_i^{t-1}) + c_i = \beta_i \frac{n - k - 1}{n - 1} \left[(g_{i_{\text{bar}}}^t + c_i) - (g_i^t + c_i) \right]\]

since $g_i^{t-1} = g_i^t = 0$,

\[c_i = \beta_i \frac{n - k - 1}{n - 1} \left[(g_{i_{\text{bar}}}^t + c_i) - (g_i^t + c_i) \right]\]

Denote $p = (n-1-k)/(n-1)$,

\[c_i = \frac{\beta_i \ p}{1 + \beta_i \ p} \left(g_{i_{\text{bar}}}^t + c_i \right)\]

Following F&S(1999), let $P = 0.4$, and $g_{i_{\text{bar}}}^t \in (0, 50]$, where 50 is the endowment in our SPG,
in E$. Table E.1 shows the equilibrium cost for information that player i with $\beta_i < 1 - a$ accepts in a game. According to the table, player i with low social preferences will not accept the cost of information that is as high as E$10 in order to complete social comparison. Further, for player i with $\beta_i > 1 - a$,

$$
\frac{k}{n-1} - (1-a) (g_i^t - g_i^{t-1}) + c_i = -\alpha_i \frac{(g_i^t + c_i - c_{i}^h)}{n-1} + \beta_i \frac{n-k-1}{n-1} [g_{i,bar} + c_i] - (g_i^t + c_i)
$$

Denote c_{i}^h and c_{i}^l as the cost accepting behavior from players who contribute higher and lower than herself, respectively.

$$
c_i = \frac{p \beta_i g_i^{t,bar} + [(1 - p) \alpha_i - p \beta_i] g_i^t + (1 - a) (g_i^t - g_i^{t-1}) + p \beta_i c_{i}^h - (1 - p) \alpha_i c_{i}^l}{1 + p \beta_i - (1 - p) \alpha_i}
$$

From above analysis, cost accepting decision made by player i with $\beta_i > 1 - a$ is a function of a few variables, including both of the advantageous and disadvantageous inequity aversion, her own previous contribution, and expectation about others’ contribution decision.

| Table F.1 Equilibrium Cost for Information for Player i with $\beta_i < 1 - a$ |
|-----------------|-----------------|-----------------|
| β_i | $c_j = c$ | $c_j = 0$ |
| 0 | 0 | 0 |
| 0.1 | [0, 2] | [0, 1.92] |
| 0.2 | [0, 4] | [0, 3.70] |
| 0.3 | [0, 6] | [0, 5.36] |
| 0.4 | [0, 8] | [0, 6.89] |
| 0.49 | [0, 9.8] | [0, 8.19] |