Towards a typology of prosody-segment interaction: The case of tone-driven epenthesis

Nicholas Rolle (Leibniz-ZAS, Berlin) rolle@leibniz-zas.de

Virtual talk for EVOTONE project – LMU München 12 Sep 2022

Paper version: https://ling.auf.net/lingbuzz/006615

1 Introduction

- (1) This talk presents on an oft-neglected topic in phonological typology: the **interaction between segments and prosody** (e.g. pitch/tone/intonation/etc.)
- (2) One such interaction is 'intonation-driven epenthesis'
 - The phonological insertion of a vowel in order to host an intonational tune
- (3) Take-away point for this talk:
 - A parallel and overlooked process of 'tone-driven epenthesis' also exists in certain African tonal languages
 - Defined as the phonological insertion of a vowel in order to host a tone
- (4) **Tone-intonation parallelism** is predicted under a model where:
 - Both types of prosodic systems make use of the same **phonological substance** (i.e. H/L tonemes) and **architecture** (e.g. **autosegmental representations**)
 - Both have the same functional pressures to cultivate segmental environments best suited for realizing pitch targets
- (5) Roadmap of today's talk
 - §2 Our starting point: Prosodic typology
 - §3 Case study: Tone-driven epenthesis in Ghomala'
 - §4 Zooming out: Why is tone-driven epenthesis so rare?
 - §5 Summary

2 STARTING POINT: PROSODIC TYPOLOGY

- 2.1 *Tone-segment interactions*
- (6) Although the empirical landscape of **tone-segment interactions** is not firmly established, there are some things we know

- (7) Known to be common: **Depressor effects**
 - Tone lowering with depressor consonants
 - "Broadly, it has been found that voiced segments lower F0, while voiceless segments raise it" (Cibelli 2015; see therein for extensive references)
 - Reflected in tonogenesis, tone distributions and alignment, and sometimes in intonation (e.g. Jun 1998 on Seoul Korean)
- (8) Known to be rare: **Tone height dependent on vowel height** (Jiang-King 1999, Yip 2002:31, Kingston 2007, Becker & Jurgec 2017, Arnold 2020)
 - This, despite "connection between vowel height and fundamental frequency: the higher the vowel, the higher the pitch" (Fox 2002:232, references therein)
- (9) **Segments affecting tone** much more common than **tones affecting segments**
 - "There is ... little evidence of reciprocation and very little evidence of tone affecting segments" (Wee 2019:208)
 - To date, most common pattern of tones affecting segments involves depression, i.e. **low tone inducing consonant voicing** (Poser 1981, Hansson 2004, Pearce 2007, Sossoukpe 2017, *inter alia*)
- 2.2 Even rarer Prosody-driven vowel epenthesis
- (10) 'Text-tune' relationships in **intonation**
 - When mismatch between the segmental structure (the 'text') and the intonational melody (the 'tune'), usually melody accommodates
 - E.g. via compression, simplification, truncation of tune
- (11) However, growing literature shows opposite pattern: manipulating the segments to **accommodate intonation** (Roettger 2017, Grice et al. 2018, Roettger & Grice 2019)
- (12) Tunisian Arabic [aeb] intonation (Hellmuth 2022)
 - Yes-no questions realized with rise-fall complex (i.e. L*+H H-L%) at the right edge of an intonational phrase
 - This intonational complex typically co-occurs with an **epenthetic** vowel [ə]:

nkemmil \mathbf{t}^{S} u:l \rightarrow [nkemmil \mathbf{t}^{S} **u:lə:**]
I-continue straight.ahead 'Should I go straight ahead?'

