
Stimulus-dependent suppression of chaos in recurrent neural networks

Kanaka Rajan*
Lewis-Sigler Institute for Integrative Genomics, Icahn 262, Princeton University, Princeton, New Jersey 08544, USA

L. F. Abbott
Department of Neuroscience and Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons,

Columbia University, New York, New York 10032-2695, USA

Haim Sompolinsky
Racah Institute of Physics, Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel

�Received 31 July 2009; revised manuscript received 22 April 2010; published 7 July 2010�

Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural
circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that
intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs
not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a
phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is
a nonmonotonic function of stimulus frequency, revealing a “resonant” frequency at which the input is most
effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and
falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly
suppressed at frequencies matching the range over which many sensory systems operate.
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Circuits of the central nervous system exhibit temporally
irregular ongoing activity that is not directly related to sen-
sory or behavioral events. The fact that this spontaneous ac-
tivity is not suppressed by averaging over the large number
of synaptic inputs to each neuron �1� suggests that chaotic
network dynamics may represent a substantial local source
of fluctuating activity in cortical and subcortical circuits. Pre-
vious modeling studies have shown that nonlinear random
network models with strong recurrent excitatory and inhibi-
tory connections generically exhibit chaotic dynamics �2–4�.
In this work, we ask how intrinsically generated fluctuating
activity affects neuronal responses to external stimuli. The
nonlinear effects of oscillatory drive, including frequency de-
pendence and phase locking, have been well explored in
low-dimensional chaotic dynamical systems �see, e.g.,
�5–9��. However, relatively few studies have explored en-
trainment of extended high-dimensional spatiotemporal cha-
otic systems by external forcing �see, e.g., �10–14��. Here,
we explore the locking of large chaotic neuronal networks to
external stimuli and study how it depends on stimulus am-
plitude and frequency.

We study phenomenological firing-rate network models
representing neurons in a localized circuit that are coupled
by relatively strong excitatory and inhibitory connections
randomly distributed in the network. Specifically, we con-
sider a network of N interconnected neurons, each described
by an activation variable xi for i=1,2 , . . . ,N, satisfying

dxi

dt
= − xi + �

j=1

N

Jij��xj� + Hi, �1�

with ��xi�, which is a saturating monotonic function of the
total synaptic input xi, representing a normalized firing rate
relative to a fixed background rate r0. Here, we choose

��x� = �r0 tanh�x/r0� for x � 0

�2 − r0�tanh�x/�2 − r0�� for x � 0,
� �2�

so that the normalized firing rate varies from 0 to 2. For r0
=1, we recover the often-used tanh function, but we use a
smaller value of r0=0.1, which is more biologically reason-
able �15�. The time variable in Eq. �1� is defined in units of
the single-neuron time constant, �r=10 ms. Each element of
the network connectivity matrix J is chosen randomly and
independently �16� from a Gaussian distribution with zero
mean and variance g2 /N, where the gain g acts as the control
parameter of the network. The external input term is set to
Hi= I cos��t+�i�, with the phase �i chosen randomly and
independently for each neuron from a uniform distribution
between 0 and 2�. This corresponds to situations in which
the oscillatory input does not introduce global temporal
phase coherence, which occurs, for example, for a population
of neurons with a broad range of preferred spatiotemporal
phases.

To characterize the activity of the network, we make ex-
tensive use of the autocorrelation function of each neuronal
rate averaged across all the units of the network,

