Introduction

Fossil and genetic evidence is consistent with an African origin for Homo sapiens during the Middle Pleistocene (Stringer and Andrews 1988; Howell 1999; McBrearty and Brooks 2000). One notable feature of the African Middle Pleistocene archaeological record is the end of the long-lived Acheulian Industrial Complex and its replacement by diverse industries of the Middle Stone Age (MSA) (Isaac 1982; Clark 1994; McBrearty 2001). Evidence for a suite of novel behaviors that characterize modern and recent foragers is associated with Middle Pleistocene MSA sites, and the earliest Homo sapiens fossils are found with MSA artifacts (see Clark 1988; Deacon and Deacon 1999; McBrearty and Brooks 2000 for recent summaries).

These data suggest significant behavioral changes during the Middle Pleistocene by hominids employing MSA technology. Previously, only broad contrasts between Acheulian and MSA sites were possible due to a lack of African sites with a well-preserved, dated, continuous sedimentary and archaeological record spanning the Acheulian-MSA transition (Clark 1982; Wendorf et al. 1994). By examining this transition in detail, we may begin to understand the causes underlying hominid behavioral adaptations that drove this change, as well as begin to test recent hypotheses correlating the advent of the MSA with hominin speciation and dispersal (Foley and Lahr 1997; Lahr and Foley 1998, 2001). Recent research in the Kapthurin Formation of Kenya, which preserves a well-dated sequence of Acheulian and MSA sites, is therefore relevant to this discussion.

The Kapthurin Formation

The Kapthurin Formation is exposed west of Lake Baringo, Kenya, and forms the Middle Pleistocene portion of the Tugen Hills sequence (see Hill 2002 and references therein). Hominid remains have been recovered from sediments bracketed by the Punicale Tuff member (K2) and the ‘Grey Tuff,’ now dated by the 40Ar/39Ar method to between 509 9 ka and 543 ± 4 ka (Deino and McBrearty 2002; Wood 1999). Archaeological sites are attributable to the Acheulian, MSA and possibly Sangoan and Fauresmith. These occur within the Middle Silts and Gravels member (K3) and the overlying Bedded Tuff member (K4), the latter a complex of tuffaceous deposits and intercalated sediment (Tallon 1976, 1978, Cornelissen et al. 1990; McBrearty et al. 1996; McBrearty 1999; Tryon and McBrearty 2002a). Tephrostratigraphic correlation and a sequence of 40Ar/39Ar dates on tuff and lava document the temporal succession and age of these sites. This work has demonstrated the complexity of the Acheulian-MSA transition, with interstratified Acheulian and MSA sites, and shown that this transition within the Baringo basin had begun by ~285 ka (Tryon and McBrearty 2002a; Deino and McBrearty 2002).

Prior archaeological research in the Kapthurin Formation focused on exposures north of the Ndau River, with only cursory examination of more southerly areas (McBrearty et al. 1996:566-570). Survey in 2001 focused on ~40 km2 of additional geologically mapped Kapthurin Formation sediments (Martyn 1969; Tallon 1976) south of the Ndau River, an area informally designated the “southern” Kapthurin Formation.

Survey Objectives and Results

Field investigations conducted in the southern Kapthurin Formation were directed at the recovery of additional archaeological sites and fossil collecting localities, as well as detailed tephrostratigraphic observations of the Bedded Tuff member. Walkover survey of known exposures lasted from 8 May-1 June 2001, followed by test trenching at GNj7-75 and Koimilot (GNj7-74). Koimilot was later chosen for full-scale block excavation, with some 52-m2 excavated in 2001. Twenty sites, primarily surface scatters, were discovered during the survey, with four sites re-investigated (Table 1 and Figure 1). The
Figure 1: Archaeological and fossil sites from the southern Kapthurin Formation. Included are archaeological and palaeontological sites from the 2001 survey (see Table 1). Localities 26-28 were initially reported by McBrearty et al. 1996; plant fossil localities were first reported by Tallon (1976).
Table 1: Southern Kaphurin Formation sites found during 2001 survey

