Disparities in Atrial Fibrillation: Focus on Anticoagulation Related Cardiovascular Outcomes

Michael H. Kim, MD
Professor of Medicine
Director, Arrhythmia Service and EP Fellowship Program
Alpert Medical School of Brown University
Lifespan Cardiovascular Institute
Providence, RI
4/28/14
Disclosures

• Sanofi
• Boehringer-Ingelheim
• BMS/Pfizer
• Daichi-Sankyo
• Lake Region Medical
AF Demographic Reality

Projected number of individuals with atrial fibrillation (AF) in the United States through 2050.
Annual US cost of AF in 2005 (US $)¹

Total cost of AF in the US: $12.72 billion

Total outpatient cost $4.70 billion (37.0% total)

- Outpatient-managed AF $2.70 billion (21.2%)
- Primary AF $0.98 billion (7.7%)
- Secondary AF $3.86 billion (30.3%)
- Outpatient-managed AF $2.70 billion (21.2%)

Total hospitalization cost $8.02 billion (63.0% total)

- Primary AF $1.03 billion (8.1%)
- Secondary AF $3.92 billion (30.8%)
- Outpatient-managed AF $0.24 billion (1.9%)

¹ Based on 2005 prevalence estimates in Go et al. JAMA. 2001;285:2370-5
Incremental Cost of AF: Propensity Analysis

AF Management

Goals may include:

• Restoration of normal heart rhythm (Cardioversion)
• Control of the heart rate in AF (symptom-reduction, rate-control)
• Maintenance of normal sinus rhythm (ablation/hybrid Rx, rhythm-control)
• Reduction in stroke risk
• Control of symptoms/AF Burden (Quality of Life)
• Cardiovascular Outcomes: Treatment Targets (mortality, stroke, hospitalizations, symptoms/QOL)
Comparative Effectiveness Research: CV Outcomes

• Per the AHRQ: “designed to inform health care decisions by providing evidence on the effectiveness, benefits, and harms of different treatment options.”

• Evidence: 1) Existing clinical trials, clinical studies, and other research “aka” “Research Reviews”; 2) New evidence of effectiveness or comparative effectiveness of a test/treatment/procedure/health care service.

• “Compare” and “Effective”
AFFIRM: Management Approaches Showed No Significant Difference in Mortality

Primary End Point

35% of rate- vs 63% of rhythm-control patients were in NSR at 5 y

\[P = 0.08 \]

Number of Deaths (%)

<table>
<thead>
<tr>
<th></th>
<th>Rhythm control</th>
<th>Rate control</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 y</td>
<td>78 (4)</td>
<td>78 (9)</td>
</tr>
<tr>
<td>1 y</td>
<td>148 (7)</td>
<td>148 (11)</td>
</tr>
<tr>
<td>2 y</td>
<td>210 (13)</td>
<td>210 (16)</td>
</tr>
<tr>
<td>3 y</td>
<td>257 (13)</td>
<td>257 (16)</td>
</tr>
<tr>
<td>4 y</td>
<td>314 (13)</td>
<td>314 (16)</td>
</tr>
<tr>
<td>5 y</td>
<td>352 (24)</td>
<td>352 (21)</td>
</tr>
</tbody>
</table>

NSR = normal sinus rhythm.

Racial Diversity in AFFIRM

- 3,599 (White); 265 (Black); 132 (Hispanic)
- Overall survival the same for all 3 groups, but lower rates of event-free (all adverse events) survival for non-white groups \((p=0.02)\).

