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Using deep learning for dermatologist-level  
detection of suspicious pigmented skin lesions 
from wide-field images
Luis R. Soenksen1,2,3,4,5*, Timothy Kassis6, Susan T. Conover2, Berta Marti-Fuster2,5,  
Judith S. Birkenfeld2,5, Jason Tucker-Schwartz2,5, Asif Naseem2,5, Robert R. Stavert7,8,9,  
Caroline C. Kim10,11, Maryanne M. Senna9,12, José Avilés-Izquierdo13, James J. Collins2,3,4,6,14,15, 
Regina Barzilay16,17, Martha L. Gray2,4,5,17

A reported 96,480 people were diagnosed with melanoma in the United States in 2019, leading to 7230 reported 
deaths. Early-stage identification of suspicious pigmented lesions (SPLs) in primary care settings can lead to im-
proved melanoma prognosis and a possible 20-fold reduction in treatment cost. Despite this clinical and economic 
value, efficient tools for SPL detection are mostly absent. To bridge this gap, we developed an SPL analysis system 
for wide-field images using deep convolutional neural networks (DCNNs) and applied it to a 38,283 dermatological 
dataset collected from 133 patients and publicly available images. These images were obtained from a variety of 
consumer-grade cameras (15,244 nondermoscopy) and classified by three board- certified dermatologists. Our 
system achieved more than 90.3% sensitivity (95% confidence interval, 90 to 90.6) and 89.9% specificity (89.6 to 
90.2%) in distinguishing SPLs from nonsuspicious lesions, skin, and complex backgrounds, avoiding the need for 
cumbersome individual lesion imaging. We also present a new method to extract intrapatient lesion saliency 
(ugly duckling criteria) on the basis of DCNN features from detected lesions. This saliency ranking was validated 
against three board-certified dermatologists using a set of 135 individual wide-field images from 68 dermatolog-
ical patients not included in the DCNN training set, exhibiting 82.96% (67.88 to 88.26%) agreement with at least 
one of the top three lesions in the dermatological consensus ranking. This method could allow for rapid and accurate 
assessments of pigmented lesion suspiciousness within a primary care visit and could enable improved patient 
triaging, utilization of resources, and earlier treatment of melanoma.

INTRODUCTION
Melanoma is a type of malignant tumor responsible for more than 
70% of all skin cancer–related deaths worldwide. In 2019, there were 
an estimated 96,480 patients newly diagnosed with melanoma, with 
a reported 7230 deaths in the United States alone (1, 2). Typically, 
patients presenting only with localized primary cutaneous melano-
mas of ≤1 mm thickness have an excellent prognosis (>90% 5-year 

survival rate) (1, 3). For patients with thicker tumors, however, mel-
anoma survival rates decrease to 62 and 18% for stages III and IV, 
respectively (1, 3). Furthermore, studies evaluating the economic 
burden of melanoma estimate a 20-fold increase in treatment cost 
from early- to late-stage melanoma (4), accounting for additional 
healthcare expenses that could potentially be reduced through early 
detection and treatment. Although recent immunotherapies such as 
programmed cell death protein 1 (PD-1) inhibitors have improved 
clinical outcomes, they still constitute substantial treatment costs (5). 
Visual inspection of patients to identify lesions that exhibit features 
clinically concerning for skin cancer or suspicious pigmented lesions 
(SPLs), is a long-standing dermatological practice that belongs to a 
group of visual tasks known as outlier lesion macroscreening (6). For 
years, the assessment of SPL features such as asymmetry, border 
unevenness, color distribution, diameter, and evolution (collectively 
known as the ABCDE criteria) have constituted the cornerstone of 
early-stage melanoma screening. These visual descriptors, in com-
bination with risk assessments from the patient’s medical history, 
full-body inspection, nevi density, and lesion saliency (ugly duck-
ling), help dermatologists identify lesions for skin biopsy and histo-
pathologic evaluation, the gold standard in melanoma diagnosis 
(7). In particular, highly accurate and skilled clinical detection of 
melanoma appears to rely heavily on unconscious visual pattern 
and comparative “ugly duckling” recognition rather than simplified 
algorithms of ABCDE morphologic criteria (8–10).

