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The writer of this paper was curious as to how the Lorenz machine was defeated so completely during 

World War 2. He searched for an explanation of how the Lorenz machine was actually broken, that he 

could understand.  

 

The book Breaking Teleprinter Codes at Bletchley Park contains a great deal of information about the 

process, but it is intended for an academic audience and contains many statistical formulae that are 

beyond this writer’s level of understanding.  

 

Example: 

 

 

 
 

 

What follows is the writer’s understanding of the process, gleaned from the Internet and the above 

book. Apologies if you find it either too simple or too complex. If you find any errors, please let us 

know at:  www.tnmoc.org 

 

It doesn’t go as far as studying the analysis performed by Colossus, but it certainly covers the basic 

details. Nor does it cover the broad historical background of that part of Bletchley Park – it covers the 

technical aspects of breaking Lorenz from a non-statistical angle as far as that is possible. We assume 

you are reading this because you know about the Lorenz machine and want to know more. If you don’t 

know how the machine works then this paper will help you understand it. 

 

The cryptographers at Bletchley Park named the strange radio cipher stream that they were struggling 

to understand: Tunny. Fish names were used for the ever-increasing network of radio links that were 

being set up by Germany across Europe and beyond. For example, Bream, Jellyfish and many others. 

 

When the war was over three of the top codebreakers, Jack Good, Donald Michie and Geoffrey Timms 

wrote General Report on Tunny, with Emphasis on Statistical Methods. This was classified by the UK 

government until June 2000. It forms the basis for most of the current information about the activities 

of that section of Bletchley Park during the war. It is a long, detailed and fascinating account of every 

aspect of codebreaking the Lorenz cipher during World War 2. It has been expanded upon and 

commented by experts in cryptography in an excellent book called: Breaking Teleprinter Ciphers at 

Bletchley Park. See References at the end of this paper. 
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Basic Operation of Lorenz machine 

Teleprinters were used in many countries around the world from the 1920’s. Messages were sent via 

either land lines or radio. During World War 2 the Germans used mainly radio for their links, this 

allowed portability. Lorenz, by the way, has nothing to do with Enigma, nothing. 

 

Each letter of a message contained 5 data bits. These bits could be any combination of the two binary 

states 1 or 0 (a hole in the tape or no hole). If we calculate how many possibilities there are from 5 

bits, we get 32. This is not enough for a 26-letter alphabet AND ten digits AND punctuation. So two of 

the 32 letters are special: letter shift and figure shift. This almost doubles the number of symbols that 

can be generated and allows roughly 60 letters to be represented.  

 

The code used was the International Telegraph Alphabet No2 which was pretty standard around the 

world at that time. Although the radio signal was identified as teleprinter traffic, attempts at making 

any sense of the transmissions resulted in failure. It looked like a random stream of letters with no 

bias towards any particular letter (as in letter frequency analysis where common letters, like E and T in 

English, are more common than say, Q or Z. Look up Caesar Shift for a method of cryptography which 

was broken using letter frequency analysis).  

 

Bletchley Park used 5 channel paper tape (shown below, which was common in the Teleprinter world) 

to record and process the messages. The UK one pound coin shows the scale of the tape: 

 

           0  

 

              An example of some of the ITA2 coding is shown below (O = hole in tape) 
 

 

 

 

 

 

 

 

 

 

 

 

 

The Lorenz machine uses 12 code wheels, each wheel has a number of cams (switches – 501 in total) 

around its periphery. The first 5 wheels (K1 to 5) are arranged so that one bit of each incoming letter 

has its own wheel (bit 1=K1, bit 2=K2 and so on).  

 

 
    Letter     A B C D E F G H I J K L M N O P Q R S T U V W X Y Z  sp    K 

         O     O O   O O O       O             O   O   O   O O O O        1 

         O     O   O       O   O O O O       O O O     O O O              2 

    Tape .     . . . . . . . . . . . . . . . . . . . . . . . . . . . .        

