

RDK-B OpenSync Integration

DATE: April 08, 2020
Document number: 019-1129-20

History of Changes

Version Change

November 29, 2019 Release 1.4.0

March 9, 2020 Release 1.4.0.2

April 8, 2020 Update wifihal version to 2.16

2/29

Table of Contents
Introduction 5

OpenSync Target Layer 7

RDK-B Requirements 8

Internet Access 8

Device Information and Configuration 8

OpenSync Backhaul Support 9

Wireless Requirements 9

Backhaul Bridge and Subnet 10

Linux Networking 10

Hardware Acceleration 10

DHCP Lease Information 10

Networking Configuration 11

RDK-B Mesh Agent 12

RDK Logger 12

RDK-B wifi_hal Requirements 13

Reading Wi-Fi Information 13

Setting Wi-Fi Information 14

Wi-Fi Statistics 15

OpenSync Cloud Requirements 18

Certificate Authentication and Verification 18

Model Information 18

OpenSync Wi-Fi Statistics Certification 18

Plume Steering 19

Requirements 19

Per-Client Configuration 19

Steering Events from Wi-Fi Driver 19

WIFI_STEERING_EVENT_PROBE_REQ 19

3/29

WIFI_STEERING_EVENT_CLIENT_CONNECT 20

WIFI_STEERING_EVENT_CLIENT_DISCONNECT 20

WIFI_STEERING_EVENT_CHAN_UTILIZATION 20

WIFI_STEERING_EVENT_RSSI_XING 20

WIFI_STEERING_EVENT_RSSI 21

WIFI_STEERING_EVENT_AUTH_FAIL 21

Steering API 21

Multi-AP DFS 23

DFS States 24

DFS Events 24

Channel Changes 25

Wifi HAL DFS API (available since 2.15.0): 25

Multi-PSK 26

wifi_hal proposal for Multi-PSK 27

Operational Requirements 29

References
[1] ​https://www.opensync.io/documentation/

4/29

https://www.opensync.io/documentation/

Introduction
OpenSync™ is designed to provide a software defined network - SDN platform, through which it
virtualizes the networking and wireless management for easy service roll-out. It acts as a silicon,
CPE, and cloud-agnostic connection between in-home hardware devices and the cloud. It
provides a modern set of utilities for collecting measurement and other telemetry data from
devices. It also enables remote control and management of the devices, and advanced
capabilities for specific services, including Wi-Fi meshing, access control, cybersecurity,
parental controls, and IoT onboarding and telemetry. Services/Features can be added/removed
and controlled directly from the cloud - instead of adding them via a lengthy FW upgrade
process.

Figure 1​: OpenSync block diagram

OpenSync provides a range of benefits and features to chipset suppliers, system integrators,
and operators:

● Enables rapid development and deployment of new services and products
● Defines open, interoperable, multi-vendor interfaces, at multiple levels, that have been

adopted broadly in the industry
● Provides efficient methods for telemetry and control, based on modern open industry

solutions

5/29

● Supports and provides utilities for a broad range of existing services
● Is easily extensible, allowing the addition of new services, typically with only cloud

software changes
● Is proven, robust, and already deployed widely.

Devices that can support ​OpenSync are referred to as ​targets, where the ​target layer ​is an
adaptation layer between the ​OpenSync​ managers and the low-level SoC/Linux drivers.

There are many different ​target layer ​flavors, which can be specific to a particular chipset (e.g.
Broadcom, Qualcomm, Quantenna, Celeno​, etc.), or a platform such as RDK, OpenWrt, PRPL,
etc.

This document describes the integration of ​OpenSync with RDK. Details regarding ​OpenSync
can be found at ​https://www.opensync.io/documentation/​ ​[1]​.

For more information on RDK, visit​ ​RDKCentral.com​.

6/29

https://www.opensync.io/documentation/
https://rdkcentral.com/

OpenSync Target Layer
OpenSync​ RDK target layer flavor adapts ​OpenSync​ to the RDK software stack.

Figure 2​: OpenSync RDK layer

The following connections into the RDK platform are used:

● Logger for linking ​OpenSync​ logging system to the RDK Logger
● Linux networking utilities for managing VLANs, GRETAPs, and Bridges
● Device Info for entity information (​deviceinfo.sh​ in RDK-B)
● RDK MeshAgent​ for synchronizing configuration changes
● Wi-Fi HAL for SoC interaction such as steering, statistics, Wi-Fi management

OpenSync​ code can be downloaded from ​OpenSync Source Code​ repository.

7/29

https://code.rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/MeshAgent/
https://github.com/plume-design/opensync

RDK-B Requirements
This section provides a list of RDK-B requirements to support the ​OpenSync​ RDK-B component.

Internet Access
The processor which runs the ​OpenSync will require Internet access for connectivity to the
Plume cloud. This includes outbound TCP connections on port 443, and DNS resolution.

Device Information and Configuration
The ​OpenSync component expects the RDK-B installation to include a script called
deviceinfo.sh​, which is used to query entity information and ​OpenSync configuration controlled
by RDK-B.