In recent years, several studies have suggested that access to der-
matological screenings can correlate with earlier detection of mela-
nomas and subsequently improved prognosis (11–13). On the basis 
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of this research, various pilot programs in Europe have been de-
ployed to measure the effects of large-scale skin cancer screening 
initiatives at the primary care level (14, 15). Such programs have 
shown the potential to provide reductions in patient treatment costs 
and mortality when performing full-body examinations in large 
numbers of high-risk individuals, leading to a majority of experts 
and patient advocacy groups in support of melanoma screening 
policies (14, 15). Despite these encouraging results, such programs 
have not been adopted in most countries (both developed and de-
veloping), primarily because of the high initial cost of implementa-
tion and the lack of scalable tools to help primary care physicians in 
the identification of cancerous skin lesions at a population level 
(16). The challenges that these initiatives face are complex but pri-
marily stem from the fact that malignant melanoma is a relatively 
rare disease (13 per 10,000 persons) that is also difficult to confirm 
solely through visual inspection (17). Even among experts, only 
0.8% of detected SPLs are confirmed to be malignant through biop-
sy (14). This situation has profound implications for screening 
policies in high-risk regions, where millions of pigmented lesions 
would need to be evaluated to prioritize regional expert evaluations 
and biopsies for SPLs so that melanoma treatments could be effi-
ciently directed to reduce the burden of this disease. Considering 
these conditions, it becomes clear why providing indiscriminate der-
matological referrals to the general population for pigmented lesion 
screenings is cost-prohibitive, impractical, and mostly controversial 
as an effective public health measure (18).

In the past decade, advances in smartphone technologies have 
increased access to high-quality personal cameras and robust mo-
bile computing systems for a wide range of applications, including 
dermatology. However, the images produced by commonly used 
personal devices have long been considered suboptimal for use in 
skin cancer computer-aided diagnosis (CAD). This is, in part, due 
to difficulties in segmentation, ABCD feature extraction, and accu-
rate lesion classification in the presence of image artifacts (19, 20). 
Furthermore, these systems rely on the user to drive the appropriate 
identification of pigmented lesions for image acquisition and anal-
ysis (21). Thus, traditional pigmented lesion CAD systems have 
been of little use in large-scale melanoma screening initiatives, as 
most have been developed to work only with dermoscopy and single- 
lesion near-field photography, both of which require special-
ized illumination and training (22). Such strict requirements are 
impractical for most real-use scenarios at the primary care level, 
which are limited in both time and capacity to image a large number 
of lesions per patient carefully. The presence of multiple potentially 
suspicious lesions at different scales, spurious nonskin regions such 
as clothing, uneven illumination, angled surfaces, and obstructing 
hair have all been reported to lead to poor accuracy in traditional 
skin cancer CAD systems (23, 24).

More recently, deep convolutional neural networks (DCNNs) 
have been used in next-generation CAD systems to overcome many 
of the challenges associated with automated dermatology evalua-
tions. For example, seminal study (25) used a deep neural network 
model based on Google’s Inception v3 architecture and ImageNet 
transfer learning for the classification of 2032 different skin diseases. 
In this implementation, a pretrained network was fine-tuned using 
129,450 dermatological images and then tested along with 21 board- 
certified dermatologists on biopsy-proven clinical images. Upon 
evaluation, this DCNN was capable of delivering an average accura-
cy of 72.1 ± 0.9% for three aggregated skin disease classes (benign, 

malignant, and nonneoplastic), whereas when a subset of the vali-
dation dataset was assessed by two dermatologists they scored 65.78 ± 
0.22% (25). Such results, as well as other investigations on deep 
learning for dermatology (26–30), have informed the speculation that 
DCNN-based models can reach comparable or even superior diag-
nostic accuracy compared with board-certified dermatologists in 
specific visual tasks.

Despite the potential of implementing deep learning in clinical 
dermatology, previous demonstrations using DCNNs have not 
been trained to specifically address some of the more practical real- 
world challenges present in rapid, multilesion analysis for large-
scale melanoma screenings. For example, most DCNN-based CAD 
systems rely on the assumption that the user has the time, training, 
and incentives to appropriately preselect all relevant lesions in a pa-
tient that are worthy of analysis. Furthermore, the classification in 
these systems is inferred only at the single-lesion level in compari-
son with the training dataset (25–27), without any consideration for 
other relevant interlesion dependencies, such as feature saliencies 
(also known as the ugly duckling criteria), used by expert dermatol-
ogists when conducting efficient SPL evaluations (6, 7, 31, 32). Thus, 
here, we present a DCNN system optimized for the identification 
and classification of SPLs in wide-field images (photographs depict-
ing multiple lesions from large body parts). Our DCNN system has 
been designed to generate marked overlays of suspiciousness classi-
fications at the single-lesion level, as well as ugly duckling heatmaps 
showing intrapatient lesion saliencies (Fig. 1). With this system, we hope 
to provide a scalable solution to improve dermatological referrals at 
the primary care level, which attends to the naïve wide-field nature 
of these observations and the often overlooked ugly duckling criteria.

