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Stem cell biology, cell engineering and regenerative medicine 
often invoke developmental principles to differentiate cells 
toward target identities. However, much remains to be learned 

about how signaling pathways integrate to determine cell fate1. The 
past decade of cell engineering has shown that expression of indi-
vidual genes, or sets of genes, is often insufficient to functionally 
reprogram cell identity2,3, underscoring the need for new approaches 
to quantitatively describe and manipulate cell state. We previously 
established CellNet4–6 to assess the fidelity of engineered cells by 
interrogating key gene regulatory networks (GRNs) that define 
native populations. CellNet extracts cell-type specific GRNs from 
transcriptional profiling data, compares the GRNs to those of bona 
fide primary cells and tissues to assign a similarity score, and iden-
tifies dysregulated transcriptional regulators that account for the 
differences between engineered cells and their native counterparts. 
The network-level CellNet algorithm confers robustness to biologi-
cal and technical variability and encodes topological information 
about regulator-target relationships. A limitation of CellNet is that 
training data from a small number of terminal cell and tissue types 
obscure the phenotypic heterogeneity that arises during dynamic 
biological processes such as cell differentiation. More recent efforts 
have aimed to describe intermediate developmental states using 
trajectory-based methods, which employ cell–cell similarity metrics 
to infer dynamics7–10. However, these algorithms rely on single-cell 
transcriptomics to provide sufficiently powered datasets and largely 
forgo network analytics.

Here, we extend CellNet to quantitatively define network 
dynamics along a differentiation pathway. We show that publicly 

accessible gene expression datasets capture population-level differ-
entiation states with high dynamic resolution and broad biological 
scope, including responses across a spectrum of experimental vari-
ables such as chemical and genetic perturbations. Our pipeline goes 
beyond the establishment of GRNs to enable quantification of dif-
ferentiation dynamics and identification of key signaling pathways 
governing cell fate changes (Fig. 1a). We apply this general approach 
to characterize erythropoiesis, a dynamic process that generates red 
blood cells (RBCs) throughout the lifetime of the organism. We 
focused on this system because its temporal stages of differentiation, 
defined by distinct immunophenotypes, have been comprehen-
sively characterized11. Our analyses confirm key processes involved 
in distinct stages of erythropoiesis and elucidate novel dynamic pat-
terns of gene expression. To improve erythroid maturation in vitro, 
we constructed an interaction network connecting the dynamic 
molecular signatures that distinguish late erythroblasts from reticu-
locytes. Our network analytics identifies a role for ErbB signaling 
during erythropoiesis, which we validate in human, murine and 
zebrafish models and apply to the maturation of RBCs derived from 
human induced pluripotent stem cells (iPSCs).

Results
CellNet delineates stem cells and progeny. To analyze the dynam-
ics of stem cell differentiation, we began by establishing GRNs for 
hematopoietic stem cells and differentiated progeny using CellNet 
as previously described4–6. We augmented the original CellNet com-
pendium4 of microarray datasets from 16 human cell and tissue 
types to include 164 publicly available erythroid microarray datas-
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ets (Supplementary Tables 1 and 2). The erythroid data represented  
five manually classified phenotypes: early (CFU-E), intermediate 
(IntE) and late (LateE) erythroid progenitors, as well as reticu-
locytes and the K526 erythroleukemia cell line (Supplementary  
Table 3). Our rationale for augmenting the original compendium 
arose from the paucity and lack of biological variability in pub-
licly available erythroid-specific sequencing datasets at the time of  
data compilation.

Application of the original CellNet classifier identified erythroid 
cells as hematopoietic stem and progenitor cells (HSPCs) with high 

probability (Supplementary Fig. 1a). However, after re-training 
the classifier with the augmented compendium and establishing 
an erythroid-specific GRN, CellNet robustly distinguished HSPCs 
and erythroid cell types (Supplementary Fig. 1b,c), with little over-
lap between the two GRNs other than cofactors mediating the 
canonical ‘GATA switch’12 that governs erythroid specification from 
HSPCs (Supplementary Fig. 1d,e,g). The erythroid GRN comprised 
235 genes that were highly enriched for biological processes such 
as hemoglobin synthesis, oxygen transport, cell cycle and hema-
topoietic development (Supplementary Fig. 1f), with subnetworks 
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Fig. 1 | GRN dynamics capture cell fate specification. a, Schematic overview of computational pipeline. b, PCA scores of erythroid microarray datasets, 
with GMM derived clusters. c, Distribution of blinded manual classifications (K562 erythroleukemia cell line, early erythroblasts: CFU/ProE, intermediate 
erythroblasts: IntE, late/orthochromatic erythroblasts: LateE and reticulocytes) across unsupervised computational clusters C1–C6 from b, with circular 
annotations indicative of P < 0.05 by Fisher’s exact test. d, PCA loadings plot for the 235 genes in the erythroid GRN and gene ontology biological process 
enrichment for GMM gene clusters, with G1–G3 correlating with early erythroblasts (green), intermediate/late erythroblasts (blue), reticulocytes (red), 
respectively. e, Visualization of regulators from dynamic networks calculated using CLR inference across each of the clusters from C2, C4, C5 and C6. 
Node size correlates with the degree (number of targets) and line width corresponds to the CLR Z-score (confidence of interaction) between regulators. 
f, The average Euclidean distance in the principal components loadings space was calculated for all targets of each regulator across the dynamic 
network topologies depicted in e, with representative plots demonstrating the target distribution for E2F2 across networks from erythroblasts (C4) and 
reticulocytes (C6).
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governed by 17 transcription factors, including canonical erythroid 
factors13 such as GATA1, LMO2, TAL1 and KLF1. We also identified 
several factors not fully characterized in erythropoiesis, including 
HES6 (ref. 14), CDT1 (ref. 15) and SREBF1 (ref. 16). These data dem-
onstrate that the CellNet algorithm can be readily augmented by the 
addition of new classifiers and accurately distinguishes biologically 
relevant GRNs, even among closely related cell types.

