Aims

The main goals are as follows: (a) to build a chronological and cultural framework for an area of the world where no prehistoric sequence has yet been defined, (b) to determine the antiquity of the initial colonization of the Ituri region, (c) to establish what ecosystems were colonized by people, (d) to see what different socioeconomic and technological strategies allowed people to inhabit the Ituri and in what way did they change and interact up to date, and (e) to identify the different taphonomic and formation processes at work.

Methods

Little work has been done in the northeast quarter of Zaire. This means that no information is available for this key area of Equatorial Africa. In the Ituri, archaeology is in its infancy and no chronological or cultural sequence is available for a vast region (6,300 km²). There are far more sites than archaeologists to dig them, which is why I decided to carry out several test pit excavations instead of concentrating exclusively on one site. Besides, it remains to be seen if this latter approach would take us that much farther in the understanding of the past, allowing for the time and resources invested and the nature of the archaeological record. Ten sites were dug in the north, east and center of a transitional area with the Rift to the east and the Congo Basin to the west. First, the local population, Pygmy and non-Pygmy, was interviewed to locate rockshelters in forest granite outcrops. Open air sites were left aside because of their lesser visibility and lower chances of containing stratified deposits. I estimated the archaeological potential of the sites, and chose ten places for later intensive survey and digging. Excavation was done through test pits of several sizes, dig in artificial layers, plotting all artifacts and samples and sieving sediments to prevent accidental artifact loss.

I employed several techniques for palaeoenvironmental reconstruction such as in situ recovery of macrobotanical remains, sieving, flotation, column sampling for pollen and phytolith analyses, and current soil “off site” sampling to test the degree of correlation between microbotanical markers and the contemporary landscapes that created them, whether today or in the recent past.
Figure 1: Map of the Okapi Wildlife Reserve in NE Zaire. An asterisk within a circle means an archaeological complex where four sites were dug at one location. Graphic: B. Curran.
Local geology and geomorphology help to explain the eroding history of the granite outcrops and the rockshelters where archaeological sites are found. Clay samples from the wall of some trenches were taken to see what types of argillaceous materials there are, what changes have occurred and the climatic circumstances involved.

The taming of the rainforest was accomplished by means of socioeconomic interaction and technological achievement. Therefore, all items liable to shed light on the strategies people used to modify and manage the rain forest are of great interest. This includes technological markers, faunal and botanical remains. Different site formation features were identified through the observation of prehistoric deposits and contemporary Efe and Mbuti open air and rockshelter habitation sites. Sediment structure, origin, water content, pH, color, weight, bioturbation, and trampling were also studied. Then a further analysis of the various agents that created a given site was done by digging "off site" pits and comparing them with the archaeological trenches excavated nearby, in order to establish the geological, cultural, edaphic and biological arrangement of the sites.

Results

The archaeological sites I dug are: (a) Malembi: Wataka Gitatu E, Baiku W Isak Baite SW, and Matangai Turu NW, (b) Nduye: Koma Tufe SW, Makubasi SE, Makubasi SW, Makubasi NW Ext. and Makubasi NW Int, and (c) Epulu: Lengbe. Archaeological and "off site" soil sections are very similar, with organic matter leaching from the surface down and abundant aluminum and ferric oxide ascending from the base up. Their depth ranges from 0.25 m (MSW) to 2.15 m (MTNW) averaging a meter or so. There are two types of bases, either granite bedrock or the edaphic horizon "C" underlying the very first cultural remains. Artifacts are usually embedded in it, correlating a time when these rock shelters started to form. All locations are subject to at least four types of formation agents: (a) geological, in a vertical sense, through wall flaking and subsequent turning into clay when fallen into the soil; in a horizontal way, by low energy surface runoff and deposition of fine fractions; (b) cultural; (c) edaphic, by surface organic matter decomposition and dynamic rise of oxides. This area of the Ituri has well-drained soils although their leaching is lesser in the quieter and more protected microenvironment of the shelters; and (d) biological, through the action of many animals and plants that alter the patterning of cultural items.