RESULTS
Dataset for wide-field suspicious skin lesion detection
We generated an image dataset to train DCNN models for SPL de-
tection and classification in wide-field dermatological images by com-
bining open-access dermatology repositories, web scraping outputs, 
and deidentified clinical images from 133 patients at the Hospital 
Gregorio Marañón (Madrid, Spain) (fig. S1). This dataset contained 
a total of nbaseline = 33,980 individually labeled and nonoverlapping 
image crops divided into six classes (Fig.  2A), including back-
grounds (nb  =  8888), skin edges (nse  =  2528), bare skin sections 
(nsk = 10,935), nonsuspicious pigmented lesions type A (NSPL-A) 
(nnspl-a = 10,759) of low priority, NSPL-B (nnspl-b = 1110) of medium 
priority, and SPLs (nspl = 4,063). The included background images 
span a variety of fabrics, furniture, walls, and other objects com-
monly found in primary care and home care settings. The NSPL-A 
class was aggregated from nine distinct pigmented lesion subtypes 
where low-priority management is typically indicated. Similarly, the 
NSPL-B class includes images from the other five skin lesion sub-
types where dermatological referral or follow-up are usually indi-
cated to better assess patient risk of skin cancer. Last, the SPL class 
consisted of melanomas stages 0 to IV (nm = 2906), squamous cell 
carcinomas (nscc = 589), and 568 basal cell carcinomas (nbcc = 568) 
for which biopsy or excision is usually recommended (Fig.  2B). 
Nondermoscopy images were used for 99.15% of the NSPL-A set, 
82.79% of the NSPL-B set, and 90.02% of the SPL set (Fig. 2C). Ad-
ditional information on pigmented lesion class taxonomy is provided 
in table S1. All pigmented lesion class labels (NSPL-A, NSPL-B, and 
SPL) were confirmed visually by consensus of three board-certified 
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dermatologists (R.R.S., C.C.K., and M.M.S.). The skin edge, bare 
skin, NSPL-A, NSPL-B, and SPL classes encompassed a range of 
Fitzpatrick skin tones (types I to VI) (table S2). Nonlesion-related 
classes (backgrounds, skin edge, and bare skin) were included in 
this specific dataset to allow for the training of DCNN models capa-
ble of discriminating pigmented lesions from other features com-
monly observed in wide-field dermatological images.

DCNN training, validation, and testing
We trained various DCNN models for SPL classification to assess dif-
ferences in performance resulting from architecture and data prepa-
ration strategies (Fig. 3). First, we trained a baseline DCNN model 
with three convolutional layers (fig. S2, A and B) using our curated 
six-class dataset (nbaseline  =  33,980) with a randomized percentage 
split for training (60%, ntrain = 20,388), validation (20%, nval = 6796), 
and testing (20%, ntest = 6796) (fig. S3). In the testing set ntest, 71.5% 
of lesions corresponded to melanoma, whereas 14.0 and 14.5% corre-
sponded to basal and squamous cell carcinomas, respectively. When 
evaluated on the testing set using receiver operator curves (ROCs) 
with a one-versus-all binarization strategy for each class, this model 
reached a micro-averaged area under the curve (AUCmicro) across all 
six classes of 0.975 (95% confidence interval, 0.896 to 0.988) 

[sensitivity  =  0.890 (0.885 to 0.895), specificity  =  0.899 (0.894 to 
0.904), and accuracy = 84.62% (83.8 to 85.4%)], with an SPL AUC-
spl = 0.945 (0.940 to 0.949) (Fig. 3, A and B). Similarly, this baseline 
DCNN architecture was also trained on a  ~10× nonoverlapping 
augmented dataset with class balancing (naug  = 300,000) (fig. S4). 
This baseline model with data augmentation showed a slight reduction 
in measured performance with AUCmicro = 0.957 (0.956 to 0.958) [sen-
sitivity  =  0.878 (0.771 to 0.881), specificity  =  0.892 (0.780 to 
0.895), and accuracy = 78.42% (78.1 to 78.7%)] and AUCspl = 0.911 
(0.909 to 0.913) (Fig. 3, C and  D), likely due to reduced model 
overfitting.