         O         O     O   O O   O   O O   O O   O   O O   O O     O    3 

         O       O O O   O O     O O   O O O     O       O   O            4 

         O       O         O O       O O   O O O     O   O O O O O        5 
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These wheels can change the value of their data bit depending upon the way their cams are set. Cam 

set = change the data bit: a 0 becomes a 1, and a 1 becomes a 0. Cam not set = no change to the 

data bit: 0 stays at 0 and 1 stays at 1. These changes are always made using modulo 2 arithmetic.  

Modulo 2 arithmetic crops up in nearly all aspects of cryptography, otherwise known as Exclusive 
OR or XOR for short. It is a way of apparently scrambling data and then unscrambling it again 

later. There follows a demonstration of Modulo 2 arithmetic. “+” is often used to mean XOR 
 

0+0=0 
1+0=1 
0+1=1 
1+1=0 

 

A simple way to remember these rules is:  “If they’re the same, the answer is 0” 

               “If they’re different, it’s a 1” 
 
Take the letter A for example. In ITA2 teleprinter code it is 11000 (in binary). “0” means no hole 

in tape, “1” means hole. 
 
Now XOR it with part of the cipher key, say 10001. (This is what the K wheels do) 
 
 11000  letter A in data 

  XOR 10001  cipher (any value for simplicity)  

  = 01001  result which is letter L, this is cipher text 

 

Now to reverse the process we XOR L with the cipher key 10001 

 

 01001  letter L in cipher stream 

  XOR 10001  same cipher code as before 

     = 11000  we get the original letter A back 

 

 

 

Lorenz Machine Logical Layout 

 

             
 

The input letter (from keyboard or paper tape reader) is first processed by the K wheels. The current 

position of say, K1 will have a cam which will be either set or not (K1 has 41 cams). If the cam is set, 
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the input bit is XOR’d with the cam position. (If the cam is not set then the bit is unchanged, otherwise 

it is inverted: 0 becomes 1 or 0 becomes 1. This happens on all five K wheels in parallel. 

 

The modified output from the K wheels then reaches the S wheels where the bits are again 

changed/not changed depending on the S wheels cam settings. In the unlikely case of ALL the cams on 

all the wheels being off (not effective), the output would be an unchanged copy of the input. 

 

The K wheels move on one step for every letter received but the S wheels only move if commanded to 

do so by the Motor wheels, M1 and M2. The motor wheels have their cams set such that they will move 

roughly 50% of the time, and stay still roughly 50% of the time. (“Time” meaning in step with the 

letters coming in.) The two motor wheels were intended to make the cipher more unpredictable and 

difficult to break. The Germans believed that Lorenz was unbreakable. They were wrong and 

cryptography took several important steps forward at Bletchley Park. 

 

The output from the S wheels is either the final enciphered or the deciphered output. This is because a 

Lorenz machine will encrypt an input stream or it will decrypt an input stream. The machine just 

applies the settings on the wheels to the input, it doesn’t know if its input is cipher or plain text, and it 

doesn’t care, it just goes through the motions. Follow the progress of say, the letter “A”: 

                         

        K/S Wheel number    Letter “A”      K wheels        Result      S wheels     Output (letter “Z”)    
             1            1    +      1    =     0    +     1        1 

             2            1    +      0    =     1    +     1        0 

             3            0    +      1    =     1    +     1        0 

             4            0    +      0    =     0    +     0        0 

             5            0    +      1    =     1    +     0        1 

 

If the S wheels don’t move (as a result of the motor wheels not commanding them to do so) then the S 

wheels contribute the same 5 bits that they did the time before. The designers of Lorenz thought that 

this would make the cipher more secure; in fact it simplified the job of the analysts, as we shall see 

later. (Some later studies of this process have suggested that the machine would have been much 

more secure if the S wheels always moved on, and the the motor wheels were dispensed with.) 

 

If two Lorenz machines are connected together, and the wheels are set identically on both machines, 

then plain text entered on one machine will be enciphered, transmitted to the other machine, where it 

will be deciphered. If “THE QUICK BROWN FOX” is entered to one machine, “THE QUICK BROWN FOX” 

will be output by the other. But, the letters passing from the first machine to the second will be 

gobbledegook, this is the Cipher Text. It was this Cipher Text that was received by radio and then sent 

to Bletchley Park for analysis. It is the deciphering of that data that is the subject of this paper. 