C��� =
1

N
�
i=1

N

��„xi�t�…�„xi�t + ��…	 , �3�

where the angular brackets denote a time average. C�0� is
related to the total variance in the fluctuations of the firing
rates of the network units, whereas C��� for nonzero � pro-
vides information about the temporal structure of network
activity.*krajan@princeton.edu
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Previous work �2� has shown that, in the limit N→	 with
no input �I=0�, this model displays only two types of activ-
ity: a trivial fixed point with all x=0 when g
1 and chaos
when g�1. The spontaneously chaotic state is characterized
by highly irregular firing rates �Fig. 1�a��, a decaying average
autocorrelation function �Fig. 1�d��, and a continuous power
spectrum �Fig. 1�g��. Note that the fluctuations in Fig. 1�a�
are considerably slower than the 10 ms time constant of the
model. The associated average autocorrelation function de-
cays to zero as � increases �Fig. 1�d��, implying that the
temporal fluctuations of the spontaneous activity are uncor-
related over large time intervals, a characteristic of the cha-
otic state. The power spectrum decays from a peak at zero
�Fig. 1�g�� and, although it is broad, the power at high fre-
quency is exponentially suppressed. Strong suppression of
high-frequency fluctuations is another characteristic of the
chaotic state in these networks. By comparison, the power
spectrum of a nonchaotic network responding to a white-
noise input falls off only as a power law at high frequencies.

When this network is driven with a relatively weak sinu-
soidal input �Figs. 1�b�, 1�e�, and 1�h��, the single-neuron
response consists of periodic activity induced by the input
superposed on a chaotic background �Fig. 1�b��. The average
autocorrelation function for the network driven by weak pe-
riodic input consequently reveals a mixture of periodic and
chaotic activities �Fig. 1�e��. Periodic oscillations at the input
frequency appear at large values of �, but the variance given
by C�0� is larger than the height of the peaks in these oscil-
lations. This indicates that the total firing-rate variance is not
completely accounted for by the oscillatory response of the
network to the external drive, with the additional variance
arising from residual chaotic fluctuations. Similarly, the
power spectrum shows a continuous component generated by
the residual chaos, a prominent peak at the frequency of the
input, and peaks at harmonics of the input frequency arising
from network nonlinearities �Fig. 1�h��.

When the amplitude of the input is increased sufficiently,
the single-neuron firing rates oscillate at the input frequency
in a perfectly periodic manner �Fig. 1�c��, yielding a periodic
autocorrelation function �Fig. 1�f��. C�0� now matches the

height of the peaks in each of its subsequent oscillations,
meaning that the periodic component in C accounts for the
entire response variance quantified by C�0�. All of the net-
work power is focused at the frequency of the input and its
harmonics, also indicating a periodic response free of chaotic
interference �Fig. 1�i��.

To explore these results analytically and more systemati-
cally, we developed dynamic mean-field equations appro-
priate for large N. The mean-field theory is based on the
observation that the total recurrent synaptic input onto each
network neuron can be approximated as Gaussian noise �2�.
The temporal correlation of this noise is calculated self-
consistently from the average autocorrelation function of
the network. We begin by writing xi=xi

0+xi
1, where x0 is

the steady-state solution to dxi
0 /dt=−xi

0+ I cos��t+�i�
and xi

1 satisfies dxi
1 /dt=−xi

1+� jJij��xj
1+xj

0�. This implies

that xI
0�t�=h cos��t+ �̃i�, where h= I /
1+�2 and

we have incorporated a frequency-dependent phase shift into

the factor �̃i. Mean-field theory replaces the network interac-
tion term in the equation for xi

1 with a Gaussian random
variable �, so that dxi

1 /dt=−xi
1+�i. Averages over time and

network units as in Eq. �3�, are implemented by averaging
over J, �, and � �denoted by square brackets�, an approxi-
mation valid for large N.

Self-consistence is obtained in the mean-field theory by
requiring that the first two moments of � match the moments
of the network interaction that it represents. Thus, we set
��i�t��= �� jJij�(xj�t�)�=0, because �Jij�=0. Similarly, using
the identity �JilJjk�=g2�ij�kl /N, we find that