Given that the augmentation and class balancing constitute desir-
able approaches to improve DCNN generalization capacity, we 
decided to use this dataset to train all further models. A third DCNN was 
then trained using transfer learning from the VGG16 ImageNet 
pretrained network (33) in conjunction with our six-class augmented 
dataset (fig. S5). This approach leverages ImageNet’s 14- 
million image dataset grouped into 21,841 classes (34, 35) to extract visu-
al features and facilitate classification in situations where reduced 
amounts of images are available. For this architecture, using a bottle-
neck training strategy for feature extraction and weight adjusting of 
the last fully connected layers (fig. S5, A and C), our model reached 

Fig. 1. Wide-field DCNN and deep ugly duckling saliency layout. Our system data flow is shown from left to right. First, a wide-field patient image was acquired by the 
user (or primary physician) and fed to the algorithm. Then, a blob detection algorithm on the basis of Laplacian of Gaussians (LoG) and scale-invariant feature transforma-
tion (SIFT) was used to detect all blob-like regions to accelerate analysis. Detected blobs were cropped and stored in an intrapatient repository. Stored images were fed 
into a deep classifier developed using an ImageNet pretrained convolutional neural network (CNN) architecture (for example, VGG16 and Xception) and fine-tuned on 
our own dataset of 33,980 images comprised of six different classes (SPLs, nonsuspicious pigmented lesions type A (NSLP-A), NSLP-B, skin, skin edges, and backgrounds). 
Detected pigmented lesions were classified as suspicious or nonsuspicious considering the single-blob class probabilities generated by the dense layer of the network 
(single-lesion output) and also using a multilesion saliency ranking or score (ugly duckling output) calculated using the deep features from the CNN. Our multilesion sa-
liency score is a patient-dependent metric of pigmented lesion oddness calculated using the geometric distance of deep features from all moles in a single patient. Re-
sults are presented in the form of an output image with suspicious regions of interest, a saliency heatmap, and complete lesion montages to assist clinical users when 
conducting referral decisions. PCP, primary care physician; WF, wide field; t-SNE, t-distributed stochastic neighbor embedding.
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its highest performance with AUCmicro = 0.97 (0.969 to 0.971) [sensi-
tivity = 0.903 (0.9 to 0.906), specificity = 0.899 (0.896 to 0.902), and 
accuracy  =  86.56% (86.3 to 86.8%)] and AUCspl  =  0.935 (0.933 to 
0.937) when evaluated on the augmented testing set (Fig. 3, E and F). 
Fine-tuning of additional VGG16 network layers, such as the weights 
of convolutional block 5, was also attempted (fig. S5, B and C) but did 
not lead to improved classification performance as compared to the 
VGG16 transfer learning bottleneck (VGG16-BTF) model (fig. S6).

A fourth DCNN transfer learning model based on the ImageNet’s 
pretrained Xception network (35) was also created to compare the 
performance of this deeper network to the VGG16 architecture in 
our dataset. When using a bottleneck training strategy (fig. S7, A 
and C), our Xception transfer learning model only reached an 
AUCmicro  =  0.858 (0.857 to 0.858) [sensitivity  =  0.837 (0.606 to 
0.841), specificity = 0.770 (0.766 to 0.774], and accuracy = 61.05% 
(60.7 to 61.4%)] and AUCspl = 0.827 (0.825 to 0.829) (Fig. 3, G and H) 
for the augmented testing set. Fine-tuning of Xception weights in 
earlier network layers, such as the last two groups of convolutional 
blocks (fig. S7, B and C), did not improve performance and led to a 
substantial deterioration in classification accuracy across all classes 
(fig. S8). The fact that, here, our baseline and VGG16-BTF networks 
outperformed the deeper Xception transfer learning models indi-
cates that shallower neural networks (~16 layers) may be better suit-
ed for this specific problem and data constraints as compared with 
deeper networks. As compared to a previous DCNN system with an 
average accuracy of 72.1% for suspiciousness-like classification end-
points (malignant versus nonneoplastic and benign) (25), our 
VGG16-BTF model reached 79.9% average accuracy, with the advantage of 

including mostly nondermoscopy train-
ing images, which are more representa-
tive of dermatological screening events at the 
primary care level than dermoscopy.