GRNs capture cell state dynamics. The augmented CellNet algo-
rithm classified all stages of erythropoiesis with high probability 
(Supplementary Fig. 1h–j). We hypothesized that subnetworks, or 
smaller gene modules, within the erythroid GRN correspond to 
distinct stages of differentiation, analogous to the cell-type spe-
cific GRNs identified CellNet4. To dissect the erythroid GRN, we 
projected the data into a principal component space (Fig. 1b). PC1 
(35.2% variance) was highly correlated with the gene set enrich-
ment analysis (GSEA) Hallmark pathway for hemoglobin metabo-
lism (Pearson’s r = 0.91; Fig. 1b and Supplementary Fig. 2a) and PC2 
(19.5% variance) correlated with MYC targets (Pearson’s r = −0.8; 
Fig. 1b and Supplementary Fig. 2b). Unsupervised Gaussian Mixture 
Model (GMM)–based clustering identified six discrete phenotypes, 
which were significantly enriched for manual, literature-based des-
ignations of erythroid stage—C1–C2: CFU-E/early proerythroblast; 
C3–C4: intermediate proerythroblast; C5: late erythroblast; C6: 
reticulocyte (Fig. 1c and Supplementary Table 3). K562, an erythro-
leukemia cell line, clustered in C1 and studies of hemoglobin-per-
turbed cells clustered in C3, a PC1-shifted intermediate cluster. We 
therefore focused on clusters C2, C4, C5 and C6 for the purpose of 
studying physiological and developmental erythropoiesis.

In contrast to whole genome-based dimensionality reduction 
techniques commonly used in trajectory algorithms, the erythroid 
GRN served as a feature selection upstream of PCA, which identi-
fies genes correlated with developmental stages. By GMM cluster-
ing, erythroid network genes clustered into three distinct groups 
(Supplementary Table 4), with early (G1) and intermediate (G2) 
differentiation clusters associated with cell cycle and hemoglobin 
synthesis, respectively (Fig. 1d and Supplementary Table 5). The 
reticulocyte cluster (G3) comprised genes that were not significantly 
enriched for any biological processes. Likewise, ranking gene impor-
tance to each phenotypic cluster (Supplementary Fig. 2d–g and 
Supplementary Table 6) failed to yield annotations for the reticulo-
cyte cluster (C6). We also implemented K-means clustering to iden-
tify sets of genes with similar dynamic expression across biological 
clusters (C2, C4, C5 and C6) and identified coordinated regulation 
of genes related to processes such as stress responses, autophagy and 
apoptosis during differentiation (Supplementary Fig. 2h).

We confirmed that dimensionality reduction similarly captured 
biologically meaningful clusters in developmentally staged, puri-
fied populations analyzed by bulk RNA-seq (GSE53983). Sample 
localization in the PCA space was driven by similar genes, as shown 
by significant correlations with biological analogs from microar-
ray data—proerythroblast: C2/S1/S2; intermediate erythroblast: 
C4/S3; late erythroblast: C5/S4; positive Pearson’s r, with P < 0.05 
(Supplementary Fig. 3c). Of note, expert knowledge was required for 
the interpretation and comparison of biologically analogous sam-
ples across microarray and RNA-seq datasets (for example, C4 and 
C5 both correlate with S3; C2 correlates with both S1 and S2), likely 
because the granularity and variance are strongly tied to the data 
source and experimental design. This further highlights the need 
for large data compendia, including purified populations, primary 
cells, in vitro differentiated cells, genetically perturbed cells and rare 
or unique populations (that is, reticulocytes), to fully sample the 
biological space within a given cell type. We also demonstrated that, 
in addition to compatibility with different data types, our pipeline 
is generally applicable to other biological systems (Supplementary  
Fig. 4 and Supplementary Tables 7–9).

To derive dynamic network models, we exploited topological 
regulatory information encoded in the erythroid GRN as a second-
ary layer atop the lineage-correlated loadings (Fig. 1e). Early eryth-
ropoiesis is dominated by a few, highly connected regulators, with 
more distributed regulation during the proerythroblast (C4) and 
late erythroblast (C5) stages (Fig. 1e). Canonical regulators, such as 
GATA1 and E2F2, are also highly connected in the mature (C6) net-
work, suggesting that early regulators impart persistent influence 
(Fig. 1f). GATA1 has been implicated in erythroid maturation, with 
a distinct network from that of early erythroid specification17. E2F2 
also recurs as a central regulator in both the intermediate erythro-
blast (C4) and reticulocyte (C6) stages; however, there is a clear re-
wiring of its targets from a diffuse cluster of coregulated genes to a 
more compact network during maturation (Fig. 1f). Thus, the inte-
gration of network biology and GRN-based feature selection with 
dimensionality reduction uncovers dynamic changes in network 
activity and architecture accompanying cell fate changes.

Identification of pathways mediating cell fate transitions. We fur-
ther explored the capacity for network analytics to identify biologi-
cal processes that mediate stem cell differentiation. We focused on 
the late erythroblast (C5) to reticulocyte (C6) transition, as relatively 
little is known about the integrated mechanisms controlling termi-
nal erythroid maturation. Moreover, microarray datasets derived 
from the in vivo reticulocyte transcriptome18 (Supplementary Fig. 5)  
provided comparisons that are not readily accessible as these are 
transient, mobile populations.

To construct signatures of this transition, we employed the least 
absolute shrinkage and selection operator (LASSO) as a feature 
selection method that minimizes covariate correlation. The resulting 
27-gene signature (Fig. 2a and Supplementary Table 10) accurately 
predicted the late erythroblast and reticulocyte cell states without 
overfitting, based on a partial least squares discriminant (PLSDA) 
model (Supplementary Fig. 6). This method produced a sparse 
gene set that lacked unifying annotations. We therefore adopted a 
‘bottom-up’ approach using local network information to connect 
our signature genes (Fig. 2b). This propagation of LASSO targets is 
similar to network biology approaches to predict drug targets and 
disease-associated genes and is based on the hypothesis that genes 
in close proximity topologically are functionally related19–21.

