PHANTOM STRUCTURE: A representational account of floating tone association

Nicholas Rolle & Florian Lionnet (Princeton University)

7th Annual Meeting on Phonology (AMP) 11-13 October 2019 Stony Brook University

[1] Main claim

- Floating tones can be associated to abstract tone-bearing units (TBUs - τ) on a parallel representational plane we call Phantom Structure

[2] Issue: Association of floating tones

1. **Phonological**: Association to unmarked position e.g. Floating tones (FTs) associating to metrically prominent position, e.g. stressed or domain edge

 - Kuria (Bantu) [Bickmore 1995, De Lacy 2002]
 - ta-tu-[ká-kom-a]_{STRESS} NEG-we-FUT-hurt-FV ‘we will not hurt’
 - tu-[lúku-leemb-a]_{STRESS} we-PROG-write-FV ‘we are writing’

2. **Targeted**: Associated position (i) not necessarily unmarked, (ii) idiosyncratic to the sponsoring morpheme

 - Kuria (Bantu): FTs associate to 2nd, 3rd, or 4th TBU of the macro-stem [MS] (among other patterns; see Odden 1987, Cammenga 2004, Mwita 2008, Marlo et al. 2015)

 - These positions are not (all) phonologically unmarked

[3] The status of counting in grammar

- Marlo et al. (2015) pursue a grammatical account, wherein grammatical operations are able to count, e.g. place H on 4th TBU of word

 - Output candidates are in multiple CORR relations, ranked appropriately:

 - IDENT-PhO(t)" (‘corresponding TBUs in the phantom plane and output have identical tonal associations’)
 - IDENT-IO(t)" (‘corresponding TBUs in the input and output have identical tonal associations’)

 - Markedness constraints (FLOAT, H/H0, etc.)

- We formalize a representational account – does not involve counting

 - Compare debates around Prosodic/CV Templates: “static representational phonological entities” vs. “emergent effects of constraint interaction” – Inkelas 1984-86ff and refs therein; McCarthy 1981 up to Kastner 2019

- A lexical entry contains phonological substance (i.e. its UR, in white below)

 - It also contains Phantom Structure, to which the UR can be linked/linearized

 - E.g. H tone pre-associated in a parallel Phantom Plane, i.e. [•••]

- Kuria prefix /ra- /Intl. ASPECT pre-linked to the 4th phantom TBU (of MS)

- Objective of Phantom Structure: Capture ‘desire’ of morpheme to anchor its tone to particular position within a string of TBUs, but does not and cannot provide the requisite TBU structure itself

[5] Analysis of phantom structure in context

- In context with other morphemes: both a Substantive Plane (i.e. the Input) and a parallel Phantom Plane co-exist, and represent distinct strings

 - Computation relies on two partially overlapping correspondence relations

[6] Alternative accounts: Arguments against floating (ለለለለ) sequence

- Alternative: prefixes in Kuria include deficient structure like floating morae/TBUs, or latent/ghost segments [Archangeli 1991, Zoll 1996, Sara Kirchner 2010 and refs therein, Zimmermann 2019 and refs therein]

 - Hypothetical deficient structure: /ra-a, e.g. with H tone linked to a segmentally-deficient TBU, all of which in input

 - Main argument against: Unlike deficient structure, the TBUs in the phantom structure show different behavior:

 - (i) not realized to avoid markedness
 - (ii) not deleted to avoid markedness
 - (iii) never realized with a latent segment
 - (iv) never realized via epenthesis or reduplication

- Such a reduplicative pattern is not attested anywhere in Kuria, or in the extensive Bantu literature on floating tone

 - In short: Phantom structure is not substance in the input

[7] Argument against deficient structure

- Alternative: prefixes in Kuria include deficient structure like floating morae/TBUs, or latent/ghost segments [Archangeli 1991, Zoll 1996, Sara Kirchner 2010 and refs therein, Zimmermann 2019 and refs therein]

- Hypothetical deficient structure: /ra-a, e.g. with H tone linked to a segmentally-deficient TBU, all of which in input

- Main argument against: Unlike deficient structure, the TBUs in the phantom structure show different behavior:

 - (i) not realized to avoid markedness
 - (ii) not deleted to avoid markedness
 - (iii) never realized with a latent segment
 - (iv) never realized via epenthesis or reduplication

- Such a reduplicative pattern is not attested anywhere in Kuria, or in the extensive Bantu literature on floating tone

 - In short: Phantom structure is not substance in the input

[8] Summary

- Two types of association patterns with floating tone

 - Association due to general phonological grammar
 - Association to a targeted position in some domain (idiosyncratic and not necessarily unmarked)

- Targeted association – e.g. H to the 4th TBU (t) of stem – is modelled using Phantom Structure (introduced here)

- If a tone T is pre-associated to a TBU in the Phantom Plane, high ranked IDENT-PhO(t) will enforce T to be associated to its equivalent TBU in an output candidate

- Alternatives are rejected (e.g. floating tone sequences /ለለለለ/; deficient t-nodes in input /ra-a, e.g. with H tone)

Acknowledgments: Thanks to our colleagues at Princeton (Laura Kalb, Byron Ahn, Sam Zuleff, Suwono Jeroen), and for feedback from Larry Hyman, Sharon Inkelas, Myriam Lapierre, and four anonymous AMP reviewers. Complete references are available on first author’s website, next to a pdf link for this poster: www.nlionnet.com/output

Image 105x2317 to 307x2576

[Diagram showing the relationship between Input and Output in the context of Phantom Structure]

Image 1020x624 to 2299x1071

[Nicholas Rolle & Florian Lionnet, 7th Annual Meeting on Phonology (AMP) 2019 Stony Brook University]

Image 1653x1502 to 2310x1800

[Diagram illustrating the computational model used for Phantom Structure]

Image 2381x1944

[Diagram showing the output candidates being ranked appropriately with IDENT-PhO(t) and IDENT-IO(t)]