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Site Name</th>
<th>SASES</th>
<th>Content</th>
<th>Stratigraphy</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Loc. 39</td>
<td>GnJh-13</td>
<td>artifacts and fauna</td>
<td>K4</td>
<td>Acheulian-MSA</td>
</tr>
<tr>
<td>2</td>
<td>Loc. 40</td>
<td>GnJh-12</td>
<td>artifacts and fauna</td>
<td>K3</td>
<td>Acheulian</td>
</tr>
<tr>
<td>3</td>
<td>Loc. 100</td>
<td>GnJh-64</td>
<td>artifacts</td>
<td>K4</td>
<td>?Sangoan-MSA</td>
</tr>
<tr>
<td>4</td>
<td>Loc. 101</td>
<td>GnJh-65</td>
<td>artifacts and fauna</td>
<td>K3</td>
<td>Acheulian</td>
</tr>
<tr>
<td>5</td>
<td>Loc. 102</td>
<td>GnJh-66</td>
<td>artifacts and fauna</td>
<td>K3</td>
<td>Acheulian</td>
</tr>
<tr>
<td>6</td>
<td>Loc. 103</td>
<td>GnJh-67</td>
<td>artifacts and fauna</td>
<td>K3</td>
<td>Acheulian</td>
</tr>
<tr>
<td>7</td>
<td>Loc. 104</td>
<td>GnJh-68</td>
<td>artifacts</td>
<td>K3</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>8</td>
<td>Loc. 105</td>
<td>GnJh-69</td>
<td>artifacts</td>
<td>K3 and K4</td>
<td>?Acheulian</td>
</tr>
<tr>
<td>9</td>
<td>Loc. 106</td>
<td>GnJh-70</td>
<td>artifacts</td>
<td>K3</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>10</td>
<td>Loc. 107</td>
<td>GnJh-71</td>
<td>artifacts</td>
<td>K3</td>
<td>Acheulian-MSA</td>
</tr>
<tr>
<td>11</td>
<td>Loc. 108</td>
<td>GnJh-6</td>
<td>artifacts</td>
<td>K4</td>
<td>Acheulian</td>
</tr>
<tr>
<td>12</td>
<td>Loc. 109</td>
<td>GnJh-72</td>
<td>fauna</td>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>Loc. 110</td>
<td>GnJh-73</td>
<td>artifacts and fauna</td>
<td>K3</td>
<td>?MSA</td>
</tr>
<tr>
<td>14</td>
<td>Loc. 111</td>
<td>GnJh-7</td>
<td>artifacts and fauna</td>
<td>K3</td>
<td>Acheulian</td>
</tr>
<tr>
<td>15</td>
<td>Loc. 112</td>
<td>GnJh-8</td>
<td>artifacts and fauna</td>
<td>K4</td>
<td>Acheulian</td>
</tr>
<tr>
<td>16</td>
<td>Loc. 113</td>
<td>GnJh-9</td>
<td>fauna</td>
<td>K3</td>
<td>N/A</td>
</tr>
<tr>
<td>17</td>
<td>Loc. 114</td>
<td>GnJh-10</td>
<td>artifacts</td>
<td>K3</td>
<td>Acheulian</td>
</tr>
<tr>
<td>18</td>
<td>Loc. 115</td>
<td>GnJh-76</td>
<td>artifacts</td>
<td>K4</td>
<td>Acheulian</td>
</tr>
<tr>
<td>19</td>
<td>Loc. 116</td>
<td>GnJh-11</td>
<td>artifacts</td>
<td>K4</td>
<td>Acheulian</td>
</tr>
<tr>
<td>20</td>
<td>Loc. 117</td>
<td>GnJh-75</td>
<td>artifacts and fauna</td>
<td>K4?</td>
<td>MSA</td>
</tr>
<tr>
<td>21</td>
<td>Koimilot</td>
<td>GnJh-74</td>
<td>artifacts and fauna</td>
<td>K4</td>
<td>MSA</td>
</tr>
<tr>
<td>22</td>
<td>Loc. 119</td>
<td>GnJh-77</td>
<td>artifacts</td>
<td>K4</td>
<td>MSA</td>
</tr>
<tr>
<td>23</td>
<td>Nyogonyek</td>
<td>GoJh-1</td>
<td>artifacts and fauna</td>
<td>K4/Holocene sed.</td>
<td>MSA-LSA</td>
</tr>
<tr>
<td>24</td>
<td>Logumkum</td>
<td>GoJi-7</td>
<td>artifacts and fauna</td>
<td>Ilkosowuani Fm.</td>
<td>MSA-Recent</td>
</tr>
</tbody>
</table>
approximate spatial extent of each site was determined in the field, as was sedimentary and stratigraphic context. A Magellan 315 GPS unit provided precise locational data, and artifacts useful for attribution of a site to period or industry were collected. Artifacts and fossils are presently housed at the Archaeology Division of the National Museums of Kenya (NMK) in Nairobi.

