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TO THE STUDENT v
TO THE STUDENT

The text contains a little over 1, 000 exercises. In “Selected Solutions for Stu-
dents” we have written up complete solutions for a bit more than 10% of them. In
many cases we chose these problems to solve because they play a significant role
in the general development. Some of the longer problems could probably serve as
a “project”, taking you along a new pathway. We hope that having these solutions
will encourage you to work on some problems that haven’t been assigned.

The ideal way to use this set of solutions is to work on a solved exercise, and
if you get stuck, uncover just enough of the solution to get started again. We can’t
emphasize enough that the aim of working on an exercise isn’t just to solve the
problem. The process is vitally important: it will probably involve a search for
theorems in the text that might serve as tools; it may involve making up some ex-
amples of your own so that you really understand the question. Hopefully, everthing
leading up to a solution will add to the material you have really mastered.

So, good luck, and only peek at the solutions as a last resort!

John Beachy
Bill Blair



1 INTEGERS

1.1. Divisors

17. Show that the positive integer k is the difference of two odd squares if and only
if k is divisible by 8.

Solution: If k = n?> —m?, where m and n are odd integers, then as in Example 1.1.7
wecanwritek = 2r + 14254+ 1)2r4+1-2s—1) = 2Q)r +s+ DH(Q2)(r — )
for some r,s € Z. Now we need to take two cases. First, if r — s is even, then
r — s has 2 as a factor, and so k has 8 as a factor. Second, if r — s is odd, then
r4+s = (r —s) + (2s) is the sum of an odd integer and an even integer, so it must
also be odd. That means that » + s + 1 is even, so it has 2 as a factor, and therefore
k again has 8 as a factor. Showing that we can factor 8 out of m? —n? gives exactly
what we were to prove: if m and n are odd, then m? — n? is divisible by 8.

Conversely, if 8 | k, then k = 8¢ forsome ¢t € Z,and so (2t +1)>—(2t—1)? =
412 + 41 +1—412 +41 -1 =8t =k.

18. Give a detailed proof of the statement in the text that if a and b are integers,
then b | a if and only if aZ C bZ.

Solution: Suppose that b |a. Then there exists r € Z such thata = br. If x € aZ,
then x = at for some ¢t € Z. Hence x = at = (br)t = b(rt) and so x € bZ.

Conversely, suppose that aZ C bZ. Thensincea = a-1 € aZ wehavea € bZ.
Thus a = bt for some ¢ € Z and so b | a.

1.2. Primes

18. Let a, b be nonzero integers with (a,b) = 1. Compute (a + b,a — b).

Solution: Let d = gcd(a+b,a—>b), and divide a+b bya—btogeta+b =
1(a—b) + 2b, which shows that d = gcd(a—b,2b). Since ged(a,b) = 1, we
can write ma + nb = 1 for some m,n € Z, and then m(a—b) + (m+n)b = 1.
Because d | (a—b), it follows that gcd(d,b) = 1. But then d | 2b implies, by
Proposition 1.2.3 (b), that d | 2.

Case 1. If a—b is even, then gcd(a—b,2b) > 2,s0d = 2.

Case 2: If a—b is odd, then gcd(a—b, 2) = 1. The equation m(a—b)+(m+n)b = 1
shows that gcd(a—b, b) = 1, so Proposition 1.2.3 (d) implies that gcd(a—b, 2b) = 1,
and therefore d = 1.
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22. Show that if a, b are positive integers such that (a,b) = 1 and ab is a square,
then a and b are also squares.

Solution: Leta = p{'py?---pi' and b = q}'q ﬂz ﬂs . Since ged(a,b) =1,

no p; is equal to a g;. Now ab = p1 p2 - pilyq ‘131 . ‘35 and the prime powers

can be reordered to give the factorization of ab into dlstlnct prime powers. Since
ab is a square, each «; and f; is even, and hence a and b are squares.

30. If a, b, ¢ are positive integers such that a? + b? = ¢?, then (a, b, c) is called a
Pythagorean triple.

(a) Show that a and b cannot both be odd.

Solution: f a = 2n + 1 and b = 2m + 1 are odd, then a? + b2 =

R+ 12+ C2m+ 12 =4n2 +4n+ 1+ 4m? + 4m + 1 = 4t + 2 for some
t € Z. If ¢ is even, then ¢ = 2k for some k and ¢2 = 4k? # 4t 4 2. If ¢ is odd,
then ¢ = 2s + 1 for some s and ¢? = 452 + 45 + 1 # 4t + 2. Thus one of a or b
must be even.

(b) Assume that a is even. Show that there exist relatively prime integers m and n
such thata = 2mn, b = m? —n?2, and ¢ = m? + n?.

Solution: Since a is even we can write ¢ = 2u for some u € Z. Note that a?> =
c¢2—b? = (c—b)(c +b). Since b and ¢ must both be odd, 2|(c —b) and 2|(c + b),
and it also follows from Exercise 18 that gcd (C =b ﬂ) = 1. Both % and

2
c+b b 2

are squares (see Exercise 22), say C+ = m? and <2 b = n2. Since u? =

(%) (#) we have u = mn. Thereforea =2mn,b = Tb—% = m?—n2,

and ¢ = C+b + € 2 = m? + n?. Since the greatest common divisor of a, b, and ¢
is 1, the same is true for m and n.

1.3. Congruences

26. Prove that the fourth power of an integer can only have 0, 1, 5, or 6 as its units
digit.

Solution: Since the question deals with the units digit of n4, it is asking us to find
n* (mod 10). All we need to do is to compute the fourth power of each congruence
class modulo 10: 0* = 0, (£1)* = 1, (£2)* = 16 = 6 (mod 10), (£3)* =81 =
1 (mod 10), (£4)* = 6% = 6 (mod 10), and 5* = 52 = 5 (mod 10). This shows
that the only possible units digits for n* are 0, 1, 5, and 6.

30. (a) Show that if m € Z, m > 0, such that 2 + 1 is prime, then m = 0 or m is
a power of 2.
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Solution: If m = 0,then 2" + 1 =1+ 1 = 2 is prime.
Suppose that m > 0 and m = rs, where r is the largest odd divisor of m. Then

M 41 =24 1=+ 1)V =D 4 254,

Since 2" +1 is prime and 25 +1 > 1, we must have 25 —D_25¢=2) 1~ _os 1] —
1, and thus r = 1. Therefore m = 2" for some n € Z, n > 0, since r is the largest
odd divisor of m.

(b) Show that F’ is divisible by 641, providing a counterexample to Fermat’s belief
that all Fermat numbers are prime.

Solution: We have 641 = 640+ 1 = 5-27 + 1 and 641 = 625+ 16 = 5* + 2% 50
527 = —1 (mod 641) and 2* = —5* (mod 641). Then F5 = 22° +1 = 23241 =
24228 41 = 54228 1 1 = —(5-27)*+1 = —(=1)*+1 = 0 (mod 641), showing
that F5 is divisible by 641.

(c) Show that F,, = 7 (mod 10) forn > 2.

Solution: To give a proof by induction, we first have Fp = 22 41 =17 =
7 (mod 10). Suppose that F,, = 22" +1 = 7 (mod 10). Then Fp4q = 22" +1 =
(22")? 4 1. Since 22" = F, — 1 = 6 (mod 10), we have (22")° = 62 =
6 (mod 10), and s0 Fpy1 = (22')° + 1 =6+ 1 = 7 (mod 10).

(d) Show that [ [o<f < Fx = Fm — 2.

Solution: We have Iy = F1—2since 3 = 5—2, so the result is true form = 1. As-
sume that [To <z <pn Fk = Fm — 2. Then [To<k <mr1 Fx = ([To<k<m Fk) Fm =
(Fn—2) Fn = (22" =1) (22" +1) = 22" — 1 = Fp41 — 2 and the result
follows by induction.

(e) Show that (Fy, Fy,) = 1if n # m.

Solution: Without loss of generality, suppose that n < m. If d | F, and d | Fp,
then d | [Jo<x<m Fx and sod | (Fp —2). Butifd | Fpy and d | (Fpy — 2), then
d |2 sod =2ord = 1. Since F,, = 22" 4 1is odd, we have d = 1, and
therefore (£, Fiy) = 1.

Alternate proof: Suppose that n < m and p is a common prime divisor of 22" 41
and 22" +1. Then2?" = —1 (mod p) and 22" =1 (mod p). But 22" is an even
power of 22" since n < m, which implies that 22" =1 (mod p), a contradiction.

(f) Use part (e) to give a new proof that there are infinitely many prime numbers.

Solution: Each F, is either prime or divisible by a prime. Since (Fy, Fy,) = 1 for
n # m, each number F, has a prime divisor that does not divide any other Fj,.
Since there are infinitely many numbers of the form Fj,, there are infinitely many
prime numbers.
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1.4. Integers Modulo n

14. Show that Z7; is cyclic.

Solution: We begin by trying [2]. We have [2]?> = [4], [2]*> = [8], and [2]* =
[16] = [—1]. Exercise 10 shows that the multiplicative order of an element has to
be a divisor of ¢(17) = 16, so the next possibility to check is 8. Since [2]® =
[—1]? = [1], it follows that [2] has multiplicative order 8.

We next try [3]. We have [3]% = [9], [3]* = [81] = [—4], and [3]® = [16] =
[—1]. The only divisor of 16 that is left to try is 16 itself, so [3] does in fact have
multiplicative order 16, and we are done.

19. Using the formula for ¢(n), compute ¢(27), ¢(81), and ¢(p*), where p is a
prime number. Give a proof that the formula for ¢(n) is valid when n = p%, where
p is a prime number.

Solution: p(27) =27(1 — 1) =18 ¢(81) = 81(1 — 1) =54
In general, we have ¢(p%*) = p%(1 — %) = p*~1(p — 1). We prove this by

observing that there are p®~! multiples of p between 1 and p%, inclusive. Thus

there are p* — p*~1 = p®~1(p — 1) numbers that are relatively prime to p in the
interval from 1 to p%.

31. Prove that if m,n are positive integers with (m,n) = 1, then p(mn) =
p(m)p(n).

Solution: By the Chinese remainder theorem the system x = a (mod m), x =
b (mod n) has a unique solution s modulo mn. Define f : Zy, X Z;, — Zyn
by f([alm,[Pln) = [Slmn- If gcd(a,m) = 1 and ged(b,n) = 1, then since s =
a (mod m) and s = b (mod n) we have ged(s,m) = 1 and ged(s,n) = 1. By
Proposition 1.2.3 we have gcd(s,mn) = 1. Conversely, if gcd(s,mn) = 1 then
gcd(s,m) = 1 and ged(s,n) = 1 and since a = s (mod m) and b = s (mod n)
we have gcd(a,m) = 1 and ged(b,n) = 1. Thus [a] and [b] are units in Z,, and
Z,, respectively if and only if [s] is a unit in Z,,,. Since Z,, x Z, has ¢(m) - ¢(n)
units while Z,,, has ¢(mn) units, we have ¢(m)p(n) = (mn).

32. Use Exercise 19 and Exercise 31 to prove Proposition 1.4.8.

Solution: Letn = p{' p3? -+ p{" be a factorization of n into distinct prime powers.

By Exercise 31, ¢(n) = [[j—; (p{") = [Tj= P (pi — 1). The last equality
follows from Exercise 19.
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2 FUNCTIONS

2.1. Functions

1. In each of the following parts, determine whether the given function is one-to-
one and whether it is onto.

d f:RT = R; f(x) =Ilnx

Solution: If Inx; = Inx, for x1,x, € RT, then x; = G = hn(x2) —
showing that f is one-to-one. Given y € R, we have y = In(e”), and so f is also
onto. Note that we have really used the fact that e* is an inverse function for In x.
(See the solution to Exercise 3 (d).)

Alternate solution: Calculus textbooks often give the following conditions for func-
tions whose domain and codomain are subsets of R. A function is one-to-one if and
only if any horizontal line cuts the graph of the function in at most one point. A
function is onto if and only if any horizontal line through the codomain (on the
y-axis) cuts the graph of the function in at least one point. The graph of y = Inx
meets these criteria, so In x is one-to-one and onto.

3. For each one-to-one and onto function in Exercise 1, find the inverse of the
function.

d f:RT = R; f(x) =Ilnx

Solution: Define g : R — Rt by g(y) = e”, forall y € R. Then g o f(x) =
g(f(x)) =e™* = xforall x e RT, and f o g(x) = f(g(x)) = In(e*) = x for
all x € R, This shows that g is the inverse function of f.

Note: Given that In x has an inverse, we could have used Proposition 2.1.7 to solve
Exercise 1 (d).

11. Let k and n be positive integers. For a fixed m € Z, define the formula
f 1 Zy, — Zi by f([x]n) = [mx]g, for x € Z. Show that f defines a function if
and only if k|mn.

Solution: First suppose that k|mn. If [x1], = [x2], then x; = x2 (mod n) and so
n|(x1 —x2) and thus mn|(mxq —mx3). Since k|mn, we then have k|(mx; —mx,),
and so [mx;]r = [mx3]x. Hence f is well-defined.
Conversely, suppose that f is well-defined. Then since [0],, = [n], we have
E?rn]k = f(nln) = f([0]n) = [m -0]x = [0]x. Hence mn = 0 (mod k) and
mn.

17. Let f : A — B be a function. Prove that f is onto if and only if ho f = ko f
implies # = k, for every set C and all choices of functions # : B — C and
k:B—C.
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Solution: Suppose that f is onto. Let » € B. Then there exists a € A with
fl@)=b.Itho f =ko fthenh(b) =h(f(a)) =((ho f)la) = (ko f)a) =
k(f(a)) = k(b). Since h(b) = k(b) forall b € B, we have h = k.

Suppose that f is not onto. Let by € B such that by & f(A). Let C = {1,2}
and define s : B — C by h(b) = 1 forallb € B;definek : B—> Cbyk(b) =1
forb € B, b # bg and k(bg) = 2. Then h # k, since h(bg) = 1 # 2 = k(bg).
On the other hand & o f(a) = h(f(a)) = 1 and k o f(a) = k(f(a)) = 1
since f(a) # bg. Since h o f and k o f have the same domain and codomain,

ho f=kof.

2.2. Equivalence relations

11. Let W be a subspace of a vector space V over R, (that is, the scalars are
assumed to be real numbers). We say that two vectors u,v € V are congruent
modulo W ifu —v € W, written u = v (mod W).

(d) Let V = R?, and let W = {(x,0) | x € R}. Describe the equivalence class
[(x, y)]w geometrically. (This is only the first part of the question.)

Solution: Since (x1, y1) = (x2, y2) (mod W) if and only if (x1, y1) — (x2,¥2) €
W if and only if (x; — x2, y1 — y2) € W if and only if y; = y,, the equivalence
class [(x, ¥)] = {(¢, y) | t € R} is the horizontal line through y.

12. Let T = {(x.y.z) € R* | (x,y,z) # (0,0,0)}. Define ~ on T by
(x1,y1,21) ~ (x2, y2, z2) if there exists a nonzero real number A such that x; =
AX2, y1 = Ayz, and z1 = Azp.

(a) Show that ~ is an equivalence relation on 7.

Solution: (i) Sincex = 1-x,y =1-y,andz = 1-z we have (x, y,z) ~ (x,y,2)
for any (x, y,z) € T. Hence ~ is reflexive.

(ii) Suppose that (x1, y1,21) ~ (X2, y2, 22). Then there exists 0 # A € R such
that x; = Axp, y1 = Ays, and z; = Azp. Now Al eRand 17! # 0. Since
xo = A7 x1, y2 = A7 yq, and 2z, = A7 12y, we have (x2, y2,22) ~ (X1, V1. 21).
Hence ~ is symmetric.

(iii) Suppose that (x1, y1,21) ~ (x2,y2,22) and (x2, y2,22) ~ (X3, y3,23).
Then there exist 0 # A € Rand 0 # i € R such that x; = Ax3, y1 = Ayz, and
z1 = Azp and also xp = ux3, yo = uys, and zo = uzsz. Hence x1 = (Au)xs,
y1 = (Aw)ys, and z; = (Au)zs, while 0 # Au € R. Thus (xq, y1,z1) ~
(x3, y3, z3) and ~ is transitive.

Since ~ is reflexive, symmetric, and transitive it follows that ~ is an equiva-
lence relation on 7T'.

(b) Give a geometric description of the equivalence class of (x, y, z).
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Solution: The class [x, y,z] = {(Ax,Ay,Az) | A € Rand A # 0} is a line through
(0,0,0) and (x, y, z) with the point (0, 0, 0) deleted.

(c) Let (a,b,c) € T, and suppose that (x1, y1,21) ~ (x2, y2,22). Show that if
axy + by, 4+ cz; = 0, then axp + by, + czp = 0. Conclude that

L={xyz1eP?|ax +by+cz=0}

is a well-defined subset of P2,

Solution: Suppose that (x1, y1,21) ~ (X2, y2,22). Then there exists 0 #% A € R
such that x; = Axz, y1 = Ayz, and z; = Azp. Now 0 = ax; + by + cz; =
Alaxy + bys + czp). Since A # 0, we have axp + by, + czp = 0. Hence
L ={[x,y,z]|ax 4+ by + cz = 0} is well-defined.

(d) Show that the triples (a1, b1,c¢1) € T and (az, bz, c3) € T determine the same
line if and only if (al, bl, Cl) ~ (612, bz, 02).

Solution: Let L; be the line determined by (a;, b;,c;). Thus L; = {[x,y,z] |
aix + bjy 4+ cjz = 0} fori = 1,2. Suppose that (a1, by, c1) ~ (az, bz, c2). Then
there exists 0 #% A € R such that a; = Aas, by = Abs, and ¢; = Acp. Thus, if
(x,y,z) e Tandayx + b1y +c1z =0, then (Aay)x + (Ab1)y + (Ac1)z = 0 and
$0asx + byy 4+ cpz = 0. Hence L1 C L. Since ar = A~ 'ay, by = A7 1by, and
¢» = A7 ey, we also have L, C Ly. Hence if (a1,b1,c1) ~ (az, b, c2), then we
have L1 = Lz.

Conversely, suppose that L1 = L,. Hence for (x,y,z) € T we have (1)
a1x + b1y + c1z = 0 if and only if (2) axx + b2y + ¢z = 0. One of ay, by,
¢2 is nonzero; without loss of generality suppose that ay # 0. Then a; # 0, for
otherwise x = 1, y = 0, z = 0 satisfies (1) but not (2). Let A = Z—; Then
0 # A € R Since x = ¢, y =0, z = —a satisfies (1), it also satisfies (2) and
S0 apcy] = cpay, and since x = by, y = —ay, z = 0 satisfies (1), it also satisfies
(2) and 50 azby = baay. Thus ¢; = ey = Acp and by = ZLbhy = Ab,. Hence
ay1 = Aaz, by = Aby, and ¢; = Acy, and so (ay, by, c1) ~ (az, by, c2).