The geomorphological history of the sediments at all sites is similar. It is important to remark that, contrary to conventional wisdom, these deposits are not especially acidic or wet. Most pH values range from five to six (thus slightly acid), and the water in the sediment never exceeds 10-15%, and is often less. Organic remains are abundant near the surface, their numbers decreasing down to 50 cm. Further deep they become scarce. This anomaly is not necessarily caused by and excess of sediment water content or high acidity of the matrix. Thus, it is still to be shown if other factors such as age, compaction or Al/Fe content influence the observed pattern throughout the Ituri forest, in that the observed absence is always seen at the basal layers where these are major factors.

Despite internal variations, all sites have a common historical sequence. Their oldest layers contain only stone tools of probable Late Pleistocene chronology that represent a time when the shelters we see today started to form. Such assemblages do not have to represent the initial colonization of the Ituri, but only the first occupation recorded immediately afterwards the place became inhabitable. So, most granite rockshelters in the Ituri have developed from the Late Pleistocene, but others in the Holocene. Older remains were found in deposits in the open or in collapsed rockshelters; their geomorphological features and visibility remain to be resolved. Mid-layers might be of Early Holocene times, and upper layers belong to the Late Holocene. The surface levels correlate the current occupation of these caves, which is intense in Malembi, more sporadic in Nduye and rare in Epulu.

The organic remains are variable. Bones are scarce and come out in small pieces, sometimes not identifiable to the species level. Snail shells are occasionally abundant. The microfaunal assemblage is slim. One site (MTNW) had an upper human skeleton and another one some detached teeth. Based on this scant evidence I cannot offer yet conclusive evidence on the prehistoric value of meat in the Ituri. It is important
to realize that several factors could account for this patterning, this is, we might not get more bones for cultural, economic, taphonomic, and geological reasons. A conservation problem must be ruled out in the light of the matrix data explained above. Gathering forest snails and Canarium fruits is well attested, especially in the more recent times. Elaea seeds were also brought into these shelters, ignoring if their people were farming or more probably gathering these resources from the surrounding hinterland or neighbours. Macrobotanical remains are carbonized, such as wood and seeds. Recent desiccated specimens sometimes find their way down into older layers by trampling and persist for an unknown time before disappearing.

The inorganic content is composed of stone artifacts, pottery and iron. Stone tool technology came first (Late Pleistocene?) and persisted until recent times. Much later (mid-Holocene?) pottery became a constant of forest material culture. Lastly, (A.D. dates) iron appears. In fact, there was a time when three technologies evolved together, then iron replaced stone work and persisted with ceramics until today. Stone tools were made on quartz, with some exceptions. Technology evolved from a heavy duty core and scraper industry to lighter forms, e.g. blades and microliths (microblades and geometrics). The Ituri has a distinct pottery tradition, unknown as such in Central Africa. Eventual specimens were known from Matupi Cave; however the inventory of forms and designs now unearthed is new and has been named “Makubasi”. Ceramic technology is being studied from an archaeometric and ethnnoarchaeological point of view exploring the sequences of manufacture in both prehistoric and contemporary contexts. Late Holocene levels contain simple stone flaking and atypical shapes. Waste is the most frequent finding in recent times, with ceramics and a latecomer into the Ituri, iron. Such a sequence suggests that the Ituri was colonized before so-called Bantu traits appeared, though it’s too early to tell what kind of subsistence was in use, whether hunting-gathering, fishing, farming or mixed. Special finds are clay beads, iron tools, such as a piece of knife blade, and an “Iron Age” pit burial where an upper skeleton was recovered with an iron needle as a burial good.

Acknowledgements

The fieldwork presented here would have never been accomplished without the help of Dr. R.C. Bailey. He introduced me to Central African prehistory and the people and places of the Ituri forest. Other colleagues and friends made my stay in Zaire more pleasant and easy. I couldn’t forget all the logistic help given by the missionaries in Mambasa and Nduye, by B. Curran, K. and R. Ruff, T. and J. Hart and by local researchers in Epulu. Zairian authorities did their best to make this project go at all times, whether in Kinshasa, Mambasa, Epulu or elsewhere. Local people made our work possible and our lives different. Lastly, R. Martí, I. González, J. Guerrero and O. Carreras assisted me on the field with absolute support.