SPL and ugly duckling computer-
aided identification
In this section, we present a proof-
of-concept demonstration of our in-
tegrated DCNN SPL and ugly duckling 
computer-aided identification system 
(Fig. 1), which aims to allow for rapid 
detection and ranking of pigmented le-
sions according to their levels of suspi-
ciousness in wide-field images (Fig. 4A). 
In this system, our VGG16-BTF model 
was used to extract features and calcu-
late patient-independent probabilities 
of suspiciousness for each pigmented 
lesion similarly to previous DCNN der-
matological tools. However, in our im-
plementation, the extracted features were 
used in a secondary stage to calculate a 
quantitative ugly duckling metric based 
on the geometric distance (cosine) of 
each lesion’s feature vector compared to the 
averaged feature center of all visible le-
sions in a particular patient-specific wide- 
field image. Such DCNN-based “oddness” 
lesion ranking can be interpreted as a field-
of-view patient-dependent metric that 

can be normalized and presented in lesion montages and ugly duck-
ling heatmaps, as shown in Fig.  4B. This constitutes the first- 
reported quantifiable definition of the ugly duckling criteria and 
serves as a way to leverage deep learning networks to overcome the 
challenging and time-consuming task of characterizing the fine-
grained disparities among all the pigmented lesions in a single patient.

We evaluated our ugly duckling scoring method using 135 wide-
field dermatological images from 68 individuals depicting large body 
parts (arm, full back, and full stomach) in comparison with the assess-
ment of three board-certified dermatologists (R.R.S., C.C.K., and 
M.M.S.) tasked with ranking lesion oddness (Fig. 4, C to E). In these 
wide-field images, the number of detected lesions considered for 
analysis ranged from 5 to 239, spanning a wide range of lesion counts 
that includes the typical number of lesions seen in most dermatolog-
ical patients (36). We measured the percent agreement between our 
ugly duckling algorithm and the dermatological consensus (average 
ranking of three expert dermatologists) by considering at least one 
common lesion between the predicted (top-u) and the expert-identified 
(top-k) list of lesions as a successful assessment. Under this definition 
of agreement, when selecting a top three ugly duckling algorithm 
ranking (u = 3), as compared to a top 10 dermatological consensus 
ranking (k = 10), we found a 96.3% (83.67 to 97.57%) agreement 
for all evaluated wide-field images (Fig.  4C). A more conservative 
and clinically relevant agreement of 82.96% (67.88 to 88.26%) was 
found when selecting for u = 3 and k = 3 as ranking parameters in 
Fig. 4D. Furthermore, we also explored the effect of selecting more 
restrictive agreement definitions by substituting the original ≥1 com-
mon agreement rule with an ≥2 or ≥ 3 common lesion requirement 

Fig. 2. Database taxonomy and an example set of the dataset. (A) Our database included a total of 33,980 images 
divided into six classes. These classes included backgrounds (nb = 8888), skin edges (nse = 2528), skin (nsk = 10,935), 
NSPL-A (nnspl-a = 10,759), NSPL-B (nnspl-b = 1110), and SPLs (nspl = 4063). Our background dataset included a variety of 
fabrics, furniture, and other common objects present in evaluation rooms. The skin dataset included crops with 
Fitzpatrick skin tones types I to VI. NSPL-A included images from six distinct skin lesion subtypes, where no particular 
management is generally indicated. NSPL-B included images from the other seven skin lesion subtypes where follow- 
up is often indicated to assess evolution. (B) The SPL class was only composed of melanoma (stages 0 to IV) and basal 
cell carcinoma images for which biopsy or excision is recommended. (C) Example of pigmented lesion imaged with 
dermoscopy and nondermoscopy techniques.

 at H
arvard U

niv on F
ebruary 17, 2021

http://stm
.sciencem

ag.org/
D

ow
nloaded from

 

http://stm.sciencemag.org/


Soenksen et al., Sci. Transl. Med. 13, eabb3652 (2021)     17 February 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

