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To make optimal use of experimental data on the
anatomy and physiology of cortical circuits and to ac-
count for the effects of plasticity and neuro-modulation,
we must understand the relationship between the synap-
tic connectivity and neuronal properties of a network,
and the resultant activity. Given detailed properties of a
complex network, can we predict what it will do? If we
know how plasticity mechanisms or modulators change
those properties, can we predict how activity will change?
These are difficult questions to answer. My thesis ex-
plored how knowledge of synaptic connectivity and neu-
ronal properties can be used to predict the activity pro-
duced by a simplified network model, using a mathemat-
ical framework.

We studied firing rate networks of N interconnected
neurons in which the current for a single neuron is ob-
tained by summing the firing rates of all its presynaptic
partners, weighted by the strength of the synapse be-
tween them. Specifically, the firing rate of neuron i is
given by ri = R0 + φ(xi). The description of the model
closes when we define a transfer function (f-I curve, an
example shown in bottom left panel of Fig. 1) that deter-
mines the firing rate of each neuron as a function of the
total current it receives, such that φ(x) = R0 tanh(x/R0)
for x ≤ 0, and φ(x) = (Rmax−R0) tanh [x/(Rmax −R0)],
otherwise.

The simplified construction of these models allowed
us to focus on the synaptic connectivity of the network
as the quantity of interest. Synaptic connectivity has
a strong influence on the dynamics of neural networks
[1]. Synaptic strengths between all pairs of neurons are
typically represented in a synaptic connectivity matrix,
which contains O(N2) elements. Our resolution for ex-
perimental measurements currently limits us to certain
statistical properties of groups of synapses (e.g., paired
recordings in layer 5 cortical neurons indicate that synap-
tic strengths may exist in a log-normal distribution [9]),
rather than estimates of all individual synaptic strengths.
Therefore, we drew the non-zero elements of synaptic
matrices (like in Fig. 1) independently and randomly
from Gaussian probability distributions with zero mean
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FIG. 1. Elements of a recurrently connected model neural net-

work. Top left panel: Schematic of a model network of neurons

each parameterized by a single firing rate. Top right panel: A

synaptic connectivity matrix with the individual synaptic strength

values for every neuronal pair randomly assigned from a Gaussian

with 0 mean and variance of O(1/N). Bottom left panel: The

transfer function used in the network model. We use the value

R0 = 0.1Rmax, reporting firing rates normalized by the maximum

rate Rmax. Bottom right panel: For no input (Ii = 0 ∀ i), two

patterns of spontaneous activity exist - trivial dynamics for g < 1

and chaos for g > 1.

and the variance given by
[
J2
ij

]
J

= g2/N , where the
average runs over the Gaussian distribution of matrix
elements. The synaptic input to neuron i was com-
puted by multiplying the synaptic weight Jij by the
firing rate of presynaptic neuron j and summing over
all j values. Neuron i could also generate an internal
bias current bi and receive an input term Ii represent-
ing the external drive. The activation variable for neu-
ron i, xi, is consequently determined by the equation,
dxi/dt = −xi + g

∑
j Jijrj − bi + Ii .

Provided that the synaptic strengths are not too
large and there is no drive, simulating such a network
of randomly-connected model neurons results in every
unit firing at the same constant background rate (which
corresponds to a trivial fixed point in the dynamics
of the network). Though the trivial fixed point is
persistently active in the absence of external drive,
inducing more complex biologically realistic temporal
dynamics requires manipulating the synaptic strength
distribution in different ways [1].
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FIG. 2. Density ρ of eigenvalues as a function of position on the

complex plane |ω|, for N = 1000 for different fractions f of excita-

tory and inhibitory elements. The solid lines are the result of the

analytic calculation and symbols are numerical results. The inset

shows the spectrum of eigenvalues in the complex plane computed

numerically for f = 0.5.