- Epenthesis **never** appears when there is only a **simple** rise or **simple** fall, even in the context of a yes/no question
- (13) Such prosody-driven epenthesis is a prediction of autosegmental representation

Table 1: Autosegmental representational possibilities

a Pre-specified	b. Toneless V	c Floating T	d. Combinations
<u>и. Тте зресптеа</u> Ц	o. Toneress v	u u	и
П		п	П
ļ			
á	a		a

Table 2: Schema of logically possible repairs to deficient representations

	8 31 1			
	Spreading	Epenthesis		
a. Toneless V	H H → [H H L		
	a t = a a t a	a t = a a t a		
b. Floating T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

- (14) If intonation-driven vowel epenthesis is possible, then what a counterpart **tone-driven epenthesis** in tone languages is this possible?
 - Question remains **unaddressed in major tone surveys** (Pike 1948, Fromkin 1978, Yip 2002, Hyman 2011b, 2018, Wee 2019, *inter alia*)
 - Unaddressed across major works of epenthesis (Broselow 1982, Ito 1989, Piggott 1995, de Lacy 2006, Hall 2006, 2011, Baković 2007, Moore-Cantwell 2016, *inter alia*)
 - Works which do address it: tone-driven epenthesis is **impossible/unattested** (e.g. Blumenfeld 2006, Gleim 2019)

3 CASE STUDY: TONE-DRIVEN EPENTHESIS IN GHOMALA'

3.1 *Ghomala' language*

- (15) Ghomala' [IPA: yòmálá? ISO 639-3: bbj]
 - Grassfields Bantoid language of western Cameroon (closely related to Bantu)
 - Data largely from previous description (Nissim 1972, 1981; Piron 1997; Eichholzer 2010)
 - Supplemented with recordings on YouTube and from 1970s (Hyman p.c., from Nissim)

Table 3: Segmental inventory of Ghomala'1

LAB.	DENT.	PAL.	VEL.	GLOT.	FRONT	CENTRAL	BACK
p b	t d		k g	7	i	u	u
pf bv	ts dz	с ј			e	ə	0
f v	S	ŠŽ	γ	h	3	α	Э
m	n		ŋ			a	
	1	У	ň				
		Ü	W				

- (16) Possible codas are in bold (will become important later): **p k ? m ŋ**
- 3.2 *Tone-driven epenthesis*
- (17) The tone system
 - Basic H vs. L tonal distinction, at an abstract level
 - On surface, lexical six-way contrast on roots

¹ More marginal phones include z, aspirated stops (e.g. t^h), pre-nasalized stops, as well as various consonant + glide sequences.

Table 4: Six-way tone contrast on open syllables (Nissim 1981:150,153)

a.	High	Н	fά	[fά]	7	[ŏ [†] yź	fά]	7	'you saw the parent'
b.	Downstep	ťΗ	⁺dhá	[dhə́]	7	[ŏ [†] ý́	⁺dhá]	1	'you saw the spouse '
c.	Level-low	L°	tsè°	[tsə̀°]	7	ľŏ ⁺ ý́	tsà°] ¯	4	'you saw the cola nut '
d.	Low	L	tà	[tà]	1	ľŏ [†] yź	tà] ¯	1	'you saw the pot '
e.	Falling	HL	b u â	[b u â]	V	[ŏ ⁺ ý́	b u â]	V	'you saw the madman '
f.	Rising	LH	bv ŭ	[bv ǔ]	Λ	ľŏ [†] yź	⁺bv ú]	†	'you saw the dog '

(18) For our purposes we shall leave aside the lexical downstep (row b. from Table 4)

Table 5: Same set of tone contrasts with syllables closed with a sonorant (i.e. $\mathbf{m} \, \mathbf{\eta}$)

a.	Н	kóm	[kɔ́m]	'crab'	(Nissim 1981: 216)
b.	L°	lèm°	[lèm°]	'condiment'	(Nissim 1981: 72)
c.	L	lèm	[lèm]	'dry season'	(Nissim 1981: 72)
d.	HL	fâm	[fâm]	'plantation'	(Eichholzer 2010: 16; from English <i>farm</i>)
e.	LH	běm	[běm]	'destiny'	(Nissim 1981: 74)

- (19) The star of the show today: **Tone-driven epenthesis**
 - Seen with obstruent codas when they co-occur with a rising tone
 - A /cvk/ sequence variably becomes [cvkv], with a final epenthetic vowel

Table 6: Tone-driven vowel epenthesis with syllables closed by an obstruent

	· -				5 , 6 ,	
	a.	Н	/káp/	[káp]	'pipe'	(Eichholzer 2010: 23)
	b.	L°	/bàp°/	[bàp°]	'animal'	(Eichholzer 2010: 3)
	c.	L	/pàp/	[pàp]	'wing'	(Nissim 1981: 218)
	d.	HL	/lâp/	[lâp]	'elegance'	(Eichholzer 2010: 31)
\rightarrow	e.	LH	/lăp/	[lǎp ~ làpá]	'pool of water'	(Eichholzer 2010: 31)

