Flocking and foraging behaviour of the Sumatran Laughingthrush

**Garrulax bicolor**

**TOMÁŠ BUŠINA, NURSAHARA PASARIBU & MAREK KOUBA**

The endemic Sumatran Laughingthrush *Garrulax bicolor*, classified as Endangered by BirdLife International (2017), occupies relatively inaccessible broadleaved evergreen forest areas along the mountainous spine of Sumatra, Indonesia. It is a little-known species with limited information available regarding its biology (Collar et al. 2017). Owing to intensive trapping for the bird trade (Eaton et al. 2015, Shepherd et al. 2016, Harris et al. 2017) and widespread habitat destruction (Margono 2013), the species is currently undergoing a major population decline (Shepherd et al. 2016, Birdlife International 2017). This short communication provides new information on the flocking and foraging behaviour of the species.

We used two techniques to assess home-range size and habitat use of Sumatran Laughingthrush (Bušina & Koubá 2017)—observations from hides (method I) for wild birds and radio-telemetry (method II) in the case of wild-caught Sumatran Laughingthrush which had been rehabilitated for return to the wild. However, both techniques also allowed us to observe their foraging behaviour, particularly with regard to their participation in mixed-species flocks. The formation of mixed-species flocks is a common phenomenon in the behaviour of tropical forest birds, and is generally considered to increase foraging efficiency and reduce the risk of predation (King & Rappole 2001; in both cases, large flocks mainly comprised of laughingthrushes were joined by individuals or pairs of other species including drongos, which are reported as common companions of laughingthrushes in other parts of the Oriental Region (Rocamora & Yeatman-Berthelot 2009).

Although the species composition of the observed flocks was variable, some of their characteristics remained constant. The members of particular species tended to form monospecific ‘bird waves’ and occupied their preferred station within the forest. Sumatran Laughingthrush flew from shrub to shrub in the understorey, one by one, at intervals of a few seconds, and rarely moved up to the subcanopy where the Chestnut-capped and/or Black Laughingthrushes foraged, and equally rarely visited the forest floor. We consider it improbable that the radio-tagged released birds were behaving atypically because of possible unfamiliarity with their environment, since their wild counterparts showed the same behaviour. However, we can only speculate whether the behaviour observed is common or rare, because our sample size is limited.

Collar et al. (2017) reported that there was no information on the diet of the Sumatran Laughingthrush, but overlooked Hoogerwerf (1950), who reported that five stomachs of specimens from Aceh contained seeds and the representatives of four families of beetle (Coleoptera). Based on our observations we conclude that most of its diet at our study sites consisted of Orthoptera, such as crickets and katydids, which were abundant at both locations and were observed to be eaten at least 10 times. Other observed insectivorous flock members, which generally dominate in mixed-species flocks (Katogama & Goodale 2004, Sridhar et al. 2009), foraged for much the same size and type of prey as Sumatran Laughingthrush, probably also including beetles and other insects, but we were unable to confirm this. However, our impression is that these other species foraged higher in the forest strata when Sumatran Laughingthrush was present. Furthermore, Sumatran Laughingthrush was usually seen at the back of the flock, using a leaf-gleaning foraging technique and capturing insects flushed by other birds above them, as a rule after the insect had landed; no competition and/or kleptoparasitism (Satsichandra et al. 2007) was noted. This is consistent with previous studies describing similar flock stratification and foraging behaviour of other laughingthrush species (Katogama & Goodale 2004, Satsichandra et al. 2007, Sridhar et al. 2009).

We also recorded Sumatran Laughingthrush feeding on fruit, plucking whole fruit straight from stems on trees and swallowing them. The trees in question were identified as Peacock Chaste Tree *Vitex altissima* (Lamiaceae) and Elephant Fever Nettle *Dendrocopoea sinuata* (Urticaceae); the former grows to 20 m in height and produces a smooth 5 mm bluish drupe, while the latter is an evergreen shrub or tree, occasionally reaching 20 m, and produces 6 mm white glabrous achenes. Both species are typical understorey plants occurring across South-East Asia. The frugivorous activity was observed only outside mixed-species flocks, presumably due to the following foraging strategy: in mixed-species flocks...
the Sumatran Laughingthrush adjusted their behaviour to match the optimal foraging speed of the entire flock, whereas in single-species groups they moved at their own pace, allowing them to stay longer in a fruiting tree (Valburg 1992). This could reflect the fact that frugivorous birds are usually in a minority in mixed-species flocks because their food resources are patchy in distribution and must be actively searched for, making it less beneficial to follow a flock (Powell 1985, Kotagama & Goodale 2004, Arbeláez-Cortés & Marín-Gomez 2012). Sumatran Laughingthrush may therefore be more frugivorous when foraging in single-species flocks and more insectivorous when part of mixed-species flocks. Given that well over 90% of our observations involved single-species flocks, it may be that fruits form a higher proportion of the diet of the species than we yet know.

Acknowledgements

We specially thank Pak Berto and Pak Diki for accompanying us during fieldwork. Thanks to Dr Milan Skalicky and Dr Arvind Singh for helping with plant identification. The study was financially supported by the Fresno Chaffee Zoo Wildlife Conservation Fund, Sophie Danforth Conservation Biology Fund and Czech University of Life Sciences Prague (SGS grant No. 21370/1312/3192 and 21370/1312/3198, IRP Mobility grant 2015, 2016). We are grateful for support from Zoo Liberec and Indonesian Species Conservation Program. Dana Adamová, Herbert Ferns and Louise Fletcher kindly edited the manuscript before submission. Finally we thank Nigel J. Collar for his comments and suggestions on earlier drafts of the manuscript.

References


Tomáš BUŠINA, Department of Animal Science and Ethology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, 16521, Czech Republic. Email: tomas.busina0@gmail.com

Nursahara PASARIBU, Department of Biology, Faculty of Mathematics and Natural Sciences, University of North Sumatra, Jalan. Dr. T. Mansur No. 9, Medan, 20155, Sumatera Utara, Indonesia.

Marek KOUBA, Department of Animal Science and Ethology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, 16521, Czech Republic.

Records of Black-necked Stork *Ephippiorhynchus asiaticus* from the coastal areas of the Kutch district of Gujarat, India

MAYURDAN GADHAI, DEVANSHI KUKADIA, N. GOKULAKANNAN, SHAHID DAR, GAUTAM TALUKDAR, K. SIVAKUMAR & GOPI G. V.

The Near Threatened Black-necked Stork *Ephippiorhynchus asiaticus* is found in South Asia, South-East Asia and Oceania. Its population has declined over the last two decades, largely because of loss of habitat and ongoing changes in land use (Dormanet al. 2001, Sundar 2011). It inhabits freshwater marshes and lakes, pools in open forest, large rivers and flooded grassland (Clancy 2010) up to 1,200 m (Sharma 2007). It also occasionally uses coastal habitats such as estuaries and brackish lagoons and is known to frequent man-made wetlands and reservoirs (Maheshwaran et al. 2004), sewage ponds and irrigation reservoirs (Sundar 2004). Although the species shows a preference for natural wetlands throughout the year, for short periods, particularly during and after the monsoon season when natural wetlands may become too deep for foraging, it uses irrigated crop fields, particularly rice paddies (Sundar 2004). The majority of the ecological information on this species in India has been obtained from inland freshwater wetlands and associated areas of the Kutch district of Gujarat, India.