Eigenvalue Spectra of Random Matrices for Neu-
ral Networks

The dynamics of neural networks is influenced strongly
by the spectrum of eigenvalues of the matrix describing
the synaptic connectivity [1, 12, 13]. A classic result of
random matrix theory is that, for large N , the eigenval-
ues of an N×N asymmetric random matrix lie uniformly
within a unit circle in the complex plane [10], if the el-
ements are chosen from a distribution with zero mean
and variance 1/N . This result does not apply to synaptic
connectivity matrices because of the constraint that in-
dividual neurons are either excitatory or inhibitory. We
computed eigenvalue spectra of large random matrices
with fN excitatory and (1 − f)N inhibitory columns
drawn from separate distributions with different means
and equal or different variances [2]. First, we determined
that the square of the radius of the circle containing the
eigenvalues is N times the average of the variances of the
excitatory and inhibitory distributions.

Second, we observed that the column-wise assignment
of distributions has a dramatic effect on the actual spec-
trum of eigenvalues in the complex plane (inset of Fig. 2).
We calculated the density of eigenvalues, ρ in the com-
plex plane for such a matrix, averaged over the underly-
ing probability distributions [2, 11]. When the location in
the complex plane is represented by ω, ρ is determined by
a potential, φ(|ω|2) through ρ = 1

π

(
|ω|2φ′′ + φ′

)
, where

the primes denote derivatives with respect to |ω|2. Fig.
2 shows the results for different values of f . The value
of f determines how many eigenvalues fall into the high-
density central region, with higher central densities for
smaller f values.

The eigenvalue distributions we calculated have several
implications for neural network dynamics. Modifying
the mean strengths of excitatory and inhibitory synapses
has no effect on stability or small-fluctuation dynamics

under balanced conditions. These are only sensitive to
changing the widths of the distributions of excitatory
and inhibitory synaptic strengths. If these widths are
different, fewer eigenvalues will appear at the edge of
the eigenvalue circle, meaning that there will be fewer
slowly oscillating and long-lasting modes in the network
dynamics. We concluded that having different cell types
with different distributions of synaptic strengths has
a large impact on network dynamics, and that the
critical element to measure, and the critical element
that may be modified by the modulatory and plasticity
mechanisms that control neural circuit dynamics, are
the variances of the synaptic strength distributions [3, 4].

Stimulus-dependent Suppression of Chaos in Re-
current Neural Networks

Increasing the variance of synaptic strengths within
randomly connected neural networks induces complex
autonomous activity by destabilizing multiple eigenval-
ues (this instability is eventually pulled back from explo-
sion by the nonlinearity of the f-I curve). We can get non-
trivial fixed points, complicated oscillatory behavior and
even chaotic spontaneous activity from the network, sim-
ply by progressively increasing variability of the synaptic
strengths across the network [4, 14–16].

How does an external input interact with ongoing dy-
namics in the different activity regimes as we move from
weak to stronger synapses? Sensory response in neural
systems is a result of a complex interplay between activity
driven by external stimuli and internally generated activ-
ity, so the question is indeed pertinent. To model sensory
stimuli and study evoked responses, we introduced oscil-
latory inputs. The amplitude of the input was always
the same for each neuron, but in most of our studies we
introduced a neuron-specific phase factor, θi, chosen ran-
domly from a uniform distribution between 0 and 2π, so
that the input to neuron i is I cos(2πft+ θi). In visually
responsive neurons, this input mimics a population of
simple cells driven by a drifting grating of temporal fre-
quency f , with the different phases arising from offsets
in spatial receptive field locations.

We saw that as synapses get stronger, spontaneous ac-
tivity increased in complexity, and the amplitude of re-
sponse to the input grew. Indeed, supercritical networks
exhibit complex spontaneous activity and equally com-
plex activity in the presence of the input. To quantify
this effect, we computed the power at the frequency of
the stimulus in the network units that do not receive the
input directly. This power grows smoothly as a function
of synaptic variance and the variance at which the signal
power is the highest corresponds to chaotic spontaneous
activity in the network [3].