 

 

       “THE QUICK BROWN FOX”                                            

                          

                                                        

                                                        

                                                        “AHYTVERXAMOPPJANBTQ”  

                                                             

 

 

              “THE QUICK BROWN FOX” 

 

 

 

But only if BOTH machines are set exactly the same and the 12 wheels start 

from the same starting positions 

 

  

Lorenz machine 

Lorenz machine 
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Complexity of the key 

The key is determined by the settings of the cams on the 12 wheels. These wheels have the following 

number of cams on each: 

 

K     41,  K2 31,  K3 29,  K4 26,  K5 23 

S     43,  S2 47,  S3 51,  S4 53,  S5 59 

M1   61 

M2   37 

 

These numbers a relatively prime which means that if you went through the whole sequence of 

possible numbers, there wouldn’t be any repeats until you had stepped: 

 

  41x31x29x26x23 = 22,041,682 steps for the K wheels 

 

  43x47x51x53x59 = 322,303,017 ..    ..    ..   S    .. 

   

  61x37 = 2,257 steps for the motor wheels 

 

Another way of looking at the complexity of the key is that there are a total of 501 cams on the 

wheels. This theoretically allows 2 to the power of 501 settings, which is an exceedingly big number – 

more than the number of atoms in the universe. 

 

Which means that just guessing at the settings is not going to be feasible. Don’t forget that computers 

as we know them didn’t exist then.  

 

The first version of the Lorenz machine was the SZ-40. Later versions added hardware changes that 

made breaking even more difficult. These are called limitations but this paper only covers the basic 

machine (which is difficult enough). We will mention them towards the end but only in passing. 

 

Initially the wheel settings were only changed once a month. Once the wheels had been broken, only 

the starting positions had to be found and the traffic could be read until the end of the month. But as 

time went by the settings were changed more often, eventually every day. This pushed the 

cryptographers very hard. 

 

   

Key Distribution 

The settings and start positions of the 12 wheels were distributed to the various German military units 

in the form of a Code Book. Setting a Lorenz machine from scratch was quite a long job, and it had to 

be done accurately. Lorenz key information was of the highest grade and security was paramount. 

Several successful attempts at getting the codebooks for Enigma were recorded but there were almost 

no cases of the Lorenz codebooks being compromised by Bletchley Park. 

 

Because the process of setting and changing the wheel patterns was lengthy, changes were initially 

only made once a month. As the war progressed changes were made more frequently until changes 

were made every day towards the end.  

 

Below is a sheet for the settings of an actual cipher (“0”=cam not set, “+”=cam set, will change 

cipher, number in brackets is number of cams on wheel), last number is number of +’s: 

 

 
  

    S1 0+0+0 0+0++ 0+0+0 +0+00 ++000 ++++0 0+0+0 +0++0 ++0      [43] 22 

    S2 00+0+ 0++0+ 0+++0 0++0+ 0+00+ +0000 +0+0+ ++00+ 0++0+ 0+    [47] 24  

    S3 0+00+ ++000 +0+00 0++00 +0+0+ +0+0+ ++00+ 0+00+ 0+0++ +0+0+ +    [51] 26 

    S4 +0++0 0++0+ 00+0+ 0+00+ +0000 +++00 +0+++ +0+0+ 0+0+0 +00+0 ++0   [53] 27 

    S5 +0+00 +0+0+ 0+00+ 000++ 000+0 +++0+ +0+0+ 0+00+ ++00+ 0+++0 0+0++ 0+0  [59] 29 

  

    M1 +0+00 00+++ 00+++ +0+++ +00++ ++0++ ++0++ ++000 ++++0 +++0+ ++00+ +++0+ + [61] 41 

    M2 ++000 +0++0 ++++0 +++00 ++000 +0+0+ 000++ +0                       [37] 20 

  

