Introduction to LiST

<Location>
<Date>
Background and history
Learning Objectives

- Understand methods, assumptions, and sources of data used in LiST to calculate impact of scaling up interventions
- Recognize the strengths and limitations of LiST
- Explore potential uses of LiST
LiST: A multi-cause model of mortality

- Uses inputs
 - Baseline description of health status of a country
 - Effectiveness of interventions
 - Changes in the coverage of proven MNCH interventions

- Projects outputs or impact
 - Lives saved
 - Number of deaths
 - Mortality rates
LiST objectives and goals

- **Objective**
 - Estimate lives saved when introducing or scaling up MNCH interventions

- **Goals**
 - Promote evidence-based decision making
 - Aid in planning or prioritization of scale-up of MNCH interventions
LiST background and history

To estimate impact of scaling up community-based interventions on child survival

- Facility-based interventions
- Neonatal mortality as an outcome
- Risk factors

Incorporated into Spectrum, available in the public domain

- New outcomes
 - Birth outcomes and stillbirths
 - Maternal mortality
 - Pneumonia, diarrhea, and meningitis morbidity

- Subnational level modeling
- Sensitivity and uncertainty around outputs
- Costing

- Adolescent mortality as an outcome
- Utilization and service availability / quality of interventions

2003
How LiST can be used

Prospective analysis
- Strategic planning
- Projecting lives saved

Retrospective analysis
- Program/project evaluation
- Attribution of lives saved to interventions

Advocacy
- Global, national, or subnational level
Who has used LiST?

International donors
- Bill & Melinda Gates Foundation
- Children's Investment Fund Foundation

International organizations
- Gavi: The Vaccine Alliance
- World Health Organization
- UNICEF
- PAHO-WHO
- World Bank

NGOs
- Save the Children
- MSH
- Jhpiego

Development and aid agencies
- Canada
- USAID

Country governments
- DRC
- Malawi
- Mali
- Nigeria
- India
- Peru
- Mozambique
- Tanzania

Academic institutions
- Johns Hopkins Bloomberg School of Public Health

How is impact calculated in LiST?
Basic modeling structure of LiST

- Linear
 - Fixed relationships between inputs and outputs

- Mathematical
 - Assumes casual pathways of interventions reducing cause-specific mortality via reducing risk factors are correctly defined

- Deterministic
 - Tool will produce the same outputs each time the model is run with identical inputs.

- Population, not individuals

- Age cohorts

How is impact calculated in LiST?

Cause-specific mortality \times Intervention coverage change \times Affected fraction \times Effectiveness = Lives saved
Cause-specific mortality \times \text{Intervention coverage change} \times \text{Affected fraction \times Effectiveness} = \text{Lives saved}
Cause-specific mortality and data sources

- Cause-specific mortality = births x mortality rates x % deaths due to causes
 - Neonates <1 months
 - Children 1-59 months
 - Women 15-49 years
 - Stillbirths
- Mortality rates
 - UN Inter-agency Group for Child Mortality Estimation (IGME)
- Causes of death
 - WHO Maternal and Child Epidemiology Estimation (MCEE)
Cause-specific mortality \times \text{Intervention coverage change} \times \text{Affected fraction x Effectiveness} = \text{Lives saved}
What is coverage?

\[
\frac{\text{numerator}}{\text{denominator}} = \frac{\text{All who received intervention}}{\text{All who needed intervention}}
\]
Which interventions are in LiST?

Proximate interventions
Distal variables improves coverage of proximate interventions

Feasible in low income countries
±80 countries with the highest MNC mortality

Work through health programs
Both community and facility-based

Cause-specific evidence of effect
Systematic reviews, meta-analyses, RCTs, Delphi method
Updated frequently
How are interventions organized in LiST?

Periconceptual → Pregnancy → Childbirth → Breastfeeding → Preventive → Vaccines → Curative
LiST impact model

http://listvisualizer.org/
Intervention coverage data sources

- Most MNCH interventions
 - Demographic and Health Surveys (DHS)
 - Multiple Indicator Cluster Survey (MICS)
- Water and sanitation
 - WHO-UNICEF Joint Monitoring Program
- Vaccines
 - WHO-UNICEF Joint Reporting Process
- User-entered data
Cause-specific mortality \times Intervention coverage change \times Affected fraction x Effectiveness = Lives saved
Affected fraction of an intervention

Proportion of cause-specific deaths that CAN be averted by a specific intervention

For example:

Diarrhea deaths by pathogens

Of all deaths due to diarrhea, 20% are due to pathogen A (Rotavirus). The rotavirus vaccine, which can only avert rotavirus diarrhea deaths, has an affected fraction of 20%
Effectiveness of an intervention

Proportion of pathogen-specific, cause-specific deaths that are averted by a given intervention

Total rotavirus diarrhea deaths

Rotavirus vaccine effectiveness 50%

Note: the effectiveness presented is for each intervention individually
Affected fraction x effectiveness

Rotavirus vaccine

- Affected fraction = 20%
- Effectiveness = 50%

Of 10 children with diarrhea deaths, 2 are due to rotavirus diarrhea

If all 10 children with diarrhea deaths are vaccinated with rotavirus vaccine, **1 life** will be saved by the vaccine
Effectiveness data sources

- Systematic reviews, meta-analyses, Delphi method, randomized control trials
- Global and regional
- Published in 5 supplements
 - IJE April 2010
 - BMC Public Health 2011
 - BMC Public Health 2013
 - Journal of Nutrition 2017
 - BMC Public Health 2017
Cause-specific mortality \times Intervention coverage change \times Affected fraction \times Effectiveness = Impact e.g. Lives saved
Results available in LiST

Lives saved
- Total
- By cause
- By intervention
- By age group

Number of death
- Total
- By cause
- By intervention
- By age group

Risk factors
- Stunting
- Wasting
- Birth outcomes

Mortality rates
- Neonatal mortality rate
- Under 5 mortality rate
- Maternal mortality rate or ratio
- Stillbirth rate

Visualize by:
- Tables, graphs, pie charts
- Single/multiple countries
- Single/multiple scenarios
How does Spectrum work?