(e) Given two distinct points of P2, show that there exists exactly one line that
contains both points.

Solution: Let [x1, y1,21] # [X2, 2, z2], and treat a, b, ¢ as unknowns. Then the
ax1+byy+cz1 =0
axy + by, +cz =0
of 2 homogeneous equations in 3 unknowns. Hence there exists at least one line L
determined by (a, b, ¢) which both points satisfy. To show that the line is unique
we use the “Rank-Nullity” theorem of linear algebra. Suppose that both points
[x1, v1,21] and [x3, y2, z2] satisfy the lines L1 = {[x, y,z] | a1x + b1y + c1z =
0} and Ly = {[x,y,z] | aax + bay + c2z = 0}. Define 7; : R> — R by
Ti(x,y,z) = aix + bjy + c¢jz fori = 1,2. Clearly T; is a linear transformation
and since at least one of a;, b;, ¢; is nonzero the rank of 7; is 1 and the nullity

system has a nontrivial solution (a, b, ¢) since it consists
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of T; is 2. Since both (x1, y1,z1) and (x2, y2, z2) belong to the nullspace of T;
and since they are linearly independent, they form a basis for the nullspace of both
Ty and T». Consider any vector (xg, Yo, Zg) Which is not in the nullspace of T
(or T3). Then Ti(x¢, vo,20) = AT2(x0, Yo, zo) for some 0 # A € R. Consider
Ty — AT,. The nullspace of 77 — AT> is spanned by the three linearly independent
vectors (xg, Yo, 20), (x1, y1.21), and (x2, y2, z2). Thus the nullspace of 77 — AT»
is all of R? and so T} = AT». Applying T; and 7> to (1,0, 0), (0, 1,0) and (0,0, 1)
we see that a1 = Aaj, b1 = Aby, and ¢; = Acy. Thus (ay, b1, c1) ~ (az, bz, c2)
and by part (d) they determine the same line.

(f) Given two distinct lines, show that there exists exactly one point that belongs to
both lines.

Solution: This is a similar argument to the one in (e).

(g) Show that the function f : R?> — P? defined by f(x,y) = [x,y.1]is a
one-to-one function.

Solution: Suppose that f(x1,y1) = f(x2,y2). Then [x1,y1,1] = [x2,y2,1].
Thus x; = Ax3, y1 = Ay, and 1 = A - 1. Hence A = 1 and (x1, y1) = (x2, y2).
Therefore f is one-to-one as required.

(h) Show that the embedding of part (g) takes lines to “lines.”

Solution: A line in the affine plane has the form ax 4+ by 4+ ¢ = 0 where not both
a and b are zero. Thus (x, y) belongs to ax + by + ¢ = 0 if and only if [x, y, 1]
belongs to L = {[x, y,z] | ax + by + cz = 0}.

(i) If two lines intersect in R?, show that the image of their intersection is the
intersection of their images (under the embedding defined in part (g)).

Solution: Suppose that a1 x + b1y + ¢; = 0 intersects azx + b2y + ¢ = 0 at the
point (xg, yo). If L; = {[x,y,z] | aix + biy + ¢ciz = 0} fori = 1,2, then we
have that [xo, o, 1] belongs to the intersection of L and L.

(j) If two lines are parallel in R?, what happens to their images under the embedding
into P2?

Solution: If ajx + b1y + ¢1 = Ois parallel to azx + b2y + ¢ = 0, then either (1)
by = by =0o0r(2) Z—: = a—; Suppose that by = by = 0. Then the point [0, 1, 0]
belongs to both L and L, where as before L; = {[x, y,z] | aix +b;y +ciz = 0}
for i = 1,2. On the other hand, if Z—: = i—;, then [—by,a1,0] = [—b2,az,0]
belongs to L and L.

From (i) and (j) we see that in P? all lines intersect.

2.3. Permutations

15. Let t € S, be the cycle (1,2, ..., k) of length k, where k < n.
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(a) Prove that if 0 € Sy, thenoto™! = (6(1),0(2),...,0(k)). Thus cro~lisa
cycle of length k.

Solution: Assume thato € S, wherek <n.If j € {o(1),0(2),...,0(k—1)} then
say j = 0(i). Nowoto 1(j) =oto " (0(i) =0ot(i) =o(i+1).If j = o(k),
thenoto~1(j) = oo (o(k)) =ot(k) =o(1).If j &{o(1),0(2),...,0(k)},
then 0= 1(j) ¢ {1,2,...,k} and so oto~!(j) = o(6c~'(j)) = j. Hence
oto = (0(1),0(2),...,0(k)).

(b) Let p be any cycle of length k. Prove that there exists a permutation o € Sy
such that cto~! = p.

Solution: Assume that t, p € S, where k < n, and let p = (a1,a2,...,ax). For
the numbers i, with i < n, that do not appear in p, we can choose an ordering
1 2 ... kK k+1 ... n
Ak+1,---,an. Then we can define o = +
ay dz ... dg Adgy41 ... QAp

andoto~! = (0(1),...,0(k)) = (a1, az,...,ar) = p.

18. View S3 as a subset of S5, in the obvious way. For 0,7 € S5, define 0 ~ 7 if
-1
ot € 83.

(d) Determine the total number of equivalence classes.

Solution: The equivalence class of y is {0 € S5 | 0 ~ u}, which is equal to
{0 €8s |ou! =cforsomer € S3} = {0 € S5 | 0 = tu forsome t € S3}.
Thus we can find the equivalence class of © € S5 by finding all products of the form
T, for t € S3. If ty 0 = o u for some 71, 75, then multiplying on the right by M_l
shows that 7; = 1. Thus the 6 permutations in S3 will yield 6 distinct products of
the form tp in the equivalence class of p. It follows that every equivalence class
has 6 members. Since S5 has 120 elements, the total number of equivalence classes
is 129 = 20.
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3 GROUPS

3.1. Definition of a Group

4. Prove that multiplication of 2 x 2 matrices satisfies the associative law.

Solution: Let A = | ¢11 412 | 'p biw iz cand C = | €11 1z |
azi a2 ba1 bay C21 Can
Then

A(BC) = ain an bi1 b1z c11 C12
a1 a ba1 by c21 €22
_ ail ar biicir + biacar briciz +biacas | _
a1 az baici1 + baaca1 baic1z2 + bazean

ar1biicirtaribiacartarnbaicritalnbaacay aribriciztaiibiacortainbaiciztaizbazcon
az1biicirtazibiacartazrabriciitazraboacay azibriciztazibiacaxtazrabriciatazrabracan

| anibi1 +azba1 aribiz +aizbaa c11 C12
az1b11 + axxbz1  azibiz + bazbos C21 €22

_ ([ ain an } |: bi1 b1z }) [ c11 12 ]
a1 az ba1 b2 C21 €22

= (AB)C.

11. Show that the set of all 2 x2 matrices over R of the form |: ’g Ii ] withm # 0

forms a group under matrix multiplication.

m b n c| | mn mc+b
Solution: (i) The product|: 0 1 ][ 0 1 i| = |: 0 | i|of two ele-

ments of the given form has the proper form since mn # 0. Thus matrix multipli-
cation is a binary operation on the given set.
(i1) Matrix multiplication is associative by Exercise 4.

(iii) The matrix has the proper form and it is the identity element

1
0 1
under matrix multiplication.

(iv) Given |: ’g ll) ] consider I/Om —b/ n; . This matrix has the proper
. . . m b I/m —b/m | [ 10
form and is the required inverse since [ 0 1 :| |: 0 1 :| = |: 0 1 :|

] )5 4]0
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13. Define *x on Rbya *b = a + b — 1, for all a,b € R. Show that (R, %) is an
abelian group.

Solution: Since a x b = b x a for all a,b € R, the operation is commutative, and
this eliminates some calculations.

(i) The operation * : RxR — R is the composite of ordinary addition followed
by the function f(x) = x — 1, so it is a well-defined function.

(i1) The operation is associative since
(axbyxc=@+b—-—1)xc=(@+b—-1)4+c—1=a+b+c—2and
axbxc)=axb+c—-1)=a+b+c—-1)—1=a+b+c—-2.

(iii) Since 1 *b =14+ b — 1 = b for all b € R, it follows that 1 is an identity.
(We also have b x 1 = b since the operation is commutative.)

(iv) The inverse of a is 2 —a, sincea x (2—a) =a+ (2—a)—1 = 1. (Again,
since the operation is commutative we do not need to check that (2 —1) xa = 1.)

19. Let G be a group. For a, b € G, prove that (ab)" = a"b" for all n € Z if and
only if ab = ba.

Solution: If (ab)" = a™b" for all n € Z, then in particular (ab)?> = a?b?, so
ab = ba by Example 3.1.2.

Conversely, suppose that a, b € G with ab = ba.

We will first show by induction that ha™ = a"b for all positive integers 7.
The result holds for n = 1 by hypothesis. Now suppose that bak = a*b. Then
ba*kt! = baka = a¥ba = a¥ab = a¥+1b, so the general result holds.

We next show that (ab)” = a"b" for all positive n. The result holds forn = 1
by hypothesis. Now suppose that (ab)X = akb¥. Then (ab)*+! = ab(ab)k =
abakb* = aakbbk = gk +1pk+1,

We also have (ab)? = e = a®b°.

Since ab = ba, we have (ab)™' = (ba)~!, and thus b~la=! = a= b1,
Finally, if n < O then say n = —m, where m > 0. Hence (ab)" = (ab)™ =
((ab)™1)y" = (b~ la= V)" = (a7 b= )" = (a=H)™(b~1)™ = a"b" as required.

20. Let G be a group. Prove that a™a” = a™ 1" foralla € G and all m,n € Z.

Solution: We let n € Z and prove that a™a” = a™*" for all a and all positive
integers m by induction. If m = 1, thenala” = a-a" = a"*!. If a™a"™ = a™*",
then a™t1g" = (aam)an — a(aman) — a(am+n) = gmtntl — a(m+1)+n'
Form = 0 we have a%a" = e -a"* = a" = a®™".
Ifm <0,saym = —r,thena™a” =a"a" = (a ) (a )™ =

(a~Hyr+Em = (g ymtn) = (=)~ hymtn = gmtn og required.

21. Let G be a group. Prove that (a)" = a™" foralla € G and all m,n € Z.

Solution: We let n € Z and prove that (¢™)" = a™" for all a and all positive
integers m by induction. If m = 1, then (a!)"” = a" = a'™". If (a™)" = a™",



12 BEACHY/BLAIR: ABSTRACT ALGEBRA CHAPTER 3

then (a”T1)* = (a™ - a)" = (a™)"a" (by the proof in Exercise 19, since ™ and
a commute) and so (a™T1)" = g™" . g = gMntn = gmthn,

Form = 0 we have (@) = (a®)" = e" = ¢ = a® = a"".

If m < 0, then m = —r for some r > 0 and so (a™)" = (a™")" =
(@H")" = (@Y™ =a™"" = a™", as required.

26. Show that if G is a finite group with an even number of elements, then there
must exist an element ¢ € G with a # e such that a? = e.

Solution: If G is any group and x € G with x2 # e, then x # x~! and (x~1)? =
(x2)~! #£ e. Thus G has an even number of elements x with x2 # e. If G has an
even number of elements, this leaves an even number of elements x with x? = e.
There is at least one such element, the identity e. Thus there must be at least one
more element a, with a # e and a? = e.

3.2. Subgroups

1 0
9. Let G = GL3(R). Show that H = a 1 0 is a subgroup of G.
b ¢ 1
0 0 1 0 O
Solution: We will use Proposition 3.2.2. If 1 01|, ap 1 0 |eH,
Cl 1 b2 (6] 1

1 0 O 1 0 O 0 0
then| a1 1 O a, 1 0 :| ai +a2 1 0 |isin
b1 1 1 by ¢y 1 b1 +crar+by c1+cr 1
1 00 1 00
H. Theidentity matrix [ O 1 O |belongsto H.If| a 1 0 |isin H,then
0 0 1 b ¢ 1
1 007" 0 0
a 1 0 = —a 1 O |[isin H. Therefore H is a subgroup
b ¢ 1 —b+ca —c 1
of G

Note: The group H is known as the continuous Heisenberg group.

17. Prove that the intersection of any collection of subgroups of a group is again a
subgroup.

Solution: We will use Corollary 3.2.3. The identity of the group belongs to each
subgroup, so it belongs to their intersection. If elements a, b belong to the intersec-
tion, then they belong to each subgroup in the collection, and so ab™! belongs to
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each subgroup. This shows that ab~! belongs to the intersection of all subgroups
in the collection.

19. Let G be a group, and leta € G. The set C(a) = {x € G | xa = ax} of all
elements of G that commute with « is called the centralizer of a.

(a) Show that C(a) is a subgroup of G.

Solution: We will use Proposition 3.2.2. (i) Let x, y € C(a). Then xa = ax and
ya = ay. Hence (xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy) and
so xy € C(a). (ii) Since ea = a = ae, we have e € C(a). (iii)) If x € C(a),
then xa = ax andso x " la = (x " la)(xx™!) = x Nax)x™! = x" 1 (xa)x~! =
(x"'x)ax™! = ax~! and x~! € C(a). Therefore C(a) is a subgroup of G.

21. Let G be a group. The set Z(G) = {x € G | xg = gx forall g € G} of all
elements that commute with every other element of G is called the center of G.

(a) Show that Z(G) is a subgroup of G.

Solution: (i) Let x,y € Z(G) and g € G. Then xg = gx and yg = gy. Hence
(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy) forall g € G andso xy €
Z(G). (ii) Since eg = ge forall g € G, we have e € Z(G). (iii) Let x € Z(G)
and g € G. Thenxg = gx andso xlg = xlgxx™! = x"Ixgx~! = gx~! for
allg € G. Thus x~! € Z(G). Thus Z(G) is a subgroup of G by Proposition 3.2.2.

3.3. Constructing Examples

4. Show that the list of elements of GL,(Z,) given in Example 3.3.6 is correct.

Solution: To construct an invertible 2 x 2 matrix A over Z,, we can use any honzero
vector as the first row. Thus the first row can be (1,0), (0, 1), or (1, 1). Then the
second row must be linearly independent of the first, so it cannot be a multiple of
the first row. If (1, 0) is the first row, we can use (0, 1) or (1, 1) as the second. If
(0, 1) is the first row, we can use (1,0) or (1, 1) as the second. If (1, 1) is the first
row, we can use (1, 0) or (0, 1) as the second. This gives us the 6 invertible matrices
in Example 3.3.6:

ERYIERY I RREIRTIERS (R

7. Let F be a field. Compute the center of GL,(F').

Solution: As usual, we let 1 denote the multiplicative identity of F'. We first note

that [ (1) i :| and [ i (1) ] are invertible, and so they belong to GL,(F). Let

X=[il 2:|EZ(GL2(F)).Then|:Z Z’iz}=[z ZH(I) i]:
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(1 1][a b a+c b+d

01 || ¢ d]_[ c d ]aﬂdsoa—a+canda+b_b+d,

Thus ¢ = 0 and a = d. Furthermore, atb b} _|ab o] _
a a 0 a 1 1

1 0][a b a b . )

1 1[0 a]_[a a+b:|1mphesa+b—aarldSOb—O.Thus

X:[g g]andSOZ(GLz(F))g{[g 2]'o¢aeF§.Sime[g 2]

is clearly in the center, we have Z(GLy(F)) = { |: g 2 }

aeFX}.

Comment: This proof actually computes the center as the intersection of the cen-
tralizers of just two elements, the particular matrices used in the proof.

15. (a) Generalize Definition 3.3.3 to the case of the direct product of n groups.
Definition: Let G1, G», ..., G, be groups. We define

Gy xXGy X+ x Gy ={(ay,az,...,ap) |a; € G; for i =1,2,...,n}.

(b) Generalize Proposition 3.3.4 to the case of the direct product of n groups. Prove
that your generalization is true.

Proposition. Let G1, G2, ..., G, be groups.
(i) The direct product G; x G, X --- x Gy, is a group under the multiplication

(al,az, . ,an)(bl,bz, . ,bn) = (albl,azbz,...anbn) .

(ii) If a; € G; has order m; fori = 1,2,...,n,thenin Gy X G, x ---x G, the
element (ai,as, ...ay) has order lem[my, my, ..., my].

Proof: (1) The given multiplication defines a binary operation. The associative law
holds since for 1 <i <n and all a;, b;, ¢; € G; we have
(al,az, ey an)((bl, bz, ey bn)(Cl, Coyevny Cn))
= (al, az,... ,a,,)(blcl,bzcz, . bncn)
(ar(bicr),az(baca), ... an(bucy))
((a1b1)cy, (azbz)ca, ..., (anbp)cn)
= (a1b1,a2bs, ..., ayby)(c1,c2,...,Cn)
= ((al,az, e ,an)(bl, bz, e ,bn))(Cl, Coyeeny Cn).
If e; is the identity element of G; fori = 1,2,...,n, then (ey,ea,...,ey) is
easily seen to be the identity element of G; x G, X -+ X G,. Finally, for any
element (a1,ds,...,an) € Gy X G X -+ x Gy, we have (ay,as,...,a,)"! =
(al_l,az_l, cooayh).
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(ii) Let o(a;) = m; fori = 1,2,...,n. The order of (ay,as,...,ay) is the
least positive integer m such that (ay,as,...,a,)™ = (e1,e2,...,e,). Thus for
each i, we have a]' = e; and so m; |[m. The least such m such that m; [m for
i=1,2,...,nislecm[my,mo, ..., my].

19. Let G be a group of order 6. Show that G must contain an element of order 2.
Show that it cannot be true that every element different from e has order 2.

Solution: Since |G| is even, by Exercise 3.1.26 there is at least one element of
order 2. Suppose that |G| = 6 and every element of G has order 2. Leta,b € G,
a#b,a#eb#e. Thena? = b? =e,soab = e implies b # a. Thus ab # e,
so o(ab) = 2 and then ab = (ab)™! = b= 'a™! = ba. Hence H = {e,a,b,ab}
is a subgroup of G of order 4, contradicting Lagrange’s theorem.

20. Let G be a group of order 6, and suppose that a, b € G with a of order 3 and b
of order 2. Show that either G is cyclic or ab # ba.

Solution: Let a,b € G, with o(a) = 3 and o(b) = 2. We claim that G is cyclic
iff ab = ba. If ab = ba, then o(ab) = Icm[2,3] = 6 and G = (ab) is cyclic. If
ab # ba, then G is not abelian and hence not cyclic.

21. Let G be any group of order 6. Show that if G is not cyclic, then its multiplica-
tion table must look like that of S3.

Solution: By Exercises 19 and 20, if G is not cyclic then there exist an element
a of order 3 and an element b of order 2 such that ab # ba. Now the elements
e,a,a?, b are all distinct. By cancellation ab # a, ab # a2, and ab # b, and
since a” ! = 42 =% b we have ab # e. Thus e,a,a?, b,ab are all distinct. Again
by cancellation a?bh # a, a’?b # a?, a®>b # ab, and a’b # b. We also have
a? # b, so ab # e. Thus G = {e,a,az,b,ab,azb}.