How is the stimulus decoded from complex evoked ac-
tivity, knowing only that the signal power is extremely
high in this regime? To explore these results analytically
and more systematically, we developed dynamic mean-
field equations appropriate for large N networks with the
same connectivity statistics as our model [4, 14]. The the-
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ory is based on the observation that the total recurrent
synaptic input onto each network neuron can be approx-
imated as Gaussian noise, such that dx1

i /dt = −x1
i + ηi .

The temporal correlation of this noise can be calculated
self-consistently from the autocorrelation function of the
network, C(τ) = 〈φ(xj(t))φ(xj(t+ τ))〉 (averaged over J
and θ) because the recurrent synaptic input is generated
and received by the same population of neurons.

We found that inputs not only drive network responses,
they also actively suppress ongoing activity, ultimately
leading to a phase transition in which chaos is completely
eliminated (bottom panel of Fig. 3). The critical input
intensity at the phase transition is a non-monotonic func-
tion of stimulus frequency, revealing a resonant frequency
at which the input is most effective at suppressing chaos
even though the power spectrum of the spontaneous ac-
tivity peaks at zero and falls exponentially. Our analy-
sis predicts that the variance of neural responses should
be most strongly suppressed at frequencies matching the
range over which many sensory systems operate [4–8].

To study the implications of the phase transition fur-
ther, we divided network responses into signal and noise
components by splitting the full response variance into
chaotic and driven oscillatory components, i.e., C(0) =
σ2

chaos + σ2
osc . The chaotic variance, σ2

chaos, is defined as
the difference between the full variance, C(0) and the
variance, σ2

osc due to the periodic oscillations. We call
σosc the signal amplitude and σchaos the noise amplitude.
In the frequency domain, σ2

osc measures the total power
in the network activity at the stimulus frequency and its
harmonics, whereas σ2

chaos measures the residual power.
The signal amplitude increases linearly with the

strength of the input (I) over the range considered in
Fig. 4. The noise amplitude has a more complex non-
linear dependence, reflecting the presence of the phase
transition we saw in Fig. 3, in which a sufficiently strong
input completely suppresses the chaotic component of the
response. An interesting feature to note is that there is
no clear signature of this chaotic-to-periodic transition
in the signal amplitude. When plotted as a function of
input frequency for fixed I, the signal amplitude shows
relatively weak frequency dependence below about 4 Hz
and then rolls off at higher frequencies (right panel of Fig.
4). This is a result of the low-pass filtering property of
the network. The noise amplitude has a more interesting
dependence. Between 0 and 3 Hz, the noise amplitude
drops steeply and vanishes for frequencies between 3 and
7 Hz, rising again above 7 Hz. This double transition is a
consequence of the non-monotonicity of the phase tran-
sition curves in Fig. 3. There is no apparent indication
of these transitions in the signal amplitude.

Variability in cortical responses is sometimes described
by adding stochastic noise linearly to a deterministic re-
sponse (top panel of Fig. 3). Our results indicate that
the interaction between intrinsically generated noise and
responses to external drive is highly nonlinear. Near
the onset of chaos, complete noise suppression can be
achieved with relatively low amplitude inputs, weaker,
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FIG. 3. Top panel: Adding external drive to a model that ex-

hibits chaotic spontaneous activity results in a sharp drop in vari-

ance at stimulus onset, but with only partial suppression of re-

sponse variability in the presence of additional stochastic noise.

Firing rates and response variability normalized by the maximum

firing rate showing an increase in average firing rate (dashed trace)

and a decrease in response variability (solid trace) in the presence

of external input (note that this variability does not go to zero).

Bottom panel: Phase transition curve showing the critical input

amplitude that divides regions of periodic and chaotic activity as

a function of input frequency. Inset traces show representative fir-

ing rates for the regions indicated; along with the logarithm of the

power spectrum of the activity across the network. A comparison of

the phase transition curve computed analytically by mean-field the-

ory (open circles) and by numerically simulating a network (filled

circles) of N = 10, 000 shows excellent agreement.
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FIG. 4. Signal and noise amplitudes as a function of input strength

and temporal frequency. Open circles denote the noise amplitude

and filled circles the signal amplitude. Left panel: An exam-

ple mean-subtracted autocorrelation function where the horizon-

tal lines indicate the definitions the signal and noise amplitudes.