    K1 0++00 ++00+ +00++ 00++0 0++++ 00++0 0+00+ +00++ 0     [41] 21 

    K2 000+0 +00+0 ++000 0+++0 0+0++ ++0++ 0                              [31] 15 
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    K3 +++00 +++00 +++00 +0000 +++0+ 00+0       [29] 14 

    K4 00+0+ +++00 +00++ 0000+ +++00 +        [26] 13 

    K5 ++000 +++0+ 00+++ 0+000 ++0        [23] 12 

 

 

Note that the number of cams set (+) is always as near as possible 50% of the total cams on that 

wheel. Except the motor wheels, they are different. This is to try to ensure that the resulting cipher 

stream contains 50% 1’s and 50% 0’s and looks like a random stream of information, to deter 

cryptanalysis. The rules for the movement of the motor wheels are such that the S wheels move, on 

average, 50% the time. (And therefore stand still 50% the time.)  

 

The first few sequences of 5 bit codes generated by the K wheels above, starting at their “home” 

position would be: 

 
     00101 10101 10110 01000 00010   11111 10111 00111 01000 10001 . . . . . . . 

 

The distribution of the keys is also sometimes called The Key Distribution Problem and it was always a 

problem faced by any cryptographic system which needs the same key at both ends of a link. Today 

we have Public Key Cryptography which removes this problem. (Google: Public Key Cryptography) 

 

Depths 

From June 1941 mistakes by the German operators resulted in a few short messages being received 

which used the same key - depths. But these were few. They gave the cryptographers a clue about the 

cipher being used but nothing else. As you will see in the next section, by adding two messages 

together with exclusive OR, the key is cancelled out. But what remains is a single stream of letters, 

each of which is the addition (mod 2) of two original letters. There is no way of separating them 

without further information. 

  

First Significant Break 

The first significant break of Tunny was on 30th August 1941 when a German operator (effectively) 

sent two different messages on the same machine setting (the same key). Both messages started with 

the twelve letters: HQIBPEXEZMUG. It turned out that these referenced the starting positions of the 12 
wheels, but nobody knew that at the time. That message became known as simply ZMUG. 
 
This is known as a Depth. Let’s call the two messages Plain1 (P1) and Plain2 (P2). The key is the same 

for both messages, call this K. 

The first cipher text (Z1) consists of P1 XORed with K. 

The second cipher text (Z2) consists of P2 XORed with K. 

If the plain text messages had been identical then the cryptanalysts would be none the wiser, but they 

were different although some stretches were the same, but shifted due to abbreviations being used. 

This was a major blunder by the machine operator. 

We will use “+” instead of “XOR”. Note that XOR is both addition and subtraction in one. It forms the 

difference between two values.  

Now we know from modulo two arithmetic that if we XOR Z1 with Z2 the key will be eliminated. It will 

“cancel out”.  K + K = 0 

This is because P1 + K + P2 + K = P1 + P2  (the same thing @ with itself = null). 

You can see that if the two texts had been the same then: P1 + P2 = 0, which means “there is no 

difference between these two texts”. 

So now we have the two texts, deciphered, but mixed together. A beautiful gift from the Germans. But 

how to unravel them? 

Fortunately, P1 and P2 both started the same but then differed after a few letters. 
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The first text started (after the 12 letter identification)  “SPRUCHNUMMER” and the second text 

“SPRUCHNR”. This gave John Tiltman (a cryptanalyst) a starting point. Being very good at crosswords 

and knowing German he teased apart the following letters. Remember each letter was the XOR of two 

letters and there were many possible combinations and possibilities. As he worked along the text clues 

were revealed from the shorter text as to what the next letter could be in the longer text. 

For example, you could make a letter D by adding J and E or N and S or M and Y and so on. In fact, 

there are 28 other additions that will result in D, hence this could be a long job. If one letter made 

sense in P1 but its partner not in P2, then it was wrong and another must be tried. This process took 

Tiltman ten days. Bear this “suck it and see” process in mind when we examine Turingery. 

Interestingly if you XOR the new (correct) plaintext to one of the original cipher texts, you get the key! 

