

Building OpenSync with RDK-B
DATE: March 09, 2020
Document number: 019-1129-21

History of Changes

Version Change

November 29, 2019 Release 1.4.0

March 9, 2020 Release 1.4.0.2

2/10

Table of Contents
Introduction 4

OpenSync on RDK Platforms 5

Build Prerequisites 5

Integration Steps 6
Preparing the vendor repository 6

vendor-arch.mk 6
template_model 6
CERTIFICATES_PLACEHOLDER 7
deviceinfo.sh 7
osync_hal 7
target_template.h and target/override.mk 8
“src” directory and the C source code within 8
map.c file 8

Setting up the RDK-B SDK 9
Adding the OpenSync meta layer 9
Starting a build 10

References
[1] https://www.opensync.io/documentation/

[2] RDK-B OpenSync Integration.pdf

3/10

https://www.opensync.io/documentation/

Introduction
OpenSync™ is designed to provide a software defined network - SDN platform, through which it
virtualizes the networking and wireless management for easy service roll-out.

Figure 1: OpenSync block diagram

Devices that can support OpenSync are referred to as targets, where the target layer is an
adaptation layer between the OpenSync managers and the low-level SoC/Linux drivers.

There are many different target layer flavors, which can be specific to a particular chipset (e.g.
Broadcom, Qualcomm, Quantenna, Celeno, etc.), or a platform such as RDK, OpenWrt, PRPL,
etc.

This document describes how to build the OpenSync RDK integration. Further details regarding
the OpenSync RDK layer can be found in RDK-B OpenSync Integration [2].

For more information on OpenSync visit https://www.opensync.io/documentation/ [1].

4/10

https://www.opensync.io/documentation/

OpenSync on RDK Platforms
OpenSync for RDK-based platforms is built using three separate components (repositories):

● core
This is an alias for the code in OpenSync repository.

● platform
This component implements a common part of target layer for RDK-based platforms.
The repository is available online under the name opensync-platform-rdk.

● vendor
This repository is intended to provide all vendor-specific code, certificates, configuration
files, etc. Vendor (platform integrator) is expected to create and maintain this
component. OpenSync comes with a vendor repository template available at GitHub
under the name opensync-vendor-rdk-template. More on customizing that repository
template can be found in following sections.

Dedicated Yocto meta layer for building OpenSync with RDK SDKs is available on GitHub as
meta-rdk-opensync.

Build Prerequisites
The build should be conducted on a host running one of the Linux distributions supported by
Yocto. For more details see Yocto User Manual, and contact your SDK provider as it may
impose additional requirements.

5/10

https://github.com/plume-design/opensync
https://github.com/plume-design/opensync
https://github.com/plume-design/opensync-platform-rdk
https://github.com/plume-design/opensync-vendor-rdk-template
https://github.com/plume-design/meta-rdk-opensync
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

Integration Steps

Preparing the vendor repository
The content of opensync-vendor-rdk-template repository is listed below. Vendor (platform
integrator) is obliged to modify the highlighted files. Modifications necessary in each file are
briefly discussed below the listing.

├── build
│ └── vendor-arch.mk
├── kconfig
│ └── TEMPLATE
├── ovsdb
│ └── inet.json
├── README.md
├── rootfs
│ └── model
│ └── template_model
│ └── usr
│ ├── plume
│ │ └── etc
│ │ └── certs
│ │ └── CERTIFICATES_PLACEHOLDER
│ └── sbin
│ └── deviceinfo.sh
└── src
 └── lib
 ├── osync_hal
 │ ├── override.mk
 │ └── src
 │ └── osync_hal.c
 └── target
 ├── inc
 │ └── target_template.h
 ├── override.mk
 └── src
 ├── map.c
 ├── radio.c
 └── target.c

vendor-arch.mk
This file is an element of OpenSync build system. It is used to enable/disable and configure
builds for specific targets. Lines that have to be changed are marked with ‘TODO’ comments.
Read the comments and update the file accordingly.

template_model
Rename this folder to the value of RDK_MODEL variable that was set in “vendor-arch.mk” file.

6/10

https://github.com/plume-design/opensync-vendor-rdk-template

CERTIFICATES_PLACEHOLDER
Replace this file with appropriate certificates that will allow the device to connect to the
OpenSync cloud. For more information on how to obtain the certificates contact Plume.

deviceinfo.sh
Implement this shell script according to instructions in RDK-B OpenSync Integration [2].

osync_hal
OpenSync 1.4 introduces a new RDK-specific component - OSync HAL (OpenSync Hardware
Abstraction Layer). The OSync HAL exposes many extension points to target API that can be
easily overridden in the vendor repository. The platform-rdk component provides default
implementation of all OSync HAL extension points, however they are disabled by default.