Parameters used for this figure are I/I1/2 = 0.4, g = 1.8 and

f = 20Hz. Middle panel: Signal and noise amplitudes for

f = 20 Hz and g = 1.5 as a function of input amplitude. The

transition from chaotic to non-chaotic regimes occurs at Ic =0.44.

Right panel: Signal and noise amplitudes for fixed input strength

(I=0.2) and varying the temporal frequency of the external drive.

In the region between 3 and 7 Hz, responses of the network are

completely free of chaotic noise. Unlike the top panel of Fig. 3,

there is no additive stochastic noise in the system.
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for example, than the strength of the internal feedback.
Thus, suppression of spontaneously generated noise in
neural networks does not require stimuli so strong that
they simple overwhelm fluctuations through saturation.

Neuronal selectivity to stimulus features is often
studied by determining how the mean response across
experimental trials depends on various stimulus param-
eters. The presence of nonlinear interactions between
stimulus-evoked and spontaneous fluctuating activity
indicates that response components that are not locked
to the temporal modulation of the stimulus may also
be sensitive to stimulus parameters. In general, our
results suggest that experiments studying the stimulus-
dependence of the noise component of neural responses
provide important insights into the nature and origin of
activity fluctuations in neuronal circuits, as well as their
role in neuronal information processing.

Inferring Stimulus Selectivity from Spatial Struc-
ture of Neural Network Dynamics

In the non-chaotic regime, we have seen that the tem-
poral structure of network responses is largely deter-
mined by the input; they both oscillate at the same fre-
quency, although the network activity includes harmonics
not present in the input. The input does not, however,
exert nearly as strong control on the spatial structure of
the network response. The phases of the firing-rate oscil-
lations of network neurons are only partially correlated
with the phases of the inputs that drive them, and they
are strongly influenced by the recurrent feedback. Spon-
taneous activity is a useful indicator of recurrent effects,
because it is completely determined by network feedback.

How are the spatial patterns of spontaneous and
evoked population responses related? We studied the
impact of connectivity on the spatial pattern of fluctua-
tions in the input-generated response, by comparing the
distribution of evoked and intrinsically generated activ-
ity across the different units of a neural network [8]. We
developed a complementary approach to Principal Com-
ponent Analysis (PCA) in which separate high-variance
directions are typically derived for each input condition
[17]. We analyzed subspace angles to compute the dif-
ference between the shapes of trajectories correspond-
ing to different network states, and the orientation of
the low-dimensional subspaces that driven trajectories
occupy within the full space of neuronal activity. We
concluded that the absence of a detailed spatial map of
afferent inputs and cortical connectivity does not limit
our ability to design spatially extended stimuli that evoke
strong responses [3, 4, 8].

Our analysis shows that even in cortical areas where
underlying connectivity does not exhibit systematic to-
pography [18], dissecting spatial patterns in neuronal
fluctuations yields important insight into intrinsic net-
work dynamics and stimulus selectivity. As a first pass
example, we can see how the projections of network ac-
tivity onto the PC directions fluctuate more rapidly for
higher components revealing the interaction between spa-
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FIG. 5. Spatial pattern of network responses. Top left panel:

Schematic of the angle between the subspaces defined by the first

2 components of the chaotic activity (grey) and a 2D description

of the periodic orbit (black curve). Top right panels: PCA of

the chaotic spontaneous state and non-chaotic driven state reached

when an input of sufficiently high amplitude has suppressed the

chaotic fluctuations. % variance accounted for by different PC’s

for chaotic spontaneous activity. Projections of the chaotic sponta-

neous activity onto PC vectors 1, 10 and 50 (in decreasing order of

variance). For non-chaotic driven activity, projections of periodic

driven activity are shown for PC’s 1, 3, and 5. Projections onto

components 2, 4, and 6 are identical but phase shifted by π/2.