Usage:deviceinfo.sh

[-mo|-sn|-fw|-cmac|-cip|-cipv6|-emac|-eip|-eipv6|-lmac|-lip|-lipv6|-ms|-mu]

Option Description

-mo Model number of device, e.g. TG1682G

-sn Serial number of device, e.g. 12345678

-fw Firmware version of device, e.g. TG1682_2.8p15s1_PROD_sey

-cmac CM MAC address, e.g. 01:02:AA:BB:CC:DD

-cip CM IPv4 assigned address

-cipv6 CM IPv6 assigned address

-emac Erouter MAC address

-eip Erouter IPv4 assigned address

-eipv6 Erouter IPv6 assigned address

-lmac LAN MAC address

-lip LAN IPv4 assigned address

-lipv6 LAN IPv6 assigned address

-ms Mesh state: Active or Passive

-mu Mesh URL for Plume cloud, e.g. wildfire.plume.tech

8/29

The CM MAC provided using ​-cmac is used as the unique identifier for every gateway when
connecting to the Plume cloud. When referencing the gateway in the Plume cloud, such as to
claim it to a given account, the CM MAC -- all capitals with no colons -- is what is used.

The Mesh State defines what state the ​OpenSync will operate in. Currently two states are
supported:

● Passive: ​In this state, the ​OpenSync will only collect Wi-Fi statistics and report them to
the Plume cloud. There are no write operations such as changing the channel or channel
width. The ​OpenSync backhaul is also not enabled, so extenders are not able to
connect.

● Active: ​In this state, the ​OpenSync will operate in full control mode. In this mode it will
gather statistics, control the channel and channel width, and will also bring up the
OpenSync backhaul, allowing extenders claimed to the same Plume cloud account to
connect and extend the gateway’s SSIDs.

The Mesh URL defines which cloud environment the gateway should connect to. For initial
proof-of-concept work and general development, the Plume ‘dev’ redirector address should be
used: ​wildfire.plume.tech

OpenSync Backhaul Support
The ​OpenSync backhaul that is used for ​OpenSync enabled extender connectivity requires two
wireless interfaces, as well as a bridge and a subnet that can be used by the extenders to gain
internet access for cloud connectivity.

Wireless Requirements
RDK-B must provide SSID index 12 (vif12), and SSID index 13 (vif13) for use by the ​OpenSync​.
These SSIDs should be disabled by default at boot time, and are enabled upon request by the
OpenSync​ using wifi_hal APIs described later in this document. For example:

● vif12 ​(​ssid index 12​): Used for 2.4G OpenSync enabled extender connections
○ IP address of 169.254.0.1/24 must be assigned
○ DHCP must assign IP’s within the 169.254.0.2 - 169.254.0.254 range
○ MTU must be 1600

● vif13 ​(​ssid index 13​): Used for 5G OpenSync enabled extender connections
○ IP address of 169.254.1.1/24 should be assigned
○ DHCP must assign IP’s within the 169.254.1.2 - 169.254.1.254 range
○ MTU must be 1600

The link-local networks assigned (169.254.0.0/24 and 169.254.1.0/24) are only used for GRE
tunneling, and do not require any external internet access.

9/29

Backhaul Bridge and Subnet
The processor running the ​OpenSync must have an existing bridge, which is to be used for
Internet connectivity from the ​OpenSync enabled extenders. This bridge should have an IP
address assigned to it, and DHCP should be running to hand out DHCP leases within the same
subnet, providing default gateway and DNS options.

When extenders connect to the gateway, the ​OpenSync will automatically create a GRE tunnel,
which will then be added into this bridge. The extenders will use the assigned IP address,
default gateway, and DNS server to reach the Plume cloud. This outbound traffic will be limited
to port 443 and DNS queries only.

Linux Networking
The ​OpenSync managers using the RDK-B adaption layer included in the RDK-B ​OpenSync
component will use existing RDK-B tools to maintain the required GRE tunnels, 802.1q VLAN
interfaces, and to manage their membership in pre-defined bridges.

Starting with ​OpenSync version 1.4, such native utilities are no longer required. A new HAL
layer has been introduced, called ​osync_hal​, whose role is to abstract the use of file system
utilities etc. For function prototypes and details check the ​osync_hal.h ​header file.

Hardware Acceleration
Depending on where and how any hardware acceleration is tied into the system, it may require
changes from the vendor. GRE is a well defined protocol, and is often used in the Enterprise
sector. Most vendors that have some form of hardware acceleration already have support for
GRE.

DHCP Lease Information
The ​OpenSync needs to monitor DHCP lease information, so that it can get information such as
client assigned IP addresses, hostnames, and fingerprint data.

Currently this is designed to monitor the ​dnsmasq.leases ​file on the processor that is running
the ​OpenSync​. If this file is not available on the same processor, then we suggest running a
synchronization program that will detect changes and copy them over to the processor running
the ​OpenSync​.

Starting with OpenSync version 1.4, implementation can be abstracted via ​osync_hal​ functions.