This is because if   A+B=C   then   B+C=A    and   A+C=B. In other words, if you know two variables, 

you can usually find the third. 

It was Bill Tutte who worked out the structure of the machine from this first depth. He drew out the 

pattern of the obtained key on a grid of squared paper. He was looking for possible repeat patterns in 

the structure of the data. After many failed attempts he spotted that the number 41 on his grid (say 41 

wide) produced a noticeable pattern. He went on to deduce that the machine had 12 wheels and the 

length of each wheel, including how the two motor wheels operated. This was said to be the greatest 

intellectual achievement of the second World War. 
 

 

Although depths sometimes allow the current key to be obtained, they don’t tell you anything about 

the settings of the cams on the twelve wheels. The plain texts can sometimes be teased out, but this is 

a long and tricky process. 

 

 

Depth Example 

Let’s make up a depth to demonstrate the problem of separating the two possible texts: 

 

Plain text 1: HELLO FATHER 

Plain text 2: HELLO MOTHER 

 

Our key will be: 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 

 

Not a very good choice but we are trying to understand the principle, not generate a secure system. 

Also, we won’t use all 12 wheels. Just a straight XOR with each letter of the plain text to keep it 

simple, the principle won’t be changed: 

 
Plain1:      H     E     L     L     0   space   F     A     T     H     E     R 

   ..      00101 10000 01001 01001 00011 00100 10110 11000 00001 00101 10000 01010  

Key:       10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101  

Cipher1:   10000 00101 11100 11100 10110 10001 00011 01101 10100 10000 00101 11111 

 

Plain2:      H     E     L     L     O   space   M     O     T     H     E     R 

   ..      00101 10000 01001 01001 00011 00100 00111 11101 00001 00101 10000 01010 

Key:       10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101  

Cipher2:   10000 00101 11100 11100 10110 10001 10010 01000 10100 10000 00101 11111 

 

So here we have a depth, two messages sent on the same key. We determined earlier that if you add 

the two cipher texts together modulo 2, as long as the key was the same, then the key will “drop out”, 

be cancelled leaving just the two messages merged together. Adding the two cipher texts (XOR): 

 
Cipher1:   10000 00101 11100 11100 10110 10001 00011 01101 10100 10000 00101 11111 

Cipher2:   10000 00101 11100 11100 10110 10001 10010 01000 10100 10000 00101 11111 

Result:    00000 00000 00000 00000 00000 00000 10001 00101 00000 00000 00000 00000 

                   

From this we can see that the two plain texts were the same for the first 6 letters (HELLOsp) , then 

they differ for two letters, then they are the same again. Without further help it would be impossible to 
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work out what either message contained. However, if we somehow did manage to work out what 

Plain1 said, by adding it (XOR) to the cipher text, an interesting thing happens: 

 

  
Plain1:    00101 10000 01001 01001 00011 00100 10110 11000 00001 00101 10000 01010 

Cipher1:   10000 00101 11100 11100 10110 10001 00011 01101 10100 10000 00101 11111 

Result:    10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 10101 

 

We have recovered the key! This is the powerful result of recognising a depth and then working on it. 

  

But there must be something else to seed the untangling of the two texts. This happened in the ZMUG 

depth because the two messages started the same but then the second one started using 

abbreviations thus shortening the second text. Is was only because the first part of the message had a 

stereotypical beginning: SPRUCHNUMMER in the first message and SPRUCHNR in the second (meaning 

MESSAGE NUMBER) that the cryptographers guessed at a few letters following and teased apart the 

two texts. Quite an achievement. 

 

This technique of prising apart two texts from a depth was known as anagramming. It also happened 

that the same text was sent on two (sometimes more) keys. If one of the keys was already known, the 

other could be recovered by a similar method as shown above. 

 

In July 1942 Alan Turing was interested in breaking Tunny and developed a method which became 

known as Turingery. It relied on having at least 500 letters of a partial depth, some stretch of cipher 

text that had been repeated and some of the key had been revealed. 