What is ba? By cancellation ba # a, ba # a2, and ba # b. Since b # a2,
we have ha # e. By assumption ba # ab. By elimination ba = a®b. We can now
complete the multiplication table for G.

e a a b ab  a’b
e e a a’ b ab a®b
a a a? e ab a’b b
a? | a* e a a*b b ab
b b a*h ab e a? a
ab | ab b a*b e a?
a | a®b  ab b a? a e
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3.4. Isomorphisms

12. For the field F, let H = {[i 2 ]

c.d €F, d# 0} C GLy(F).

(b) Show that K = {[ ’g

IZ iHm,b eF, m# 0} is a subgroup of GL, (F) that

is isomorphic to H.

Solution: Leta = |: (1) (1) ] € GLy(F). Then for |: i 2 ] € H we have

Loale=[Volle a]lho)=15 ][V o]0 1)

This makes it clear that aHHa~' = K, so K is a subgroup by Example 3.2.13, and
then H =~ aHa™' = K by Example 3.4.3.

26. Define x on Rbya xb = a+ b — 1, forall a,b € R. (See Exercise 13 of
Section 3.1.) Show that the group G = (R, *) is isomorphic to the group (R, +).

Discussion: Since we need a one-to-one mapping from R to R, is it possible that
one of the simplest cases, a linear function of the form ¢ (x) = mx+b, might work?
Of course, we need m # 0 to make certain that ¢ is a one-to-one correspondence.
Since the solution to Exercise 13 of Section 3.1 shows that 1 is the identity element
of G, and since 0 is the identity element of R, we would need to have ¢(1) = 0,
which forces b = —m.

Solution: For any 0 %= m € R, define ¢ : G — R by ¢(x) = mx — m, for all
x € G. Itis clear that ¢ is one-to-one and onto since m # 0. For alla,b € G
we have ¢p(a *b) = p(a+b—1)=m(a+b—1)—m = ma + mb —2m and
¢a)+¢ () = (ma—m)+(mb—ml) = ma+mb—2m,so ¢p(axb) = ¢(a)+¢(b).
Thus ¢ respects the operations in the two groups, and so ¢ does indeed define an
isomorphism from (G, *) onto (R, +).

Note: We have actually shown that there are infinitely many different possible iso-
morphisms. Of course, the simplest case would be to let m = 1 and just use
0(x) = x—1. Then we can write ¢ as a composite function {6, where ¥ (x) = mx
defines an isomorphism from (R, +) onto itself.

3.5. Cyclic Groups

13. Show that in a finite cyclic group of order n, the equation x™™ = e has exactly
m solutions, for each positive integer m that is a divisor of n.

Solution: Let G = (a), where o(a) = n. If m|n then n = mk for some k € Z.

We have o(a¥) = (k”—n) = % = m, and so {e,a*,a?*, ... am=Dk} consists of m
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distinct solutions of x™ = e. Suppose that ¢ is a solution to x” = e. Then ¢ = a’
for some j, and o(c) = ﬁ, where ﬁ | m. Thus there exists a positive integer ¢
such that nt = m(j,n). Then mkt = m(j,n) and so (j,n) = kt. Since (j,n)|Jj
we have j = k - ¢ - r for some positive integer 7. Thus ¢ = a/ = a®t" and so

c efe,ak a? ... qm—Dky

17. Let G be a finite group, and suppose that for any two subgroups H and K
either H C K or K C H. Prove that G is cyclic of prime power order.

Solution: Since G is finite, it has an element of maximal order, say a. Then (a) can-
not be properly contained in any other cyclic subgroup, so it follows that {(b) < (a)
for every b € G. Thus every element of G is a power of @, and so G is cyclic, with
G = (a). Suppose that |G| has two distinct prime divisors p and g. By hypothesis
we have either (a?) C (a?) or (a?) C (a?). But then Corollary 3.5.4 (c) implies
that either ¢ | p or p|q, a contradiction. We conclude that G is cyclic of prime
power order.

21. Prove that if p and ¢ are different odd primes, then Z;,(q is not a cyclic group.

Solution: We know that [—1],4 has order 2, so by Exercise 13 it is enough to find
one other element of order 2. The Chinese remainder theorem (Theorem 1.3.6)
states that the system of congruences x = 1 (mod p) and x = —1 (mod q)
has a solution [a]p4, since p and g are relatively prime. Because p is an odd
prime, [—1]p4 is not a solution, so [alpq # [~1]pg- But > = 1 (mod p) and
a’? = 1 (mod gq), so a®> = 1 (mod pq) since p and g are relatively prime. Thus
[a]pq has order 2.

3.6. Permutation Groups

21. In the dihedral group D, = {a’b/ |0 <i <n, 0 < j < 2} with o(a) = n,
o(b) =2, and ba = a~ b, find the centralizer C(a) = {x € D, | xa = ax}.

Solution: The centralizer C(a) contains all powers of a, so we have (a) € C(a).
This shows that C(a) has at least n elements. On the other hand, C(a) # Dj,
since by definition » does not belong to C(a). Since (a) contains exactly half of
the elements in D, Lagrange’s theorem show that there is no subgroup that lies
strictly between (a) and D, so (a) € C(a) € D, and C(a) # D, together imply
that C(a) = (a).

22. Find the center of the dihedral group D,,.

Solution: Let n > 3. Then D, = {a’,a’b 10 <j <n}witha" =b?> =¢
and ba = a"~'b. By induction we have ha’ = a"/b. Now if x = a’b then
xa = a’ba = a’™ b and ax = a/T'h. Hence xa = ax if and only if
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j+n—1=j+1 (mod n), and this happens if and only if » = 2. Hence x = a’b
is never central.

Now let x = a’. Since x commutes with all powers of a, it will be central if
xb = bx.Butbx = ba’ =a" /b =a’bifandonlyifn—j = j (mod n). This
holds for0 < j <nonlyif j =0or j = m whenn = 2m. Thus if n = 2m, then
Z(Dy) = {e,a™} and if n is odd, then Z(D;,) = {e}.

3.7. Homomorphisms

6. Let n and m be positive integers, such that m is a divisor of n. Show that
¢ Z; — Z, defined by ¢([x],) = [x]m, for all [x], € Z, is a well-defined
group homomorphism.

Solution: First, ¢ is a well-defined function by Exercise 11 of Section 2.1. Next, ¢
is a homomorphism since for [a],, [b], € Z,;, we have ¢ ([a],[b]n) = ¢([ably) =

[ablm = [alm[blm = ¢([aln)P([D]n).

8. Define ¢ : R — C* by setting ¢(8) = €%, for all 6 € R. Use this version of
the formula in Example 3.7.11 to show that ¢ is a group homomorphism.

Solution: We need to be careful, since the operation in the first group is addition,
and in the second it is multiplication. If 61, 6, € R, then ¢ (0] + ;) = ' (?1102) —
eifr+ita — o101,192 — §(9,)¢(0,), and so ¢ preserves the respective operations.

14. Prove that SL,, (R) is a normal subgroup of GL, (R).

Solution: First, SL,(R) is a subgroup of GL,(R) since it contains the identity
matrix, and if 4, B € SL,(R), then det(4) = det(B) = 1, so det(AB~!) =
det(A)det(B~1') = 1, and thus AB~! € SL,(R).

If A € SL,(R) and P € GL, (R), then det(PAP 1) =det(P) det(A) det(P ')

=det(P)-1- =1,s0 PAP~! € SL,(R), showing that SL, (R) is normal
in GL, (R)

Alternate solution: Here is a slightly more sophisticated proof. Example 3.7.1
shows that the determinant defines a group homomorphism. After observing that
SL, (R) is the kernel of the determinant homomorphism from GL,(R) into R, the
result follows from Proposition 3.7.4 (a) (which shows that the kernel of any group
homomorphism is a normal subgroup).

det(P)

24. Let Gy, ...,Gy, be groups, forn € Z*, and let G = {(g1,....8n) | g&i € Gi}
be the group of n-tuples with entries in G;.

(a) Define 0; : G; — G by 0;(g;) = (e1,...,€i—1,8i,€i+1,---,€n), Where g; €
G; and ¢; is the identity element of G;. Show that ¢; is a group homomorphism
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and H; = 0;(G;) = {(e1,...,&i.....en) | g € G;} is a subgroup of G with
H; = G;.

Solution: Since 0;(a;b;) = (e1,...,aibi,...,ep) =
(e1,....ai,....ep)(e1,...,bi,...,en) = 0;(a;)0;(b;) for a;, b; € Gj, it follows
that 6; is a group homomorphism, and then H; = 6;(G;) is a subgroup of G by
Proposition 3.7.6. It is clear that 8; is one-to-one and maps G; onto H;.

(b) Show that G = H{H;--- Hy, that elements of H; and H; commute, for all
1<i<j<n,andthat H; N Hy---Hi—1Hjy1--- H, = {e}, foralll <i <n.

Solution: We have (g1, .., i, .., &n) =

(g1,...€i,..,en) - (e1,...&i,...,en) - (e1,...ei,..,gn) and
e1,...&i,-n€j,...en)er,...€i,...8j,...en) = (€1,...&i .., &j,.»n) =
(e1,...€i,...8j,...en)(e1,...gi,...€j,...,ep) forall g; € G; and g; € G;. In each
element of the product Hy--- H;—_1H;4+1--- Hy, the ith entry is e;, and so the
intersection with H; is (eq, .., e, .., én).

(c) For all (g1,...,8i—1,&i,&i+1,--.,8&n) € G, define w; : G — G; by setting
i ((g1,.--,8i-1-8i>8&i+1>----8n)) = &i- Show that m; is a group homomor-
phism with kernel Hy --- Hi_1Hj 41 -+ Hyp.

Solution: We have m; ((ay,..,ai,..,an)(b1,...bi,...,by)) =

mi ((@1b1, .., aib;, ..,anby)) = aib; = mw; ((a, ..,ai, ..,an)) ;i ((b1,...bi. .., by)),
foralla;,b; € Gj, and so m; is a group homomorphism. We have

i ((g1,--,&i»-»8n)) = e; if and only if g; = ¢;, and so it is clear that ker(s;) is
the product of the other subgroups H;, with H; omitted.

(d) Show that r; 0 6; = 1g,,for 1 <i <n.

Solution: We have (r; 0 0;)(g;) = m; (0;(gi)) =
mi((er,....€i—1.8i.€i+1,.-.,€n)) = gi,for g; € Gj.

(e) Define ¥ : G — G by ¥(g) = (61m1(8))(0272(g)) -+ (On7n(g)), for all
g € G. Show that Y = 1g, and that if 0 € S, then for all g € G we have

V(g) = (Os(1)e(1)(8)(O52)5(2) (&) - (O (n) T (n) (£))>

Solution: We have 6;7;(g) = 0;(gi) = (e1,...,€i—1,&i,€i+1,...,€n), for any
element g = (g1, g2....,8&n) € G. The product of the elements 6;7; (g), over all
1 <i < n,yields g, and so ¥(g) = g. Since the elements 6;7;(g) and 6,7, (g)
commute, the product over all i can be taken in any order.

(f) Let G’ be a group. Show that given group homomorphisms ¢; : G’ — G, for
1 < i < n, there exists a unique group homomorphism ¢ : G’ — G such that
i = ¢, forl <i <n.

Solution: Suppose that group homomorphisms ¢; : G’ — G; are given, for 1 <
i <n.Forx € G, restating the condition 7;¢p = ¢; shows that the i th component
of ¢(x) must be ¢;(x), so the only way to define ¢ : G’ — G is by setting
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P (x) = (P1(x), P2(x), ..., Pn(x)). But does this define a group homomorphism?
Yes, since for a,b € G’ we have

¢p(ab) = (¢1(ab).....di(ab).....¢n(ab))

($1(@)p1(D). ... hi ()i (h).....Pn(a)¢pn(D))
($1(a).....9i(a),....¢n(a)) (P1(D).....¢i(D).....¢u (D))
= ¢(a)p(d).

3.8. Cosets, Normal Subgroups, and Factor Groups

5. Use Example 3.8.1 and the parity mapping defined in Example 3.7.8 to give a
short proof that in any subgroup H of S, either all permutations in H are even, or
else half of the permutations in H are even and half are odd.

Solution: Let ¢ : S, — {£1} be the homomorphism defined in Example 3.7.8,
which maps even permutations to 1 and odd permutations to —1. Define 6 : H —
{£1} to be the inclusion mapping followed by ¢. Since 6 is the composite of two
homomorphisms, it is a homomorphism. Then either 6 is the trivial mapping, in
which case every permutation in H is even, or else there are two cosets of the
kernel: the set of even permutations in H and the set of odd permutations in H.
This completes the proof, since by Example 3.8.1 both cosets have the same number
of elements.

16. Let G, G2, G3 be groups such that G is a homomorphic image of both G5 and
G3. If |G,| = 24 and |G3| = 30, list the possibilities for G (up to isomorphism).

Solution: The order of G; must be a common divisor of 24 and 30, so it is a divisor
of 6. Thus G is isomorphic to one of the groups on this list: the trivial one-element
group, Z,, Z3, Zg, or S3. Recall that by Exercise 21 of Section 3.3 any group of
order 6 is either cyclic or isomorphic to the symmetric group S3.
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4 POLYNOMIALS

4.1. Fields; Roots of Polynomials

7. Prove that if p is a prime number, then the multiplicative group Z; is cyclic.

Solution: We will use Proposition 3.5.9 (b), which states that a finite abelian group
is cyclic if and only if its exponent is equal to its order. Suppose that the exponent
of Z; is m. Then a™ = 1 for all nonzero a € Z, and so the polynomial x — 1
has p — 1 distinct roots in Z;, and it follows from Corollary 4.1.12 that p — 1 < m.
By definition, m < p — 1 = |Z;|, som = |Z| and therefore Z; is cyclic.

8. Let p be a prime number, and let @, b € Z;‘. Show that if neither a nor b is a
square, then ab is a square.

Solution: By Exercise 7, we can choose a generator g for Z;;. If neither a nor b is
a square, then @ = g* and b = g*, where s and ¢ are odd. Therefore ab = (g¥)2,
where s + t = 2k, and so ab is a square.

4.2. Factors

12. Find the irreducible factors of 2x3 + x% + 2x + 2 over Zs.

Solution: We first factor out 2, using (2)(—2) = —4 = 1 (mod 5). This reduces
the question to factoring p(x) = x3 —2x2 + x + 1. Checking for roots shows that
p0) =1, p(1) =1, p(—1) = =3, p(2) = 3, and p(—2) = —2, so p(x) has no
roots in Zs. Then p(x) is irreducible over Zs by Proposition 4.2.7.

15. Show that x* + 1 has a proper factorization over Z,, for all primes p.

Solution: We will show that x* 4 1 can always be factored as the product of two
quadratic polynomials.

If p =2, thenx* + 1 = (x2 4+ 1)2.

If p = 3, then x* + 1 = (x2 + x + 2)(x% + 2x + 2). (See the answer to
Exercise 14 (d).)

If p > 5, then Z, contains the elements —1, £2. Exercise 8 of Section 4.1
shows that if neither —1 nor 2 is a square, then their product —2 must be a square.

If —1 is a square, say a2 = —I, then x* + 1 = (x2 4+ a)(x? —a). If 2isa
square, say a? = 2, then x* + 1 = (x2 + ax + 1)(x? —ax + 1). If =2 is a square,
saya? = —2,thenx* + 1 = (x2 + ax — 1)(x%2 —ax —1).

This completes the proof.

Comments: The proof gives no idea as to how we arrived at these factorizations.
As motivation, we offer the following discussion. Since x* 4 1 is monic, we can
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assume that its factors are monic. Suppose we have a factorization x* + 1 =
(x2 4+ ax + b)(x% + cx + d). Looking at the coefficients of x> and x, we see that
¢ = —a, and then ad = ab. If a = 0, then x* + 1 = (x2 + b)(x? + d), forcing
d2: —b and so the only possible factorization is x* + 1 = (x? + b)(x? — b), with
b* = —1.

If a # 0, then cancelling yields d = b, forcing b = =+1 since b> = 1. In
this case the factorization must be x* + 1 = (x2 4+ ax + 1)(x2 —ax + 1) or
x*+1=x%+ax —1D(x%—ax—1).

4.3. Existence of Roots

2. Prove Proposition 4.3.4.

Solution: (a) Given that a(x) = c(x) (mod p(x)) and b(x) = d(x) (mod p(x)),
it follows that p(x) | (a(x) — c¢(x)) and p(x)|(b(x) — d(x)). Therefore
p(x)[(a(x) —c(x) +b(x)—d(x)), and so p(x)[((a(x) +b(x)) — (c(x) + d(x))).
Hence a(x) + b(x) = c¢(x) + d(x) (mod p(x)). Furthermore,

a(x)b(x) —c(x)d(x) = a(x)(b(x) — d(x)) + d(x)(a(x) — c(x)) implies that
p(x) | (a(x)b(x) — c(x)d(x)). Hence a(x)b(x) = c(x)d(x) (mod p(x)).

(b) Since ged(a(x), p(x)) = 1, there exist polynomials f(x) and g(x) such that

f(x)a(x) + g(x)p(x) = 1. Since a(x)b(x) = a(x)c(x) (mod p(x)), we have

p(x)[(a(x)b(x) —a(x)c(x)). Now

b(x) —c(x) = f(x)a(x)b(x) + g(x) p(x)b(x) — f(x)a(x)c(x) — g(x) p(x)c(x)
= f()(a(x)b(x) —a(x)c(x)) + p(x)(g(x)b(x) — g(x)c(x)).

Since p(x)|a(x)b(x) — a(x)c(x), we have p(x)|(b(x) — ¢(x)), and therefore

b(x) = ¢(x) (mod p(x)).

