Mitosis in circulating tumor cells and its prognostic significance in late stage breast cancer

Daniel L. Adams1, Diane K. Adams2, Steinigrum Stefansson3, Christian Haudenschild4, Stuart S. Martin2, Monica Charpentier5, Saranya Chuumsri6,7, Massimo Cristofanilli8, Cha-Mei Tang9, R. Katherine Aplbaum5

1Creativ MicroTech, Inc., Mombouk, NJ 08852; 2Rutgers, the State University of New Jersey, New Brunswick, NJ 08901; 3HeMemics Biotechnologies Inc., Rockville, MD 20852; 4University of Maryland Baltimore, Baltimore, MD 21216; 5Mayo Clinic Cancer Center, Jacksonville, FL 32224; 6Northwestern University, Chicago, IL 60611; 7Creativ MicroTech, Inc., Potomac, MD, 20854; 8Fox Chase Cancer Center, Philadelphia, PA 19111

ABSTRACT

It has been well documented that enumeration of Circulating Tumor Cells (CTCs) isolated from the peripheral blood of breast cancer patients can be used as a prognostic indicator of survival. CTC identification typically relies on immunohistochemical stains used in an absent/present method (i.e. CK+ / EpCAM+/CD45-). However, this methodology for identification of CTCs is highly subjective, and histological cytology remains the standard identifier of cancer cells. We expand upon our work regarding the cytological criteria of CTCs, Adams et al., Cytometry 20151, to determine if pathological grading criteria can be applied to CTCs. We report the assessment for overall survival of 36 late stage breast cancer patients in relation to CTC number and presence of active mitosis.

INTRODUCTION

CTCs are cells that originate from a primary solid tumor and are found transiting the circulatory system. CTC enumeration can be used to monitor therapy response and predict outcome.1,4 However, CTC subtyping can be relied upon immunostaining presence/absence, rather than the more standardized histopathological identification.2 Low pressure microfiltration using CellSieve™ microfilters is a technique shown to isolate patient CTCs, while retaining the fine morphological detail required for histopathology1,2. High resolution morphology can identify CTC subtypes, i.e. apoptotic CTCs, highly pleomorphic CTCs, and CTCs in active mitosis. Aggressive phenotypes are associated with CTC population in mitosis. Subtyping by phenotypic determinates may aid in identifying CTCs cellular status for diagnosis, prognosis and therapy determination.1,4

RESULTS

PDCTCs were found in 83% (30 of 36) of patient samples tested. 23 of 36 patients (64%) had ≥5 PDCTCs with a median survival of >24 months. 13 of 36 patients (36%) had ≥5 PDCTCs with a median survival of 10.0 months, Hazard ratio was 5.2. Mitotic PDCTCs were found in 36% of patient samples tested. 23 of 36 patients (64%) had 0 mitotic PDCTCs, median survival of >24 months. 13 of 36 patients (36%) had ≥1 mitotic PDCTCs, median survival of 5.7 months. Hazard ratio was 11.1.

CONCLUSIONS

• Low pressure microfiltration captures CTCs while retaining fine cellular features, such as mitosis.
• Mitotic CTCs are relatively common in aggressive late stage breast cancer patients.
• Stratification of breast cancer patients based on CTCs is a prognostic indicator of survival.
• Prognostic value is dramatically increased by subtyping CTCs based on their mitotic index.
• CTC subtypes indicate definable traits that can be exploited for personalized treatment of cancer.

References

Research Funding

This work was supported by a Maryland Technology Development Corporation (TEDCO) MITCF award, grant R01-CA154624 from the National Cancer Institute, grant KG100240 from the Susan G. Komen Foundation, a grant from an Era of Hope Scholar award from the Department of Defense (BC100675), and the U.S. Army Research Office (ARO) and the Department of Defense Advanced Research Projects Agency (DARPA) (W911NF-14-C-0098). The content of the information does not necessarily reflect the position or the policy of the US Government.

Table 1: Prediction table with the hazard ratios, confidence intervals and p-values for the patient populations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mitotic CTC vs 0 mitotic CTC</td>
<td>11.1</td>
<td>3.1-39.7</td>
<td><0.001</td>
</tr>
<tr>
<td>≥5 CTC vs <5 CTC</td>
<td>5.2</td>
<td>1.6-16.5</td>
<td>0.005</td>
</tr>
<tr>
<td>ER/PR positive vs negative</td>
<td>1.3</td>
<td>0.5-3.7</td>
<td>0.174</td>
</tr>
<tr>
<td>HER2 positive vs negative</td>
<td>1.8</td>
<td>0.6-5.7</td>
<td>0.289</td>
</tr>
<tr>
<td>Hormone positive vs negative</td>
<td>4.0</td>
<td>1.4-11.2</td>
<td>0.009</td>
</tr>
</tbody>
</table>