N=1000, g=1.5, f=5 Hz and I/I1/2 =0.7. Bottom left panel:

Effect of input frequency on the orientation of the periodic orbit.

Angle between the subspaces defined by the 2 leading PC’s of non-

chaotic driven activity at different frequencies and these two vectors

for a 5 Hz input frequency. N = 1000 and I/I1/2 = 0.7 and f = 5

Hz, I/I1/2 = 1.0. Bottom right panel: Network selectivity to

different spatial patterns of input. Signal and noise amplitudes in

the input-evoked response aligned to the leading PC’s of the spon-

taneous activity of the network. N=1000, I/I1/2 = 0.2 and f = 2

Hz. Chaos is completely suppressed only when input is aligned to

the PC vectors with the 5 largest eigenvalues.

tial and temporal structure of the chaotic fluctuations
(Fig. 5, top right panels).

The top left panel of Fig. 5 illustrates the technique we
developed to determine where the orbit of driven periodic
activity lies in the full N -dimensional space of neuronal
activities, relative to the trajectory of the chaotic spon-
taneous background. The analysis was done by diagonal-
izing the equal-time cross-correlation matrix of network
firing rates given by, Dij = 〈(ri(t)− 〈ri〉)(rj(t)− 〈rj〉)〉
where the average runs over t. The eigenvalues of this
matrix expressed as a fraction of their sum, indicate the
distribution of variances across different orthogonal di-
rections in the activity trajectory. PCA revealed that
despite the fact that network connectivity is a full rank
matrix, the effective dimensionality of evoked states, even
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while chaotic, is progressively smaller. In the example
shown in the top right panels of Fig. 5, the leading 10%
of PCs account for 90% of the total variance, whereas the
non-chaotic driven state describes a 2D circular orbit.

We visualized subspace angles to reveal not only the
difference in the shapes of trajectories corresponding to
different network states, but also the difference in the
orientation of the low dimensional subspace of these tra-
jectories within the full space of neuronal activity. For
two subspaces of dimension d1 and d2 defined by the or-
thogonal unit vectors V a1 , for a= 1, 2, . . . d1 and V b2 , for
b=1, 2, . . . d2, the cosines of the principal angles are equal
to the singular values of the d1×d2 matrix V a1 ·V b2 . The
angle between the two subspaces is the inverse cosine of
the largest singular value of this matrix [19]. The lower
left panel of Fig. 5 shows how a 5Hz reference frequency
causes the orbit of driven activity to rotate as input fre-
quency changes.

Finally, in the lower right panel of Fig. 5, we show
the selectivity of the network in terms of signal and noise
amplitudes in response to inputs aligned to the leading
PCs of the spontaneous activity (i.e., to different spa-

tial input patterns). Inputs aligned to the first 5 prin-
cipal components of the spontaneous activity completely
suppress the chaotic noise, resulting in periodic driven
activity. For higher-order PCs, the network activity is
chaotic. The point a= 5 corresponds to a phase transi-
tion analogous to that seen at f = 7 Hz in Fig. 4 (see
also [20]). The noise shows more sensitivity to the spatial
structure of the input than the signal, just as it did to its
temporal structure in Fig. 4. Based on these analyses we
can design spatially extended stimuli that evoke strong
responses.

Our results show that in addition to revealing how the
spatiotemporal structure of spontaneous activity affects
input-evoked responses, these methods can be used (a),
to infer input selectivity induced by network dynamics
from experimentally accessible measures of spontaneous
activity (e.g., from voltage- or calcium-sensitive optical
imaging experiments) and (b), to design stimuli that
evoke strong sensory responses. This is particularly true
when selectivity is measured in terms of the ability to en-
train the neural dynamics. Therefore, analysis of spon-
taneous activity can provide valuable information about
the computational implications of neuronal circuitry.
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