To identify common regulators, we investigated the local topol-
ogy of the first-order subnetwork in the global CellNet GRN, from 
which cell-type specific GRNs were originally identified (Fig. 2c). 
Contrary to our hypothesis, there was largely a one-to-one connec-
tion between all connected regulators and LASSO targets (Fig. 2d).  
The few statistically enriched genes belonged to networks of coreg-
ulated transcription factors, such as the pluripotency factors (that 
is, NANOG, SOX2, LIN28)22,23 that are associated with a single 
LASSO target, SALL2. This topology suggests that LASSO targets 
are associated with discrete biological processes, rather than being 
downstream of common regulators. Accordingly, this same analy-
sis identified common regulators between ontologically related 
genes (Supplementary Fig. 7). However, further dissection of gene 
modules with modest coregulation of LASSO targets revealed that 
late erythroblast targets (Fig. 2e, Module 1) were associated with 
regulators of hematopoietic differentiation and P53-apopototic 
pathways, whereas reticulocyte LASSO genes (Fig. 2e, Module 2) 
were downstream of metabolic and lipid pathways important for  
RBC maintenance.

Based on this largely one-to-one topology of the transcriptional 
regulator-target network, we hypothesized that common signaling 
networks may lie upstream of the transcriptional layer. Therefore, we 
generated an interaction network using the STRING database (Fig. 
2f, Supplementary Fig. 8 and Supplementary Table 11). We employed 
the Prize Collecting Steiner Forest (PCSF) algorithm24, which is par-
ticularly suited for modeling multiple, independent pathways acting 
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in synergy toward a unified biological response. The resulting net-
work was enriched for biological processes such as apoptotic signal-
ing, stress responses and cell cycle, consistent with previoius analyses 
(Fig. 2g). Uniting these processes, P53 is a highly interconnected cen-
tral node (P < 0.001, see Supplementary Fig. 8f). The network was 
also significantly enriched for Reactome signaling pathways relevant 
for erythropoiesis, such as Notch25, Rho26, TGFβ27 and BCR28, as well 
as novel candidate pathways, including epidermal growth factor 
receptor (EGFR)/ErbB4, TLR and RIG-I/MDA5 (Fig. 2h).

Finally, we used a ‘guilt by association’ approach to define net-
works that were highly correlated with the LASSO signature (Fig. 
2i, Supplementary Fig. 9 and Supplementary Table 12). Highly 
enriched transcription factor binding (ENCODE and ChEA) and 
kinase regulation (LINCS L1000) further implicated proliferative 
and apoptotic processes (that is, E2F, P53 and FOXM1/WEE1). 
Moreover, several enriched kinases included members of the 
MAPK/ERK pathway (that is, SRC, ErbB3/ErbB4), and the ligand 
activation signatures (epidermal growth factor (EGF), TGFA, BTC) 
further supported a role for ErbB signaling in regulation of the 
coexpression network (Fig. 2j). This analysis demonstrates the util-
ity of combining sparse gene signatures with network propagation 
approaches to identify novel biological processes that potentially 
mediate dynamic fate changes, thereby establishing hypotheses to 
be experimentally confirmed.

ErbB4 is necessary for efficient erythropoiesis. Although our 
network models identified several enriched signaling nodes and 
candidate pathways in erythroid maturation, the preponderance 
of evidence pointed to ErbB signaling. Although significantly 
enriched, EGFR/ErbB4 was not among the top candidate pathways 
(Fig. 2h, see comprehensive list in Supplementary Table 8); how-
ever, when combined with expert knowledge that ErbB signaling is 
frequently associated with P53 (ref. 29), and the apoptotic30 and pro-
liferative31 processes that were repeatedly identified in our network 
models, ErbB signaling emerged as a lead candidate. To determine 
whether ErbB signaling was necessary for erythroid maturation, we 
perturbed erythroblasts differentiated from bone marrow HSPCs 
(CD34+) with ErbB inhibitors (Fig. 3a). Maturation (GlyA+CD71−) 
was only affected by pan-ErbB inhibitors (Afatinib, Dacomitinib, 
Neratinib), implicating ErbB4 rather than EGFR/ErbB2.

ErbB4 signaling has not previously been implicated in blood 
development or homeostasis. We characterized ErbB4 in human, 
mouse and zebrafish erythropoiesis. Using an erythroid in  vitro 
differentiation protocol for human HSPCs32, we observed 
increasing ERBB4 mRNA expression as erythroid cells matured 
(Supplementary Fig. 10a). Native human bone marrow erythroid 
fractions also exhibited increased ERBB4 expression in the most 
mature population (GlyA+CD71−) (Supplementary Fig. 10b). 
Reciprocally, pharmacological inhibition of ErbB signaling with 
Neratinib for 1 week shifted the bone marrow differentiation pro-
file in mice, with an increase in immature and a decrease in mature 
erythroid populations (Fig. 3b), as well as changes to the peripheral 
hematopoietic fractions (Supplementary Fig. 11).

We next determined whether ErbB4 signaling also functioned 
during erythroid ontogeny, a process that initiates in multiple waves 
from restricted progenitors during embryogenesis33. Morpholino 
inhibition of ErbB4 in zebrafish embryos significantly decreased 
the frequency of Gata1+ erythroid cells (Supplementary Fig. 12a) 
and of more differentiated globin-expressing cells (Fig. 3c,d) at 
48–56 h post fertilization (hpf), without affecting neutrophils 
(Supplementary Fig. 12b). These data indicate that ErbB4 signaling 
is necessary for robust erythropoiesis during embryonic and adult 
hematopoiesis.