- (20) This variation is found consistently across Ghomala' literature/recordings
 - Same word, different transcription: **vòpó** 'dust' (Nissim 1981:198) Vs. **vŏp** (Moguo 2021:141) **No contrast** between such forms
- (21) Tone-driven epenthesis happens with all coda obstruents (i.e. **p k?**)

Table 7: Tone-driven epenthesis with all coda obstruents (Nissim 1981)

						(1100111111)
a.	p	/gčp/	[gɔ̀pə́]	'hen'	(p. 63)	
		/ŋkǎp/	[ŋkàpá]	'money'	(p. 300)	[AUDIO]
b.	k	/mŏk/	[mɔ̀kə́]	'fire'	(p. 48)	[AUDIO]
		/sǎk/	[sàkə́]	'wall'	(p. 65)	
c.	?	/gwš?/	[gwɔʔə́]	'termite'	(p. 146)	
		/lă?/	[làʔá]	'village'	(p. 74)	
		/pǔ?/	[pùʔú]	'package'	(p. 146)	
		/g ǔ ʔ/	[gʉ̀ʔʉ́]	'strength'	(p. 90)	

(22) Nissim is explicit in treating this final vowel as epenthesis, stating that its only function is to support a tone (Nissim 1981:65,90)

- (23) No epenthesis with other tonal contrasts (i.e. rows a-d from Table 6)
 - bap° 'animal' \rightarrow only $[bap^{\circ}]$ Cf. * $[bapa^{\circ}]$ [AUDIO]
 - lâp 'elegance' \rightarrow only [**lâp**] Cf. *[**láp** \grave{a}]
 - $l\grave{o}$?° 'yam' \rightarrow only $[l\grave{o}$?°] Cf. * $[l\grave{o}$? \grave{o} °] $[\underline{AUDIO}]$
- (24) Demonstrates epenthesis not due purely to markedness of obstruent codas
- (25) Against a deletion alternative I.e. $*/\text{cvcv}/ \rightarrow [\text{cvc}]$
 - The analytic indeterminacy of epenthesis is notoriously difficult (Morley 2015)
- (26) Evidence from **root phonotactics**
 - Vast majority of roots in language are monosyllabic (e.g. CV/CVC shapes)
 - Major exception to this generalization are exactly these [cvcó] forms
- (27) Evidence from closed syllable restrictions Applies to [cvco] too
 - Recall the vowel inventory /i e ϵ u θ α a u o o/ (where α is IPA [v])
 - Before coda \mathbf{p} and \mathbf{k} only the low vowels \mathbf{n} and \mathbf{a} are allowed
 - If this were underlying /cvcə/, we would expect full range of vowels, I.e. expect non-existent roots */bùpə/ or */gèkə/
 - In other words, **cvk** patterns as a closed syllable underlyingly
- 3.3 *Morpho-phonological alternations*
- (28) Further evidence comes from morpho-phonological alternations
 - Reveal complete co-variation between rising tones and epenthetic vowels
- (29) **Deverbal nominalization** mirrors the distribution of the monomorphemic lexicon
 - Lexical tone of root overwritten with LH tone
 - If this involves a coda obstruent, an epenthetic vowel must be added
- (30) **Deverbal nominalization** (Nissim 1981: 288-289)
 - tuò 'be strong' → tuŏ 'iron'
 - $s\acute{u}$ '(to) weed' \rightarrow $s\check{u}$ 'hoe'
 - tùŋ 'dig inside' → ntǔŋ 'throat'
 - tóm 'push' → tŏm 'fruit'
 - ts\(\hat{u}\)? 'twist' \(\rightarrow \dz\(\hat{u}\)?\(\hat{u}\) 'liana (vine)'
 - fók 'blow (cold)' → **fòkó** 'cold'
- (31) Morpho-phonological alternation in [N of N] constructions
 - Used for possession, compounds, and other meanings of association
- (32) Like most Bantoid/Bantu languages, Ghomala' has a **noun class system**, albeit relatively reduced with only 6 classes (SG-PL pairings 1-2, 3-4, and 5-6)
 - Evidence for these classes comes from distinct concord patterns
 - Class 2 plural msăŋ 'birds' msăŋ pά-puɨ 'two birds'
 - Class 4 plural mkwè° 'feet' mkwè mά-bué 'two feet'
 - Class 6 plural dzé 'goats' dzé tsά-pué 'two goats'