- Limitations: small numbers; post-hoc; groups not balanced at baseline

Racial Diversity and AF Outcomes: It Matters

- Limited outcomes data and investigation
- A sampling of relevant items:
 - Despite increased AF risk factors, when hospitalized for HF, blacks vs whites had less guideline recommended warfarin prescribed (AHA Get with the Guidelines HF Program; Odds ratio 0.76; p < 0.001) (Thomas K, et al. J Am Heart Assoc 2013; 2: e000200 doi: 10.1161/JAHA.113.000200)
 - Incident AF and sudden death may be higher in blacks vs non-blacks (Chen LY et al, JAMA Intern Med 2013; 173: 29-35)
 - Blacks may have more severe strokes than whites (Jones MR et al, Stroke 2000; 31: 563-567)
Catheter Ablation of AF
Thromboembolic Stroke: left temporal-parietal
RCTs of Warfarin vs Control to Prevent Stroke in AF

Figure 1b

International Normalized Ratio (INR) Level

<table>
<thead>
<tr>
<th>Category</th>
<th>< 1.5</th>
<th>1.5-1.9</th>
<th>2.0-2.5</th>
<th>2.6-3.0</th>
<th>3.1-3.5</th>
<th>≥ 3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE cases</td>
<td>128</td>
<td>121</td>
<td>73</td>
<td>41</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>TE controls</td>
<td>132</td>
<td>389</td>
<td>544</td>
<td>280</td>
<td>114</td>
<td>122</td>
</tr>
<tr>
<td>ICH cases</td>
<td>10</td>
<td>24</td>
<td>45</td>
<td>34</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>ICH controls</td>
<td>41</td>
<td>144</td>
<td>252</td>
<td>119</td>
<td>68</td>
<td>41</td>
</tr>
</tbody>
</table>

Circ CV Qual and Outcomes 2009;2:297-304
CHA$_2$DS$_2$-VASc Scoring System

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure/LV dysfunction</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
</tr>
<tr>
<td>Age ≥ 75</td>
<td>2</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1</td>
</tr>
<tr>
<td>Stroke, TIA, thromboembolism</td>
<td>2</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>1</td>
</tr>
<tr>
<td>Age 65-74</td>
<td>1</td>
</tr>
<tr>
<td>Sex category (i.e. female sex)</td>
<td>1</td>
</tr>
<tr>
<td>Maximum score</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: Maximum score is 9 since age may contribute 0, 1 or 2 points.

AHA/ACCF/HRS Guideline Update (2014)

<table>
<thead>
<tr>
<th>Clinical Profile (Applies to PAF, as well)</th>
<th>Treatment Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CHA}_2\text{DS}_2)-VASc (\geq2)</td>
<td>Warf., INR 2-3, or novel agent</td>
</tr>
<tr>
<td>(\text{CHA}_2\text{DS}_2)-VASc (=1)</td>
<td>OAC, ASA, or no AT Rx</td>
</tr>
<tr>
<td>(\text{CHA}_2\text{DS}_2)-VASc (=0)</td>
<td>No Antithrombotic Rx</td>
</tr>
</tbody>
</table>

Paroxysmal (PAF) = persistent = permanent

NOACs: Meta-Analysis of the Four Trials (RELY; ROCKET-AF; ARISTOTLE; ENGAGE-AF)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>RR* (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic Stroke</td>
<td>0.92 (0.83-1.02)</td>
</tr>
<tr>
<td>ICH</td>
<td>0.48 (0.39-0.59)</td>
</tr>
<tr>
<td>GI bleed</td>
<td>1.26 (1.01-1.55)</td>
</tr>
<tr>
<td>Major bleed</td>
<td>0.86 (0.73-1.00)</td>
</tr>
<tr>
<td>All cause death</td>
<td>0.90 (0.85-0.95)</td>
</tr>
</tbody>
</table>

Dabigatran; Rivaroxaban; Apixaban; Edoxaban
*High dose NOAC/warfarin

Lancet 2013 Dec 3. doi:pii: S0140-6736(13)62343-0. 10.1016/S0140-6736(13)62343-0.
Potential Beneficial Impact of Novel Anticoagulants

- Enlarging the % AF patients protected from ischemic stroke
 - the warfarin-reluctant
 - Lowering stroke risk threshold for anticoagulants
- Reducing intracranial hemorrhage
- Better outcomes: stroke and bleed
- Ease of use

Michael H. Kim, MD; Gary Puckrein, PhD; Qiang Cai, PhD; Liou Xu, PhD
Warren Alpert Medical School of Brown University and the National Minority Quality Forum
Background