The Germans had arranged that there would be, as nearly as possible, an equal number of 1’s and 0’s 

in the cipher stream. It thus appeared as a random stream of teleprinter letters with no bias for any 

particular letter. But, when the delta of this cipher text was calculated, which means that each letter 

was XORed with the next letter, then that letter was XORed with the next letter and so on, it revealed 

changes in the cipher stream. And this exposed a non-randomness which was meaningful. 

Take the output from one wheel for example K1 (chi1):  

   Cipher stream from K1:   0     1     0     0     1     1     1     0     0     0 
                                            \     /\     /\    /\      /\     /\     /\     /\     /\     / 
   Delta of K1:                         1     1    0     1      0     0     1     0     0       (“1” = change, “0” = no change) 
 

The cipher text is made up of three components: 

    The plain text, the changes imposed by the K wheels and the changes imposed by the      

     S wheels. These three parts are all XORed together in the Lorenz machine to produce 

     the output cipher text. 

The delta of the data stream reveals something about the randomness of the cipher text. The German operators 
of the teleprinters connected to the Lorenz machines repeated certain letters. To go from “letters” to “figures” 
needed a press of the FIG SHIFT key. This generated the code to interpret following key-presses as figures, the 
digits 0-9, full stop etc. But the radio links were not entirely reliable and if such a shift character was missed then 
the following characters would be in the wrong shift and cause mayhem. So the operators always pressed FIG 
and LETTER shift twice (sometimes three times). Other important characters were also repeated by the 
operators. This proved to be a big mistake. 

The K wheels (chi) move every time but the S wheels (psi) only move about half the time. Turing’s 

insight was as follows: whenever the S wheels don’t move, and the input letter was a repeated 

character (like a shift), then we are adding the same thing twice. If you XOR anything with the same 

thing the result is zero, or null and it will have no effect and won’t change the input character. In other 

words, when this happens, the cipher data at that point is the actual K wheel setting along with the 

plain text bit! As we know the key (from the partial depth) we can determine the actual value of the K 

wheel bit at that position. This process became known as de-chi-ing. 
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Although this sounds very encouraging there is a snag. How do we know when the S wheels are 

moving or not? We don’t. But we can guess. And we will be right about 50% of the time. 

Consider the actions of K1 and S1. K1 has 41 cams around it, S1 has 43. If we look at the cipher 

stream in the position that K1 works on, we know that every 41 letters K1 will have rotated all the way 

round and will be on its next revolution. Which means that the effect of K1 will repeat every 41 letters. 

S1 will have another effect, and this won’t be of the period 43 because S1 doesn’t always move. But 

the pattern of S1 will repeat after it has moved 43 times. Given at least 500 letters of recovered key, 

Turing’s method could sometimes give the complete wheel patterns. 

His method is as follows: the delta of a stretch of recovered key is written on squared paper in  a grid, 

say 41 squares wide by 43 deep. It then takes a letter from the delta’ed cipher stream and supposes 

that it is one of the points when the S wheels didn’t move. The corresponding bit is then written on the 

grid in pencil as 0 or 1. The same point in the cipher stream 41 places on, or back is then examined 

and plotted. Half the time these guesses will be wrong, and this will lead to clashes where a wheel 

position is both 0 and 1, clearly wrong. It is this that makes the process long and tedious with much 

pencilling in and rubbing out. But it is a technique that was immensely insightful and valuable. 

We are also assisted by the design of the Lorenz machine. The rules about setting the tabs on each 

wheel allow a maximum of four 0’s or four 1’s in consecutive positions with as far as possible, an equal 

number of 1’s and 0’s. So, we know that if we have just found four consecutive 1’s, then a 0 must 

follow. 

And this is where the writers understanding begins to thin out. This process is continued, building up a 

table of might-be/might-not-be’s for each position of (say) K1 until a feasible 41 steps have been set 

with no (or few) contradictions. The other K wheels are similarly attacked. 

Although the output cipher stream was effectively a random stream of data, once the wheels had been 

discovered (broken) a great deal of non-randomness is revealed. The German teleprinter operators 

often pressed letter shift/figure shift twice to be sure that the shift would actually take. As in English, 

double letters occur in German and a very uneven distribution of letter frequencies helped to untangle 

the messages. 