17. Prove that the set of all matrices over Z3 of the form [ z ] is a field

a

-b
isomorphic to Z3[x]/ (x2 + 1).
Solution: Let F be the given set of matrices, and note that F' has 9 elements. The
formulas in Appendix A.5, although given for matrices with entries in R, remain
valid for matrices with entries in Z3. It is then easy to check that F is closed
under addition and multiplication, has a zero element and additive inverses, has a
multiplicative identity, and satisfies the associative, distributive, and commutative
laws. For a matrix in F, if a # 0 and » = 0, then a2 +b%2 =1;ifa = 0 and
b # 0,thena®? +b? = 1;ifa # 0and b # 0, then a? 4+ b? = 2. Thus the nonzero
matrices in F are invertible, since they have a nonzero determinant, and so F is a
field.
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Define ¢ : Z3[x]/ (x* + 1) — F by ¢([a+bx]) =a[ (1) (1) ]“’[ _(1) (1) }

The mapping is well-defined since each congruence class in Z3[x]/ <x2 + 1) con-
tains a unique representative of the form a + bx, and simply listing the possible val-
ues of ¢ shows it to be a one-to-one correspondence. It is clear that ¢ will preserve
addition. That ¢ preserves multiplication depends on the fact that the congruence

class [x], which satisfies the equation [x]> = —[1], maps to the matrix |: _(1) (1) ],

017 10
which satisfies the corresponding equation |: 1 0 ] = — [ 0 1 }

20. Find all powers of [x] in Z3[x]/ (x? + x + 2), and then find [x] ™.

Solution: Since x> = —x —2 = 2x + 1 (mod x? + x + 2), we have the following
list:

[x]! = [x],

[x]* = [2x + 1],

[x]? = [x][2x + 1] = 2x2 + x] = [4x + 2 + x)] = [2x + 2],

[x]* = [x][2x + 2] = [2x% +2x] = [4x +2 +2x] = [2] = [-1],
[x]° = [-1][x] = [2x],
[x]° = [-1][x*] = [x + 2],

[x]” = [-1][x]* = [x + 1],

[x]® = (x]%)* = [1].
Since [x] has order 8 in the multiplicative group of the field, its inverse is [x]7 =
[x +1].

Comment: Each nonzero element of Z3/ (x2 +x - 1) is a power of [x], so we have
shown that the multiplicative group of this finite field is cyclic, with generator [x].

4.4. Polynomials over Z, Q, R, and C

1. Let f(x), g(x) € Z[x], and suppose that g(x) is monic. Show that there exist
unique polynomials ¢ (x), r(x) € Z[x] with f(x) = g(x)g(x)+r(x), where either
deg(r(x)) < deg(g(x)) orr(x) = 0.

Solution: Let f(x) = amx™ +...+ai1x +ag,and g(x) = x" +... + bg, where
am # 0. If f(x) has lower degree than g(x), then g(x) = 0 and r(x) = f(x)
satisfy the requirements. The proof of the other case will use induction on the
degree of f(x).

If f(x) has degree zero, it is easy to see that the theorem holds. In order to ap-
peal to the second principle of mathematical induction, assume that the theorem is
true for all polynomials f(x) of degree less than m. (We are assuming that m > n.)
The reduction to a polynomial of lower degree is achieved by using the procedure
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outlined in Example 4.2.1. We divide a,,x™ by x" to get a,,x™ ", then multiply
by g(x) and subtract from f(x). This gives f1(x) = f(x) —amx™ " g(x), where
f1(x) has degree less than m since the leading term of f(x) has been cancelled by
amx™ " x". Now by the induction hypothesis there exist ¢1(x), r(x) € Z[x] such
that f1(x) = ¢g1(x)g(x) + r(x), where the degree of r(x) is less than n, unless
r(x) = 0. Since f(x) = f1(x) + anx™ "g(x), substitution gives the desired
result:
f(x) = (q1(x) + amx™ ") g(x) + r(x) .

The quotient g(x) = ¢1(x) + amx™ " has coefficients in Z, since a,, € Z and
q1(x) € Z[x]. The proof that the quotient g(x) and remainder r(x) are unique
follows exactly as in the proof of Theorem 4.2.1.
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5 RINGS

5.1. Commutative Rings; Integral Domains

8. Let R be a commutative ring, and let f(x), g(x) € R[x], where g(x) is monic.
Show that there exist unique polynomials ¢(x), r(x) € R[x] such that f(x) =

q(x)g(x)+r(x), where deg(r(x)) <deg(g(x)) or r(x)=0.

Solution: Let f(x)=amx™+...+a1x+ag and g(x)=x"+by_1x" 1 +.. . +by,
where a,, # 0. In the proof of Theorem 4.2.1, the induction step uses the poly-
nomial f1(x) = f(x) — amb;,, 1x™ " g(x), where by is the leading coefficient
of g(x). In this case g(x) is monic, so b, = 1, and we can use the polynomial
fi(x) = f(x) — amx™ " g(x) instead.

The next difficulty arises in showing that the quotient ¢ (x) and remainder r (x)
are unique. The proof of Theorem 4.2.1 uses Proposition 4.1.5, which does hold
if R is an integral domain (by Example 5.1.8) but may fail in general. If f(x) =
q1(x)g(x) + ri(x) and f(x) = ¢2(x)g(x) + ra(x), then (41(x) — g2(x))g(x) =
ra(x) — ri(x), as in the proof of Theorem 4.2.1. If g2(x) — g1(x) # 0, then the
degree of (g2(x)—q1(x))g(x) is greater than or equal to the degree of g(x) because
g(x) is monic. The degree of r(x) — r1(x) is less than the degree of g(x), so we
still reach a contradiction, completing the proof.

5.2. Ring Homomorphisms

6. Show that the ring of Gaussian integers Z[i ]| defined in Example 5.1.5 is isomor-
phic to Z[x]/ {x? + 1).

Solution: Define ¢ : Z[x] — Cby ¢(f(x)) = f(i), forall f(x) € Z[x]. This is
the mapping defined in Proposition 5.2.7, and so we know that it is a ring homo-
morphism. It is clear that ¢ (Z[x]) = Z[i] and that x% + 1 € ker(¢).

To show that ker(¢) = (x2 + 1), suppose that f(x) € ker(¢). Considering f(x)
as an element of Q[x], we can divide by x2+1 to get f(x) = q(x)(x%41) + r(x),
where r(x) = 0 or deg(r(x)) < 2. Since x2+1 is monic, it follows from Exercise 1
of Section 4.4 that g(x) and r(x) belong to Z[x], so r(x) = m + nx for some
m,n € Z. Substituting x = i shows thatm +ni = 0in C,som = n = 0, and
therefore r(x) is the zero polynomial. Thus we have shown that f(x) € (x2 + 1).

Since ker(¢p) = (x2 + 1) and ¢(Z[x]) = Z][i], it follows from the fundamental
homomorphism theorem that Z[i] = Z[x]/ (x2 + 1).

8. Let F be the field Z»[x]/ (x* + x + 1) defined in Example 4.3.4. Show that F
has precisely two automorphisms.
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Solution: Any automorphism maps 0 to 0 and 1 to 1. Using the congruence classes
given in Example 4.3.4, the only possibility to define an automorphism ¢ : F — F
that is not the identity mapping is to define ¢ ([x]) = [1 + x] and ¢ ([1 + x]) = [x].
To show that this defines an automorphism, note that [1 + x] = [x?] = [x]?,
and consider the formula 8(r) = r2, forall r € F. Then #(0) = 0 and (1) = 1,
0([x]) = [x]? = [14x],and O([14+x]) = [1+x]?> = [x], by the multiplication table
given in Example 4.3.4. For r, s € F, we have 0(rs) = (rs)?> = r%s% = 0(r)0(s).
We also have 0(r + s) = (r +5)% = r2 4+ 2rs + s2. But since [1] + [1] = [0], the
field F has characteristic 2, so we have 2rs = 0. Thus 8(r + s) = 6(r) + 0(s),
verifying that ¢ = 6 is the second automorphism of F.

Looking ahead: The mapping 0 is a special case of the Frobenius automorphism
introduced in Definition 8.1.8.

5.3. Ideals and Factor Rings

11. Show that if R is a Boolean ring, then every prime ideal of R is maximal.

Solution: We will prove a stronger result: if R is a Boolean ring and P is a prime
ideal of R, then R/P = Z,. Since Z, is a field, Proposition 5.3.9 (a) implies that
P is a maximal ideal.

Ifa € R, then a? = a, and so a(a — 1) = 0. Since P is an ideal, it contains 0,
and then a(a — 1) € P impliesa € P ora — 1 € P, since P is prime. Thus each
element of R is in either P or 1 4+ P, so there are only two cosets of P in R/ P,
and therefore R/ P must be the ring Z,.

17. Let I, J be ideals of the commutative ring R, and for r € R, define the function
¢:R—R/IDR/Jbydp(r)=(r+1,r+J).

(a) Show that ¢ is a ring homomorphism, with ker(¢) = 1 N J.

Solution: The fact that ¢ is a ring homomorphism follows immediately from the
definitions of the operations in a direct sum and in a factor ring. Since the zero
elementof R/I @ R/J is (0+ 1,0+ J), we have r € ker(¢) if and only if r € 1
andr € J,soker(¢p) =1NJ.

(b) Show thatif / + J = R, then ¢ isonto, and thus R/(I N J) = R/I ® R/J.

Solution: If I + J = R, then we can write 1 = x 4 y, for some x € [ and
y € J. Given any element (¢ + I,b+ J) € R/I & R/J, consider r = bx + ay.
Thenr +1 =bx+ay+1 =ay+1 =a(l—x)+ 1 =a+ I, and similarly
r+J =>b+J. Thus¢(r) = (a+ I,b + J), and ¢ is onto. The isomorphism
follows from the fundamental homomorphism theorem.

Note: This can be called the Chinese remainder theorem for commutative rings. It
is interesting to compare the above proof with the one given for Theorem 1.3.6.
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20. Let 7, J be ideals of the commutative ring R. Show that if / + J = R, then
12+ J2 =

Solution: If I + J = R, then there exista € [ and b € J witha + b = 1. Cubing
both sides gives us a® + 3a?bh + 3ab? + b3 = 1. Then a® + 3a?bh € I? and
3ab*> + b3 € J2,s0 I+ J?> =R

32. Let R be the set of all rational numbers m/n such that n is odd.

(a) Show that R is a subring of Q.

Solution: If mll, M2 ¢ R, then ny and n, are odd. Since nin, is odd, we have

na
mi my minyEtmony mp mp __mpmp
e + =, € R and nl e = mns € R. Thus R is a subring of Q.

(b) Let 2R = {m/n € R | m is a multiple of 2% and n is odd}, for any positive
integer k. Show that 2K R is an ideal of R.

Solution: If L and m2 belong to 2% R, then ny and n, are odd and 2% |mq and

2k |ma. Thennmz is odd and 2% | (mina £ msony), and so ";’11 + ','1’22 = %
belongs to 25 R. If Te€Rand 7 € 2k R, then s and n are odd and 2% |m. Then ns
is odd and 2% | mr. Hence R =TR ¢ 2K R. Therefore 2% R is an ideal of R.
(c) Show that each proper nonzero ideal of R has the form 2K R, for some positive
integer k.

Solution: Let I be a proper nonzero ideal of R, with 0 # mo € I. Then it is easy
to check that / N Z is an ideal of Z, and my = nyg - 8 is a nonzero element of
I NZ. Therefore I N Z = uZ, for some nonzero u € Z. Then u cannot be odd,
since this would imply that 1 = m -u € I, so we can wrlte u = 2Ky, where 2 S
and k is positive. Then for any %t € I, we have n - 7! = qu, for some q € Z.

_2k qU

Therefore 7 ,as requ1red

(d) Show that R /2% R is isomorphic to 7.

Solution: Given % € R, since (n, 2k) = 1 there exist u, v € Z with 2Kv +nu = 1.
Hence m = mnu +mv2*, and so o= "“‘J“n—mvzk, which implies that 7! +2KR =
mu+2%R. Write mu = 2Xq +r, where 0 < r < 2K. Then mu +2KR = r +2%R
where 0 <r < 2k, Ifr1 +2kR = r2+2kahereO <r < 2% and 0 <r< 2k
thenry —rpy = m2 , where 7 is odd. Hence 2% [n(r; — r»), and since (2K, n) = 1
we have ri = rp (mod 2"). Since 0 < r; < 2% and 0 <r< 2% we have ry=rj.
Thus every element of R /2X R can be written uniquely in the form r + 2K R where
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0<r<2Kandr € Z. Define ¢ : R/2KR — Z,k by ¢(r + 2kR) = [r],x. Since

p(r +2°R) = [l
[r1lox + [r2]x
d(r1 +2KR) + ¢(r» + 2% R)

¢((r1 +25R) + (r2 + 2FR))

and

¢((r1 +2°R)(r2 +2¥R)) = $(rira +28R) = ¢(s +2FR)
= [S]zk = [Vl]zk[”z]zk
= ¢(r1 +2R)¢p(r + 25 R)

where r = ri + r (mod 2%) with 0 < r < 2% and s = rir» (mod 2%) with
0 < s < 2%, it follows that ¢ is a ring homomorphism.
Given [r],x € Z,x we have ¢(r + 2kKR) = [r],« and so ¢ is onto.

(e) Show that 2R is the unique maximal ideal of R.

Solution: It follows from part (d) that 2R is a maximal ideal, since R/2R is a field.
It follows from part (c) that every other proper ideal is contained in 2RR.

5.4. Quotient Fields

12. Show that if P is a prime ideal of D, then Dp = {a/b € Q(D) | b & P}isan
integral domain with D € Dp € Q(D).

Solution: Leta/b and ¢ /d belongto Dp. Thenb,d € D — P,andsobhd € D — P
since P is a prime ideal. It follows that a/b + ¢/d = (ad + bc)/(bd) € Dp
and (a/b)(c/d) = (ac)/(bd) € Dp, and so Dp is closed under addition and
multiplication. Since 1 ¢ P, the given set includes D. Finally, since Q(D) is a
field, the subring Dp is an integral domain.

13. In the ring Dp defined in Exercise 12,let M = {a/b € Dp | a € P}.

(a) Show that M is an ideal of Dp.

Solution: The subset M is nonempty, since 0 = 0/1 € M. Leta/b and c/d belong
to M. Then (a/b) £+ (c¢/d) = (ad £+ bc)/(bd) € M since a,c € P implies that
ad £ bc € P. Ifr/s € Dp, then (r/s) - (a/b) = ra/sb € M since ra € P.
Therefore M is an ideal of Dp.

(b) Show that Dp/M =~ Q(D/P), and conclude that M is a maximal ideal of
Dp.

Solution: Note that we have the following chain of subrings: D € Dp € Q(D).
Itisclearthat P C DN M.Ifa/be DN M,thena/b ~ r/1 for some r € D, so
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rb = a € P. Since P is a prime ideal and b ¢ P, we must have r € P, showing
that P =D N M.

Since P = D N M, the inclusion 6 : D — Dp maps P into M, and therefore
0 : D/P — Dp/M defined by 8(x + P) = (x/1)+ M is well-defined. Tt is
easy to check that 8 is a ring homomorphism, since its definition just depends on
an inclusion mapping. If b ¢ P, then b/1 ¢ M, and so 6 has zero kernel, and is
therefore one-to-one. _

For b ¢ P, the element b+ P is invertible in Q(D/P), and (b + P) =
(b/1)+ M is invertible in Dp /M since (b/1)+M)((1/b)+M) = 1+ M. Asin
Theorem 5.4.6 it can be shown that there exists a one-to-one ring homomorphism
~ _ _ _ -1
. O(D/P) — Dp/M defined by 8 ()y“:[i = 0(x+P) (9(y+P)) , for

x+P, y+P in Q(D/P), where y+ P is nonzero. For each (a/b)+M in Dp /M,
we have

(a/b)+M = ((@/D)+M) (b/D)+M) ™' =8(a+P)(b+P)! =5(ZL€) |

and so @ is onto. Thus D p/M is isomorphic to a field, and so M is a maximal
ideal. The following diagram shows the mappings 6 and 6.

D/P < Q(D/P)

AN

Dp/M
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6 FIELDS

6.1. Algebraic Elements

7. Letu,v € QF, where u # v and u, v, uv are not squares. Find the minimal
polynomial for \/u + /v over Q.

Solution: Let « = /u + /v. Then (o — ﬁ)z =vandsoa? -2 /ua +u =
v. Thus @? + u — v = 2,/ua and therefore (a2 +u— v)2 = 4ua®. Hence
o* +2(u —v)a? 4+ (u —v)? = 4ua® and so a* —2(u + v)a® + (u —v)? = 0.
Thus « is a root of f(x) = x* —2(u 4+ v)x? + (u — v)2.

We will find all the roots of f(x). By the quadratic formula, we have

2 2(u +v) £ /4w + v)2 — 4(u —v)2
2
= u+v=+xVduv
= u£2JuJv+v
= (Vu ).

Thus x = £(/u £ /v), so the set S of four roots of f(x)is S = {+./u £ /v}.

We will show that f(x) is irreducible in Q[x]. Since none of the four roots of
f(x) is an element of Q, f(x) has no factor of degree 1 in Q[x]. If f(x) had a
factor h(x) of degree 2 in Q[x], then /(x) would have two roots in the set S. Let
ri=Ju+ V.= Ju—Ju,r3=—Ju+ Ju,ra = —Ju—Jv. If ri, rj are
two roots of /1(x), then r; 4+ r; € Q and r;7; € Q by Exercise 10 of Section 4.4.
Sincer1 +r2 €Q,r1 +r3 €Q,rira €Q,r2r3 Q. ra +ra €Q,r3 +rs4 € Q,
no such factor /(x) of degree 2 exists.

Since f(x) is irreducible, it is the minimal polynomial of \/v + /v over Q.

6.2. Finite and Algebraic Elements

5. Let F D K be an extension field, with u € F. Show that if [K(u) : K] is an odd
number, then K(u?) = K(u).

Solution: Since u?> € K(u), we have K(u) 2 K(u?) O K. Suppose that u ¢
K(u?). Then x? —u? is irreducible over K (1?) since it has no roots in K(u?), so u
is a root of the irreducible polynomial x% —u? over K (u?). Thus [K(u) : K(u?)] =
2, and therefore 2 is a factor of [K(u) : K]. This contracts the assumption that
[K(u) : K] is odd.

7. Let F be a field generated over the field K by u and v of relatively prime degrees
m and n, respectively, over K. Prove that [F : K| = mn.
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Solution: Since F = K(u,v) 2 K(u) 2 K, where [K(u) : K] = m and

[K(u,v) : K(u)] <n,wehave [F : K] <mn. But [K(v) : K] = n is a divisor of
[F : K], and since gcd(m,n) = 1, we must have [F : K] = mn.

Note: A proof can also be given using Exercise 6.

8. Find the degree of v/2 + i over Q

Solution: Letu = /2 4 i, sothatu —i = /2. Then (u —i)> = 2, so we have
3 3ju? +3i%u —i3 = 2, oru® —3iu?> —3u +i = 2. Solving for i we
geti = (u? —3u — 2)/(3u? — 1), and this shows that i € Q(~/2 + i). Thus
V2eQ(V2+1i), andso Q(V2 +i) = Q(¥2,i).
Since x3 — 2 is irreducible over Q, the number Y2 has degree 3 over Q. Since
x2 4 1 is irreducible over Q, we see that i has degree 2 over Q. It follows from

Exercise 7 that therefore [Q(~/2 + i) : Q] = 6.

6.4. Splitting Fields

1. Determine the splitting fields in C for the following polynomials (over Q).
() x* + 4

Solution: We have x* 4+ 4 = (x2 + 2x + 2)(x? — 2x + 2), where the factors are
irreducible by Eisenstein’s criterion, with p = 2. Applying the quadratic formula,
we see that the roots are =1 =+ i, so the splitting field is Q(i), which has degree 2
over Q.