Integrator is expected to either provide custom implementations, or explicitly enable default
ones by selecting them in kconfig. Otherwise, the following build-time errors are expected:

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_inet_get_iface_config'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_inet_create_gre'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_inet_add_to_bridge'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_inet_destroy_gre'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_inet_create_vlan'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_inet_destroy_vlan'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_init'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_ready'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_deinit'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_get_country_code'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_dhcp_resync_all'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_devinfo_get_redirector_addr'

| work/RDKB/lib/libplume.so: error: undefined reference to 'osync_hal_devinfo_get_cloud_mode'

7/10

To avoid above errors and use all default osync_hal functions, the following config file in the
vendor layer (“vendor/template/kconfig/TEMPLATE”) should be created:

CONFIG_USE_KCONFIG=y

CONFIG_INET_STATUS_NETLINK_POLL=y

CONFIG_PLATFORM_IS_RDK=y

CONFIG_DEFAULT_OSYNC_HAL=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INIT=y

CONFIG_OSYNC_HAL_USE_DEFAULT_READY=y

CONFIG_OSYNC_HAL_USE_DEFAULT_DEINIT=y

CONFIG_OSYNC_HAL_USE_DEFAULT_FETCH_CONNECTED_CLIENTS=y

CONFIG_OSYNC_HAL_USE_DEFAULT_DEVINFO_GET_CLOUD_MODE=y

CONFIG_OSYNC_HAL_USE_DEFAULT_DEVINFO_GET_REDIRECTOR_ADDR=y

CONFIG_OSYNC_HAL_USE_DEFAULT_DHCP_RESYNC_ALL=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_GET_IFACE_CONFIG=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_SET_IFACE_CONFIG=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_CREATE_GRE=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_DESTROY_GRE=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_ADD_TO_BRIDGE=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_CREATE_VLAN=y

CONFIG_OSYNC_HAL_USE_DEFAULT_INET_DESTROY_VLAN=y

CONFIG_OSYNC_HAL_USE_DEFAULT_GET_COUNTRY_CODE=y

target_template.h and target/override.mk

Rename “target_template.h” to a more appropriate name, e.g. related to a specific model or a
family of devices. Remember to update the corresponding entry in “override.mk”:

UNIT_CFLAGS += -DTARGET_H=\"target_template.h\"

“src” directory and the C source code within
There is a small subset of Target API functionality that has to be implemented in the vendor
component. The opensync-vendor-rdk-template comes with stubs for the required Target API
functions in the “src” directory.

The vendor is expected to implement the missing functionality.

map.c file
The “ifmap” structure in “map.c” must be updated. For more details on interface mapping see
RDK-B OpenSync Integration [2].

8/10

https://github.com/plume-design/opensync-vendor-rdk-template

Setting up the RDK-B SDK
This document describes compiling OpenSync on top of the RDKM 2019q3 release. The
following steps set up the SDK:

repo init -u https://code.rdkcentral.com/r/manifests -m rdkb.xml -b rdkb-2019q3

repo sync -j4 --no-clone-bundle

The 2019q3 release comes with a partial wifi_hal implementation (provided by halinterface and
hal-wifi-generic packages). Some of the API functions required by OpenSync are missing and
integrator is expected to provide the complete wifi_hal implementation. The exact list of required
APIs as well as proposed DFS API is available in RDK-B OpenSync Integration [2].

Adding the OpenSync meta layer
The next step is to add the OpenSync meta layer to the build environment:

git clone git@github.com:plume-design/meta-rdk-opensync.git --branch=osync_1.4.0.1

source ./meta-cmf/setup-environment

bitbake-layers add-layer ../meta-rdk-opensync/

Default OpenSync BitBake recipe downloads all components (core, platform, and vendor) and
builds the final package. However, the recipe does not know the location of the vendor
component, because the vendor is expected to create and maintain it. Therefore the vendor has
to alter the default OpenSync recipe, and it is recommended to do it by creating a BitBake
Append File.

Consider the following example: The goal is to integrate OpenSync v1.4.0.1. The OpenSync
meta layer provides recipe “opensync_1.4.0.bb” that builds precisely that version. The vendor
has to create a BitBake Append File called “opensync_1.4.0.bbappend” that specifies the
location and SRCREV of the vendor component:

SRCREV_vendor = "${AUTOREV}"

VENDOR_URI = \

"git://git@domain.com/vendor_name.git;protocol=ssh;branch=master;name=vendor_name;d

estsuffix=git/vendor/vendor_name"

The “opensync_1.4.0.bbappend” can be placed in an arbitrary meta layer, however it is
recommended to keep it outside of the OpenSync meta layer.

OpenSync recipes define two variables holding the build and runtime dependencies: DEPENDS
and RDEPENDS respectively. The vendor is obliged to satisfy these requirements. More
information on dependencies can be found in RDK-B OpenSync Integration [2].

For more information on BitBake refer to Official BitBake User Manual.

9/10

https://www.yoctoproject.org/docs/2.5.2/bitbake-user-manual/bitbake-user-manual.html

Starting a build

OpenSync package can be easily built using the following command:

bitbake opensync

In order to add OpenSync to the image, append the following line to image’s recipe:

IMAGE_INSTALL += "opensync"

Then rebuild the image.

10/10