10/29

Networking Configuration
Before compiling the ​OpenSync​, you must provide a networking map that includes information
on which SSIDs should be extended through the ​OpenSync enabled extenders, along with their
corresponding VLAN IDs and bridges. Here is an example:

static ifmap_t ifmap[] = {

// idx plume-ifname dev-ifname bridge gre-br vlan description

//---

 { 1, "bhaul-ap-24", "ath12", "br201", NULL, 0 },// 2G Backhaul

 { 1, "bhaul-ap-50", "ath13", "br201", NULL, 0 },// 5G Backhaul

 { 2, "home-ap-24", "ath0", "br0", NULL, 100 },// 2G User SSID

 { 2, "home-ap-50", "ath1", "br0", NULL, 100 },// 5G User SSID

 { 4, "svc-d-ap-24", "ath2", "br1", NULL, 101 },// 2G Video SSID

 { 4, "svc-d-ap-50", "ath3", "br1", NULL, 101 },// 5G Video SSID

 // Bridge mappings

 { 0, "br-home", "br0", "br0", NULL, 0 },// User Bridge

 { 0, NULL, NULL, NULL, NULL, 0 }

};

This table helps map interfaces, bridges, and VLANs on the gateway, and is used when
extending multiple SSIDs through the ​OpenSync enabled extenders. Traffic stays separated
using VLANs between the gateway and extenders, ensuring the same level of security.

NOTE: Although the “target_map_ifname” API is still present in OpenSync release 1.4, it is now
deprecated. Vendors are encouraged to provide interface information along with other device
information (capabilities, optimizer attributes), which is then used to create a device profile on
the Cloud (see also ​OpenSync Cloud Requirements​).

11/29

RDK-B Mesh Agent
The RDK-B Mesh Agent is responsible for providing the mesh TR-181 data model, starting and
stopping the ​OpenSync​, and using a sync protocol to exchange messages with the ​OpenSync​.
This helps keep data models in sync when lower-layer Wi-Fi parameters are changed by the
Plume cloud, and provides connection events for things like Ethernet or MoCA clients.

An example of the TR-181 mesh data model:

Parameter 1 name:

 Device.DeviceInfo.X_RDKCENTRAL-COM_xOpsDeviceMgmt.Mesh.Enable

 type: bool, value: true

Parameter 2 name:

 Device.DeviceInfo.X_RDKCENTRAL-COM_xOpsDeviceMgmt.Mesh.URL

 type: string, value: ssl:wildfire.plume.tech:443

Parameter 3 name:

 Device.DeviceInfo.X_RDKCENTRAL-COM_xOpsDeviceMgmt.Mesh.State

 type: string, value: Full

Parameter 4 name:

 Device.DeviceInfo.X_RDKCENTRAL-COM_xOpsDeviceMgmt.Mesh.Status

 type: string, value: Full

NOTE​: ​The Mesh.URL and Mesh.State data model values configured are what is provided to
the OpenSync through the “​deviceinfo.sh -mu​” and “​deviceinfo.sh -ms​” commands described
above.

RDK-B Mesh Agent is open sourced and is available under:
https://code.rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/MeshAgent/

RDK Logger
The ​OpenSync​ will log all of its messages through RDK Logger, using the module
“​LOG.RDK.MeshService​”.

Current RDK-B configuration logs this to ​/rdklogs/logs/MeshServiceLog.txt.0

12/29

https://code.rdkcentral.com/r/plugins/gitiles/rdkb/components/opensource/ccsp/MeshAgent/

RDK-B wifi_hal Requirements
The current minimum version of wifi_hal supporting the ​OpenSync is ​v2.16​. These APIs are
used for five primary functions: reading and setting Wi-Fi information, Wi-Fi statistics, steering,
and DFS. Note that this document only provides a list of the APIs themselves. Their
documentation and actual definition are outside the scope of this document, and can be found in
places such as the ​wifi_hal.h​ definition.

Reading Wi-Fi Information
The following information is read through wifi_hal using the APIs listed below:

● HAL API Version
● Number of Radio entries
● Radio Information:

○ Ifname
○ Operating frequency band
○ Country Code
○ Support channels
○ Enable status
○ Auto channel enable status
○ Current channel
○ Current channel width
○ Current Transmit Power
○ Current minimum standard/mode (11b, 11g, 11n, 11a, 11ac, etc)

● SSID Information:
○ Ifname
○ Radio Index
○ Enabled status
○ Configured ESSID
○ Current/active ESSID
○ SSID broadcast status
○ Encryption settings (type, passphrase)
○ ACL configuration (mode, mac list)
○ Bridge info
○ AP Isolation
○ Associated client information and events

The following wifi_hal APIs are used to query various Wi-Fi information and settings:

● INT ​wifi_getHalVersion​(CHAR *output_string);

● INT ​wifi_getRadioNumberOfEntries​(ULONG *output);

● INT ​wifi_getRadioIfName​(INT radioIndex, CHAR *output_string);

● INT ​wifi_getRadioOperatingFrequencyBand​(INT radioIndex, CHAR *output_string);

● INT ​wifi_getSSIDNumberOfEntries​(ULONG *output);

13/29

● INT ​wifi_getApName​(INT apIndex, CHAR *output_string);

● INT ​wifi_getSSIDRadioIndex​(INT ssidIndex, INT *radioIndex);

● INT ​wifi_getApNumDevicesAssociated​(INT apIndex, ULONG *output_ulong);

● INT ​wifi_getAssociatedDeviceDetail​(INT apIndex, INT devIndex, wifi_device_t
*output_struct);

● INT ​wifi_getRadioEnable​(INT radioIndex, BOOL *output_bool);

● INT ​wifi_getRadioChannel​(INT radioIndex,ULONG *output_ulong);