• Atrial Fibrillation (AF) is the most common cardiac rhythm disorder and is associated with a significant increased risk of stroke, morbidity, and mortality.
• Data support the effectiveness of warfarin in reducing AF-related stroke.
• The effect of warfarin on all-cause hospitalizations and mortality is unclear.
• Warfarin is underutilized.
• Before 2010, warfarin was the primary anticoagulant used to reduce the risk of stroke in AF patients.
• The effectiveness of warfarin on stroke and CV outcomes when stratified by patient diversity is not well described.
Purpose

• To investigate the patterns of warfarin use in Medicare beneficiaries stratified by Patient Diversity (race/ethnicity/gender) to inform the impact of warfarin anticoagulation on CV outcomes (stroke, hospitalization, and mortality).
Methods

- Data extracted from Centers for Medicare and Medicaid Services (CMS) enrollment files.
- 100% Beneficiary Annual Summary Files (BASF) for Yrs 2000 to 2010 and carrier files used.
- BASF identified AF from either 1 inpatient claim or 2 outpatient claims during the year.
- Baseline demographics, race/ethnicity, gender, and CV outcomes were recorded.
- Medicare/Administrative claims used for outcomes.
- 3 cohorts created: 2000, 2005, 2007; each followed for 4 to 5 yrs.
Methods

• Kaplan-Meier survival analyses conducted to examine warfarin use and CV outcomes (death, stroke). Life-table method.
• Cox Regression used to exam effects of warfarin and other covariates.

• Poisson Regression Model (age, gender, race, CHADS2, consumption cluster in prior year, and warfarin use) used to assess all-cause hospitalizations rather than first hospitalization.
20% Sample Cohorts

<table>
<thead>
<tr>
<th>Year</th>
<th>Overall</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Asian</th>
<th>Other</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>38.10%</td>
<td>38.60%</td>
<td>28.40%</td>
<td>32%</td>
<td>31.90%</td>
<td>30.20%</td>
<td>40.50%</td>
<td>36.10%</td>
</tr>
<tr>
<td>2005</td>
<td>44.50%</td>
<td>45.10%</td>
<td>35.10%</td>
<td>39.60%</td>
<td>38.60%</td>
<td>39.40%</td>
<td>46.70%</td>
<td>42.70%</td>
</tr>
<tr>
<td>2007</td>
<td>46.80%</td>
<td>47.30%</td>
<td>38.90%</td>
<td>42.90%</td>
<td>41.10%</td>
<td>43.80%</td>
<td>49.20%</td>
<td>44.70%</td>
</tr>
</tbody>
</table>

AF Stroke

<table>
<thead>
<tr>
<th>Year</th>
<th>Overall</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Asian</th>
<th>Other</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3.90%</td>
<td>3.75%</td>
<td>6.89%</td>
<td>5.33%</td>
<td>4.77%</td>
<td>4.55%</td>
<td>3.22%</td>
<td>4.44%</td>
</tr>
<tr>
<td>2005</td>
<td>2.98%</td>
<td>2.85%</td>
<td>5.51%</td>
<td>4.13%</td>
<td>3.54%</td>
<td>3.35%</td>
<td>2.40%</td>
<td>3.47%</td>
</tr>
<tr>
<td>2007</td>
<td>2.70%</td>
<td>2.59%</td>
<td>4.87%</td>
<td>3.50%</td>
<td>3.18%</td>
<td>2.77%</td>
<td>2.15%</td>
<td>3.17%</td>
</tr>
</tbody>
</table>

P = 0.01 for both (Chi-Square)
Warfarin Effect: Stroke

*\(p<0.01\)
Warfarin Effect: Mortality

*p<0.01
2007 AF Cohort (n = 470K): Annual # of Hospitalizations as Outcome Variable

- Black RR = 1.26*
- Hispanic RR = 1.03
- Asian RR = 0.83*
- (White is Reference)