��i�t�� j�t + ��� = ��
l=1

N

Jil�
k=1

N

Jjk�„xl�t�…�„xk�t + ��…�
= �ij

g2

N �
k=1

N

��„xk�t�…�„xk�t + ��…�

= �ijg
2C��� . �4�

Next, defining 
���= �xi
1�t�xi

1�t+��� and recalling that
dxi

1 /dt=−xi
1+�i, it follows that

d2
���
d�2 = 
��� − g2C��� . �5�

The final step in the derivation of the mean-field equations is
to note that because x1�t� and x1�t+�� are driven by Gaussian
noise, they are Gaussian random variables with moments
�x1�t��= �x1�t+���=0, �x1�t�x1�t��= �x1�t+��x1�t+���=
�0�,
and �x1�t+��x1�t��=
���. To realize these constraints, we in-
troduce three Gaussian random variables with zero mean and
unit variance, zi for i=1,2 ,3, and write

x1�t� = 

�0� − 

���
z1 + sgn„
���…


���
z3,

x1�t + �� = 

�0� − 

���
z2 + 
���


���
z3.

C can then be computed by writing x=x0+x1 and integrating
over these Gaussian variables,

� �
����

� �
����

�

� ��
� �	
�

������

� ��


�

�

�

�

�

�

�

�

	

�

FIG. 1. Activity of typical network units �left column�, average
autocorrelation function �middle column�, and logarithmic-power
spectrum �right column� for a network with N=1000 and g=1.5.
�a� With no input �I=0�, network activity is chaotic. �b� In the
presence of a weak input �I=0.04, f =� /2�=4 Hz�, an oscillatory
response is superposed on chaotic fluctuations. �c� For a stronger
input �I=0.2, f =4 Hz�, the network response is periodic. �d�–�f�
Average autocorrelation function and �g�–�i� logarithm of the power
versus frequency for the network states corresponding to �a�–�c�.
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C��� = �
0

2� d�

2�
�

−	

	

Dz3�
−	

	

Dz1�„

�0� − 

���
z1

+ sgn„
���…


���
z3

+ h cos���…�
−	

	

Dz2�„

�0� − 

���
z2

+ 


���
z3 + h cos��� + ��… , �6�

where Dzi=dzi exp�−zi
2 /2� /
2�, for i=1,2 ,3, and �= �̃+�t.

Equation �6� determines C��� as a nonlinear function of 
���.
Substituting this expression into Eq. �5� provides a nonlinear
differential equation for 
���, with g, h, �, and 
�0� as pa-
rameters.

Equation �5� has the form of the equation of motion for a
classical particle of unit mass and position 
��� moving un-
der the influence of a force that depends on C. This force is
a function of the current position of the particle, 
��� �as
well as on its initial position 
�0��, and it contains terms
representing external forcing that are periodic in � with pe-
riod 2� /�. For weak inputs and g greater than but close to 1,
Eq. �5� reduces to an undamped forced Duffing oscillator,
although we do not restrict our analysis to this limit.

The analogous mechanics problem has to be solved with

the initial condition 
̇�0�=0, which imposes a smoothness
constraint on the correlation function. The initial value 
�0�
is fixed by requiring that 
�0��
���. We solved Eq. �5�
numerically using iterative methods to determine 
�0� and
found two types of solutions. The first is a solution in which

��� is a periodic function of � with frequency �, as in Fig.
1�f�. This solution, which represents a network state that is
fully entrained by the oscillatory input, exists for all values
of I, �, and g. The second solution is characterized by 
���
that decays for small � and oscillates for large �, so that 
�0�
is larger than the peaks in the large-� oscillations, as in Fig.
1�e�. This solution, which corresponds to a nonperiodic state
only partially locked to the oscillatory drive, only exists for I
smaller than a critical value that depends on � and g. A
linear perturbation analysis of the mean-field theory shows
that this nonperiodic solution is stable throughout the regime
where it exists. The periodic solution is unstable in this re-
gime and is stable outside it. The mean-field analysis also
shows that the nonperiodic solution corresponds to a state
with “exponential” sensitivity to initial conditions �a positive
Lyapunov exponent� �2�, i.e., a chaotic state.