● INT ​wifi_getRadioAutoChannelEnable​(INT radioIndex, BOOL *output_bool);

● INT ​wifi_getRadioTransmitPower​(INT radioIndex, ULONG *output_ulong);

● INT ​wifi_getRadioCountryCode​(INT radioIndex, CHAR *output_string);

● INT ​wifi_getRadioStandard​(INT radioIndex, CHAR *output_string, BOOL *gOnly, BOOL
*nOnly, BOOL *acOnly);

● INT ​wifi_getRadioPossibleChannels​(INT radioIndex, CHAR *output_string);

● INT ​wifi_getApSecurityModeEnabled​(INT apIndex, CHAR *output);

● INT ​wifi_getApSecurityKeyPassphrase​(INT apIndex, CHAR *output_string);

● INT ​wifi_getApSecurityRadiusServer​(INT apIndex, CHAR *IP_output, UINT *Port_output,
CHAR *RadiusSecret_output);

● INT ​wifi_getSSIDEnable​(INT ssidIndex, BOOL *output_bool);

● INT ​wifi_getApBridgeInfo​(INT index, CHAR *bridgeName, CHAR *IP, CHAR *subnet);

● INT ​wifi_getApIsolationEnable​(INT apIndex, BOOL *output);

● INT ​wifi_getApSsidAdvertisementEnable​(INT apIndex, BOOL *output_bool);

● INT ​wifi_getSSIDName​(INT apIndex, CHAR *output_string);

● INT ​wifi_getSSIDNameStatus​(INT apIndex, CHAR *output_string);

● INT ​wifi_getBaseBSSID​(INT ssidIndex, CHAR *output_string);

● INT ​wifi_getApMacAddressControlMode​(INT apIndex, INT *output_filterMode);

● INT ​wifi_getApAclDevices​(INT apIndex, CHAR *macArray, UINT buf_size);

● void ​wifi_newApAssociatedDevice_callback_register​(wifi_newApAssociatedDevice_callback
callback_proc);

● INT ​wifi_getApIndexFromName​(CHAR *inputSsidString, INT *ouput_int);

● INT ​wifi_getRadioOperatingChannelBandwidth​(INT radioIndex, CHAR *output_string);

Setting Wi-Fi Information
The following settings are changed through wifi_hal using the APIs listed below:

● Radio Settings
○ Channel
○ Channel Width

● SSID Settings
○ Enable/Disable
○ ESSID
○ Encryption settings (mode, passphrase)
○ ACL configuration (mode, mac list)
○ CSA Deauth feature

14/29

○ AP ScanFilter feature (if required)

The following wifi_hal APIs are used to set or control various Wi-Fi parameters:

● INT ​wifi_setSSIDEnable​(INT ssidIndex, BOOL enable);

● INT ​wifi_setSSIDName​(INT apIndex, CHAR *ssid_string);

● INT ​wifi_pushSSID​(INT apIndex, CHAR *ssid);

● INT ​wifi_pushRadioChannel2​(INT radioIndex, UINT channel, UINT channel_width_MHz, UINT
csa_beacon_count);

● INT ​wifi_setApSecurityModeEnabled​(INT apIndex, CHAR *encMode);

● INT ​wifi_setApSecurityKeyPassphrase​(INT apIndex, CHAR *passPhrase);

● INT ​wifi_setApIsolationEnable​(INT apIndex, BOOL enable);

● INT ​wifi_setRadioOperatingChannelBandwidth​(INT radioIndex, CHAR *bandwidth);

● INT ​wifi_setApMacAddressControlMode​(INT apIndex, INT filterMode);

● INT ​wifi_delApAclDevices​(INT apIndex);

● INT ​wifi_addApAclDevice​(INT apIndex, CHAR *DeviceMacAddress);

● INT ​wifi_applySSIDSettings(​INT ssidIndex​)​;

● INT ​wifi_setApSsidAdvertisementEnable​(INT apIndex, BOOL enable)

Wi-Fi Statistics
In a multi-hop Plume Cloud managed system, monitoring and optimizing of the topology based
on current wireless conditions is mandatory. To be able to predict conditions and react on them,
Plume Cloud system needs enhancements to the standard subset of the wireless parameters,
which are divided per needed functionality.

Plume will manage all further SoC communication for statistics enhancements, and if their
availability needs to be provided in the form of business rules through TR69, then additional
work will need to be done between the AP Vendor and Plume. There are no direct requirements
for the AP vendor in active mode except for turning off ​ACS and scan​.