Turingery was slow and involved a lot of backtracking, but it usually worked. And it paved the way to 

Rectangling which (I believe) is based on the same basic theory with a huge amount of additional 

statistical working. Although the design of the Lorenz machine tried to achieve an equal number of 0’s 

and 1’s in the cipher stream, techniques were developed which looked for small but statistical bulges in 

the number of 1’s or 0’s. And of course, wheel breaking without depths followed, with Robinson, 

Colossus and several other machines. 

Cribs 

One technique often used was to guess part of a message. Although the designers of Lorenz told their 

users never to use stereotypical beginnings for their messages, they were often ignored. A message 

might start with the army unit it was from, the date and other things that could be guessed. When this 

happened the cipher text was “slid” along a combination of the guessed words and the suspected key. 

On Hitler’s birthday, more than one message ended with the two words “Heil Hitler”; this was also 

successfully guessed by the cryptographers. As the war progressed the Germans started putting a 

handful of random letters at the start of their messages to combat this method of attack. We called 

this added material quatsch. 

 

Wheel Setting 

Once the key has been determined, by whatever method, the wheels must now be set. This means 

putting them into the “correct” starting position. There are a very large number of combinations of the 

12 wheels starting positions:   

 
41 × 31 × 29 × 26 × 23    x   43 × 47 × 51 × 53 × 59  x   37 x 61 = 1.603 x 1019 i.e.16 billion billion 

------------K----------       ------------S-----------     Motor 

     

There are so many possible combinations that “try it and see” is impractical.  
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It was discovered that if you took the delta of the key and compared it to the delta of the cipher text in 

a sliding motion, at certain points there was a slight statistical bump. In other words, if you could slide 

the key against the cipher text, one letter at a time, at the “correct” place there would be a correlation 

of the two. And then if you XORed the two together, aligned at that point, the correct plain text might 

be revealed. 

Bill Tutte found that it was possible to reduce the size of the search by only looking at two wheels 

instead of five. If only K1 and K2 were used then only 1271 comparisons were needed instead of 

millions yet the statistical bump was still present. 

The K wheels and the S wheels had to be set separately, also true for the motor wheels.  

Max Newman suggested building a machine that could do this – run two paper tapes along-side each 

other. Electronic circuits would do the delta of the data and electronic counters would enable statistical 

bumps to be spotted by the operator. Photo-electric cells would read the holes, the first time this had 

been done. Electronic circuits (using valves) would process the data. After each revolution one tape 

would step on one place so that eventually all the letters punched on one tape would be compared to 

all the letters on the other tape. 

 

A machine was built by a collaboration between the Post Office and the government Research Station 

at Hanslope Park. The machine was named Heath Robinson by its operators because it resembled the 

hilarious contraptions drawn by the cartoonist of the same name. 

 

It worked, after a fashion. Robinson was not too reliable but it enabled the start positions of the wheels 

to be set and became one of the first electronic machines involved in mathematical data processing. 

Several Robinson machines existed at the end of the war. A Post Office engineer called Tommy Flowers 

had been involved in the design of Robinson and he realised that there was a much better way to 

compare data streams. He designed the machine we know as Colossus. 

It is the writer’s belief that the whole of the later process of breaking Tunny, using Colossus, went back 

to Turingery and Turing’s brilliant insight that the delta of the cipher stream contained vital information 

which could lead to possible decryption. 

Lorenz Simulator 

The engineers at The National Museum of Computing (Tunny gallery) have built a simulator which 

demonstrates the action of the first five wheels, the K wheels. You can enter letters from a keyboard 

and see the process of encryption step by step. An animated video accompanies the simulator.  