ErbB4 deficiency induces stress erythropoiesis. To more strin-
gently characterize ErbB4 in adult erythropoiesis, we employed 

a genetic mouse model derived via αMHC-driven expression 
of human HER4 to circumvent embryonic lethality from heart 
defects in the whole body ErbB4 knockout (ErbB4−/−HER4heart)34. 
Consistent with the effects of Neratinib treatment, we observed an 
increase in early proerythroblast populations, with fewer mature 
orthochromatic and normoblastic cells in the ErbB4−/− bone mar-
row (Supplementary Fig. 13a,b). Nucleated RBCs and a high per-
centage of reticulocytes were present in peripheral blood, indicating 
moderate stress erythropoiesis in homozygotes and blood counts 
revealed significant changes in hemoglobin distribution (Fig. 4a 
and Supplementary Fig. 13c). ErbB4−/− mice had enlarged spleens 
(Supplementary Fig. 13d), a >two-fold expansion of early erythro-
blasts (GlyA+CD71+; gate II) (Fig. 4b) and overcrowded red pulp 
(Fig. 4c), suggesting extramedullary erythropoiesis. Morphological 
analysis demonstrated early developmental blocks across multiple 
lineages in ErbB4−/− bone marrow (Fig. 4d). CD41+ megakaryocytes 
in ErbB4-deficient spleen (P = 0.007 compared to wild type; Fig. 4e) 
decreased significantly, accompanied by a myeloid-skewed leuko-
cyte profile and increased platelets in the periphery (Fig. 4f). These 
results demonstrate dysregulated multi-lineage hematopoietic phe-
notypes in ErbB4−/−HER4heart mice.

Mitotic and proliferative processes downstream of ErbB matures 
iRBCs. To interrogate the molecular mechanisms downstream of 
ErbB, we performed global gene expression analysis of in vitro dif-
ferentiated RBCs perturbed with pan versus selective inhibitors. 
Transcriptomic analysis confirmed that the erythroid GRN was 
modulated by pan-ErbB inhibitors, but not by Lapatinib, a dual 
EGFR/ErbB2 inhibitor (Supplementary Fig. 14a,b). Although cells 
were treated between the intermediate and late erythroblast stages, 
early network cluster genes (G1, see Supplementary Fig. 14c) were 
significantly decreased, suggesting that ErbB signaling plays a role 
during multiple stages of differentiation. Analysis of pathways dys-
regulated by pan-ErbB inhibition revealed upregulation of P53 sig-
naling (Fig. 5a), with concomitant downregulation of mitotic and 
proliferative pathways (Fig. 5b). Consistent with our previous com-
putational analysis, these data connect ErbB signaling with P53 and 
proliferative pathways in human erythropoiesis.

As mechanistic analyses identified the Wnt pathway as a puta-
tive downstream target of ErbB4 (Fig. 5b), we exploited the phar-
macologic accessibility of this pathway to enhance erythropoiesis 
in vitro. A critical barrier to blood generation as a cell-based bio-
technology stems from a block in erythroid maturation from iPS 
cells (iRBCs), often requiring the use of feeder cells. We promoted 
maturation of iRBCs in a feeder-free system using bioprocess-
compatible hematopoietic progenitors, which undergo continu-
ous expansion under doxycycline-induced overexpression of five 
transcription factors (Fig. 5c)35. Activation of Wnt signaling via the 
agonist CHIR99021 increased the maturation of iRBCs, resulting in 
a 1.8-fold (P = 4.8 × 10−5) increase in GlyA+CD71− orthochromatic 
erythroblasts (Fig. 5d). Concomitantly, cells decreased in size with 
an increased nuclear-to-cytoplasmic ratio (Fig. 5e). Collectively, 
these data demonstrate that systems-level identification of drug-
gable signaling pathways in developmental processes, such as eryth-
ropoiesis, is directly applicable to stem cell biomanufacturing and 
regenerative cell therapies.

Discussion
Here, we establish the utility of systems-level analytics to elucidate 
biological processes that mediate dynamic stem cell and develop-
mental transitions. Our computational pipeline provides a road-
map for the derivation of network models that connect sparse gene  
signatures with corresponding, yet disparate, biological processes, 
to captures the multi-factorial nature of cell state transitions. With 
cell engineering in hematopoiesis as an example, we highlight how 
to connect critical elements (for example, LASSO gene signatures) 
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to pathways/processes (for example, networks derived via PCSF  
and correlation). Our network models suggested and we experi-
mentally confirmed a previously unanticipated role for ErbB4  
in hematopoiesis.

Our advanced pipeline integrates network topological architec-
ture with pseudotemporal information to provide multiple layers of 
information about cell differentiation, which is complementary to 
purely trajectory-based algorithms7–10 and highlights the changing 
roles of transcriptional regulators across dynamic stages of develop-
ment. Moreover, the LASSO feature reduction as a foundation for 
network modeling ensures that the resulting models are informed 
by genes most vital to distinguishing divergent cell states. In contrast 
to traditional differential gene expression approaches19–21, LASSO 
produces a sparse, sharply focused gene set and, when combined 
with PCSF, produces a signaling network comprising branches asso-
ciated with distinct biological processes. Together, these approaches 
provide a more global depiction of the systems-level processes asso-
ciated with cell fate transitions.

By applying our pipeline to study hematopoietic specification, we 
established a role for ErbB4 signaling in erythropoiesis in multiple 
in vitro and in vivo models. Many of our computational approaches 
did not directly identify ErbB4; however, network propagation 
from our maturation signature repeatedly identified ErbB ligands 
and ErbB-associated signaling, including MAPK/ERK, mitotic pro-
cesses, P53 and apoptosis36,37. This highlights the need for future 
development of unsupervised metrics to prioritize candidates from 
aggregate data, which currently requires expert knowledge as an 
integral part of the process. Although there were no annotated 

processes enriched within the reticulocyte gene cluster, it included 
the N-methyl-d-aspartate (NMDA) receptor, GRIN3B, which is 
commonly implicated, along with ErbB4, in neurological develop-
ment38 and pathophysiology39. Anemia is a common side effect of 
antipsychotic drugs40 and studies of glutamate-mediated ion chan-
nels supports their functional role in erythropoiesis41. This opens 
the possibility of new avenues of crosstalk between neurological 
and hematopoietic systems, akin to the regulation of hematopoietic 
stem cell production by the central nervous system42. Our dynamic 
analyses also revealed that oxidative stress pathways peak at the late 
erythroblast stage; ErbB4 is a known stress responsive pathway in 
the heart43 and abrogates oxidative damage in the brain44. Although 
a recent meta-analysis of genome-wide association study data iden-
tified neuregulin-4 (NRG4), an ErbB4-specific ligand, as a putative 
locus in aberrant human RBC phenotypes45, the pathway has not 
been previously characterized in erythropoiesis.