The following statistics are queried using the wifi_hal APIs listed below:

● wifi_neighbor_ap2_t
○ ap_SSID
○ ap_BSSID
○ ap_Mode
○ ap_Channel
○ ap_SignalStrength
○ ap_OperatingChannelBandwidth

● wifi_ssidTrafficStats2_t
○ ssid_BytesSend

● wifi_channelStats_t
○ ch_number
○ ch_utilization_total
○ ch_utilization_busy_tx

15/29

○ ch_utilization_busy_rx
○ ch_utilization_busy_self
○ ch_utilization_busy_ext

● wifi_associated_dev2_t
○ cli_MACAddress
○ cli_RSSI

● wifi_associated_dev_stats_t
○ cli_tx_bytes
○ cli_rx_bytes
○ cli_tx_frames
○ cli_rx_frames
○ cli_tx_rate
○ cli_rx_rate
○ cli_tx_retries

● wifi_associated_dev_rate_info_rx_stats_t
○ mcs
○ nss
○ bw
○ bytes
○ mpdus
○ ppdus
○ msdus
○ retries
○ rssi_combined
○ rssi_array

● wifi_associated_dev_rate_info_tx_stats_t
○ mcs
○ nss
○ bw
○ bytes
○ mpdus
○ ppdus
○ msdus
○ attempts

The following wifi_hal APIs are used for fetching Wi-Fi statistics:

● INT ​wifi_setRadioStatsEnable​(INT radioIndex, BOOL enable);

● INT ​wifi_getApAssociatedDeviceStats​(INT apIndex, mac_address_t *clientMacAddress,
wifi_associated_dev_stats_t *associated_dev_stats, ULLONG *handle);

● INT ​wifi_getApAssociatedDeviceRxStatsResult​(INT radioIndex, mac_address_t
*clientMacAddress, wifi_associated_dev_rate_info_rx_stats_t **stats_array, UINT

*output_array_size, ULLONG *handle);

16/29

● INT ​wifi_getApAssociatedDeviceTxStatsResult​(INT radioIndex, mac_address_t
*clientMacAddress, wifi_associated_dev_rate_info_tx_stats_t **stats_array, UINT

*output_array_size, ULLONG *handle);

● INT ​wifi_getApAssociatedDeviceDiagnosticResult2​(INT apIndex, wifi_associated_dev2_t
**associated_dev_array, UINT *output_array_size);

● INT ​wifi_getApAssociatedDeviceDiagnosticResult3​(INT apIndex, wifi_associated_dev3_t
**associated_dev_array, UINT *output_array_size);

● INT ​wifi_getRadioChannelStats​(INT radioIndex, wifi_channelStats_t
*input_output_channelStats_array, INT array_size);

● INT ​wifi_startNeighborScan​(INT apIndex, wifi_neighborScanMode_t scan_mode, INT
dwell_time, UINT chan_num, UINT *chan_list);

● INT ​wifi_getNeighboringWiFiStatus​(INT radioIndex, wifi_neighbor_ap2_t
**neighbor_ap_array, UINT *output_array_size);

● INT ​wifi_getSSIDTrafficStats2​(INT ssidIndex, wifi_ssidTrafficStats2_t *output_struct);

17/29

OpenSync Cloud Requirements
When connecting your gateway to the Plume cloud using the ​OpenSync​, you will want to work
with Plume on the following topics:

Certificate Authentication and Verification
You will need a certificate provided by Plume for your gateway. This certificate, signed by
Plume, is used to authenticate the TLS connections from the ​OpenSync to the Plume cloud. We
suggest having a certificate per gateway model number, and require that the certificate’s private
key be stored encrypted within the firmware image.

Model Information
The Plume cloud makes a lot of decisions based on the model number reported by the gateway.
These decisions include supported features, Wi-Fi capabilities such as number of antennas and
spatial streams, supported channels, transmit power, etc.

OpenSync Wi-Fi Statistics Certification
Plume is working on a statistics certification program, where the Wi-Fi statistics being reported
by the gateway and Wi-Fi chip vendor are validated based on a predefined set of tests. These
tests also allow a form of calibration, so that statistics reported by various vendors -- including
those of the ​OpenSync enabled extenders -- can be analysed together by the Plume data
pipeline and adaptive Wi-Fi system.

18/29

Plume Steering
The Plume cloud -- through the ​OpenSync -- provides band and client/AP steering. It will make
decisions based on various data points, such as whether clients should be moved across bands
on the same AP, or to another AP (gateway or extender). The steering algorithm is outside the
scope of this document.

Requirements
The API’s required for this feature are listed above in the ​RDK-B wifi_hal Requirements section.
The foundation of this support are events provided by the lower-level driver, delivered to the
callback registered using the ​wifi_steering_eventRegister() API call. Without these events, the
steering feature will not function.

Per-Client Configuration
One of the unique features of this steering is that it contains per-client configuration. This
includes the following values:

● Client MAC Address
● Probe High Watermark, Probe Low Watermark

○ Only probe requests with RSSI in this range should be answered
● Auth High Watermark, Auth Low Watermark

○ Only auth requests with RSSI in this range should be answered
● High RSSI Crossing Value, Low RSSI Crossing Value

○ Crossing events should be generated when the client’s RSSI goes above or
below these thresholds

● Auth Reject Reason
○ If value is > 0, then auth requests should be rejected with the given reason code

when they are outside the RSSI range configured above, instead of being silently
dropped.

Steering Events from Wi-Fi Driver
The following steering events are required from the Wi-Fi driver:

WIFI_STEERING_EVENT_PROBE_REQ
Receiving probe requests from an added steering client, along with details of that probe request,
is a vital part of the steering system. For instance, signal strength of the received probe request
frame can be used to estimate the connection quality between a non-associated client.

19/29

The steering API provides a mechanism to configure the RSSI thresholds, within which the
probe requests should be answered. If the RSSI is outside of that range, then the probe request
should be blocked, and it must be marked as such in the event.

