• For a phone [tʃ] and other such complexes, how do we decide whether it is /tʃ/ or /t/+/ʃ/?
 o **Affricates**: tʃ, ts, tc, pf, kx
 o **Partially nasalized**: ʰd, ʰn, ʰnʲ, ʰn̥
 o **Labiovelars**: kp, gb, ŋmgb
 o **Labialized**: kw, gw, ŋw etc.

• "The one unifying feature of complex segments is that they are **articulatorily complex** in a way that simplex segments are not, and they can be **decomposed into parts** that can be separate segments"

• "The learning problem can be decomposed into two questions: (i) **what** language-internal **cues** do learners use to **discover complex segment representations**, and (ii) **when** does this happen."

Criteria for unification into a complex segment:
 o **Articulation**: "Is the duration of the sequence like that of a cluster, or like that of a segment?"
 o **Inseparability**: "Can the sequence be decomposed into parts that occur independently?"
 o **Distribution**: "Does the sequence have the same distribution as an uncontroversial singleton segment?"
 o **Syllabic structure**: "Is the sequence heterosyllabic or tautosyllabic?"
 o **Parsimony**: "Is the language’s phonemic inventory more symmetric if the sequence is analyzed as a complex segment?"

• Gouskova & Stanton:
 o "Our findings indicate that in a range of languages, **inseparability is the key** to identifying complex segments."
 o "we define inseparability as a **gradient, probabilistic measure**: the likelihood of C1 and C2 occurring together as C1C2, rather than separately or in clusters with other Cs."
 o "the **morphemic lexicon** emerges as the most appropriate model of the learning data."

• Fijian:
 o "Our Fijian corpus is from the An Crúbadán project, http://crubadan.org (26,000 words, compiled from internet texts—we cleaned the corpus to exclude English words, which left us with 17,600)."
 o http://crubadan.org: "The idea behind this project is to exploit the vast quantities of text freely available on the web as a way of bringing the benefits of statistical NLP to languages with small numbers of speakers and/or limited computational resources"
After the learner settles on a set of sequences to unify, it modifies the segmental inventory and its representation of the learning data.

There is no limit to the number of iterations the learner performs; it stops when it finds no more sequences that qualify for unification.
Discussion point:
- Must decide paradigmatic contrasts before syntagmatic constituency
- What **determines** what is the **same segment** across various contexts?

Canadian English
- /kat/ 'caught'
- /kat/ 'cot' (cf. [kat])
- */kat/
- /najf/ [najf]
- /najvz/ [najvz] *[najvz]?*

Three kinds of patterns in results
- Clear arguments for complex vs. cluster: Ngbaka, Mbay, Turkish, Hebrew, Quechua
- Argument for complex vs. cluster *opposite* of analysts: Sundanese
- Lack of clear arguments: Latin, Russian, English

Pattern 1: Task is easy to do if there are few/marginal number of CC clusters (e.g. Fijian)
- What about **Hebrew, with lots of CCs**
- Only /ts/ from phonological argumentation
- "We tested our learner on the Living Lexicon of Hebrew Nouns (11,599 words, Bolozky and Becker 2006)." ⇔ **confirms only /ts/ is complex**

(12) Hebrew phonotactics (from Asherov and Bat-El 2019; we follow them in ignoring voicing assimilation)

a. kvisa	‘laundry’	g. tsdaka	‘charity’	m. stsena	‘scene (loan)’
b. tkufa	‘period’	h. tʃuva	‘answer’	n. lantʃ	‘lunch (loan)’
c. tsfasdía	‘frog’	i. tzuza	‘movement’	o. tʃɪps	‘chips (loan)’
d. dʒima	‘sample’	j. tsvita	‘pinch’	p. dʒǐns	‘jeans (loan)’
e. psolot	‘waste’	k. tsnim	‘toast’	q. sklerozis	‘sclerosis (loan)’
f. btsalim	‘onions’	l. tnuva	‘yield (n)’	r. *ṭfn, ḏv, etc.	

Pattern 2:
- Making predictions: **Sundanese** as "contradicting" linguists
Discussion point: What happens when /CiCj/ contrasts with /Ci+Cj/?
 - Polish contrasts affricates and stop–fricative clusters
 - Fricatives longer in clusters than in affricates

(2) Polish (https://en.wikipedia.org/wiki/Polish_phonology)

a. czysta [ˈt͡ʂɨstə] ('clean' fem.)
 trzysta [ˈtʂɨstə] ('three hundred')
b. dżem’ [ˈdʐem] ('jam')
 drzem [ˈdʐem] ('take a nap' imper.)