Southern Kapthurin Formation Paleontology and Archaeology

The 2001 survey was successful in identifying a suite of previously unknown paleontological and archaeological localities from southern exposures of the Kapthurin Formation. Sites occurred within alluvial and lacustrine sediments, in multiple temporal/stratigraphic contexts. Although in situ fossils were observed and recovered from multiple localities, fossil fauna are generally neither abundant nor well preserved in the southern Kapthurin Formation. Plant fossils are occasionally found, at times in growth position, within layers of air-fall tuff (Tallon 1976, personal observation). Two tephra layers rich in both grass and leaf impressions bracket the excavations at Koimilot.

Archaeological variability in the southern Kapthurin Formation is comparable to that found north of the Ndau River (e.g. Cornelissen 1992; McBrearty et al. 1996; McBrearty 1999). Sites attributable to the Acheulian Industrial Complex are well represented by handaxes and cleavers, produced from a range of fine-to-coarse grained lavas. These implements were produced from side and end-struck flakes, from cobbles (GoJh-12) and the Kombewa method (GoJh-76). A large Levallois flake, similar to those used for handaxe production at LHA (Leakey et al. 1969) was also recovered in situ from within the Bedded Tuff at GnJh-62. Picks, found in the Acheulian but often considered characteristic of the Sangoan, were found in situ at GnJh-66, and have been reported from elsewhere in the Kapthurin Formation (Cornelissen 1995). Cores include a variety of single and multiple platform, discoidal and rare Levallois types.

Middle Stone Age sites from the southern Kapthurin Formation include sparse surface scatters containing rare points and Levallois cores at GoJh-13 and GnJh-71, and more extensive surface scatters at Logumkum (GoJi-7), Nyogonyek (GoJh-1), and Koimilot (GnJh-74). Artifacts from Logumkum (Logumkum IV of Farrand et al. 1976) include Levallois and discoidal cores, Levallois points as well as scrapers and bifacial points made on Levallois flakes; rare artifacts are of obsidian. These lie on an up-faulted sedimentary sequence of lacustrine sediment and tuff, assigned to the Ilosuowani Formation (Tiercelin and Vincens 1987; Le Turdu et al. 1995). Nyogonyek is a large eroded area containing multiple dense patches of artifacts, many of them typologically Later Stone Age, first reported by Farrand et al. (1976). An artifact concentration discovered in 2001 consists of numerous Levallois cores, flakes and points, produced by lineal as well as convergent and unipolar recurrent methods (cf Boëda 1994). The artifacts are apparently within down-faulted sediments of a lacustrine facies of the Middle Silts and Gravels member (Tallon 1976; Farrand et al. 1976; McBrearty 1999).

Excavation at Koimilot (GnJh-74) recovered two stratified MSA assemblages (Tryon and McBrearty 2002b) (Figures 3 and 4). Over 2000 artifacts were recovered from the 36-m² excavation at Locus 1, the stratigraphically lower of the two assemblages. Artifacts occur in a ~10-cm-thick horizon within fine-grained overbank sediments, with refitting sets from within the excavated area as well as between the excavation and surface finds. Isolated teeth and tooth fragments comprise the recovered fauna. The lithic assemblage consists of casually flaked large cobbles, as well as a dense debitage concentration and associated centripetally flaked cores that apparently reflect a Levallois mode of flake production. Retouched pieces are rare. Locus 2 is adjacent to and stratigraphically higher than Locus 1 (Figures 3, 4 and 6). The 12-m² excavation recovered ~150 artifacts from within a 10-cm-thick zone from five of the excavated meters. Artifacts are associated with fine-to-coarse sands, and include large (max. length ≥ 10 cm) Levallois points and elongated flakes, a centripetally flaked Levallois core, a blade core and ochre. Future research will systematically explore differences observed between Locus 1 and Locus 2 at Koimilot, as well as comparison of these assemblages with other sites, seeking to document
and explain temporal or functional variability within the MSA.