This event should be delivered whenever a probe request is received from a client added using
the proper wifi_hal_steering API call. The event must implement the following parameters:

● Client’s MAC Address
● RSSI of the probe request frame
● Whether the probe request is a broadcast probe (i.e. NULL probe request, no ESSID

provided)
● Whether the probe request was blocked by the driver due to steering configuration.

WIFI_STEERING_EVENT_CLIENT_CONNECT
This event should be delivered whenever an added steering client connects, and is used by the
steering algorithm to determine whether steering succeeded or failed.

WIFI_STEERING_EVENT_CLIENT_DISCONNECT
This event should be delivered whenever an added steering client disconnects, and is used to
reset the steering algorithm.

WIFI_STEERING_EVENT_CHAN_UTILIZATION
This event should be delivered at the pre-configured interval, and should provide the current
channel utilization. This can be used by the algorithm when performing pre-association band
steering.

WIFI_STEERING_EVENT_RSSI_XING
The steering algorithm may make decisions based on a connected client RSSI crossing some
threshold. Currently there are two thresholds which are configured ​per client ​when they are
added using the steering API (a high threshold and a low threshold).

When the client crosses above or below either of these values, this event should be generated
with the following parameters:

● Client’s MAC Address
● Client’s current RSSI
● High XING status (unchanged, higher, lower)
● Low XING status (unchanged, higher, lower)

20/29

WIFI_STEERING_EVENT_RSSI
Depending on how the RSSI crossing event system works within the Wi-Fi driver, it may be
possible to have false triggers. The steering API provides a mechanism to perform an instant
RSSI measurement of a connected client. While not required, it is strongly recommended.

One example of how this works is to transmit a pre-configured number of NULL frames to the
client, and to average the RSSI of the NULL frame ACKs from that client. The averaged value is
then provided by this event.

If this is not implemented, then the supplied client Measure API should return ​-ENOSYS​.

WIFI_STEERING_EVENT_AUTH_FAIL
The algorithm makes decisions on if/when AUTH frames are blocked or rejected based on the
steering configuration provided when a client is added. This configuration includes an RSSI
range, and when the RSSI of the AUTH frame is outside of that range, it should either be silently
dropped, or rejected with a given reason code as defined by the steering configuration. This
action, whichever taken, must be included in the event.

This event should be delivered whenever a Wi-Fi AUTH request failure occurs, and should
provide the following parameters:

● Client’s MAC Address
● RSSI of the AUTH frame
● Blocked status: Whether the AUTH request was blocked due to steering configuration
● Rejected status: Whether the AUTH request was rejected or silently dropped
● Reason: Reason code, if the AUTH request was rejected.

Steering API
The following wifi_hal APIs are used for steering:

● BOOL ​wifi_steering_supported​(void);

● INT ​wifi_steering_setGroup​(UINT steeringgroupIndex, wifi_steering_apConfig_t *cfg_2,
wifi_steering_apConfig_t *cfg_5);

● INT ​wifi_steering_eventRegister​(wifi_steering_eventCB_t event_cb);

● INT ​wifi_steering_eventUnregister​(void);

● INT ​wifi_steering_clientSet​(UINT steeringgroupIndex, INT apIndex, mac_address_t
client_mac, wifi_steering_clientConfig_t *config);

● INT ​wifi_steering_clientRemove​(UINT steeringgroupIndex, INT apIndex, mac_address_t
client_mac);

● INT ​wifi_steering_clientMeasure​(UINT steeringgroupIndex, INT apIndex, mac_address_t
client_mac);

21/29

● INT ​wifi_steering_clientDisconnect​(UINT steeringgroupIndex, INT apIndex, mac_address_t
client_mac, wifi_disconnectType_t type, UINT reason);

● INT ​wifi_setRMBeaconRequest​(UINT apIndex, CHAR *peer, wifi_BeaconRequest_t *in_request,
UCHAR *out_DialogToken);

● INT ​wifi_setBTMRequest​(UINT apIndex, CHAR *peerMac, wifi_BTMRequest_t *request);

● INT ​wifi_getBSSTransitionActivation​(UINT apIndex, BOOL *activate);

● INT ​wifi_setBSSTransitionActivation​(UINT apIndex, BOOL activate);

● INT ​wifi_getNeighborReportActivation​(UINT apIndex, BOOL *activate);

● INT ​wifi_setNeighborReportActivation​(UINT apIndex, BOOL activate);

● INT ​wifi_RMBeaconRequestCallbackRegister​(UINT apIndex, wifi_RMBeaconReport_callback
beaconReportCallback);

● INT ​wifi_BTMQueryRequest_callback_register​(UINT apIndex, wifi_BTMQueryRequest_callback
btmQueryCallback, wifi_BTMResponse_callback btmResponseCallback);

● INT ​wifi_RMBeaconRequestCallbackUnregister​(UINT apIndex, wifi_RMBeaconReport_callback
beaconReportCallback);

22/29

Multi-AP DFS
The Plume cloud -- through ​OpenSync -- provides and orchestrates DFS across all devices at a
location. In order to minimize DFS CAC timer effect on user experience, the Cloud needs to be
aware of the device’s internal DFS states:

● CAC​ (Channel Availability Check): The period of time in which AP will monitor for
presence of radar signals.

● NOP​ (Non-Occupancy Period): The period of time in which a radar detected channel will
become unusable channel (or unavailable channel).