- Essentially a demographic projection (Demproj)
- Normally, demographic projections use trends in mortality and fertility to project population growth and structure

- However, within Spectrum, three modules alter this relationship:
 - AIM, for impact of interventions on HIV/AIDS mortality
 - FamPlan, for impact of family planning on fertility
 - LiST, for impact of interventions on maternal and child mortality
How other modules relate to LiST

- **Demproj** – underlying population and births
 - Gives LiST population size and births

- **AIM** – scale up HIV treatment
 - Gives LiST child deaths due to HIV/AIDS

- **Famplan** – scale up family planning
 - Change fertility trend and births in Demproj →
 - Change number of deaths in LiST
 - Change distribution of birth by risk categories → change birth outcomes
 - Change abortion incidence → change maternal deaths due to abortion
How to run a LiST analysis

- Basic approach in LiST is to establish a baseline projection of a country or region. This includes:
 - Demography: population structure, fertility, contraceptive prevalence
 - Mortality rates
 - Cause of death structure
 - Current levels of risk factors and exposure
 - Current level of coverage of interventions
How to run a LiST analysis

- Scale up coverage of interventions
- Re-computes all inputs
- Compare to a counterfactual
 - Default: no coverage scale up
- Outputs include all of the inputs from baseline
How are lives saved calculated?
How are lives saved calculated?

- **Single intervention**
 - Lives saved = (Cause-specific deaths) * (Change in coverage) * (Intervention effectiveness * affected fraction)

- **Two or more interventions**
 - Process prevention first, then curative
 - Interventions impacting same cause of death:
 - Total lives saved: process interventions in any order, but impact only on deaths not averted by previously applied interventions
 - Total lives saved by interventions (attribution): process each intervention by itself, then normalize intervention impacts to sum to total from step 2
Modeling approach: single intervention

Intervention A
(preventive)

Baseline # of diarrhea deaths = 10,000

Intervention A is introduced, reaches coverage of 50%

Effectiveness of the intervention in reducing diarrhea mortality = 10%

Mortality impact = 10,000 x 0.50 x 0.10 = 500 diarrhea lives saved
Modeling approach: two interventions

Intervention A (preventive)
- 10,000
- 50%
- 10%
- 500

Intervention B (preventive)
- New baseline # of diarrhea deaths = 10,000 - 500 = 9,500
- Intervention B is introduced, reaches coverage of 20%
- Effectiveness of the intervention in reducing diarrhea mortality = 50%
- Mortality impact = 9,500 * 0.20 * 0.50 = 950 diarrhea lives saved
Modeling approach: two interventions

Intervention A (preventive) ∆ Intervention B (preventive)

Intervention A first, B second
- 10,000 × 50% × 10% = 500
- 9,500 × 20% × 50% = 950
Total = 1,450

Intervention B first, A second
- 10,000 × 20% × 50% = 1,000
- 9,000 × 50% × 10% = 450
Total = 1,450
The same approach is used to calculate the proportion of impact attributable to B.
Modeling approach: two interventions

Intervention A (preventive) Interventions B (preventive)

Impact A

Proportion of impact attributable to A

Total impact

50% 1 10%

0.05

0.05 + 0.10

50% 1 10%

20% 1 50%

33%
Modeling approach: two interventions

Intervention A (preventive)

Intervention B (preventive)

Proportion of impact attributable to A: 33%

Proportion of impact attributable to B: 67%

Number of lives saved attributable to A: 1,450 \times 33\% = 483

Number of lives saved attributable to B: 1,450 \times 67\% = 967
Modeling approach: two interventions

Intervention A (preventive)
Intervention B (preventive)
Intervention C (curative)

For interventions at a different stage along the continuum of care, order does matter. Impact is calculated on residual deaths only.
LiST limitations

- Data availability
- Data quality
- Sensible coverage scale-up targets
 - Feasible
 - Acceptable
 - Cost
- Interventions not included in LiST
 - Some interventions not included because not enough data available to support including them
 - Interventions that are feasible in LMICs
LiST can NOT be used for:

As the final answer
Outputs are only as good as inputs
Also must consider cost, feasibility, acceptability

To decide HOW to do anything
For program implementers to decide
Context MUST be considered
Advantages of LiST

- Ability to look at multiple interventions’ impact on multiple disease causes
- Evidence-based
- Validated
- Published
- Regularly updated and maintained
- Free and available in the public domain
Advantages of LiST

- Default data sources are all high quality data
- Highly flexible tool
 - Accommodates user-entered data
 - Accommodates user-created interventions
- Quickly identify intervention impact pathways using http://listvisualizer.org/
- Visualize the highest impact using the missed opportunities
- Can tailor the tool to look at the impact of:
 - One single intervention
 - A package of interventions
 - Multiple countries at once
Additional features of LiST

- Subnational Wizard*
- Missed Opportunity Tool*
- Equity Tool*
- LiST Costing*
- Uncertainty Analysis

*recorded webinar available on LiST website