Cell engineering has broadly focused on inducing transcrip-
tion factors as the emissaries of phenotype. To this end, CellNet 
successfully predicts candidate and aberrant transcription factors. 
However, even the most-studied form of reprogramming, induced 
pluripotency, remains exquisitely sensitive to culture conditions and 
relies on signaling molecules, such as bFGF46. The advanced CellNet 
pipeline demonstrated here allows transcriptional targets to be 
complemented with druggable pathways. We demonstrate that the 
downstream ErbB signaling pathway can be exploited as a druggable 
target for more-robust production of RBCs from an iPSC-derived, 
bioprocess-compatible progenitor. Such multi-level reprogram-
ming strategies may be especially beneficial for establishing and  
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maintaining elusive populations, such as HSCs. Although engraft-
able HSCs can be generated with transcription factors alone47, repro-
gramming is enhanced by perturbation of developmental pathways, 
such as TGFβ and BMP4 (ref. 48). Similarly, AKT-activated endo-
thelial cells support self-renewal and maintenance of HSCs through 
angiocrine factors49. The prevalence of growth factor supplementa-
tion and cocultures across hematopoietic differentiation protocols 
further highlights the need to identify and recapitulate50 cell-extrin-
sic signals.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41587-019-0159-2.
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Methods
GRN reconstruction and CellNet analytics. In total, 164 erythroid Affymetrix 
microarrays (Supplementary Tables 1 and 2) from the HGU133plus2 platform 
were acquired from the Gene Expression Omnibus (GEO) and compiled with the 
original human CellNet compendium4. Microarrays were preprocessed, the global 
GRN was calculated via the context likelihood of relatedness (CLR)52 inference 
algorithm, and subnetworks were detected via InfoMap53 community detection, 
as previously described4,6. Unless specified, all high dimensionality data analytics 
were accomplished using the R computational environment (v.3.2.2), with specified 
packages from CRAN and Bioconductor. All graphical representations and 
network analytics were visualized and calculated with the igraph package. Cell- 
and tissue-specific GRNs were established via enrichment using the chi-squared 
statistical test. As implemented in CellNet, a random forest classifier was trained 
based on the GRN for each cell type and trained with a randomly selected subset 
comprising approximately 50% of the microarrays. The classification performance 
was then evaluated on the remaining independent subset of microarrays. The 
sensitivity (true positive divided by the sum of true positives and false negatives) 
at a false positive rate of 5% was calculated as a metric to evaluate classifier 
accuracy. The GRN score, defined as the weighted mean of expression Z-score, was 
calculated as previously described4.

PCA and trajectory establishment. To evaluate GRN dynamics, the 235 genes 
within the erythroid GRN were mean centered and scaled to unit variance before 
dimensionality reduction via decomposition of the multivariate dataset into 
principal component space via the prcomp command from the stats package. 
GSEA54 enrichment scores were calculated for each sample as a pre-ranked list, 
relative to the population mean, and correlations with respect to the principal 
component axes were calculated via Pearson’s r. All GSEA analyses were run 
using the Hallmark datasets in the Molecular Signatures Database (MSigDB)55. 
Unsupervised clustering of both microarrays and genes were calculated within the 
principal component space via GMM-based methods from the mclust package.

For global analysis of gene dynamics, differential genes were first identified 
via the following criteria: (1) expression above a minimum threshold of 3.5, (2) 
variation across the dataset using an interquartile range greater than 0.75 and 
(3) significance between clusters via Bonferroni adjusted analysis of variance 
(ANOVA). The remaining 1,788 differentially expressed genes were clustered via 
K-means into K = 12 groups, with K determined by calculating Bayesian inference 
criteria. All enrichment analyses were conducted using standard chi-squared or 
Fisher statistics on gene ontology56,57 defined biological processes.

LASSO and network propagation. The LASSO58 was calculated within the 
glmnet package59 using a binomial classification of microarrays from clusters C5 
and C6 (Fig. 1b), based on the differential genes (1,788 genes) defined via criteria 
above. The value of lambda (λ = 0.009), calculated via cv.glmnet, was chosen by 
minimizing the mean square error and corresponded to a signature of 27 genes. To 
validate the LASSO model, a two-component PLSDA model (mixOmics package60) 
was built based on the 27 genes and used to predict the binary classifications into 
clusters C5 and C6 (Supplementary Fig. 6). The calibration accuracy and error 
rates were calculated by the ‘Leave One Out’ method and compared to random 
models by: (1) shuffling the classifications and (2) selecting 27 random genes. 
In each case, the performance of random models was determined based on the 
average of 1,000 permutations.

To expand the network without overfitting, three additional models were built 
based on: (1) CellNet transcriptional regulatory networks, (2) protein–protein 
signaling networks and (3) coexpression networks (Fig. 2b). The CellNet first-
order network was derived from the amalgamation of all first-order connections  
to the 27-gene signature within the global CellNet GRN. P values corresponding  
to the overrepresentation of each network regulator were calculated based on 
Fisher’s test comparing the connections within the first-order network to  
those in the global GRN and corrected for multiple hypothesis testing. Regulatory 
modules within the first-order network were determined using the walktrap 
community algorithm.

