Cancer Associated Macrophage-like Cells in Baseline Blood Samples of Cancer Patients Indicate Malignant Disease

Daniel L. Adams1, Stuart S. Martin2, Monica Charpentier4, Saranya Chumar1, Rena Lapidus3, Raymond C. Bergan5, Irene M. Ogden3, R. Katherine Alpaugh6, Susan Tsai2, Massimo Cristofanilli6, Olga V. Makarova7, Peixuan Zhu8, Shuhong Li8, Platte Amstutz9, Cha-Mei Tang8,9

1Creatv MicroTech, Inc., Monmouth Junction, NJ; 2University of Maryland Baltimore, MD; 3Northwestern University, Chicago, IL; 4Fox Chase Cancer Center, Philadelphia, PA; 5The Medical College of Wisconsin, Milwaukee, WI; 6Thomas Jefferson University Hospital, Philadelphia, PA; 7Creativ MicroTech, Inc., Chicago, IL; 8Creativ MicroTech, Inc., Rockville, MD; 9Creativ MicroTech, Inc., Potomac, MD

ABSTRACT

Use of peripheral blood as a “liquid biopsy” allows for the analysis of various cancer associated circulating cells, including circulating tumor cells (CTCs) and cancer associated macrophage-like cells (CAMLs). CTCs are malignant cells derived from solid tumors that enter the circulatory system, after breaking off from the original tumor site; while CAMLs are phagocytic myeloid cells, thought to be an immunological response to the tumor. Using precision microfilters, we isolated and identified both CAMLs and CTCs from a variety of cancer patients. We identified CTCs using the classical definition of filamentous cytokeratin and CD45 negativity, while identifying CAMLs by their large size, 25 µm to 300 µm, diffused cytokeratin, and multinucleated structure. It has been discussed that both cell types can be used as an indication of malignant disease in multiple solid tumors. Here we analyzed the peripheral blood of untreated newly diagnosed cancer patients to ascertain the prevalence of CTCs and CAMLs; and supply evidence that CAMLs are a highly prevalent biomarker which might be used for the early detection of solid tumors.

INTRODUCTION

CTCs have been shown to be an indicator of malignant disease, used to monitor therapy response and predict outcomes in late stage patients.1-4 However, CTCs are not common in early stage disease and are found in low frequencies in a number of cancers, including lung and pancreatic cancers. CAMLs are immunological cells which have been shown to be present in all stages of cancer, and in multiple cancer types, but have remained largely unstudied.

CellSieve™ microfilters are lithographically fabricated membranes with high porosity, precise pore dimensions, and regular pore distribution3,4. We previously reported that CellSieve™ rapidly and efficiently isolates both CAMLs and CTCs from whole peripheral blood, showing it is possible to study both cell types in conjunction with and in relation to malignant disease.3,4

RESULTS

- CAMLs and CTCs were not found in healthy individuals (n=30).
- CAMLs were found in 90% of all 61 patients regardless of cancer type or stage
- CAMLs averaged 4.2 cells per sample of all 61 patients.
- CTCs were found in 30% of the same patient cohort, averaging 0.7 cells per sample.
- CTCs were found in 84% (stage I), 90% (stage II), 100% (stage III) and 93% (stage IV)
- CTCs were found in 12% (stage I), 35% (stage II), 50% (stage III) and 50% (stage IV)
- CAMLs have vacuoles containing the same biomarkers found at primary tumor sites.

Figure 1. Examples of a CTC and a CAML. (a) CTC with single nucleus, high cytokeratin filamentation and high EpCAM expression (approx. 15 µm in length), (b) CAML with enlarged multinucleation, diffuse cytokeratin staining and some EpCAM expression (approx. 80 µm in length).

Figure 2. Attributes of CAMLs. (a) Single ~100 µm CAML with intense CD45 (violet) staining (b) Single CAML from a prostate patient with cytokeratin signal (green) and a vacuole positive for prostate specific membrane antigen (red) (c) H&E stain of a CAML Scale bars, 40 µm.

REFERENCES