- (33) Class 1 nouns such as **mú** 'child' versus Class 3 nouns such as **thó** 'head'
 - Different concord patterns in [N of N] constructions
 - mú L bv $\check{\mathbf{u}}$ \rightarrow [mû bv $\check{\mathbf{u}}$] child_[CL1] of.CL1 dog 'the child of the dog' (Nissim 1981: 264)
 - thé \mathbf{H} by $\check{\mathbf{u}} \rightarrow [\text{thé} \ \mathbf{b} \mathbf{v} \check{\mathbf{u}}]$ head_[CL3] of.CL3 dog 'the head of the dog' (Nissim 1981: 153)
- (34) [N of N] constructions and tone-segment co-variation (Nissim 1981: 157-158, 250-252)
 - gšp gàpá] 'the child of the hen' mú L → [mû kò?° L 'the rooster of the hen' gšp → [kô? gàpá] L gšp $\rightarrow [gi]$ gàpá] 'the voice of the hen' [AUDIO] gì 'the house of the hen' L gšp → [dyâ dyě gàpá]
 - → [thá 'the head of the hen' thá H gšp gáp] mkò?° H gšp \rightarrow [mkò? g \acute{a} p] 'the roosters of the hen' kwà **H** gǒp → [kwà góp] 'the foot of the hen' [AUDIO] 'the ear of the hen' tǎη H gšp \rightarrow [tǎŋ] góp]
- (35) Complete tone/segment co-variation
 - If you add rising tone to [cvk], then you feed epenthesis (i.e. [cvkə])
 - If you eliminate rising tone from [cvk], then you bleed epenthesis (i.e. [cvk])

4 ZOOMING OUT: WHY IS TONE-DRIVEN EPENTHESIS SO RARE?

4.1 A common constraint

- (36) Let us refer to this constraint in Ghomala' as 'the *[cvk] constraint'
 - Sonorous segments such as vowels and sonorants possess richer harmonic structures than obstruents → make for better tone-bearing units
 - It is well-known that rising pitch takes longer to execute than a falling pitch and consequently has greater duration on average (e.g. Sundberg 1973, etc.)
 - Taking together, [cvk] structures may not provide enough sonorous material to adequately realize the rising tone within its allotted duration
- (37) **Two common repair families**:
 - Reduce the contour tone (effect the 'tune')
 - Expand the vowel duration (effect the 'text')
- (38) **Reduce** the 'contourness' of tone Compression, simplification, or flattening
 - May result in complete neutralization
 - In Xhosa [xho], HL contours are merged with H tones when a vowel is shortened in unstressed (i.e. pre-penultimate) environment (Lanham 1958, Zhang 2013)
- (39) **Expand** the vowel duration
 - Non-neutralizing lengthening in Mitla Zapotec [<u>zaw</u>] for syllables with rising but not falling contours (Briggs 1961, cited in Zhang 2013)

4.2 Epenthesis as a rare repair

- (40) A common constraint but a rare repair:
 - The motivation is very common, i.e. avoiding rising tone on suboptimal host
 - However, tone-driven epenthesis as a repair is extremely rare
 - E.g. no such repair in aforementioned typological surveys (Gordon 2001, Zhang 2013)
- (41) In fact, works which posit a maximally restrictive theory of epenthesis assume tone-driven epenthesis to be **impossible/unattested** (Blumenfeld 2006; Gleim 2019)
 - "Tone conditions cannot affect string structure" and therefore tone "cannot force epenthesis/syncope" (Blumenfeld 2006:41)
 - Epenthesis is "used exclusively as a response to pressures of syllable structure, sonority sequencing, syllable contact, and word minimality" (Blumenfeld 2006:5)
- (42) Outside of Ghomala', tone-driven epenthesis entertained only in:
 - Wamey [cou] Tenda, Niger-Congo: Senegal (Santos 1996)
 - Kejom [bbk] Grassfields, N.-Congo: Cameroon (Akumbu et al. 2020)
 - Kifuliiru [flr] Bantu, N.-Congo: DRC (van Otterloo 2011)
 - Hdi [xed] Chadic: Nigeria/Cameroon (Frajzyngier 2002, Gleim 2019)
 - Barain [bva] Chadic: Chad (Lovestrand 2012)
 - Arapaho [arp] Algonquian: USA (Cowell & Moss 2008, Gleim 2019)
- (43) Only in **Wamey** is there good evidence for *bona fide* epenthesis (Rolle & Merrill to appear)
 - Out soon in *Phonology* Draft: https://ling.auf.net/lingbuzz/006624
 - Arguments parallel to those developed for Ghomala' showing that **rising tones** on closed syllables trigger epenthesis