The protein–protein interaction network was derived via querying the 
STRING database (v.9.0)61,62 using the PCSF algorithm, as previously described24. 
Low confidence interactions with an edge score, s(e) < 0.5 were removed and the 
cost was calculated as 1 − s(e). For increased robustness, noise was added to the 
edge cost and the resulting network was the amalgamation of ten iterations, as 
previously described63. PCSF parameters, including µ (node degree penalty), ω 
(number of trees) and β (node prize scaling), were varied to demonstrate that 
the network generation was robust across a range of values (Supplementary 
Fig. 8). Larger networks (increasing ω and β), exhibited decreased density and 
centralization, with an increase in the number of significant (P < 0.05) gene 
ontology annotations. This indicates that growing larger networks contributes 
toward the inclusion of discrete but cohesive biological processes, rather 
than adding random, unrelated genes/proteins. Moreover, smaller networks 
(Supplementary Fig. 8c–e) also exhibit common regulatory nodes consistent with 
our complete LASSO signaling network (Fig. 2f)

The coexpression network was determined by calculating the Pearson’s r 
between each of the 27 signature genes and all other genes across clusters C2, 

C4, C5 and C6 (Fig. 1b). An absolute cutoff of 0.9 was selected for network 
reconstruction, based on the ‘elbow’ of network size over the range of thresholds 
(Supplementary Fig. 9a). The network parameters, as well as gene ontology 
annotations were calculated across the full range of cutoff thresholds and 
representative networks spanning the range exhibit similar features in terms of 
predicted transcription factors (ChEA/ENCODE), kinases (LINCS L1000) and 
ligands (LINCS L1000) (Supplementary Fig. 9b–e). Enrichment analyses for  
the all networks were queried via gene ontology56,57 and Enrichr64 in their  
native implementations.

Statistical analyses. All statistical analyses were calculated in R, using two-sided, 
unpaired t-test, ANOVA or Fisher’s exact test. Data are presented as standard 
boxplots representing the median and ranging from the 25th to 75th percentiles, 
with the whiskers extending to 1.5 × interquartile range. The sample sizes represent 
a minimum of three independent replicates, corresponding to distinct experiments 
and/or parallel biological replicates (for example, animals or cell cultures). The 
exact replicate numbers and statistical tests are specified in the figure legends.

Human CD34+ RBC differentiation. Human CD34+ progenitors derived from 
mobilized peripheral blood (AllCells) were expanded for 4 d in StemSpan SFEM 
(StemCell Technologies) with the addition of interleukin (IL)-3 (10 ng ml−1), IL-6 
(50 ng ml−1), thrombopoietin (TPO) (50 ng ml−1), stem cell factor (SCF) (50 ng ml−1) 
and Flt3 (50 ng ml−1). Unless specified, all cytokines were from PeproTech. 
Erythroid differentiation was accomplished using a previously published, three-
stage protocol32. Briefly, all stages of differentiation consisted of a basal erythroid 
differentiation medium (EDM) consisting of: IMDM with 15% FBS, 1% BSA, 
2 mM l-glutamine, 500 µg ml−1 holo-transferrin and 10 µg ml−1 insulin. Stage 1 
consists of EDM plus the addition of dexamethasone (1 µM), β-estradiol (1 µM), 
IL-3 (5 ng ml−1), SCF (100 ng ml−1) and erythropoietin (EPO) (6 U) for 5 d (days 
0–5). Stage 2 consists of EDM plus the addition of SCF (50 ng ml−1) and EPO (6 U) 
for 4 d (days 5–9). Stage 3 consists of EDM plus the addition of EPO alone (2 U) for 
8 d (days 9–17). At all stages, cells are cultured in 24-well plates in 1 ml of media. 
Cell number seeded at the beginning of stages 1, 2 and 3 are: 105, 2 × 105 and  
5 × 105 per well.

iPS-5F generation and RBC differentiation. Human iPS-5F cells were 
generated as previously described35,65 from MSC-iPS66 obtained from the 
Boston Children’s Hospital Human Embryonic Stem Cell Core and verified 
by immunohistochemistry for pluripotency markers, teratoma formation and 
karyotyping. Briefly, iPS cells were differentiated as embryoid bodies using a 
hematopoietic induction protocol67 and CD34+ cells were sorted from bulk 
embryoid body culture by magnetic activated cell sorting using human CD34 
microbeads (Miltenyi Biotec.), as per the manufacturer’s instructions. The 
embryoid body progenitors were seeded on retronectin-coated (10 μg cm−2) 96-well 
plates (2 × 104–5 × 104 cells per well) in SFEM (StemCell Technologies) containing 
50 ng ml−1 SCF, 50 ng ml−1 FLT3, 50 ng ml−1 TPO (all R&D Systems), 50 ng ml−1 
IL-6 and 10 ng ml−1 IL-3 (both from PeproTech) and infected with 5F lentiviral 
particles. Lentiviral particles for the 5F plasmids (HOXA9, ERG, RORA, SOX4 
and MYB cloned into pInducer-21 doxycycline-inducible vector) were produced 
by transfecting 293T-17 cells (ATCC) with third-generation packaging plasmids. 
The multiplicity of infection (MOI) for each factor was: ERG MOI = 5, HOXA9 
MOI = 5, RORA MOI = 3, SOX4 MOI = 3, MYB MOI = 3. Following 24 h of 
infection, 5F cells were cultured in SFEM with 50 ng ml−1 SCF, 50 ng ml−1 FLT3, 
50 ng ml−1 TPO, 50 ng ml−1 (all R&D Systems) IL-6 and 10 ng ml−1 IL-3 (PeproTech) 
and 2 μg ml−1 doxycycline (Dox, Sigma). Cultures were maintained at a density of 
<1 × 106 cells ml−1 and the medium was changed every 3–4 d.

RBC differentiation from iPS-5F followed a slightly modified protocol that was 
previously optimized for translational approaches aimed at transfusion of in vitro-
derived RBCs68. In this protocol, the EDM was instead consisting of: IMDM with 
5% inactivated plasma (solvent detergent pooled plasma AB from the Rhode Island 
Blood Center), 2 mM l-glutamine, 330 µg ml−1 holo-transferrin and 10 µg ml−1 
insulin, 2 IU per ml heparin (Sigma) and 3 IU per ml EPO. Stage I (days 0–7) was 
plated at 1–3 × 105 cells per ml and supplemented with 10 µM hydrocortisone, 
100 ng ml−1 SCF and 5 ng ml−1 IL-3. Stage II (days 7–11) was plated at 1–3 × 105 cells 
per ml and supplemented with 100 ng ml−1 SCF. Stage III (days 11–18) was plated  
at 1 × 106 cells per ml in the basal EDM. All analyses were conducted at day 18  
of differentiation and CHIR99021 (3 µM) was added throughout stage III  
(days 9 and 13).