- Female RR = 1.02*

- Warfarin Use RR = 0.71*

- *p < 0.0001
CV Outcomes Summary

• Compared to Whites, Black pts were 40 % more likely to have a stroke even after adjustment for warfarin use (p < 0.0001).
• Significant reduction in mortality with use of Warfarin (> 70 %; p < 0.0001).
 Black pts, however, had a 25 % (p < 0.0001) higher mortality risk than White pts even after adjusting for warfarin.
• 5 year survival for all AF beneficiaries was about 50 %.
• Asians had better CV outcomes.
• Women had lower death rate than men, but slightly higher rate of stroke and hospitalization.
Conclusions

• Overall, increased warfarin utilization in AF pts over 10 yrs has resulted in clinical CV outcomes benefits.
 – Reduction in Stroke
 – Reduction in All-Cause mortality and hospitalizations

• Significant differences in CV outcomes exist depending on race/ethnicity and gender.

• Black Pts had worse outcomes.

• Further investigation on the disparity in CV outcomes is needed.
Implications

- Patient Diversity should be a focus for future trials in AF-related CV Outcomes
Anticoagulation of AF

• There is no controversy regarding AC in AF pts at risk for stroke whereas there is controversy around other AF therapies.

• ACC PINNACLE (9/2013): 57 %
ACTIVE-W VKA arm: Time in Therapeutic Range (TTR)

<table>
<thead>
<tr>
<th>Country</th>
<th>Mean TTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>46.3</td>
</tr>
<tr>
<td>Brazil</td>
<td>47.1</td>
</tr>
<tr>
<td>Russia</td>
<td>53.4</td>
</tr>
<tr>
<td>Poland</td>
<td>55.3</td>
</tr>
<tr>
<td>Belgium</td>
<td>58.7</td>
</tr>
<tr>
<td>United States</td>
<td>62.9</td>
</tr>
<tr>
<td>Netherlands</td>
<td>64.0</td>
</tr>
<tr>
<td>Argentina</td>
<td>64.5</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>66.8</td>
</tr>
<tr>
<td>Italy</td>
<td>67.2</td>
</tr>
<tr>
<td>Canada</td>
<td>68.5</td>
</tr>
<tr>
<td>Germany</td>
<td>69.3</td>
</tr>
<tr>
<td>Australia</td>
<td>74.5</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>74.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>77.8</td>
</tr>
</tbody>
</table>

“In medicine, geography is destiny.”
Dabigatran: FDA Approval (1st NOAC)

FDA approval Oct 19, 2010

Ethnic group reported in results: 12,679 European/Arab; 5,433 Other (trended NS better at both doses vs. warfarin than “white”). Ethnicity not reported for other 2 NOAC in main paper. Apixaban 1.2 %/Rivaroxaban 1.3 %/Dabigatran 1.2 % Black (FDA).
FDA Report: Intracranial and Gastrointestinal Bleeding Events in New Users of Dabigatran and Warfarin from the Mini-Sentinel Distributed Database October 2010-December 2011

October 2010 - August 2012: ~3.7 million Pradaxa prescriptions
~ 725,000 patients from U.S. outpatient pharmacies.

Analysis	Dabigatran		Warfarin			
	No. of	No. of	Incidence	No. of	Incidence	
	Patients	Events	(no. of	Patients	(no. of	
			events/100,000 days at risk)		events/100,000 days at risk)	
Gastrointestinal hemorrhage	10,599	16	1.6	43,541	160	3.5
Intracranial hemorrhage	10,587	8	0.8	43,594	109	2.4

Racial Disparities in Anticoagulation of AF

• Anticoagulation Challenges
 – Racial differences in warfarin anticoagulation: dosing, TTR, genotyping for warfarin
 – Underdiagnosis?
 – Less guideline based prescribing in ethnic groups
 – Less than 2% of study pts in 3 approved NOACs were black
 – The CV Outcomes Paradox
Potential Solutions

• Racial differences in healthcare access, quality of care, and cardiovascular outcomes must be addressed to achieve more meaningful population health benefits, especially as the non-white population becomes less prevalent in the coming decades.

• Patient education, public education, and scientific data will be helpful in this regard.

• Inclusion of racial diversity in all types of studies will reduce the burden of potential gaps in diagnosis and therapy related to CV disease and AF.

• Use of Real-World Data to address gaps in clinical trials.