G&S Footnote 12:
 - "Note that we did not give the learner a chance to consider Russian palatalized Cs for unification. This is because it is not clear to us how to transcribe the distinction between Cʲ and Cj in the initial state"
 - [lʲot] 'ice' vs. [lʲot] 'pours', [abjom] 'volume' vs. [grʲib'am] 'we row'
 - Transcribing all as [C j] would neutralize this distinction
 - One possibility would be to transcribe the [j]s with different lengths [b j] vs. [b jː]

Pattern 3: English
 - "quantitative support for the affricate analysis of English [tʃ] is not strong, … because [tʃ] is not frequent enough to counterbalance the individual frequencies of [t] and [ʃ], so the learner fails to unify it without being given more detailed phonetic information"

<table>
<thead>
<tr>
<th>inseparability</th>
<th>N(C1C2)</th>
<th>N(C1)</th>
<th>N(C2)</th>
<th>p(C1C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d tʃ</td>
<td>1.64</td>
<td>4002</td>
<td>25859</td>
<td>4332</td>
</tr>
<tr>
<td>tʃ</td>
<td>0.25</td>
<td>2765</td>
<td>39042</td>
<td>9162</td>
</tr>
</tbody>
</table>

Table 14: English inseparability calculations for Iteration 1 under broad transcriptions

Discussion point: Can we use more sophisticated phonotactics to probe internal structure?
Important take-away points of G&S

Point: Lack of 3+ part complex segments tied to rarity of long consonant clusters in general

Point: Phonetic difference does not entail phonological difference
 - Bura-Margi languages (Chadic, NE Nigeria)
 - "They are claimed to have many complex segments, most controversial of which are the labiocoronal\s [pt, bd, mnpt, mnbd, ?bd, pts, ptʃ] (Maddieson 1983:287)."
 - "appear to counterexemplify the claim that there is a link between duration and segmenthood: they pattern like single segments, yet are longer than single segments."

Lots of cross-linguistic variability in clusters:
"Homorganic [s t] is shorter than heterorganic [s p] and [s k] in Greek, but not in English (Arvaniti 2007:21–22)"

Cf. Karee Garvin, Myriam Lapierre & Sharon Inkelas "A Q-theoretic approach to distinctive subsegmental timing" (also Inkelas & Shih 2016)

"Pycha (2009, 2010) discusses relative timing differences between the closure and fricative portions of [ts] and [tʃ] in Hungarian, where [t] has a longer closure in [tʃ] than in [ts]."

\[(13) \text{a. } [ts] \quad \text{b. } [tʃ] \]
\[
\begin{array}{c}
(t^1 s^2 s^3) \\
\downarrow \\
(t^1 t^2 f^3)
\end{array}
\]

Point: it crucially matters what kind of data is fed to the learner
 - Type vs. token
 - Underlying vs. Intermediate rep vs. Surface
 - Morphemes vs. phonological words vs. orthographic words
 - Internal boundaries indicated

"With the exception of Quebecois French and Russian, all these languages point to the same conclusion: the more informative distributions are in morphemes/roots, not phonological words or connected speech."

Quechua:
 - "Quechua has mostly templatic roots, CV(C)CV, but its suffixes are atemplatic and often begin with consonant clusters (e.g., -sqa ‘nominalizer’, -jku ‘1pl. excl.’, -rqa ‘past’)."
 - "All of this results in [tʃ] being common (3,494 occurrences) and inseparable (5.32), but its ejective and aspirated counterparts are less common and less inseparable than certain clusters that occur in common suffixes." …
 - "Training the learner on morphologically complex words in such a language makes it inevitable that it will unify the wrong things."

Some potentially complex segments and complex topics which were not discussed:
 - Diphthongs
 - Nasalized vowels
 - Vowels with various laryngeal states, e.g. Udihe
 *laka-čan > l’a-sa [ləʔ-sa]~[ləʔ-sa] 'bullhead (fish)'
• Going about our business as phonologists without the certainty of complex segmenthood status

• For example, patterning of prenasalized stops in Komo: nt vs. nd (Cahill 2008)

(5) (b) Kimasa word game with prenasalized voiced stops

mbáŋga	ṭgámba	‘fast’
mbókó	kómbó	‘horn’
ndúmbú	mbúndú	‘nude’
ṭgána	nánga	‘refuse’
ɓongbiŋbi	ɓγbiŋbiŋo	‘length’

(6) Kimasa word game with syllabic nasals

mpáti	tipám ~ tipá?m	‘track’
núpo	póm ~ pó?m	‘then’
mφáse	seφám ~ seφá?m	‘twin’
µčáŋŋá	jŋačáŋ ~ jŋačá?ŋ	‘shallows’
ntíndí	ndítíŋ ~ ndítí?ŋ	‘civet’
ṭkpá	kpaŋ ~ kpaŋ?ŋ	‘person’