Flow cytometry and cell sorting. Human erythropoiesis, including differentiation 
from bone marrow CD34+ cells and native bone marrow samples, was analyzed 
with the following antibody panel: CD71 PE (M-A712, BD) and CD235a/
Glycophorin A PE- Cy7 (11E4B-7-6; Coulter) or CD235a/Glycophorin A 
FITC (11E4B-7-6, Coulter). Mouse erythropoiesis from Neratinib treated and 
HER4heart mice was analyzed with the following antibody panel: mCD71 FITC 
(C2, BD), mTer119 PE-Cy5 (Ter119; eBioscience). All staining was performed 
with <1 × 106 cells per 100 µl staining buffer (PBS + 2% FBS) with 1:100 dilution 
of each antibody for 30 min at room temperature in the dark. Compensation was 
performed by automated compensation with anti-mouse Igk and negative beads 
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(BD). Acquisition was performed on a BD Fortessa cytometer and all sorting 
was performed on a BD FACS Aria II cell sorter using a 70-mm nozzle. Gating 
strategies are depicted in Supplementary Fig. 15.

Inhibitors. All inhibitors were added to cell cultures at 1 µM on days 9 and 
13 of differentiation, corresponding to the beginning and middle of stage 3 
(supplemented with EPO only, as described above). DMSO was used for a vehicle 
control in all cell culture studies. Details on ordering information and affinities are 
provided in Supplementary Table 13.

RNA-sequencing. RNA was extracted after 24 h of incubation with ErbB inhibitors 
(day 10 of erythroid differentiation) using Trizol reagent (Invitrogen) and the 
RNeasy Plus kit (Qiagen). Quality of RNA was monitored via QC for high RNA 
integrity number values and low levels of DNA contamination. RNA-seq libraries 
were prepared using the SMARTseq v.4 kit as per the manufacturer’s protocol with 
10 ng input RNA. Libraries were sequenced using the 200-cycle paired-end kit on the 
Illumina HiSeq2500 system. RNA-seq reads were analyzed with the Tuxedo Tools 
following a standard protocol on the Harvard Medical School Orchestra Cluster. 
Reads were mapped with TopHat v.2.1.0 and Bowtie2 v.2.2.4 with default parameters 
against build hg19 of the human genome, and build hg19 of the RefSeq human 
genome annotation. Samples were quantified with the Cufflinks package v.2.2.1. 
Differential expression was performed using Cuffdiff with default parameters.

PCR. RNA was extracted as described above and complementary DNA was 
synthesized using the SuperScript VILO cDNA Synthesis Kit (Thermo), per the 
manufacturer’s instructions. Real-time PCR was run using SYBR green technolgoy 
with QuantiTect primers for the ErbB receptor family (Qiagen) on the QuantStudio 
Flex Real-Time PCR System.

Zebrafish studies. Zebrafish were maintained according to institutional animal 
care and use committee-approved protocols. The Tg(globin:eGFP) line was 
provided by L.I. Zon, Children’s Hospital, Harvard Medical School, Boston. MOs 
(GeneTools) were microinjected at the one-cell stage as described previously69. 
ErbB4 MOs were generated from previously published sequences51. Embryos were 
harvested at 48–56 hpf and were processed with matched sibling controls for o-
dianisidine staining and evaluation of globin:eGFP intensity. Staining intensity was 
categorized as low, medium or high in that experiment, as previously described70; 
effects were independently confirmed by other laboratory members.

Mouse studies. All mice were housed in pathogen-free animal facilities, and 
all experiments were performed with the approval of the Animal Care and Use 
Committee at Harvard Medical School and the Dana Farber Cancer Institute and/
or the BCH Animal Care Committee. At least n = 3 animals were used per cohort, 
based on previous studies. For drug treatments, mice were assigned randomly to 
groups and not blinded. Neratinib was delivered to B6 albino mice via oral gavage 
at 60 mg kg−1 daily for 1 week. Hydroxypropyl methylcellulose was used as a vehicle 
control for Neratinib in mouse treatments.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All RNA-seq data have been deposited to the GEO database under GSE108128.

References
	52.	Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli 

transcriptional regulation from a compendium of expression profiles. PLoS 
Biol 5, e8 (2007).

	53.	Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for 
resolving community structure in complex networks. Proc. Natl Acad. Sci. 
USA 104, 7327–7331 (2007).

	54.	Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc. Natl Acad. 
Sci. USA 102, 15545–15550 (2005).

	55.	Liberzon, A. et al. The molecular signatures database hallmark gene set 
collection. Cell Syst 1, 417–425 (2015).

	56.	Ashburner, M. et al. Gene ontology: tool for the unification of biology. The 
Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

	57.	Gene Ontology Consortium. Gene Ontology Consortium: going forward. 
Nucleic Acids Res. 43, D1049–D1056 (2015).

	58.	Tibishirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 
B 58, 267–288 (1996).

	59.	Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized 
linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

	60.	Lê Cao, K.-A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: 
biologically relevant feature selection and graphical displays for multiclass 
problems. BMC Bioinformatics 12, 253 (2011).

	61.	Snel, B., Lehmann, G., Bork, P. & Huynen, M. A. STRING: a web-server to 
retrieve and display the repeatedly occurring neighbourhood of a gene. 
Nucleic Acids Res. 28, 3442–3444 (2000).

	62.	Szklarczyk, D. et al. The STRING database in 2017: quality-controlled 
protein–protein association networks, made broadly accessible. Nucleic Acids 
Res. 45, D362–D368 (2017).

	63.	Akhmedov, M. et al. PCSF: an R-package for network-based interpretation of 
high-throughput data. PLoS Comput. Biol. 13, e1005694 (2017).

	64.	Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list 
enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

	65.	Vo, L. T. et al. Regulation of embryonic haematopoietic multipotency by 
EZH1. Nature 553, 506–510 (2018).

	66.	Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with 
defined factors. Nature 451, 141–146 (2008).