Alternate solution: We could also solve the equation x* = —4. To find one root, use

DeMoivre’s theorem to get v/— f fl and then multiply by v4 = /2,

to get 1 4 i. The other roots are found by multiplying by the powers of 7, because
it is a primitive 4th root of unity.

2. Determine the splitting fields in C for the following polynomials (over Q).
(©x*+1

Solution: Let F be the splitting field for x* + 1 over Q. Since (x + 1)* + 1 satisfies
Eisenstein’s criterion, x* 4 1 is irreducible over Q, and so adjoining a root of x4+1
to Q will produce an extension of degree 4 by Proposition 6.2.2. Thus [F : Q] > 4.

To find a 4th root of —1, we can use the procedure outlined in Example A.5.3 of
Appendix A.5, which yields the root f fl To find all roots, we can multiply
this one by the 4th roots of unity: +1, :I:l. It is then clear that F C Q(\/i, i), and
since [Q(v/2,1) : Q] = 4, we must have F = Q(~+/2,1).
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Alternate solution: We have

1=+ —i) = (x+ iV —iVD(x + Vi) (x = Vi),
Since v/i = (v/2 + ~/2i)/2 it follows that the splitting field of x* + 1 over Q is
Q(Vi) = Qi Vi, Vi) = Q(v/2,i).
(d)x®—1

Discussion: Be careful here—this polynomial is not irreducible. In fact, x¢ — 1
factors in two ways, and provides an important clue. Note that x®—1 = (x3)2—1 =
3-DE3+D) = x=DZ+x+D(x+D(x2—x+1)and x0—1 = (x?)3 -1 =
(X2 —D(x*+x2+1).

Solution: We have

X —1=3-DEP+ )= -DEZ+x+Dx+DEZ—x+1).
The roots of x% + x + 1 are the primitive third roots of unity. (See Definition 4.4.8
and Example A.5.1). The roots of x2 — x + 1 are therefore the primitive sixth roots

of unity. Adjoining a root w = % + ‘/Tgi of x2 — x + 1 gives all four of these roots,

and so Q(w) is the splitting field of x® — 1 over Q, with [Q(w) : Q] = 2.

11. Let K be a field, and let F' be an extension field of K. Let ¢ : F — F be
an automorphism of F such that ¢(a) = a, for all ¢ € K. Show that for any
polynomial f(x) € KJ[x], and any root u € F of f(x), the image ¢ (1) must be a
root of f(x).

Solution: Let f(x) =ao +a1x + ...+ apx", wherea; € K, fori =0,1,...,n.
If u € F with f(u) = 0, then we have ¢( f(u)) = ¢(ap + aru + ... + a,u™) =
P(ao) + ¢p(aru) + ... + planu”) = Pp(ao) + ¢p(a)p(u) + ... + ¢(an)(@))"
since ¢ preserves sums and products. Finally, since ¢(a;) = a; fori =0,1,...,n,
we have ¢(f (1)) = ap + a19p(u) + ... + an(¢p(u))". Since f(u) = 0, we must
have ¢ (f(u)) = 0, and thus ag + a1¢(u) + ... + an(¢(u))" = 0, showing that
f(¢(u)) = 0. This completes the proof that ¢ (1) is a root of f(x).

6.5. Finite Fields

4. (a) Factor x® — 1 over GF(7)

Solution: This is a direct application of Theorem 6.5.2. We have
x0—1=x-Dx+Dx—=2)(x+2)(x —3)(x +3).

(b) Factor x> — 1 over GF(11)

Solution: Looking for roots of x> — 1 in GF(11) is the same as looking for elements
whose order is a divisor of 5 in the multiplicative group GF(11)*. Theorem 6.5.10
implies that GF(11)* is cyclic of order 10. Thus it contains 4 elements of order 5,
which means the x> — 1 must split over GF(11). To look for a generator, we begin
with 2. The relevant powers of 2 are 22 = 4 and 2° = —1, so 2 must be a generator
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since it has order 10. The even powers of 2 have order 5, and these are 22 = 4,
24 =526 =9 and 2% = 3. Therefore x°>—1 = (x—1)(x —3)(x—4)(x—5)(x—9)
over GF(11).

6. Find the splitting field of x* — 1 over GF(7).

Solution: We have x* —1 = (x — 1)(x 4 1)(x2 + 1). A quick check of £2 and
+3 shows that they are not roots of x2 + 1, so x2 + 1 is irreducible over GF(7). To
obtain the splitting field we must adjoin a root of x2 + 1, so we get a splitting field
GF(7%) = Z4[x]/ (x2 + 1) of degree 2 over GF(7).

15. Let F be a field whose multiplicative group F* is cyclic. Prove that F must
be a finite field.

Solution: Suppose that F* = (u). If char(F) # 2,then —1 # 1,s0 —1 € F* and
therefore —1 = u” for some nonzero integer n. Then u?" = 1, so (u) is finite, and
therefore F is finite.

Ifchar(F) =2,andu # I, then 1 4+u # 0,s0 1l +u = u" or 1 +u = u™", for
some positive integer n. Then u” —u—1 = 0 in the first case, and u” 71 +u"*—1 = 0
in the second, so u is algebraic over the base field GF(2). Thus F = GF(2)(u) is
finite.
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7 STRUCTURE OF GROUPS

7.1. Isomorphism Theorems; Automorphisms

6. Prove that a finite group whose only automorphism is the identity map must have
order at most two.

Solution: Let G be a nontrivial finite group with Aut(G) = {lg}. Since all inner
automorphisms are trivial, G is abelian. Then o : G — G defined by a(g) = g7 !,
for all g € G, is an automorphism since it is a one-to-one correspondence and
a(ab) = (ab)™! = (ba)™! = a7 b~ = a(a)a(b), forall a,b € G. Since « is
trivial, we have g = g~ ! for all g € G, and thus every nontrivial element of G has
order 2. If G is written additively, we can therefore define a vector space structure
over the field Z, by defining 0 - x = Oand 1-x = x, forall x € G. Since G
is finite, it has a basis by Theorem A.7.10. If dim(G) > 2, then the function that
interchanges two basis elements is a nontrivial automorphism of G. We conclude

that dim(G) = 1, and so |G| = 2.

19. Let G be a group and let N be a normal subgroup of G of finite index. Suppose
that H is a finite subgroup of G and that the order of H is relatively prime to the
index of N in G. Prove that H is contained in N.

Solution: Let w : G — G/ N be the natural projection. Then 7w (H) is a subgroup
of G/ N, so its order must be a divisor of |G/N|. On the other hand, |7 (H )| must
be a divisor of |H|. Since gcd(|H|,[G : N]) = 1, we must have |x(H)| = 1,
which implies that H C ker(z) = N.

7.2. Conjugacy
9. Let G be a finite group with [G : Z(G)] = n. Show that the number of elements
in each conjugacy class of G is a divisor of n.

Solution: By Proposition 7.2.5, the conjugacy class of a € G has [G : C(a)]
elements. Since Z(G) € C(a) € G, it follows from Lagrange’s theorem that
|G| =[G : Z(G)]-|Z(G)| and then

|G| =[G : C(a)]-|C(a)| =[G : C(a)] - [C(a) : Z(G)] - |Z(G)|.
Therefore n = [G : Z(G)] =[G : C(a)] - [C(a) : Z(G)], completing the proof.

18. Let o € A,, and let Cg, (0) and C4,, (o) denote the centralizers of o in S, and
Ay, respectively.

(a) Show that either C4, (o) = Cg, (0) or [Cs, (0) : C4, (0)] = 2.
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Solution: By Exercise 5 of Section 3.8 we know that if H is any subgroup of
Sy, then either H N A, = H or H N Ay has index 2 in H. Since Cy4,(0) =
Cs,(0) N Ay, either Cy, (0) = Cs,(0) orelse Cy4,(0) has index 2 in Cg,, (0).

(b) Show that the conjugacy class of o in A, is either the same as its conjugacy
class in S, or else has half as many elements.

Solution: Since Cy4, (0) C Cg, (0) € S, and Cy, (0) € Ap C Sy, we have

[Sn : Cs,,(0)][Cs,, (0) : Ca,(0)] = [Sn : Ca,, (0)] = [Sn : An][An : Ca, (0)].

If [Cs,(0) : C4,(0)] = 2 (the second case in part (a)), then dividing the above
equation by 2 gives us [A, : Cy4,(0)] = [Sh : Cs,(0)], and so o has the same
number of conjugates in A, as in Sy.

If Cs,(0) = Cy4,, (o) (the first case in part (a)), then [S, : Cs,, (0)] =
[Sy : C4,(0)] = 2[A, : C4,(0)], and so o has the half the number of conjugates
in A, asin Sj.

(c) Find the center of the alternating group A,.

Solution: In the case n = 3, we have Z(A3) = Aj since Aj is abelian. If n > 4,
then we claim that Z(A,) = {(1)}. This proof illustrates the use of conjugacy
classes, but we note that Theorem 7.7.4, which shows that 4, is simple for n > 5,
gives a much shorter proof forn > 5.

Since the conjugacy class of an element o # (1) in S, consists of all permu-
tations with a given cycle structure, it has more than 2 elements if n > 4, and
therefore its conjugacy class in A, has more than 1 element. Thus the identity (1)
is the only element whose conjugacy class consists of exactly one element, which
shows that the center is {(1)}.

22. Let N be a normal subgroup of a group G. Suppose that |[N| = 5 and |G| is
odd. Prove that N is contained in the center of G.

Solution: Since |[N| = 5, the subgroup N is cyclic, say N = (a). It suffices to
show that a € Z(G), which is equivalent to showing that a has no conjugates other
than itself. We first note that since N is normal in G, any conjugate of a must be
in N. We next note that if x is conjugate to y, which we will write x ~ y, then
x™ ~ y™. Finally, we note that the number of conjugates of ¢ must be a divisor of
G.

8 _ 43

Case 1. If a ~ a2, then a? ~ a*, and a* ~ a

Case 2. Ifa ~ a3, then a® ~ a°® = a*, and a* ~ a1? = 42.

Case 3. If a ~ a*, then a? ~ a® = a3.

In the first two cases a has 4 conjugates, which contradicts the assumption that
G has odd order. In the last case, a has either 2 or 4 conjugates, which again leads

to the same contradiction.
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7.3. Groups Acting on Sets

2. Let H be a subgroup of G, and let S denote the set of left cosets of H. Define a
group action of G on S by settinga - (xH) = axH,foralla,x € G.

(@) Let ¢ : G — Sym(S) be the homomorphism that corresponds to the group
action defined above. Show that ker(¢) is the largest normal subgroup of G that is
contained in H.

Solution: For a € G we have ¢p(a) = Ag4, where A, : § — S is given by
Aa(xH) = a(xH). It is routine to check that A, is well-defined, one-to-one,
and onto. Now

ker(p) = {ae€ G| As(xH)=xH forall x € G}
= {ae€G|axH = xH forall x € G}
{aeG|x 'ax e Hforallx € G} .

Clearly, ker(¢) € H and ker(¢p) is a normal subgroup of G. Let N be a normal
subgroup of G with N € H. Then forall x € G, we have x "' Nx € N € H, and
so N C ker(¢).

(b) Assume that G is finite and let [G : H] = n. Show that if n! is not divisible by
|G|, then H must contain a nontrivial normal subgroup of G.

Solution: Since [G : H] = n, we have |S| = n and | Sym(S)| = n!. If |G| [n!,
then the homomorphism ¢ of part (a) is not one-to-one, and so ker(¢) # {e}.
Hence ker(¢) is a nontrivial normal subgroup of G, and ker(¢) € H.

3. Let G be a group which has a subgroup of index 6. Prove that G has a normal
subgroup whose index is a divisor of 720.

Solution: Suppose that H is a subgroup with index 6. Letting G act by multiplica-
tion on the left cosets of H (as in Exercise 2) produces a homomorphism from G
into S¢. The order of the image must be a divisor of |S¢| = 720, and so the index
of the kernel is a divisor of 720.

4. Let G act on the subgroup H by conjugation, let S be the set of all conjugates
of H, and let ¢ : G — Sym(S) be the corresponding homomorphism. Show that
ker(¢) is the intersection of the normalizers N (aHa ') of all conjugates of H .

Solution: We have x € ker(¢) iff x(aHa ')x™' = aHa™! foralla € G.

10. Let F = GF(3), G = GL,(F), and let N be the center of G. Prove that
G/N = S4 by defining an action of G on the four one-dimensional subspaces of
F2.
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Solution: In F? there are 4 one-dimensional subspaces, with respective basis ele-

ments [ (1) ] [ (1) ] [ i ] [ ; ] Each matrix in G represents an isomorphism

of F?2, and so it simply permutes these one-dimensional subspaces. Thus we can
let S be the set of one-dimensional subspaces, and let G act on them as described
above. Multiplying by a scalar leaves each one-dimensional subspace fixed, and

the two scalar transformations [ (1) (1) i|, |: é g ] are the only linear transfor-

mations to do so. Thus the action of G defines a homomorphism into S4 whose
kernel is the set of scalar matrices, which is precisely the center N by Exercise 7
of Section 3.3. Since |G| = 48 by Exercise 5 of Section 3.3 and N consists of
two scalar matrices, we have |G/ N | = 24. It follows that the homomorphism must
map G/ N onto Sy, since |S4| = 4! = 24, and thus G/N = S4.

16. If G is a finite group of order n and p is the least prime such that p|n, show
that any subgroup of index p is normal in G.

Solution: Let H be a subgroup of index p, and let S = {xH | x € G}. Let
¢ : G — Sym(S) be the homomorphism of Exercise 2 (a). If n| p!, then p|n
implies that n = p, in which case H = {e}. Thus we may assume that n / p!, in
which case ker(¢) is a nontrivial normal subgroup of G that is contained in H, by
Exercise 2 (b). If we let k = [G : ker(¢)], then k| p! and k |n. Since p is the
smallest prime that divides n, we have k = p, and so H = ker(¢) is a normal
subgroup.

7.4. The Sylow Theorems

3. Prove that if N is a normal subgroup of G that contains a Sylow p-subgroup of
G, then the number of Sylow p-subgroups of N is the same as that of G.

Solution: Suppose that N contains the Sylow p-subgroup P. Then since N is
normal it also contains all of the conjugates of P. But this means that N contains all
of the Sylow p-subgroups of G, since they are all conjugate by Theorem 7.4.4 (a).
We conclude that N and G have the same number of Sylow p-subgroups.

4. Prove that if G is a group of order 105, then G has a normal Sylow 5-subgroup
and a normal Sylow 7-subgroup.

Solution: Since 105 = 3 -5 .7, the number of Sylow 3-subgroups must be 1 or
7, the number of Sylow 5-subgroups must be 1 or 21, and the number of Sylow
7-subgroups must be 1 or 15. Let P be a Sylow 5-subgroup and let Q be a Sylow
7-subgroup. At least one of these subgroups must be normal, since otherwise we
would have 21 - 4 elements of order 5 and 15 - 6 elements of order 7. Therefore PQ
is a subgroup, and it must be normal since its index is the smallest prime divisor of
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|G|. (See Exercise 16 of Section 7.3.) It follows that we can apply Exercise 3. Since
P Q is normal and contains a Sylow 5-subgroup, we can reduce to the number 35
when considering the number of Sylow 5-subgroups, and thus the number of Sylow
5-subgroups of G is the same as the number of Sylow 5-subgroups of P Q, which is
1. Similarly, since P Q is normal and contains a Sylow 7-subgroup, the number of
Sylow 7-subgroups of G is the same as the number of Sylow 7-subgroups of PQ,
which is 1.

9. Let p be a prime number. Find all Sylow p-subgroups of the symmetric group
Sp-

Solution: Since |S,| = p!, and p is a prime number, the highest power of p
that divides |Sp,| is p. Therefore the Sylow p-subgroups are precisely the cyclic
subgroups of order p, each generated by a p-cycle. There are (p — 1)! = p!/p
ways to construct a p-cycle (ap,...,ap). The subgroup generated by a given p-
cycle will contain the identity and the p — 1 powers of the cycle. Two different
such subgroups intersect in the identity, since they are of prime order, so the total
number of subgroups of order p in S, is (p —2)! = (p — D!/(p — 1).

16. Find the normalizer of {(1, 2, 3,4, 5)) in A5 and in Ss.

Solution: Let {(1,2,3,4,5)) = H. Note that H is a Sylow 5-subgroup of S5,
that Ss had 6 Sylow 5-subgroups by Exercise 9, and that As also has 6 Sylow
5-subgroups by Exercise 3.

First consider H = ((1,2,3,4,5)) as a subgroup of As. Since there are 6
subgroups conjugate to H , it follows from Theorem 7.3.4 (b) that [As : N(H)] =
6, and so [N(H)| = 10. Letting 0 = (1,2, 3,4,5), a solution 7 of the equation
ot~ ! = o~ ! certainly belongs to N(H), since to't™! = o7 fori = 1,2,3,4.
As in Exercise 15 (b) of Section 2.3, we can solve to obtain 7 = (2, 5)(3,4), and
note that t € As. Since |[N(H)| = 10, we must have N(H) = (o, 7).

Now consider H as a subgroup of Ss. Arguing as above on the number of
Sylow 5-subgroups, we have [S5 : N(H)] = 6, and so in this case |N(H)| = 20.
To look for an element in N(H), consider v = (2,3,5,4), since (2,3,5,4)? =
(2,5)(3,4). We have (2,3,5,4)(1,2,3,4,5)(2.3,5,4)7! = (1,3,5,2,4) = 02,
and so, as before, v € N(H). Since o(v) = 4, we see that (o, v) = N(H).

Note: Given the relation to0 = oz, it follows that the normalizer of H in As
is isomorphic to Ds. Similarly, given the relation vo = o2v, it follows from
Exercise 17 (a) of Section 7.1 that the normalizer of H in S5 is isomorphic to F5p.
(This is also shown directly in Exercise 21 of Section 7.2.)

20. Let G be a group of order 340. Prove that G has a normal cyclic subgroup of
order 85 and an abelian subgroup of order 4.

Solution: First, 340 = 22 . 5. 17. There exists a Sylow 2-subgroup of order 4, and
it must be abelian. No nontrivial divisor of 68 = 22 - 17 is congruent to 1 mod 5,
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so the Sylow 5-subgroup is normal. Similarly, the Sylow 17-subgroup is normal.
These subgroups have trivial intersection, so their product is a direct product, and
hence must be cyclic of order 85 = 5-17. The product of two normal subgroups is
again normal, so this produces the required normal cyclic subgroup of order 85.

