Prognostic significance of mitosis in circulating tumor cells in breast cancer patients

Daniel L. Adams¹, Diane K. Adams², Steingrimur Stefansson³, Christian Haudenschild⁴, Stuart S. Martin⁵, Monica Charpentier⁶, Saranya Chumari⁷,⁸, Massimo Cristofanilli⁹, Cha-Mei Tang¹⁰, R. Katherine Alpaugh¹²

¹Creativ MicroTech, Inc., Monmouth Junction, NJ 08852, ²Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, ³HeMems Biotechnologies Inc., Rockville, MD 20850, ⁴George Washington University Medical Center, Washington, DC 20052, ⁵University of Maryland Baltimore, Baltimore, MD 21216, ⁶Mayo Clinic Cancer Center, Jacksonville, FL 32224, ⁷Northwestern University, Chicago, IL 60611, ⁸Creativ MicroTech, Inc., Potomac, MD, 20854, ⁹Fox Chase Cancer Center, Philadelphia, PA 19111

ABSTRACT

It has been well documented that enumeration of Circulating Tumor Cells (CTCs) isolated from the peripheral blood of breast cancer patients can be used as a prognostic indicator of survival. Typically, CTC identification relies on immunohistochemical stains used in an absent/present method (i.e. CK+/CD45-). However, the methodology for identification of CTCs is highly subjective, and histological cytology remains the standard identifier of cancer cells. We expand upon our work regarding the cytological criteria of CTCs, Adams et al. Cytometry 2015¹, to determine if pathological grading criteria can be applied to CTCs. We report the assessment for overall survival of 36 late stage breast cancer patients in relation to CTC number and presence of active mitosis.

RESULTS

- PDCTCs were found in 83% (30 of 36) of patient samples tested.
- 23 of 36 patients (64%) had <5 PDCTCs with a median survival of >24 months
- 13 of 36 patients (36%) had ≥5 PDCTCs with a median survival of 10.0 months
- Hazard ratio was 5.2

Mitic PDCTCs were found in 36% of patient samples tested
- 23 of 36 patients (64%) had 0 mitotic PDCTCs, median survival of >24 months
- 13 of 36 patients (36%) had ≥1 mitotic PDCTCs, median survival of 5.7 months
- Hazard ratio was 11.1

CONCLUSIONS

- Low pressure microfiltration captures CTCs while retaining fine cellular architecture, such as mitosis.
- Mitoic CTCs are relativity common in aggressive late stage breast cancer patients.
- Stratification of breast cancer patients based on CTCs is a prognostic indicator of survival.
- Prognostic value is increased by subtyping CTCs based on their mitotic index.

References


Research Funding

This work was supported by a Maryland Technology Development Corporation (TEDCO) MTCF award, grant R01-CA154624 from the National Cancer Institute, grant KG100240 from the Susan G. Komen Foundation, a grant from an Era of Hope Scholar award from the Department of Defense (BC100675), and the U.S. Army Research Office (ARO) and the Department of Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0098). The content of the information does not necessarily reflect the position or the policy of the US Government.

INTRODUCTION

CTCs are cells that originate from a primary solid tumor and are found transiting the circulatory system. CTC enumeration can be used to monitor therapy response and predict outcome. However, CTC subtyping remains reliant on immuno-staining presence/absence, not the more standardized histopathological identification.²

Low pressure microfiltration using CellSieve™ microfilters is a technique shown to isolate patient CTCs while retaining the fine architectural detail required for histopathology.¹ High resolution morphology can identify CTC subtypes, i.e. apoptotic CTCs, highly pleomorphic CTCs, and CTCs in active mitosis. Aggressive phenotypes are associated with CTC population in mitosis. Subtyping by phenotypic determinates may aid in identifying CTC cellular status for diagnosis, prognosis and therapy determination.¹⁻⁴

MATERIALS & METHODS

A prospective study was conducted of 36 single blinded Stage III/IV breast patient samples provided by Fox Chase Cancer Center and University of Maryland Baltimore. 7.5ml whole blood was diluted in pre-fixation solution and filtered by CellSieve™ microfiltration. Cells were fixed, permeabilized, and stained with DAPI, an antibody cocktail against CK 8/18/19, EpCAM, and CD45. CTCs were enumerated and identified as described by Adams et al. Cytometry 2015¹. CTCs were further subtyped by 1) number of pathologically definable CTCs (PDCTCs) and 2) presence of mitotic events, identified by standard visual cues (e.g. prophase, anaphase, etc.). Kaplan-Meier plots and Hazard ratios were determined at 24 months.

Figure 1. Examples of pathologically definable CTCs. (PDCTC) (a) PDCTC with EpCAM positivity (red) (b) PDCTC without EpCAM (absent red)