Table 8: Wamey – Complementary distribution of cvc and cvcə roots based on tone

	Tone	CVC shape	CVCə shape
a.	Н	-cæ̃w 'urinating'	*cýcá
b.	L	-cæw̃ 'hiding'	*cỳcà
c.	HL	-cæw 'domestic animal'	*cýcè
d.	LH	*cvc	-nkæwó 'dance' (n.)

- 4.3 Why so rare? The functional load of tone
- (44) Despite its occurrence in Wamey and Ghomala', it is incredibly rare **But why?**
 - Towards an explanation: the relatively low functional load of tone
- (45) **Functional load** (Hockett 1955, 1966; Wedel et al. 2013; *inter alia*)
 - "Functional load (FL) quantifies the contributions by phonological contrasts to distinctions made across the lexicon" (Round et al. 2022)
 - English contrast **t** vs. **d** has a high functional load (e.g. many minimal pairs *tie/die*, *tall/doll*, *tune/dune*, *sat/sad*, etc.)
 - Cf. θ vs. δ with much lower functional load (e.g. ether/either) (Hall et al. 2019)
- (46) The number of tonal minimal pairs is often very low in tonal languages

(47) **Hausa** [hau] (Chadic: Nigeria)

- "Although tone does not have a functional load comparable to that of many West African languages like Igbo or Yoruba, it does serve to distinguish a number of lexical items" (Newman 2000:599)
- ràiná: LH 'look after a baby'
 ráínà: HL 'despise, have contempt for'

(48) Relative functional load (FL) and entropy measures

- How much information is lost if you merge all values of a category?
 No vowel contrasts: r\u00fc\u00f
- Chinese tonal languages Mandarin and Cantonese FL of vowels is largely equivalent to that of tone, demonstrating equal lexical importance (Surendran & Niyogi 2003, 2006; Surendran & Levow 2004; Oh et al. 2015)
- In contrast in Hausa, FL of vowels is 3.5 times as important as tone (Rolle 2020)
- What is more typical? Cross-linguistic quantitative study still required

(49) If functional load is low, little reason to excessively maintain tone contrast

- In tonal languages, most morphemes bearing tone are expressed jointly by tonal and segmental material together, and more rarely by tone alone
- If there is enough segmental material to differentiate the morpheme from other paradigmatically-related morphemes (e.g. all nominal roots, or all TAM suffixes), then adding more segmental material via epenthesis may be costlier than being faithful to the underlying tone pattern
- (50) In short, in most tonal languages if the H portion of a [cvk] sequence were simply deleted, little information would be lost to correctly identify the intended meaning

5 SUMMARY²

(51) **To summarize**:

- We demonstrated one rare process termed 'tone-driven epenthesis', defined as the phonological insertion of a vowel to host a tone
- We provided evidence for this process from the Cameroonian language Ghomala', with evidence from **root phonotactics** and **morpho-phonological alternations** (both derivation and inflection)
- Finally, we hypothesized that the reason tone-driven epenthesis is so rare is due to the **low functional load of tone** in many tone languages

(52) These findings support **tone-intonation parallelism**:

- Both types of prosodic systems make use of the same **phonological substance** (i.e. H/L tonemes) and representation (e.g. **autosegmental architecture**)
- Both have the same functional pressures to **cultivate segmental environments** best suited for **realizing pitch targets**

² For references: [rtf] [bib] (or see my website)