21. Show that a group of order 108 has a normal subgroup of order 9 or 27.

Solution: Let S be a Sylow 3-subgroup of G. Then [G : S] = 4, since |G| =
2233, 50 we can let G act by multiplication on the cosets of S. This defines a
homomorphism ¢ : G — Sy, so it follows that |¢(G)| is a divisor of 12, since it
must be a common divisor of 108 and 24. Thus |ker(¢)| > 9, and it follows from
Exercise 2 (a) of Section 7.3 that ker(¢p) € S. Thus | ker(¢)| must be a divisor of
27, and so either | ker(¢p)| = 9 or | ker(¢)| = 27.

7.5. Finite Abelian Groups

4. Let G be an abelian group, written additively, which has 8 elements of order
3, 18 elements of order 9, and no other elements besides the identity. Find (with
proof) the decomposition of G as a direct sum of cyclic groups.

Solution: We have |G| = 27. First, G is not cyclic since there is no element of
order 27. Since there are elements of order 9, G must have Zg as a factor. To give
a total of 27 elements, the only possibility is G = Zg & Zs3.

Check: The elements 3 and 6 have order 3 in Zg, while 1 and 2 have order 3 in
Z5. Thus the following 8 elements have order 3 in the direct product: (3, 0), (6, 0),
(3,1), (6,1), (3,2), (6,2), (0, 1), and (0, 2).

10. Let G and H be finite abelian groups, and assume that they have the following
property. For each positive integer m, G and H have the same number of elements
of order m. Prove that G and H are isomorphic.

Solution: We first reduce the case to that of p-groups. Let p be a prime divisor of
|G|, and let G, and H), be the Sylow p-subgroups of G and H, respectively. If we
can show that G, = H), for all p, then it will follow that G =~ H, since G and H
are direct products of their Sylow subgroups.

Let |G| = p* for k € ZT and suppose that G = Zpor @ Lpes @ -+ @ Lpos,
where oy > o > -+ > o and Z§=1 o; = k. Consider the number of elements
of order p in G. There are p — 1 such elements in Z,«; in G the elements of order
p have the form (ay,...,a;), where a; = 0 or has order p, and at least one a; is
nonzero. Thus there are p’ — 1 elements of order p in G.

Suppose that H =~ Zpgl EBZp,ez2 @"'@Zpﬂs, where 1 > B > --- > B and

Zf-=1 Bi = k. There are p5 — 1 elements of order p in H, and therefore s = ¢.

Now consider pG, in which each element of order p’ in G becomes an element
of order p/~1. Then pG and pH have the same number of elements of each
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order, so by induction on the order of the groups we must have pG =~ pH. Since
PLpe = Zpo—1, we have pG = Zyo,—1 @ ZLyar—1 @ -+ @ Zpa,—1, and pH =
Z,61-1 ®Z,p,—1 @ --- ®Zpp,—1. Therefore pG = pH implies a1 — 1 = B1—1,
ax—1=p—-1,..,a:r—1=8;,—1,800; = B1,02 = B2, ...,a; = By, and
therefore G >~ H.

13. Let G and H be finite abelian groups, written additively, and assume that GG
is isomorphic to H @ H. Prove that G is isomorphic to H.

Solution: Let p be a prime divisor of |G|, and let ¢ = p® be the order of a cyclic
component of G. If G has k such components, then G @ G has 2k components
of order ¢g. An isomorphism between G @& G and H & H must preserve these
components, so it follows that H also has k cyclic components of order g. Since
this is true for every such ¢, Theorem 7.5.6 gives identical decompositions for G
and H . It follows that G = H.

7.6. Solvable Groups

2. (a) Find the commutator subgroup D, of D,

Solution: Using the standard description of D, via generators and relations, con-
sider the cases x = a' orx =a'band y =a’ ory = a’b.

Case 1: If x = a* and y = a’, the commutator is trivial.

Case 2: If x = o' and y = a’/b, then xyx~'y~! = d'a/ba""a’b =
ata’a’ba’b = a'a’a'a=’b* = a*, and thus each even power of a is a com-
mutator. ' '

Case 3: If x = a’/b and y = a*, we get the inverse of the element in Case 2.

Case 4: If x = a'band y = a’/b, then xyx~1y~! = a’ba’ba’ba’ b, and so
we get xy)c_ly_1 =d'a ' b%*dla7Th? = az(i_j), and again we get even powers
of a.

This gives the result we are looking for. If n is odd, then the commutators form
the subgroup (a). If n is even, then the commutators form the subgroup {a?).

(b) Prove that the dihedral group D,, is solvable for all n.

Solution: By part (a) the commutator subgroup D;, is either (a) or (az). In ei-
ther case, the commutator subgroup is abelian, so D), = (1), showing that D, is
solvable.

7. Example 7.6.3 constructed a composition series S4 D N1 D N» D N3 D (1)
for S4 in which Ny = Z, x Z,. Show that although S4 has subgroups isomorphic
to Z4, there is no composition series for S4 in which Ny =~ Z4.

Solution: Any subgroup H of S4 that is isomorphic to Z4 must be generated by
a 4-cycle (a, b, c,d). By Exercise 15 (b) of Section 2.3 there exists ¢ € S4 with
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0(1,2,3,4)07! = (a,b,c,d). That is, there exists an inner automorphism of Sy
that maps (1, 2, 3,4) to (a, b, ¢, d). Since any isomorphism will map one composi-
tion series to another, this shows that to answer the question it suffices to show that
the second term in the composition series cannot be ((1, 2, 3, 4)).

Suppose that we have a composition series S4 O K; D K2 D K3 D (1) in
which K> = {(1,2,3,4)). Then K, is a normal subgroup of K, so this means we
should compute the normalizer N(K3). We know that K5 is normal in the subgroup
D generated by (1,2,3,4) and (2, 4), since D = D4 (see Table 3.6.1). We could
also show that K, is a normal subgroup of D by observing that fact K> has index
2in D.

Now K, C D € N(Kj3) € 84, and since D has index 3 in Sy, it follows
that either D = N(K3) or N(K3) = S4. Because (1,2)(1,2,3,4)(1,2) =
(1,3,4,2) ¢ K, it follows that K, is not a normal subgroup of S4, and so
D = N(K3). This forces K1 = D in our supposed composition series, which
is impossible since D is not a normal subgroup of S4. (In the above calculation,
(1,2)(1,2,3,4)(1,2) = (1,3,4,2) ¢ D.)

10. Let p and g be primes, not necessarily distinct.
(a) Show that any group of order pq is solvable.

Solution: If p = g, then G has order p? and is thus abelian. Hence G is solvable.
If p < g, then the number of Sylow g-subgroups divides p and is congruent to 1
modulo g. Thus there is only one Sylow g-subgroup H of G, and so it must be
normal in G. The subgroup H is simple since |H| = ¢, and G/H is also simple
since |G/H| = p. The sequence G D H D {e} shows that G is solvable.

(b) Show that any group of order p2gq is solvable.

Solution: If p = g, then there exists a subgroup H of G with |H| = p? and a
subgroup K of H such that |K| = p. The sequence G O H D K D {e} shows
that G is solvable.

If p # g, then we claim that one of the Sylow p-subgroups or Sylow g-
subgroups is normal. If there is more than one Sylow p-subgroup, then there are g
Sylow p-subgroups, and p |(q — 1). If there is more than one Sylow g-subgroup,
then there are p or p? Sylow g-subgroups and ¢|(p — 1) or ¢|(p? — 1). Since
pl(g — 1) implies p < g — 1, we cannot have ¢ | (p — 1). Thus there cannot be p
Sylow g-subgroups and ¢ Sylow p-subgroups. Since p |(¢—1) wehave p < g—1,
and since g | (p+1)(p—1), we must have ¢ = p + 1. We conclude that p = 2 and
q = 3, and our group is of order 12. The number of Sylow 3-subgroups of a group
of order 12 is 1 or 4. If there are 4 Sylow 3-subgroups, then since any two of these
Sylow 3-subgroups must intersect in the identity element, there are 4 - (3 — 1) = 8
elements of order 3. The remaining 4 elements form the unique Sylow 2-subgroup,
and so the Sylow 2-subgroup is normal.
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Now consider the sequence G O H D {e}, where H is the normal Sylow
subgroup. Then G/H either has order p? or order g. In either case G/H is abelian,
and so G is solvable since both G/H and H are solvable.

(c) Show that any group of order p”q is solvable if p > g.

Solution: Let G have order p"q, with p > g. Since p > g there is only one Sylow
p-subgroup H of G, which must be normal in G. Since |G/H | = g, it is certainly
true that G/H is solvable. Since H is a p-group, it is also solvable, and thus G is
solvable.

12. Prove that any group of order 588 is solvable.

Solution: We have 588 = 22 -3 .72, Let S be the Sylow 7-subgroup. It must be
normal, since 1 is the only divisor of 12 thatis = 1 (mod 7). Since |G/S| = 12,
it is solvable by Exercise 10 (b). Furthermore, S is solvable since it is a p-group.
Since both S and G/S§ are solvable, it follows from Corollary 7.6.8 (b) that G is
solvable.

14. Let G be a finite group and suppose that N is a normal subgroup of G for
which ged(|N|,[G : N]) = 1. Prove that N is a characteristic subgroup of G.

Solution: Let ¢ be any automorphism of G. Then ¢ (N) is a subgroup of G, with
|N| elements. Since gcd(|N|,[G : N]) = 1, we can apply the result in the Exer-
cise 19 of Section 7.1, which implies that ¢(N) C N.

7.7. Simple Groups

11. Show that there is no simple group of order 132.

Solution: Since 132 = 22 - 3 - 11, the number of Sylow 2-subgroups is 1, 3, 11, or
33; the number of Sylow 3-subgroups is 1, 4, or 22; and the number of Sylow 11-
subgroups is 1 or 12. We will focus on the Sylow 3 and 11 subgroups. If there are
4 Sylow 3-subgroups, then as in Exercise 10, we can let the group act on them to
produce a homomorphism into S4. Because 132 is not a divisor of 24 = |Sy4/, this
cannot be one-to-one and therefore has a nontrivial kernel. If there are 22 Sylow
3-subgroups and 12 Sylow 11-subgroups, we get too many elements: 44 of order
3 and 120 of order 11. Thus the group has either 1 Sylow 3-subgroup or 1 Sylow
11-subgroup. We conclude that a group of order 132 has a proper nontrivial normal
subgroup.

17. Let F be a finite field, with |F| = p (a prime number), and let P be the
subgroup of GL,(F) consisting of all upper triangular matrices with 1 in each
entry along the main diagonal. Show that P is a Sylow p-subgroup of GL, (F).
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Solution: The answer to Exercise 15 gives us
|GLa(F)| = (p" = D)(p" = p) -+ (p" = p"71),
which can be rewritten as
(P" = Dp(p" =1 " (p = 1) = plH Ty = prnm D2y,

where p fm since p J (p' — 1) fori =1,...,n.
To construct a matrix in P, we have 1 choice in the first column, p choices in
the second, etc., with p”~1 choices in the last column. Thus |P| = p*®*~1/2 and

so P is amaximal p-subgroup of GL, (F), and is therefore a Sylow p-subgroup of
GL, (F).

20. Let F be any field, and let G be the set of all rational functions over F' of the

b
form f(x) = %, where a,b,c,d € F and ad — bc = 1. Prove that G is a
cXx

group under composition of functions, and that G is isomorphic to PSL; (F).

b
Solution: Define ¢ : SL»(F) — G by setting ¢ (|: CCZ b i|) = f(x) = ax ,

' a b ai b] as b2 _
for each matrlx[ ¢ d i| € SLy(F). Ofcourse|: c1 dy ] [ ¢y dp ] N

araz +bica arby + bida
c1a2 +dicr c1by + dids

:| in SLy(F). In G the operation is given as com-

i . : aix + b;
position of functions, and so if we let f;(x) = oxtd’ then we have the follow-
CiX i
ing calculation, which shows that ¢ respects the given operations.

arx + by
ai (—czx n dz) + by

arx + by
c1 (—czx +d2) + dy
ay (azx + by) + by (cax + da)
c1 (azx + by) + dy (cox + d>)
(a1az + bica) x + ar1by + brd>
(c1az + dica) x + c1by + drd>

(10 f2)(x) = fi(f2(x))

a b

It is clear that ¢ is onto. Let A = [ e d ] € ker(¢). Then ¢(A) is the

ax+b

rational function = —
i unction f(x) T d

, which is the identity function x if and only
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ifa =dand b = ¢ = 0. It follows from Exercise 7 of Section 3.3 that A €
Z(GL,(F)). The proof of that exercise uses the centralizers of two matrices in
SL,(F), so in fact A € Z(SL»(F)), and therefore ker(¢) = Z(SLo(F)). We
conclude that G is a group isomorphic to PSL, (F).
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8 Galois Theory

8.1. The Galois Group of a Polynomial

8. For each of the following fields, find the Galois group of x> — 2 over the field.
(a) GF(5)

Solution: A search in GF(5) for roots of x3 — 2 yields one and only one: x = —2.
Thus x3 — 2 factors as x> — 2 = (x 4 2)(x? — 2x — 1). The irreducible quadratic
factor will have a splitting field of degree 2 over GF(5), so by Theorem 8.1.8 the
Galois group of x3 — 2 over GF(5) is cyclic of order 2.

(b) GF(7)

Solution: In this case, x> — 2 has no roots in GF(7), so it is irreducible. If we
adjoin a root o of x3 —2 to GF(7), it follows from Corollary 6.6.2 that GF(7) () is
the splitting field of x> — 2 over GF(7). Since the splitting field has degree 3 over
GF(7), it follows from Theorem 8.1.8 that the Galois group of the polynomial is
cyclic of order 3.

Comment: To show directly that we have found the correct splitting field, division
of x> —2 by x — & shows that x> —2 = (x — a)(x? + ax + «?). The quadratic
formula then shows that 2« and 4« are the roots of x2 + ax + «2, and so x3 — 2
splits over GF(7)(«) as x3 —2 = (x —a)(x — 20)(x — 4a).

(¢) GF(11)

Solution: A search in GF(11) for roots of x3 — 2 yields one and only one: x = 7.
Then x3 — 2 can be factored as x> — 2 = (x — 7)(x2 + 7x + 5), and the second
factor must be irreducible. The splitting field has degree 2 over GF(11), and can be
described as GF(11)[x]/ (x2 + 7x + 5). Thus by Theorem 8.1.8 the Galois group

of x3 — 2 over GF(11) is cyclic of order 2, as in part (a).

9. Find the Galois group of x* — 1 over the field GF(7).

Solution: We first need to find the splitting field of x* — 1 over GF(7). We have
x* —1 = (x — I)(x + 1)(x% + 1). A quick check of +2 and %3 shows that
they are not roots of x2 4 1 over GF(7), so x2 + 1 is irreducible over GF(7). To
obtain the splitting field we must adjoin a root of x? + 1, so we get a splitting field
GF(7)[x]/ (x2 + 1) of degree 2 over GF(7).

It follows from Theorem 8.1.8 that the Galois group of x* — 1 over GF(7) is
cyclic of order 2.
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8.2. Multiplicity of Roots

4. Find the Galois group of x® — 1 over GF(7).

Solution: The Galois group is trivial because x® — 1 already splits over GF(7). In
fact, x6 — 1 = (x — 1)(x —2)(x — 3)(x — 4)(x — 5)(x — 6).

Comment: By Theorem 6.5.2, GF(7) is the splitting field of x” — x = x(x® — 1).

8. Find a primitive element for the extension Q(~/2, i) over Q.

Solution: The solution of Exercise 2 (c) of Section 6.4 shows that Q(+/2, i) = Q(c)
foro = ‘/Ti + 41’ .

Alternate solution: If we follow the proof of Theorem 8.2.8, we have u = u; =
V2, u, = —/2,v = vy = i,and v = —i. The proof shows the existence of
an element a with v + av # u; + av; for all i and all j # 1. To find such an

element we need ~/2 + ai #* V2 + a(—i) and V2 + ai #* -2+ a(—i). The
easiest solution is to take « = 1, and so we consider the element @ = /2 + i. We
have Q € Q(«) € Q(~/2,1), and since o~ € Q(a), we must have (v2 4 i)~ =
(v/2—1i)/3 € Q(a). But then +/2 — i belongs, and it follows immediately that /2
and i both belong to Q(«), which gives us the desired equality Q(a) = Q(~/2, ).

10. Let f(x) € Q[x] be irreducible over Q, and let F be the splitting field of f(x)
in C. If [F : Q] is odd, prove that all of the roots of f(x) are real.

Solution: We can assume without loss of generality that f(x) is monic, so let
f(x) =x"4+ap_1x" '+ ... a1x + ag, where a; € Qfor0 <i < n. Define ¢ :
F — Cbysetting ¢(z) = z, forall z € F, where Z denotes the complex conjugate
of z. For z1,z5 € F wehave ¢(z1 + z2) = z1+22 = Z21+22 = ¢(z1)+¢(22)
and ¢(z122) = z122 = Z1 22 = ¢(21)¢P(z2), so ¢ is a ring homomorphism since
¢ (1) = 1. Since ker(¢) is a proper ideal of the field F' it must be (0), and thus ¢ is
one-to-one.

Since f(x) has real coefficients, we have ¢(a;) = a; for0 <i < n. If ris
aroot of f(x), then f(7) = ¢(f(r)) = ¢(0) = 0, so r is also a root of f(x).
Since F is the splitting field for f(x), it is the smallest subfield of C that contains
all roots of f(x). We conclude that ¢ (F) = F, and so ¢ € Gal(F/Q).

Since Q has characteristic zero, Theorem 8.2.6 implies that f(x) has no re-
peated roots, and then Theorem 8.1.6 shows that |Gal(F/Q)| = [F : Q], so
Gal(F/Q) has odd order. Since | Gal(F/Q)| is odd and ¢?> = 1, it follows that ¢
must be the identity mapping. We conclude that F' C R, and so every root of f(x)
must be real.




BEACHY/BLAIR: SELECTED SOLUTIONS FROM CHAPTER 8 47
8.3. The Fundamental Theorem of Galois Theory

4. Let F = Q(~/2, ¥/2). Find [F : Q] and prove that F is not normal over Q.

Solution: The element \3/5 has minimal polynomial x3 =2 over Q. Since \/5 has
minimal polynomial x2 — 2 over Q, we see that Q(+/2) cannot be contained in
Q(+/2) since the first extension has degree 2 over Q while the second has degree 3
over Q. It follows that [F : Q] = 6.

If F were a normal extension of Q, then since it contains one root Y2 of the
irreducible polynomial x3 — 2 it would have to contain all of the roots. But F C R,
while the other two roots of x3 — 2 are non-real, so F cannot be a normal extension

of Q.

7. Find the order of the Galois group of x> — 2 over Q.

Solution: Let G be the Galois group in question, and let { be a primitive 5th root
of unity. Then the roots of x°> — 2 are « = /2 and @/, for 1 < j < 4. The
splitting field over Q is F = Q(3/2,¢). Since p(x) = x> — 2 is irreducible over
Q by Eisenstein’s criterion, it is the minimal polynomial of 3/2. The element ¢ is
arootof x> — 1 = (x — I)(x* + x3 4+ x? + x + 1), so its minimal polynomial is
g(x) = x* + x3 4+ x2 + x + 1. Thus [F : Q] < 20, but since the degree must be
divisible by 5 and 4, it follows that [F : Q] = 20, and therefore |G| = 20.