● ISM​: It is a process which will continuously monitor the operating channel for detecting
the presence of radar signals.

The Cloud looks at the DFS states and derives topologies that ensure uninterruptible service to
the user. At the beginning, the Cloud uses a “temporary topology” while CAC on the selected
channels is being performed. After CACs are complete, the Cloud configures the “final
topology”, which is a result of the Optimization process (environment changes and RADAR
events re-trigger optimization).

The DFS algorithms are outside the scope of this document. Plume DFS requirements specify
the parameters that are needed for maintaining CAC and NOP stats in the Non-Occupancy List
(NOL). NOL is a list of channels that are unavailable at any given point in time on any specific
device.

23/29

DFS States
DFS states provide the internal status of a DFS channel:

● ALLOWED​ - channel is available to use
● CAC_STARTED​ - CAC has been started and is in progress
● CAC_COMPLETED​ - CAC has completed successfully, AP VAPs now UP
● NOP_STARTED​ - RADAR event received and NOP started
● NOP_FINISHED (CAC_READY)​ - NOP finished and the channel can be reused

NOTE: Nice to have also CAC elapsed time or NOP left time.

Requirement:​ An API for getting the DFS channel list with states:
channels CHAR[][]
 │ │
 │ │
 │ └────── state:"ALLOWED"
 │ :"CAC_STARTED"
 │ :"CAC_COMPLETED"
 │ :"NOP_STARTED"
 │ :"NOP_FINISHED"
 │
 └── chan_idx

DFS Events
The Cloud Optimization must be aware of the channel changes events to prevent
misconfiguration and ensure DFS standard compliance:

● RADAR​ - A radar event notification, containing the channel number
● CHANNELS_CHANGED​ - An event notifying a channel change as result of CAC/NOP

changes

Requirement:​ An API for subscribing to RADAR and CHANNEL CHANGE notification/
 events need to be provided. The event should contain:

 - channel number
 - state

NOTE: OpenSync re-reads the whole radio state upon the channel changed event

 - ​target_radio_state_get()

24/29

Channel Changes
In order to ensure minimum impact on user experience, the following changes are required
(some of them might be already a part of SoC vendor’s BSP):

● Driver should support that NOP_FINISHED state events in case of channel changes
from DFS -> non-DFS are received (even after PRE-CAC)

● In case of a RADAR event, the CSA to a non-DFS channel needs to be used (if a
non-DFS is not available, just switch to a random one)

Example of events:

wifi0 Custom driver event:RADAR: CAC started for channel 64 (5320 MHz)

wifi0 Custom driver event:RADAR: CAC completed for channel 64 (5320 MHz)

wifi0 Custom driver event:RADAR: radar found on channel 108 (5540 MHz)

wifi0 Custom driver event:RADAR: non-occupancy period expired for channel 108 (5540 MHz)

Wifi HAL DFS API (available since 2.15):
The following APIs are wifi_hal for DFS:

● INT ​wifi_getRadioDfsSupport​(INT radioIndex, BOOL *output_bool);

● INT ​wifi_getRadioDfsEnable​(INT radioIndex, BOOL *output_bool);

● INT ​wifi_setRadioDfsEnable​(INT radioIndex, BOOL enabled);

● INT ​wifi_chan_eventRegister​(wifi_chan_eventCB_t event_cb);

● typedef enum {

 WIFI_EVENT_CHANNELS_CHANGED,

 WIFI_EVENT_DFS_RADAR_DETECTED

} wifi_chan_eventType_t;

● typedef void (​*wifi_chan_eventCB_t​)(UINT radioIndex, ​wifi_chan_eventType_t event, UCHAR

channel);

● typedef enum {

 CHAN_STATE_AVAILABLE = 1,

 CHAN_STATE_DFS_NOP_FINISHED,

 CHAN_STATE_DFS_NOP_START,

 CHAN_STATE_DFS_CAC_START,

 CHAN_STATE_DFS_CAC_COMPLETED

} wifi_channelState_t;

● typedef struct _wifi_channelMap_t {

 INT ch_number;

 wifi_channelState_t ch_state;

} wifi_channelMap_t;

● INT ​wifi_getRadioChannels​(INT radioIndex, wifi_channelMap_t *output_map, INT
output_map_size)

25/29

Multi-PSK
Plume’s Guest Access with Plume ​HomePass™ takes a novel groundbreaking approach to
managing access to the home Wi-Fi SSID. Instead of creating a separate "guest SSID", a single
SSID is used at each location, a number of access ​zones are created to manage access
privileges of connecting devices.

Each access zone is accessible using a unique set of keys (Wi-Fi passwords), any of which can
be used to access the SSID. There is no technical upper limit on the number of keys that can be
assigned to each zone - but to keep this manageable, the PRD sets this limit to 10. For now, we
treat all passwords in an access zone the same, but in the future we may allow passwords to
have different ACLs.

The key used to access the SSID determines the access zone for the connecting device.
Specifically, a device is automatically a part of the access zone for which it is connected, and if
a device has been given multiple passwords then its zone is determined by which password it
most recently used to connect.