The resulting phase diagram marks the transition between
the periodic and nonperiodic states �Fig. 2�. Surprisingly, the
transition curves are nonmonotonic functions of frequency
and reveal a resonant frequency at which it is easiest to en-
train the chaotic network with a periodic input �even though
there is no peak in the power spectrum of the chaotic activity
at this frequency�. This frequency is roughly twice the in-
verse time constant of the chaotic fluctuations in the sponta-
neous state and for g not too much greater than 1; the corre-
sponding period can be an order of magnitude longer than
the single-neuron time constant. Figures 2 and 3�b� indicate
that internally generated fluctuations are most easily sup-
pressed by stimuli oscillating in the few Hz range.

The phase-transition curve shifts upward and to the right
as g increases �Figs. 2�a� and 2�b��, indicating a higher reso-
nant frequency as well as a larger critical input amplitude.
This occurs because the chaotic activity for larger g has a
higher amplitude, making it more difficult to suppress, and a
smaller inverse correlation time, leading to a higher reso-
nance frequency. The location of the phase transition com-
puted by mean-field theory is in good agreement with simu-
lation results for large networks �Fig. 2�b��.

To study the implications of the phase transition further,
we divide network responses into signal and noise compo-
nents by separating the full response variance into two terms:
�osc

2 and �chaos
2 . For this purpose, we subtract the square of

the average value of � from C��� and consider the mean-
subtracted correlation function C���− ���2. The signal ampli-
tude �osc is the square root of the amplitude of the oscillatory
part of this correlation function for large � �Fig. 3�a��. The
noise amplitude �chaos is the square root of the difference
between the values of the mean-subtracted correlation func-
tion at �=0 and the peak of its oscillations �Fig. 3�a��. In the
frequency domain, �osc

2 measures the total power in the net-
work activity at the input frequency and its harmonics,
whereas �chaos

2 measures the residual power.
The signal amplitude increases linearly with the strength

of the input �I� over the range considered in Fig. 3�b�. The
noise amplitude has a more complex nonlinear dependence,
reflecting the presence of the phase transition in Fig. 2 and
duplicating the effect seen in Fig. 1, in which a sufficiently
strong input completely suppresses the chaotic component of
the response. An interesting feature to note is that there is no
clear signature of this chaotic-to-periodic transition in the
signal amplitude. When plotted as a function of input fre-
quency for fixed I, the signal amplitude shows relatively
weak frequency dependence below about 4 Hz and then rolls
off at higher frequencies �Fig. 3�c��. This is a result of the
low-pass filtering property of the network. The noise ampli-
tude has a more interesting dependence. Between 0 and 3
Hz, the noise amplitude drops steeply and vanishes for fre-

� �

���������	
�
�	���
�


�
���
��

�������

FIG. 2. Phase-transition curves showing the critical input ampli-
tude that divides regions of periodic and chaotic activity as a func-
tion of input frequency. �a� Transition curves for g=1.5 �dashed
curve� or g=1.8 �solid curve�. The stars indicate parameter values
used in Figs. 1�b�, 1�e�, and 1�h� and Figs. 1�c�, 1�f�, and 1�i�. The
inset traces show representative single-unit firing rates for the re-
gions indicated. �b� A comparison of the transition curve computed
by mean-field theory �open circles and line� and by simulating
a network �filled circles� for r0=1, g=2 and, for the simulation,
N=10 000.
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quencies between 3 and 7 Hz, rising again above 7 Hz. This
double transition is a consequence of the nonmonotonicity of
the phase-transition curves in Fig. 2. As in Fig. 3�b�, there is
no apparent indication of these transitions in the signal am-
plitude.