Note: By Section 8.6 we will have the tools to actually compute the Galois group,
which is shown in Example 8.6.2 to be F»o.

9. Let F be the splitting field over K of a separable polynomial. Prove that if
Gal(F/K) is cyclic, then for each divisor d of [F : K] there is exactly one field E
with K C EC Fand [E : K] =d.

Solution: By assumption we are in the situation of the fundamental theorem of
Galois theory, so that there is a one-to-one order-reversing correspondence between
subfields of F that contain K and subgroups of G = Gal(F/K). Because G is
cyclic of order [F : K], there is a one-to-one correspondence between subgroups
of G and divisors of [F : K]. Thus for each divisor d of [F : K] there is a unique
subgroup H of index d. By the fundamental theorem, [F¥ : K] = [G : H], and
so E = FH is the unique subfield with [E : K] = d.

8.4. Solvability by Radicals

1. Let f(x) be irreducible over Q, and let F be its splitting field over Q. Show that
if Gal(F/Q) is abelian, then F = Q(u) for all roots u of f(x).
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Solution: Since F has characteristic zero, we are in the situation of the fundamental
theorem of Galois theory. Because Gal(F/Q) is abelian, every intermediate exten-
sion between Q and F must be normal. Therefore if we adjoin any root u of f(x),
the extension Q(u) must contain all other roots of f(x), since it is irreducible over
Q. Thus Q(u) is a splitting field for f(x), so Q(u) = F.

2. Show that x> — 4x 4+ 2 is irreducible over Q, and is not solvable by radicals.

Solution: The polynomial p(x) = x° — 4x 4+ 2 is irreducible over Q, since it
satisfies Eisenstein’s criterion for the prime 2. Since p(—2) = =22, p(—1) = 5,
p0) =2 p(l) = —1, and p(2) = 26, we see that p(x) has a real root between
—2 and —1, another between 0 and 1, and a third between 1 and 2. The derivative
p'(x) = 5x* — 4 has two real roots, so p(x) has one relative maximum and one
relative minimum, and thus it must have exactly three real roots. It follows as in
the proof of Theorem 8.4.8 that the Galois group of p(x) over Q is S5, and so it is
not solvable.

8. Show that x* — x3 + x2 — x + 1 is irreducible over Q, and use it to find the
Galois group of x'° — 1 over Q.

Solution: We can construct the splitting field F of x'° — 1 over Q by adjoining a
primitive 10th root of unity to Q. We have x1® — 1 = (x> = 1)(x> + 1) =
(x—=Dx*+x34+x2+x+ D(x + D(x* —x3+x2 —x + 1). Substituting x — 1
in the last factor yields (x — D* —(x =13+ (x = 1> —(x 1)+ 1 =
(x*—4x3+6x2—dx+1)—(x3=3x2+3x - D+ (x2-2x+ D) —-(x—-D+1=
x# —5x3 4+ 10x2 — 10x + 5. This polynomial satisfies Eisenstein’s criterion for the
prime 5, which implies that the factor x* — x3 + x? — x + 1 is irreducible over Q.

The roots of this factor are the primitive 10th roots of unity, so it follows that
[F : Q] = ¢(10) = 4. The proof of Theorem 8.4.2 shows that Gal(F/Q) = Z7,,
and so the Galois group is cyclic of order 4.

8.5. Cyclotomic Polynomials

12. Calculate ®195(x).

Solution: We first note that ¢(105) =48. Since ®195(x) = ]_[n|105 (x" — 1)K(105/n)
(3 =D = DT =D —1)
(—DEE - DE —DEF 1)
ercise 11, because of the symmetry involved and the fact that deg(®95(x)) = 48,
we only need to compute the first 24 coefficients of ®195(x), so we can work with
powers of x modulo x2°.

by Exercise 9, we have ®195(x) =

By Ex-
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Note that (x> — )(x'> + 1) = —1 (mod x?°), 2 — D2 +1) =
—1 (mod x?°), x3 —1=—1 (mod x?°), and x!% —1 = —1 (mod x?°),
Thus after making these substitutions in our formula for ®;9s(x), we have

Pros(x) = (x> +x + D = D7 =D + 1)(x?! + 1) (mod x2°)
= (14 x +x2)(1—x—x"+x12 4215 —x20 4 x21 —x?2) (mod x?°)
= (1+x+x2—x5—x6—2x7—x8—x9+x12+x13+x14
—|—x15—|—x16+x17—x20—x22—x24—x24) (mod xzs)’

and so we finally obtain ®¢5(x) =
4847y 46 (4342 5 4114039 36 35, 34, 33, 32, 31 |28 26
X222 x 20 T x 16 e 15 e 1A e 13 1239 8 2x 7 x 0 x S 4x24x+1.

Remark: All of the polynomials @, (x) that we have computed up to now have
only the coefficients O, 1, or —1, and so one might have conjectured that this was
the case for all ®,(x). However ®195(x) has the coefficient —2 for the degree 7
and degree 41 terms.

8.6. Computing Galois Groups

5. Show that the following is a complete list of the transitive subgroups of S4: (i)
S4; (1) Ag; (iii) the Sylow 2-subgroups (isomorphic to D4); (iv) the cyclic sub-
groups of order 4; (v) the subgroup V ={(1), (1, 3)(2,4), (1,2)(3,4), (1,4)(2,3)}.

Solution: Let H be a subgroup of S4 that acts transitively on S = {1, 2, 3, 4}. This
is equivalent to saying that the orbit of each x € S, under the action of H, must
be allof S, and so [H : Hx] = |[Hx| = |S| = 4 for all x € S. Therefore |H| is
divisible by 4, so we can only have |H| = 24, 12, 8, or 4.

It is clear that the subgroups listed in (i), (ii), (iv), and (v) are transitive. The
only subgroup of order 12 is A4, and any subgroup of order 8 is, of course, a Sylow
2-subgroup. We know that D4 is isomorphic to a subgroup of Sy, so it follows
from the Sylow theorems that every subgroup of order 8 is isomorphic to D4 and
therefore is transitive since it contains a 4-cycle.

We must now eliminate the subgroups of order 4 that are not on our list. Any
subgroup of order 4 is contained in a Sylow 2-subgroup, so we only need to con-
sider subgroups isomorphic to a subgroup of D4. The three subgroups of D4 of
order 4 are given in Example 3.6.5. Letting a = (1,2,3,4) and b = (2, 4), these
subgroups are Hy = {e,a?, b,a’b} = {(1),(1,3)(2,4),(2,4),(1,3)}, Hy = (a),
and Hz = {e,az,ab,a3b} = V. Since H> is cyclic and H3 = V, these are on
our list. Since H; is not transitive, it follows that any subgroup of S4 isomorphic
to H; is not transitive.

Thus our list of transitive subgroups of S4 is complete.
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8. Show that the following is a complete list of the transitive subgroups of Ss:
(1) Ss; (ii) As; (iii) any cyclic subgroup of order 5; (iv) the normalizer in A5 of
any cyclic subgroup of order 5 (isomorphic to the dihedral group Ds); (v) the
normalizer in S5 of any cyclic subgroup of order 5 (isomorphic to the Frobenius
group Fao).

Solution: Let H be a subgroup of S5 that acts transitively on S = {1,2,3,4,5}.
This is equivalent to saying that the orbit of each x € §, under the action of H,
must be all of S, andso [H : Hy] = |Hx| = |S| = 5forall x € S. Therefore |H |
is divisible by 5, and so H contains a cycle of length 5 by Cauchy’s theorem. This
cycle generates a Sylow 5-subgroup of H. By the Sylow theorems, the number of
Sylow 5-subgroups in H is = 1 (mod 5), so this number must be either 6 or 1. We
consider these two cases.

Case 1. Suppose that H contains 6 Sylow 5-subgroups. Then H contains all 24
cycles of length 5, and so |H N As| > 25. Since As is simple it cannot contain a
subgroup of order 30, so in this case H N A5 = As, and thus either H = A5 or
H =S5

Case 2. Suppose that H contains only 1 Sylow 5-subgroup P, which is then normal
in H. If H C As, then H contained in the normalizer of P in A5, which is
shown in Exercise 16 of Section 7.4 to be isomorphic to Ds. (Remember that P is
generated by a 5-cyclic.) Therefore H =~ Zs or H = Ds.

If H is not contained in A5, then H must be contained in the normalizer of
P in S5. As shown in Exercise 16 of Section 7.4, this normalizer is isomorphic
to F20. The only possibility for a subgroup of F»¢ isomorphic to H is one of the
subgroups isomorphic to Zs, Ds, or Fyy itself.

Thus our list of transitive subgroups of S5 is complete.
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9 UNIQUE FACTORIZATION

9.1. Unique Factorization

11. Show that Z[x] is not a principal ideal domain.

Solution: The factor ring Z[x]/ (x) is isomorphic to Z, so (x) is a nonzero prime
ideal that is not maximal, since Z is an integral domain that is not a field. This
contradicts Theorem 5.3.10.

9.2. Unique Factorization Domains

8. A commutative ring R is said to be a Noetherian ring if every ideal of R has a
finite set of generators. Prove that if R is a commutative ring, then R is Noetherian
if and only if for any ascending chain of ideals /1 € I, C --- there exists a positive
integer n such that I = I, forall k > n.

Solution: First assume that R is a Noetherian ring, and let /; € I, € --- be an
ascending chain of ideals of R. Let I be the union of the chain, so that I =
{x € R| x € I} forsome k}. If x, y € I, then there exist integers k, m such that
x € Iy and y € I,,,. Assume without loss of generality that k < m. Then I C I,
so x € I, and therefore x + y € I, since I, is an ideal of R. Thus we have
shownthatx +y € /. Forany r € R we have rx € Iy, sorx € I. This shows that
the union / is an ideal, so it has a finite set of generators. Each of these generators
belongs to I for some k, so if we let n be the maximum of these indices, then
because the ideals I form a chain it follows that all of the generators of / belong
to I,,. Therefore I C I, sowemusthave I,, = I,,11 = 42 = .. ..

Conversely, assume that the given condition holds for ascending chains of ide-
als of R, and let / be any ideal of R. Let x; be a nonzero elementof /. If I = (x;),
then [ has a finite set of generators, and we are done. If not, let /1 = (x1), Then
there exists x, € I — I, and so we consider I» = {a1x1 + azx3 | a1,a> € R}.
The set I, is an ideal, with I; C I, € I. If I, = I, then I has two genera-
tors, and we are done. If not, we can choose x3 € I — I, and then we consider
Iz = {a1x1 + azx2 + aszxs | a1,az,a3 € R}. Because of the condition on as-
cending chains, this procedure cannot produce an infinite ascending chain of ideals,
each properly contained in the next, and so we conclude that for some n we have
I,, = I. This shows that I has n generators, completing the proof.

9. Let R be a commutative Noetherian ring. This exercise provides an outline of
the steps in a proof of the Hilbert basis theorem, which states that the polynomial
ring R[x] is a Noetherian ring.
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(a) Let I be any ideal of R[x], and let I} be the set of all r € R such that r = 0 or
r occurs as the leading coefficient of a polynomial of degree k in /. Prove that [
is an ideal of R.

Solution: If r,s € I, and either r = 0 or s = 0, then it is clear that r + 5 € I.
If r # 0and s # 0, then there exist polynomials p(x) and ¢g(x), each of degree
k, such that r is the leading coefficient of p(x), and s is the leading coefficient of
qg(x). If r + s = 0, then r + s € I by definition, and if not, then r + s is the
leading coefficient of p(x) 4 ¢g(x), which has degree k and belongsto /. If a € R,
then either ar = 0 € Iy, or ar is the leading coefficient of ap(x), which belongs
to I and has degree k.

(b) For the ideals [ in part (a), prove that there exists an integer n such that /,, =
Inp1 ="+

Solution: Since Iy C Ixyq € --- is an ascending chain of left ideals in R, this
follows from Exercise 8.

(c) By assumption, each left ideal [j is finitely generated (for k < n), and we
can assume that it has m (k) generators. Each generator of [j is the leading coef-
m(k)
j=1

ficient of a polynomial of degree k, so we let { pjx(x)},=," be the corresponding

polynomials. Prove that B = Uy _ {pjk (x)};."z(li)

Solution: If the set B is not a generating set, then among the polynomials that cannot
be expressed as linear combinations of polynomials in 3 there exists one of minimal

is a set of generators for /.

degree, say f(x) = ax¥+-... Ifk < n,thena € I}, andsoa = Z;';(]i) rja;y for

the generators {a };';(’j) of Iy. Then f(x) — Z;';Ui) rj Pjk(x) has lower degree,
and still cannot be expressed as a linear combination of elements of 3. This is a
contradiction. If k& > n, then we have a € [, and we can repeat the argument
using the generators of I,

Comment: We present another proof that if R is a commutative Noetherian ring,
then R[x] is Noetherian. It was given by Sarges, in J. reine angew. Math. 283/284
(1976), 436-437, and may be the shortest proof known.

Proof: We show that if R[x] fails to be Noetherian, then so does R. Let I be an
ideal of R[x] that is not finitely generated, and let f; be a polynomial of minimal
degree in /. If such polynomials f; have already been chosen, for 1 <i < k—1, let
1 be a polynomial of minimal degree in [ such that f; does not belong to the ideal
(f1,..+, fr—1). For 1 <i < k, let n(i) be the degree f;, and let a; € R be the
leading coefficient of f;. By the choice of f; we have n(1) < n(2) <---. We will
show that the ideals (a1) C (a1,az) C --- form a strictly ascending chain of ideals
that does not become stationary. Suppose that (aj,...,ar_1) = (ai,...,ag).

Then a; € (ai,...,ar_1), and so there exist r; € R with a; = Zf:ll ria;.
Therefore the polynomial g defined by g = f; — f:ll rix"®)=n@) £ belongs
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to I, but not to the ideal {f1,..., fr—1), and has lower degree than f. This
contradicts the choice of f.

9.3. Some Diophantine Equations

5. This exercise outlines a proof that the equation x* + y* = z2 has no solution in
YA

(a) Suppose that there is a positive triple x, y, z such that x* + y* = z2. Show that
we may assume that (x, y) = 1, and that (x2, y2,z) = 1.

Solution: If (x,y) = d, then x = du and y = dv for u,v € Z, and so d*u* +
d*v* = z2, where (u,v) = 1. Now d*|z2, and so d?|z. Thus z = d?w, for
some w € Z, and hence u* + v* = w2. Clearly (uz, v2, w) = 1.

(b) Show that there exists a least positive integer z such that x* + y* = z2, with
(x,y)=1,x>0,and y > 0.

Solution: Apply the well-ordering principle.
(¢) Show that x # y (mod 2).

Solution: Since (x, y) = 1, the numbers x and y cannot both be even. If both x
and y are odd, then z2 = 2 (mod 4), a contradiction.

(d) Without loss of generality, suppose that x is even and y is odd. Show that there
exist positive integers r < s, (r,5) = 1, r # s (mod 2) such that x> = 2sr,
y2 =52 —r2and z = 5% + r2.

Solution: Apply Exercise 30 of Section 1.2 to get x2 = 2s7, y2 = 52 — r2,

z=5%4+7r% where0 <r <sand (r,s) = 1. If r = s (mod 2), then y would be
even, a contradiction.

(e) Show that r is even, and s is odd.

Solution: If s were even, then r would be odd, and so y2 = —1 (mod 4), a
contradiction.

(f) Say that r = 2¢. Show that (¢, s) = 1, and that both ¢ and s are squares.

Solution: Since (2t,s) = 1, we have (t,s) = 1. Since x> = 2sr = 4st and
(t,s) = 1, we have that s and ¢ are squares.

(g) Show that there exist integers m,n such that 0 < m < n, (m,n) = 1, and
t=mn,y = n? —m?2, and s = n? + m?2.

Solution: Since t is a square, there exists a positive integer & such that t = h2.
From y2 +72 = 52 we get y2 + (2h?)? = s2. Applying Exercise 30 of Section 1.2
again, there exist integers m, n with0 < m < n, (m,n) = 1, such that 2h2 = 2mn,

y = n?—m?,and s = m?> +n?. Hencet = mn,y = n?—m?, and s = n? +m?2.



54 BEACHY/BLAIR: ABSTRACT ALGEBRA CHAPTER 9

(h) Show that both m and n are squares.
Solution: This follows since h?> = mn and (m,n) = 1.

(i) Say m = a? and n = b?. Show that there exists k € Z such that a* + b* = k2,
and obtain a contradiction to the choice of z in part (b) of this exercise.

Solution: Since s is a square, there exists k € Z such that x = k? = m? + n? =
a* + b*, and since s > r and r > 0 is even, we have s > 1, and so k > 1. Thus
0 <k <k? =5 < 5?4 r? = z. Therefore we have a solution (a2, b2, k) to
x* 4+ y* = z2, which contradicts the choice of z.

6. (a) Show that the equation x* + y# = z# has no integer solution with xyz # 0.

Solution: If (r, s, t) is a solution to x* + y* = z* with rst # 0, then (r,s,¢2) is a
solution to x* 4+ y* = z2 with rst? # 0, and this contradicts Exercise 5.

(b) In order to prove Fermat’s last theorem, show this it suffices to prove that for any
odd prime p, the equation x? + y? = z? has no integer solution with xyz # 0.

Solution: Fermat’s last theorem states that x” 4+ y” = z" has no solution with
xyz # 0 when n > 3. Now if p|n, where p is an odd prime, then n = mp for
some m, and (x", ", z™) is a solution to x? 4+ y? = zP whenever (x, y,z) is a
solution to x” 4+ y” = z”. If n has no odd prime divisor, then since n > 3 we have

4|n,son = 4k and (x*, y¥, zK) is a solution to x* + y* = z* whenever (x, y, z)

is a solution to x” + y" = z".
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10 GROUPS: SELECTED TOPICS

10.1. Nilpotent Groups

5. (a) Prove that D, is solvable for all 7.

Solution: Using the usual description D,, = {a'b/ |0 <i <n,0 < j < 2}, with
ba = a~'b, we know that (a) is a normal subgroup of index 2, and since the factor
group is also abelian, we have produced a series of normal subgroups of D, that
shows that it is solvable.

(b) Prove that Dy, is nilpotent if and only if n is a power of 2.

Solution: It was shown in Exercise 22 of Section 3.6 that if n is odd, then the center
of Dy, is trivial, and if n = 2m is even, then the center of Dy, is {e,a™}. We will
show that D, is nilpotent if and only if n is a power of 2, with the help of the
following lemma.