Tephrostratigraphy

Multiple tephra samples were collected from measured stratigraphic sections, and energy-dispersive electron microprobe (EMP) analysis is currently in progress, using equipment housed at the Kline Geology Laboratories, Yale University. Preliminary field stratigraphic, petrographic and EMP analysis of glass geochemistry suggest that tuffs underlying the archaeological deposits at Koimilot are comparable to the "upper basaltic" portions of the Bedded Tuff identified by Tryon and McBrearty (2002a). Importantly, this makes Locus 1 and Locus 2 at Koimilot, both assigned to the MSA, the youngest excavated assemblages thus far from the Kaphthurin Formation, as all other known sites underlie these "upper basaltic" Bedded Tuff deposits. Additional tephra at Koimilot include deposits not previously observed. These include the "Koimilot tuff" and basaltic tuff deposits that are not part of the established tephrosequence of the Bedded Tuff member. The "Koimilot tuff" serves as a local marker bed, and is a fine-grained dacitic tuff which likely has a distant source outside the Baringo basin, offering the potential for long distance correlation such as has been achieved with deposits in the Lake Turkana basin (e.g. Brown 1994; Feibel 1999).

Additional preliminary EMP analyses have been undertaken for tephra at Logumkum, Nyogonyek and GoJh-12. Ash deposits at Logumkum are unlike any presently known from the Kaphthurin Formation, while those at Nyogonyek and GoJh-12 are tentatively identified as Bedded Tuff, with confirmation pending subsequent laboratory reanalysis as well as the collection of additional field samples.

Conclusions

The end of the Acheulian is a major Middle Pleistocene archaeological event. The highly resolved stratigraphic record of the Kaphthurin Formation provides the opportunity to examine basic issues of the chronology of the Acheulian to Middle Stone Age transition (Deino and McBrearty 2002; Tryon and McBrearty 2002a). Construction and comparison of local sequences of archaeological and paleoecological change, such as those from the Kaphthurin Formation and Kalambo Falls (Clark 2001) is a necessary step for the formulation of hypotheses regarding hominid behavioral adaptations during and subsequent to the Acheulian-MSA transition. The additional sites discovered during the survey of the southern Kaphthurin Formation, as well as excavation at Koimilot, expand both the site sample, as well as the time span of observable archaeological change in the Baringo basin.

Acknowledgements

Work in the southern Kaphthurin Formation was conducted under a research permit from the Government of the Republic of Kenya (permit no. MOEST 13/001/30C 229) and an exploration and excavation license from the Minister for Heritage and Sports. Funding was provided by the L. S. B. Leakey Foundation, the Wenner-Gren Foundation for Anthropological Research, Inc., the Bill Bishop Memorial Trust, and the National Science Foundation (BCS-0118345). The success of the present investigation is due in part to my entire field crew, but most especially Boniface Kimeu, Mustafa Kirika Waweru and Simon Katisya. Sally McBrearty and Andrew Hill provided guidance and both material and moral support. Lastly, I thank my parents and Rhonda Kauffman for their kindness and patience.

References

Boëda, E.

Brown, F. H.
Clark, J. D.

Cornelissen, E.
1992 *Site GgJh-17 and Its Implications for the Archaeology of the Middle Kapturin Formation, Baringo, Kenya*. Tervuren: Musée Royale de l’Afrique Centrale, Annales, Sciences Humaines 133.


Deacon, H. J. and J. Deacon

Deino, A. and S. McBrearty

Farrand, W. R., R. W. Redding, M. H. Wolpoff and H. T. Wright

Feibel, C. S.

Foley, R. A. and M. M. Lahr

Hill, A.

Howell, F. C.

Isaac, G. L.
Lahr, M. M. and R. Foley


Leakey, M., P. V. Tobias, J. E. Martin and R. E. F. Leakey

Martyn, J. E.

McBrearty, S.


McBrearty, S., L. C. Bishop and J. D. Kingston

McBrearty, S. and A. S. Brooks

Stringer, C. B. and P. Andrews

Tallon, P. W. J.

Tiercelin, J.-J. and A. Vincens, editors


Tryon, C. A. and S. McBrearty


Wendorf, F., A. E. Close and R. Schild


Wood, B.