It has previously been noted that chaotic activity in neu-
ronal networks can be suppressed by either white-noise �13�
or constant �14� input in discrete-time models. However,
discrete-time versions fail to capture the rich dynamics of the
chaotic fluctuations and their effect on responses to time-
dependent inputs. Suppression of spatiotemporal chaos by
periodic forcing has also been reported �10–12�, mostly
through numerical simulations. In some of these simulations,
an optimal frequency for complete locking similar to Fig. 2
has been observed �10�. Our results show that such a reso-
nance effect occurs even when the power spectrum of the
unforced chaotic fluctuations falls monotonically from zero
frequency �Fig. 1�. The networks we considered only de-
scribe the effects of fluctuations induced by local interac-
tions, whereas additional sources of variability carried by
long-range connections or by local sources of stochasticity
are present in real neurons. Therefore, we predict that an
experimental plot of response variability versus stimulus fre-
quency will follow a nonzero U-shaped curve with a mini-
mum in the several Hz range, rather than falling to zero as in
Fig. 3�c�.

Variability in cortical responses is sometimes described
by adding stochastic noise linearly to a deterministic re-
sponse �17,18�. Our results indicate that the interaction
between intrinsically generated “noise” and responses to
external drive is highly nonlinear. Near the onset of
chaos, complete noise suppression can be achieved with
relatively low amplitude inputs, weaker—for example—than
the strength of the internal feedback. Thus, suppression of
spontaneously generated noise in neural networks does not
require stimuli so strong that they simply overwhelm fluc-
tuations through saturation. A number of experiments indi-
cate that stimuli as well as attention can suppress firing-rate
variability �19–23� �but see �24��. Although other mecha-
nisms for nonlinear suppression of neuronal variability have
been proposed �25–30�, our analysis indicates that such sup-

pression is a general property of the interaction between in-
ternally generated dynamics and external drive in a nonlinear
network.

Spontaneous fluctuations in neural activity occur across a
wide range of time scales, with increasing variability over
long time intervals �31� and increasing power at low frequen-
cies, although resonances may appear �24,32�. In this work
we have focused on firing-rate fluctuations using smooth
rate-based dynamics, not spiking dynamics. Spiking neuron
models with strong “balanced” interactions can exhibit cha-
otic firing patterns �2,3�, but the fluctuations they produce
have relatively flat power spectra associated with variability
in short interspike intervals. It will be interesting to study
stimulus effects in spiking network models that exhibit slow
irregular modulations of firing rates.

In our model, weak correlations �on the order of 1 /
N� in
activity fluctuations exist between all pairs of neurons. These
correlations are distributed evenly between negative and
positive values across the population. Slow spontaneous rate
fluctuations in the cortex are often associated with long-
range spatial correlations, especially in anesthetized animals
�33,34�. As in our model, the observed spatial correlations
are weaker than the firing-rate autocorrelations. In some
cases, both negative and positive rate fluctuations are also
observed, such that the mean value of the pairwise correla-
tions across a populations is much smaller than the width of
the distribution of correlations �35–37�. However, the extent
of the contribution of local network dynamics to the ob-
served low-frequency correlations is unclear �22,34�.

Neuronal selectivity to stimulus features is typically stud-
ied by determining how the mean response across experi-
mental trials depends on various stimulus parameters. The
presence of nonlinear interactions between stimulus-evoked
and spontaneous fluctuating activities indicates that response
components that are not locked to the temporal modulation
of the stimulus may also be sensitive to stimulus parameters.
In general, our results suggest that experiments studying the
stimulus dependence of the noise component of neural re-
sponses could provide important insights into the nature and
origin of activity fluctuations in neuronal circuits, as well as
their role in neuronal information processing.
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FIG. 3. Signal and noise amplitudes as a function of input amplitude and frequency. �a� Definition of the signal and noise amplitudes, �osc
2

and �chaos, respectively, in terms of the mean-subtracted correlation function. �b� Signal and noise amplitudes for f =20 Hz and g=1.5 as a
function of input amplitude. The transition from chaotic to nonchaotic regimes occurs at I=0.44. �c� Same as �b�, but with fixed input
amplitude �I=0.2� and varying input frequency. In the region between 3 and 7 Hz, responses of the network are free from chaotic noise. In
�b� and �c�, open circles denote the signal amplitude and filled circles denote the noise amplitude.
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