Lemma: If n = 2m is even, then D,/ (a™) = D,,.
Proof: Let Dy, = {c'd’/ | 0 <i <m,0 < j < 2}, and define ¢ : D, — Dy, by
setting ¢p(a*b’) = c*d’,for0 <i <mand 0 < j < 2. Ttis clear that ¢ defines a
group homomorphism from D, onto D,,, and that ker(¢) =
{a* |i =0 (mod m)} = (a™). O
We now show that D,, is nilpotent if and only if n is a power of 2. First suppose
that n = 2K, Then |Dy| = 2k+1 50 Dy isa 2-group and therefore nilpotent.
Conversely, suppose that n = 2Km, where m is an odd integer. Then in the
ascending central series Z; (Dy,), the first term is the center (azk_lm). To calculate
the next term, we note that the image of (azkizm) in D,/ (azkilm) is its center, so
Z>(Dyp) = (azk_zm), and D, /Z>(Dy,) = D,k—2,,. Continuing in this fashion,
we arrive at Zy (D), with D,/ Z;(Dy,) = D,,. Since the center of this factor
group is trivial, the series terminates, and therefore D, is not nilpotent.

6. Use Theorem 10.1.7 to prove that any factor group of a finite nilpotent group is
again nilpotent.

Solution: Let N be a normal subgroup of G, and suppose that H/N is a maximal
subgroup of G/ N . The correspondence between subgroups of G/ N and subgroups
of G that contain N shows that H is a maximal subgroup of G, and so it is normal
in G by Theorem 10.1.7. It follows that H/N is a normal subgroup of G/N, and
thus Theorem 10.1.7 implies that G/ N is nilpotent.
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10.2. Internal Semidirect Products of Groups

5. Let G be the subgroup of GL3(GF(2)) generated by the following matrices:

1 00 1 00 1 00
11 01|,{010O01,] 001
0 01 1 01 010

(a) List the elements of G.

Solution: The following matrices form the smallest subgroup N of GL3(GF(2))
containing the first two of the given matrices:

1 00 1 00 1 00 1 00
o1o0y|,/1 10{]01O0]| 110
0 0 1 0 0 1 1 0 1 1 01

Note that each nonidentity element has order two.

Multiplying these matrices on the left by the third matrix interchanges the bot-
tom two rows; multiplying on the right by the third matrix interchanges the two
right hand columns. Either calculation produces the four additional matrices that
make up the required subgroup G:

1 00 1 00 1 00 1 00
Oo0o1|,/]00T1]{]10T1]|[T1 01
010 1 10 010 1 10

(b) Find elements a,b € G with o(a) = 4, 0o(b) = 2, ba = a3b, and conclude
that G is isomorphic to D4. Identify the subgroups that show that it is an internal
semidirect product of a cyclic subgroup of order 4 by a subgroup of order 2.

1 00
Solution: We need to find an element of order 4, and settinga = | 1 0 1
010
1 00 1 00
provides one, witha? = | 1 1 0 |anda®=| 0 0 1 |. Wecanletbh be
1 01 1 10
1 00
any element not in this subgroup,sayb =] 0 0 1 |. Then
010
1 00 1 00 1 00
ba=]1 0 0 1 1 01 |=]01 0 [and
010 010 1 01
1 00 1 00 1 00
alb=|0 0 1 001 ]|=|0T1°0|[
1 10 010 1 0 1
showing that G = Dy, and it is the internal semidirect product of the normal
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1 00 1 00 1 00 1 00
subgroup (a) = o1oj|,f]1o0o1],f110],]l 001
0 0 1 010 1 01 1 10
1 00 1 00
by the subgroup (b) = 010 ]|,] 001
0 01 010

(c) Show that G is the internal semidirect product of a normal subgroup N isomor-
phic to the Klein four-group V' by a subgroup of order 2.

Solution: Let N =

1 00 1 00 1 00 1 00
o1o¢(,l 1 1.01],]01O0T¢],] 1T 1 O0 , the elements of
0 0 1 0 0 1 1 01 1 01
1 00 1 00 1 00
theform [ a 1 0 |,andlet K= 010 ]|,] 001 . Then
b 0 1 0 0 1 010

NNK = {I},and so a counting argument shows that NK = G. Since N has index
2 in G, it is normal, and thus G = N x K. A short calculation shows that each
element in N has order 2, and therefore N is isomorphic to the Klein four-group.

7. Let n = 2m, where m is an odd integer > 3. Show that the dihedral group
D,, is the internal semidirect product of a cyclic group of order m by a subgroup
isomorphic to the Klein four-group.

Solution: Let D,, = {a'h/ |0 <i <n,0< j <2}, where o(a) = n, o(b) = 2,
and ba = a~'b. Let N = (a?) and K = {e,a™, b,a™b}. It is easily checked that
K is a subgroup, and since each nontrivial element has order 2, it is isomorphic to
the Klein four-group. If a* € N, where i is even, then batb™' =aP e N,so N
is a normal subgroup. Since every power of a2 is even, we have N N K = {e}, and
then it is clear that NK = D,,, completing the proof.

8. Let m, n be positive integers. Show that the direct product Z,, x Dy, is the internal
semidirect product of a normal subgroup isomorpic to Z,, & Z, by a subgroup of
order 2.

Solution: Let D,, = {a'b’ |0 < i <n,0=<j <2}, whereo(a) =n,o(b) =2,
and ba = a'b. Let N = {(x,a') | x € Z;,, 0 <i < n}andlet K = ((0,b)).
Then N is a subgroup of Z,,, x D, by Exercise 11 of Section 3.3, it is normal since
it has index 2, and it is clear that NK = Z,,, X D,,. Thus Z,,, x D,, = N x K, and
itis easy to check that N = Z,, & Z,.
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10.3. External Semidirect Products of Groups

6. Let Cy4 be the cyclic group of order 4, written multiplicatively, and let o be the
only nontrivial group homomorphism from Cy4 into Aut(Z3) = C,. Find elements
a of order 6 and b of order 4 with b? = a3 and ba = a~'b such that Z3 x4 C4 can
be described as {a'b’ |0 <i < 6,0 <j <2}.

Solution: We will use the given subgroups C4 = {£1, +i} and C; = {£1} of C*.
Since Aut(Z3) =~ C;, the only nontrivial homomorphism « : C4 — C, is defined
by (i) = —1, and then o(—1) = 1 and a(—i) = —1. Thus a—; is the identity
automorphism, while ¢; and o—; represent a change of sign.

Leta = (1,—1)and b = (0,7) in Z3 xq C4. We have

a?=(1,-D-(1,=1) =1 +a(),(=D)(=1)) =1 +1,1) = (2,1),
a*>=(1,-1)-2,1) = (1 +a-1(2), (D) = (1 +2,-1) = (0,-1),
a: =(L-1-0.-1) =(1+a-1(0).(=D(=1))=(10+01) = (1.1,

a=0-D-0,)=>0+a(),DA)=0A+1,-1) =2,-1),
a®=(1,-1)-2,-1) = (1 +a-1(2), (=D)(=1)) = 1 +2,1) = (0, 1),
and so o(a) = 6. In general, (x,y) - (0,z) = (x + &, (0),yz) = (x,yz), so
b2 = 0,-1), b3 = (0, —1), and b = (0, 1), and thus b has order 4. From the
above list of powers of a, it is clear that each element of Z3 X Cy4 has the form a*
oralh,for0 <i < 6.

From the above calculations, b?> = (0, —1) = a3, and ba = (0,i) - (1,—1) =
0+ a;(1),(@)(=1) = (0—1,—i) = (2,—i) while a™'b = a°b = (2,-1) -
0,i) = (2,—i), and so ba = a~'b.

Comment: Since b* = a3, we have a?b? = a°, a*b? = a, b3 = a3b, a?h3 =
a®b, and a*bh® = ab. Thus can also write
Z3xq Cs =1{a?'b/ |0<i <3,0<j <4

7. Let V be the Klein four-group, written multiplicatively, and let o : V — Aut(Z3)
be any nontrivial group homomorphism. Show that Z3 xy V = Dg.

Solution: By Example 10.3.3 we are free to consider any linear action of V' on a
cyclic group of order 3, written additively. Since each nontrivial element of Z7,
has order 2, it is isomorphic to V, and since Z7, = Aut(Z;2), it acts linearly on
Z15. As in Example 10.3.4, we will make use of a subgroup of the holomorph H 1,
of Zl 2.

We can identity Z7, = {£1, +5} with /, and we can identity the cyclic sub-
group N = {0,4,8} C Z;, with Z3. Since this subgroup is also an ideal of the
ring Z15, each element of Aut(Z1,) maps N to N. We conclude that multiplication
in Z1, defines a linear action of Z,, on N.

In the semidirect product N Xy Z7,, leta = (4,—5) and let b = (0, —1). Then
0,—1)-(0,—1) = (0 + (=1)(0), (=1)(=1)) = (0, 1), and so b has order 2. We
also have
a? = (4,-5)-(4,=5) = (4 + (=5 @), (=5)(=5)) = 8. 1),
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a>=(4,-5-8.1) = 4+ (=5®). (=5)(1)) = (0.-5),
at = (4,-5)(0,=5) = (4 + (=5)(0). (=5)(=5)) = (4, 1),
a>=(4,-5-4.1) =@+ (5@, (=5)(1) = (8,-53),

a® = (4,-5)- (8, =5 = (4 + (=5)(8), (=5)(=5) = (0. 1),

and so o(a) = 6. Since (x, y)(0,—1) = (x,—y), it follows easily from the above
list of powers of a that each element of N xq Z7, has the form a’ or a’b, for
0 < i < 6. Furthermore, ba = (0,—1) - (4,—=5) = (0 + (=1)(4), (—=1)(=5)) =
(8,5) and a®bh = (8,—5)- (0, —1) = (8 + (=5)(0), (=5)(—=1)) = (8,5), and so we
conclude that Z3 xq V = N Xq Z7, is isomorphic to the dihedral group Ds.

8. Using the isomorphism between ZZ and Aut(Zs), define an action y : ZZ — ZZ
of Z on Zs by u(x) = x2, forall x € ZX.

(a) Find elements a of order 10 and b of order 4 with b? = a® and ba = a~'b
such that Zs %, ZZ can be described as {a'b’ |0 <i < 10,0 < j < 2}.

Solution: Let ZZ = {£1,+£2} and Zs = {0, 1,2, 3,4}. Since Aut(Zs) = ZZ, the
homomorphism p defines a linear action of ZZ on Zs in which i (n) = pu(k)-n =
k2n, fork € ZZ,neZs Leta=(1,—1)and b = (0,2). For (n1,k1), (n2,k2) €
Zs x, 77 we have (n1,ky) - (n2,k2) = (n1 + (k1)?n2,k1ks), so in particular
(1,=1)-(n,k) = (14+n,—k) and (0, k1)-(0, k2) = (0, k1k2). It follows that (a) =
{(0,1),(1,-1),(2,1),(3,-1),(4,1),(0,—1),(1,1),(2,—1),(3,1), (4,—1)} and
(b) = {(0,1),(0,2), (0, —1), (0,—2)}. Thus b?> = @>, and bab™! =

(4,—1) = a°, and so ba = a~1b. Furthermore, (n,1) - (0,2) = (n,2) and
(n,—1)-(0,2) = (n,—2) soitisclearthat G = {a’'b’ |0 <i < 10,0 < j < 2}.
(b) Show that the Frobenius group F> has no element of order 10. Conclude that
Zs %, 77 is not isomorphic to Zs x, Zz = Fy.

Solution: In F,¢ an element of the form [ )16 (1) ] has order 5 if x # 0. Since
X a y a

has order 4 for a = 2, 3, 4. (A routine calculation shows that | +a +a? +a3 =0
fora = 2, 3, 4.) Therefore F>( has no element of order 10.

4
[ Lo ] = |: ! a04 :|,Wherey = x(l+a+a2+a3),itfollowsthat[ )lc 0 ]

10. Let N and K be groups, leta, 8 : K — Aut(/N) be group homomorphisms, let
y € Aut(N) , and define ¢ : N x4 K — N xg K by setting ¢((n,k)) = (y(n).k),
foralln € N, k € K. Show that ¢ is an isomorphism if and only if 8 = iy«,
where i) is the inner automorphism of Aut(/N) determined by y.

Solution: We have defined ¢ by setting ¢((n,k)) = (y(n),k), foralln € N,
k € K, so it is clear that ¢ is one-to-one and onto since y is an automorphism.
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Forny,n, € N and kq1,k, € K, we have

¢((n1,k1)(n2,k2)) = ¢((n1ag, (n2),kik2))
= (y(mag,(n2)), kikz)
= (y(n))y(ag, (n2)), ki1k2)

¢((n1,k1)p((n2,k2)) = (y(n1),k1)(y(n2),k2)
= (y(n1)Br, (y(n2)), k1k2)

Thus ¢ preserves the respective multiplications if and only if y (ax (1)) = Br(y(n))
foralln € N and k € K. We can write this as ya, = Biy, forall k € K, and so
Bk = yayy 1, forall k € K. Therefore B(k) = iya(k), forallk € K.

10.4. Classification of Groups of Small Order

6. Show that the holomorph H,, = Z, Xy Z,; of Z, can be represented as the set

of matrices of the form [ )lc 2 }, where x € Z, anda € Z,;.

Solution: The first issue is that up to this point we have only considered matrices
with entries in a field, and these matrices have entries in a commutative ring Zj,.
The standard proof that multiplication of matrices is associative (when the entries
are from a field) remains valid when the entries come from a commutative ring R,

and it is clear that [ (1) (1) i| is a multiplicative identity element. If a,b,c,d € R,

a b d —=b 1 0. : .
then |: ¢ d i| |: e 4 ] = (ad — bc) [ 0 1 ] since R is commutative, and

. la b |. . o e . . .
so the matrix |: ¢ d i| is invertible if and only if its determinant ad — bc is a unit
of R. These observations show that the matrices we are considering are invertible.

-1

1 0 1 0 . . .

In fact, [ ] = |: 1 1 ], since a is a unit of Z,,.
X a —a~'x a

For (x,a) € Z, xq Z), define ¢((x,a)) = [ )lc 2 i| Then ¢ is a group

homomorphism since ¢ ((x1,a1)(x2,a2)) = ¢((x1 + ai1xz,a1az)) =

1 0 1 0 1 0
|: X1 +aixz apaz :| B [ X1 ai ] [ X2 az :| = #((x1,01))p((x2,02)). It
is clear that ¢ is one-to-one and onto, and so ¢ is an isomorphism.
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9. Consider the holomorph H15 = Z15 % Z}5 of Z5, using its representation from
. . 1 0
Exercise 6 as matrices of the form [ v al where x € Z15 and a € Zfs. Note

that Z75 has three cyclic subgroups of order 2: (—1), (4), and (—4).
(a) Let G be the subgroup of H15 with a € (—1). Show that G; = Ds.

1 1 0 -1
and dc = ¢~ 1d since the action of (—1) on Zs changes the sign. Thus G| =
Dis.
(b) Let G5 be the subgroup of H1s with a € (4). Show that G, =~ Z3 x Ds.

Solution: Let b = [ (1) 2 We have Z15 = 57215 ® 3215 = Z3 & Zs.
Since 4-5 = 20 = 5 (mod 15) and 4 -3 = 12 = —3 (mod 15), the ele-
ment b acts as the identity on 5Z,5 and changes the sign on 3Z;5. Let H =

{|:)lc 2] xeSle,azl},Kz{[i 2:| x€3Z15,ae(4)}.

Then H is cyclic of order 3, so H =~ Z3, and K =~ D5 since it is a nonabelian
group of order 10. We have H N K = {I}, so HK = G». To show that G5 is the
internal direct product of H and K we will show that elements of H and K com-

mute.Let|:1 O]EHandlet[1 O}EK.Then[l 0”:1 O]:
y 1 X a y 1 X a

[ ! 0},While|:1 O]|:1 O]:|: ! O]. But (as shown
y+x a X a y 1 xX+ay a

above) sincea = lora = 4and y = 0,5,10, we have ay = y (mod 15),
and so the elements commute.

(c) Let G3 be the subgroup of H 5 with a € (—4). Show that G3 =~ Z5 X D3.

Solution: Let b = [ (1) _2 i| We have Z15 = 3Z15 ® 5215 = Z5 & Z3. Since

—4.3=—-12=3 (mod 15) and —4 -5 = =20 = —5 (mod 15), the element b
acts as the identity on 3Z;5 and changes the sign on 5Zjs. As in part (b), it can be
checked that G3 is the internal direct product of H and K, for

H = {[1 0:|xe3Z15,a=1},K = {[1 0:|x65Z15,a€(—4) .
X da X da

Furthermore, H =~ Z5 and K =~ D3, as required.

Solution: Let ¢ = [ bo i| andd = [ b0 i| Then o(c) = 15, o(d) = 2,

(d) Show that the groups G1, G2, G3 represent three distinct isomorphism classes.

Solution: We can distinguish between the groups by looking at their centers. Exer-
cise 22 of Section 3.6 shows that the center of D,, is trivial if n is odd. It is easy to
check that the center of a direct product is the direct product of the centers. Thus
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the center of G is trivial, the center of G5 is its Sylow 3-subgroup, and the center
of G3 is its Sylow 5-subgroup.

10. Show that any nonabelian group of order 30 is isomorphic to D15, Z3 x D5, or
Z5 X D3.

Solution: Let G be a group of order 30 = 2 -3 - 5. By Theorem 7.4.4 the number
of Sylow 5-subgroups is 1 or 6, and the number of Sylow 3-subgroups is 1 or 10.
If neither of these Sylow subgroups were normal, then G would contain 6 - 4 = 24
elements of order 5 and and 10 - 2 = 20 elements of order 3, which is impossible.
We conclude that either the Sylow 5-sybgroup or the Sylow 3-subgroup is normal.

Suppose that the Sylow 5-subgroup Ps is normal. Then |G/P5| = 6 has a
subgroup of index 2 since G/ Ps is isomorphic to Zg or S3. Proposition 3.8.7
shows that G has a corresponding subgroup of index 2, which must be normal. If
the Sylow 3-subgroup P3 is normal, then |G/ P3| = 10, and again G has a normal
subgroup of index 2 since the same is true for G/ P3, which isomorphic to Z¢ or
Ds.

Since a subgroup of order 15 is isomorphic to Zj5, we conclude that G is the
internal semidirect product of a normal cyclic group of order 15 by a subgroup
of order 2. By Theorem 10.4.4, we can consider the possible external semidirect
products. These are determined by a group homomorphism o : C» — Z75. Let
775 = {£1,+£2,+4,48}. The image of o in Z]s is {1} or one of three cyclic
subgroups of order 2: {—1), (4), and (—4). Thus there are at most 3 isomorphism
classes of nonabelian external semidirect products Z;5 xq C>. The desired con-
clusion, that G is belongs to one of the isomorphism classes represented by D5,
73 x Ds, or Z5 x D3, now follows from Exercise 9.