 

We also have a true Lorenz machine which has kindly been lent to us by the Norwegian army. You can 

see it on display at the museum.      www.tnmoc.org 

 

 

-------------------------------------------------------------------------------------------------- 

 

Machines 

The following machines were designed and built during the war: 

 

Robinson –               For comparing a cipher message paper tape with a possible key tape 

Miles, Mrs Miles –  Read one or more paper tapes and performed certain actions on the data, then 

punched an output tape 

Dragon –  “Dragged” cribs through the K wheels looking for cribs 

Proteus –  Consulted a dictionary looking for cribs 

Aquarius –  Looked for “go backs” where the operator had experienced 

   problems and pulled the plain text tape back a number of places 

Tunny –   Simulated the Lorenz machine 

Decoding –   Produced printed output once wheels had been broken and set 

   the last stage of deciphering a message 

Colossus –   The most complex, multi-purpose, wheel breaking and setting 

  

  

http://www.tnmoc.org/
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Terms 

A brief description is given here of the terms used and explained in this paper: 

 

Cam - The mechanical cams mounted around each wheel. They could be moved (by the operator 

setting up the machine). There were a total of 501 cams. See photo on front cover, the cams are 

visible 

 

Cipher Text - The encrypted version of the message, once it has “been through” the Lorenz 

machine. The output of the Lorenz machine 

 

Cribs – A method of guessing what part (usually the beginning) of a message might say 

 

Depth - Two messages (or part messages) sent on the same key. This is strictly forbidden as 
 it gives away part (or all) of the cipher key 
 
Key - The cryptographic coding that is used to encipher the message. In the SZ- 40 series of Lorenz machines 
this was 501 bits long 

 
Modulo Two Arithmetic - The addition of binary values which is also known as 

Exclusive OR or XOR:  0 @ 0 = 0 

    0 @ 1 = 1 

    1 @ 0 = 1 

    1 @ 1 = 0 

 

Plain Text - The message before encipherment 

 

Relatively prime – there are no common factors between these numbers 

 

Teleprinter – A keyboard-typewriter machine that could transmit/receive text over either land 

telegraph lines (telephone lines) or radio. The teleprinters used by the Germans printed on a 

continuous length of tape. This was torn at suitable places and stuck down to form the message. 

Most of the links were (fortunately) radio. We wouldn’t have been able to intercept land lines 

 

Turingery - Alan Turing found a way of discovering the wheel settings by a pencil and paper 

method. His colleagues named it Turingery 

 

Wheels - The twelve “wheels” that hold the mechanical switches on which are set the key 

being used. The wheels are named 5x”S” (or psi) , 2x”Mu” (or Motor), 5x”K” (or chi) 

 

Wheel Breaking - The process of discovering the settings of the cams on the twelve wheels 

 

Wheel Setting - Discovering at which position each wheel sits at the start of the message 

 

XOR – See Modulo Two Arithmetic above 
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Limitations 

These were modifications to the basic machine, designed to make breaking more difficult: 

 

SZ-40   1940 Basic machine as described in this paper 

SZ-40A 1942 The previous letter of wheel K2 modified cipher 

SZ-40B 1942 The fifth bit of the plain language input two letters 

                               back is added to the second position of K2. This 

                               rendered depths impossible to decipher because the 

   cipher stream was now modified by the text being input 

SZ-40C  Never used, war ended before it was implemented 

 

 
 
 

Tribute from America 
Albert W. Small, a cryptanalyst from the US Army Signal Corps who was seconded to Bletchley 
Park and worked on Tunny, said in his December 1944 report back to Arlington Hall that: 

 

Daily solutions of Fish messages at GC&CS reflect a background of British mathematical 
genius, superb engineering ability, and solid common sense. Each of these has been a 

necessary factor. Each could have been overemphasised or underemphasised to the 
detriment of the solutions; a remarkable fact is that the fusion of the elements has been 

apparently in perfect proportion. The result is an outstanding contribution to cryptanalytic 
science. 
 

 

 

References: Breaking Teleprinter Ciphers at Bletchley Park. 
Wiley ISBN 978-0-470-46589-9. 

 

This book is the holy grail of the events at Bletchley Park during the war as far as the Lorenz machine 

is concerned. It is based on the original report (General Report on Tunny, with Emphasis on Statistical 

Methods), written after the war by some of the leading cryptologists. 
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