Requirement:​ An API for configuring MultiPSK per AP interface (VIF) must
 be provided. The API must contain:

- interface name

- key_id

- psk

For ​OpenSync to know which rules need to be applied for particular client, the event containing
the password upon association needs to be provided:

Requirement:​ An API for subscribing to ‘client reconnect’ events is needed
 to get the PSK used during association. The events should contain:

- interface name

- client’s MAC address

- key_id

- associated state

26/29

wifi_hal proposal for Multi-PSK
The following APIs are wifi_hal proposal for Multi-PSK:

typedef struct _wifi_associated_dev4

{

...

 CHAR cli_keyId[64]; // The key ID of associated device.

} wifi_associated_dev​4​_t;

typedef INT (* ​wifi_newApAssociatedDevice_callback​)(
 INT apIndex, wifi_associated_dev4_t *associated_dev);

void ​wifi_newApAssociatedDevice_callback_register​(
 wifi_newApAssociatedDevice_callback callback_proc);

INT ​wifi_getApAssociatedDeviceDiagnosticResult4​(
 INT apIndex,

 wifi_associated_dev4_t **associated_dev_array,

 UINT *output_array_size);

typedef INT (* ​wifi_apDisassociatedDevice_callback​)(
 INT apIndex, char *MAC, INT event_type);

void ​wifi_apDisassociatedDevice_callback_register​(
 wifi_apDisassociatedDevice_callback callback_proc);

New APIs:

/* wifi_addKeyMultiPsk() function */
/**
* @brief Add key to AP.
*
* @param apIndex access point index
* @param keyId key index (max length: 64)
* @param psk password (max length: 64)
* @param mac MAC of the client (length: 32)
*
* @return The status of the operation
* @retval RETURN_OK if successful
* @retval RETURN_ERR if any error is detected
*
* @sideeffect None
*/
INT ​wifi_addKeyMultiPsk​(INT apIndex, const CHAR *keyId, const CHAR *psk, const CHAR *mac);

/* wifi_removeKeyMultiPsk() function */
/**
* @brief Remove key from AP.
*
* @description Remove key from AP. Clients that are connected with the key
* being removed should be kicked off from the network.
*
* @param apIndex access point index

27/29

* @param keyId key index (max length: 64)
*
* @return The status of the operation
* @retval RETURN_OK if successful
* @retval RETURN_ERR if any error is detected
*
* @sideeffect None
*/
INT ​wifi_removeKeyMultiPsk​(INT apIndex, const CHAR *keyId);

/* wifi_isApMultiPskSupported() function */
/**
* @brief Checks if access point supports multiPsk.
*
* @param apIndex access point index
*
* @return The status of AP
* @retval TRUE AP supports multiPsk
* @retval FALSE AP does not support multiPsk
*
* @sideeffect None
*/
BOOL ​wifi_isApMultiPskSupported​(INT apIndex);

/* wifi_newApAssociatedDeviceMultiPsk_callback_register() function */
/**
* @brief Callback registration function.
*
* @param[in] callback_proc wifi_newApAssociatedDeviceMultiPsk_callback callback function
*
* @return The status of the operation
* @retval RETURN_OK if successful
* @retval RETURN_ERR if any error is detected
*
* @execution Synchronous
* @sideeffect None
*
* @note This function must not suspend and must not invoke any blocking system
* calls. It should probably just send a message to a driver event handler task.
*/
void ​wifi_newApAssociatedDeviceMultiPsk_callback_register​(
 wifi_newApAssociatedDeviceMultiPsk_callback callback_proc);

/* wifi_overrideAllKeysMultiPsk() function */
/**
* @description Function sets the whole current keys config. It should check
* if there were any changes against previous keys and apply them. If any key
* is removed or key ID is changed, devices that are associated with this key
* should be kicked off from the network.
*
* @note Function must free keys memory.
*
* @param apIndex access point index
* @param keys all keys that devices can associate with AP
* @param ​array_size​ number of keys
*
* @return The status of the operation
* @retval RETURN_OK if successful
* @retval RETURN_ERR if any error is detected
*
* @sideeffect None
*/
INT ​wifi_overrideAllKeysMultiPsk​(INT apIndex, wifi_key_multi_psk_t **keys, INT ​array_size​);

28/29

Operational Requirements
OpenSync is currently running solely on the Linux operating system, where the recommended
version to get all the features is ​Kernel 3.3 or higher​.

Purpose Library Minimum Version

toolchain

[libc.so.0]

[libdl.so.0]

[libgcc_s.so.1]

[libpthread.so.0]

[librt.so.0]

[libm.so.0]

system

[libssl.so.1.0.0] openssl-1.0.2k

[libcares.so.2] c-ares-1.10.0

[libz.so.1.2.8] zlib-1.2.8

[libncurses.so.5.9] ncurses-5.9

applications

[libjansson.so.4] jansson-2.7

[libmosquitto.so.1] mosquitto-1.4.8

[libprotobuf-c.so.1] protobuf-c-1.1.1

[libev.so.4] libev-4.24

openvswitch
[libovsdb.so.1.0.0]

Openvswitch-2.8.7
[libopenvswitch.so.1.0.0]

Versions of required OVS libs and tools depend on the version of the Linux kernel running on
the GW. Please check reference table in OVS documentation:

● http://docs.openvswitch.org/en/latest/faq/releases/

29/29

http://docs.openvswitch.org/en/latest/faq/releases/