	67.	Chadwick, K. et al. Cytokines and BMP-4 promote hematopoietic 
differentiation of human embryonic stem cells. Blood 102, 906–915 (2003).

	68.	Giarratana, M.-C. et al. Proof of principle for transfusion of in vitro-
generated red blood cells. Blood 118, 5071–5079 (2011).

	69.	North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem 
cell homeostasis. Nature 447, 1007–1011 (2007).

	70.	Doulatov, S. et al. Drug discovery for Diamond-blackfan anemia using 
reprogrammed hematopoietic progenitors. Sci. Transl. Med. 9, eaah5645 
(2017).

Nature Biotechnology | www.nature.com/naturebiotechnology

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108128
http://www.nature.com/naturebiotechnology


1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): George Q. Daley 

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection 164 erythroid Affymetrix microarrays (Supplementary Tables 1&2) from the HGU133plus2 platform were acquired from the Gene 
Expression Omnibus (GEO) and compiled with the original human CellNet compendium. Microarrays were preprocessed, the global gene 
regulatory network (GRN) was calculated via the Context Likelihood of Relatedness (CLR) inference algorithm, and subnetworks were 
detected via InfoMap community detection, as previously described. Unless specified, all high dimensionality data analytics were 
accomplished using the R computational environment (version 3.2.2), with specified packages (see Online Methods) from CRAN and 
Bioconductor. 
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Data analysis All statistical analyses were calculated in R, using two-sided, unpaired t-test or ANOVA, where appropriate, with p<0.05 considered 
significant. Data are presented as standard boxplots representing the median and ranging from the 25th to 75th percentiles, with the 
whiskers extending to 1.5*IQR. The sample sizes represent a minimum of three independent replicates, as specified in the figure legends. 
Gene set enrichment analysis (GSEA) was run according to default parameters in their native implementations.  Statistical enrichment of 
gene lists in gene ontology (GO) enrichment was performed using Fisher's exact test followed by correction for multiple hypothesis 
testing. 
 
RNA-seq reads were analyzed with the Tuxedo Tools following a standard protocol on the Harvard Medical School Orchestra Cluster. 
Reads were mapped with TopHat version 2.1.0 and Bowtie2 version 2.2.4 with default parameters against build hg19 of the human 
genome, and build hg19 of the RefSeq human genome annotation. Samples were quantified with the Cufflinks package version 2.2.1. 
Differential expression was performed using Cuffdiff with default parameters. 
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RNA-seq data has been deposited to the Gene Expression Omnibus (GEO) database under GSE108128. Raw data is available in the Supplementary Tables.
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Sample size At least n=5 mice were used per cohort for neratinib treatments. For zebrafish studies, at least n>6 embryos were used and replicated across 
multiple clutches. HER4heart mouse studies were analyzed with at least n=4. 

Data exclusions No data were excluded

Replication Number of replicates per experiment and statistical analyses are described in each figure legend.

Randomization Mice and zebrafish were assigned randomly to groups and not blinded.

Blinding Mice and zebrafish were assigned randomly to groups and not blinded.
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Antibodies
Antibodies used Human erythropoiesis, including differentiation from BM CD34+ cells and native bone marrow samples, was analyzed with the 

following antibody panel: CD71 PE (M-A712; BD), and CD235a/Glycophorin A PE- Cy7 (11E4B-7-6; Coulter) or CD235a/
Glycophorin A FITC (11E4B-7-6; Coulter). Mouse erythropoiesis from Neratinib treated and HER4heart mice was analyzed with 
the following antibody panel: mCD71 FITC (C2; BD), mTer119 PE-Cy5 (Ter-119; eBioscience). 

Validation Antibodies were all previously validated using cord blood and peripheral blood mononuclear cells as positive controls.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) iPS-5F cells were generated as previously described (Doulatov et al., Cell Stem Cell, 2014; Vo et al., Nature, 2017) from MSC-
iPS (Park et al., Nature, 2008) obtained from the Boston Children’s Hospital Human Embryonic Stem Cell Core (hESC) and 
verified by immunohistochemistry for pluripotency markers, teratoma formation and karyotyping. Primary cells (CD34+ cord 
blood) were obtained from AllCells.

Authentication MSC-iPS were verified by immunohistochemistry for pluripotency markers, teratoma formation and karyotyping

Mycoplasma contamination All lines routinely tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

N/A

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals All mice were housed in pathogen-free animal facilities, and all experiments were performed with the approval of the Animal 
Care and Use Committee at Harvard Medical School and Dana-Farber Cancer Institute and/or the BCH animal care committee. At 
least n=4 animals were used per cohort. Mice were assigned randomly to groups and not blinded. Neratinib was delivered to B6 
albino mice via oral gavage at 60 mg/kg daily for 1 week. Hydroxypropyl methylcellulose (HPMC) was used as a vehicle control 
for Neratinib in mouse treatments. ErbB4-/-HER4heart mutant mice were generated in 2003 by Martin Gassmann (University of 
Basel) and colleagues and obtained from Dr. Gabriel Corfas at the University of Michigan.

Wild animals N/A

Field-collected samples N/A

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.
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Methodology

Sample preparation CD34+ progenitors derived from mobilized peripheral blood (AllCells) were expanded and differentiated via an established 
erythroid differentiation protocol. All staining was performed with < 1x106 cells per 100 μL staining buffer (PBS + 2% FBS) with 
1:100 dilution of each antibody for 30 min at RT in dark. Compensation was performed by automated compensation with anti-
mouse Igk and negative beads (BD). 

Instrument Acquisition was performed on a BD Fortessa cytometer and all sorting was performed on a BD FACS Aria II cell sorter using a 70-
mm nozzle. 

Software All flow cytometry data was analyzed using FlowJo 8.7.

Cell population abundance No sorting was performed.
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Gating strategy All cells were first gated on FSC/SSC according to cell size and granularity, using stained human cord blood mononuclear cells 
(MNCs) as a positive control and reference for cell size, granularity and staining intensity. Unstained samples were used to set up 
negative gates. Dead cell populations were excluded using DAPI staining.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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