5 of 12

for a u = 3 and k = (1 and 10) parameter sweep (Fig. 4D). Although 
the overall agreement was high (>82.96%) for all values of k > 3 when 
considering our one common lesion criteria, it dropped consider-
ably as we increased this requirement. This indicates that although 
our algorithm is reliable in assessing the oddest lesions in every im-
age, the predicted lower-ranking lesions do not correlate as strongly 
with the consensus. Last, we compared our ugly duckling algorithm 
with the dermatological consensus and the individual dermatologists 
across multiple ranking parameter options by calculating the normalized 
volume under the surface (VuS) agreement values for all top-k versus 
top-u parameter sweeps (Fig. 4E). In this analysis, our ugly duckling 
algorithm appeared to emulate the majority fraction of the expert der-
matological consensus VuS (0.88), as well as a majority fraction of the 
assessment performed by any given individual dermatologists (0.860 ± 
0.026). The VuS fractions of each individual dermatologist as compared 
with every other dermatologist were 0.936 ± 0.026. Because the der-
matological consensus is itself derived from the averaged rankings of the 
three evaluating experts, comparing each individual dermatologist 
against the consensus would not be appropriate and, consequently, is not 
included in the performance matrix of Fig. 4E. A summary of all SPLs 
and ugly duckling identification outputs with varying degrees of perfor-
mance are provided as part of fig. S10. A complete montage of analysis 
outputs for the 135 wide-field clinical images is also provided in data 
files S1 and S2.

DISCUSSION
In this work, we demonstrated a computer-aided system for evalu-
ating the suspiciousness of pigmented skin lesions from wide-field 

images containing dozens to hundreds of pigmented skin lesions. 
Although there have been many recent examples on detection and 
classification of dermatological images using computer vision, these 
are typically implemented to analyze lesions individually with lim-
ited interlesion context. In standard clinical assessments, however, 
dermatological inspections usually consider various visible lesions 
to generate a suspiciousness assessment that informs closer inspec-
tion or biopsy. Our DCNN-based system has a design focus on pri-
mary care use and formalizes the ugly duckling saliency metric as 
part of its implementation with high agreement with expert derma-
tologists. If widely distributed, such a system could reduce the need 
for nondermatologists to manually select lesions that need to be 
inspected more closely by an expert. We accomplished this by gen-
erating wide-field lesion suspiciousness maps designed to efficient-
ly inform primary care providers on referral decisions. Our system 
was also optimized to operate with nondermoscopy wide-field images, 
acquired with consumer-grade cameras, to effectively distinguish 
suspicious from nonsuspicious lesions with complex backgrounds, 
unevenly illuminated skin, and over large body areas. Our results 
suggest that such a dermatology support system could be used to 
rapidly assess patients with hundreds of lesions in a single visit re-
ducing human intervention. This potential efficiency in time and 
human resources constitutes an advantage over previously reported 
DCNN systems in dermatology that require single-lesion imaging. 
Furthermore, although CAD systems have been reported to use 
consumer-grade cameras and be capable of distinguishing mela-
noma in both dermoscopy (37–41) and nondermoscopy (42–45), 
with sensitivities and specificities ranging from 77 to 98% (46), such 
previous results are all based on highly unbalanced training datasets 

Fig. 3. Training, validation, and testing of core explored DCNN models. The top row show recorded accuracy on training and validation sets per epoch for the original 
dataset with baseline architecture (A and B) and a 10× augmented dataset with baseline architecture (C and D), transfer learning on VGG16 (E and F), and on Xception (G and 
H). The bottom row shows multiclass receiver operation curves (ROCs) for the testing set showing true-positive rate against false-positive rate per class on each of the corre-
sponding dataset architecture. A “macro” average is presented computing the simple aggregated average of all ROCs, as well as a “micro” average, which aggregates such 
contributions considering any class imbalances. AUC (area under the curve) values are presented for each curve, with higher AUCs denoting better performance. After training 
and validation of all models, the highest performing trained architecture (VGG16 with transfer learning) was selected as the basis for full system integration and subsequent use.

 at H
arvard U

niv on F
ebruary 17, 2021

http://stm
.sciencem

ag.org/
D

ow
nloaded from

 

http://stm.sciencemag.org/


Soenksen et al., Sci. Transl. Med. 13, eabb3652 (2021)     17 February 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

6 of 12

with few malignant pigmented lesions (usually n < 100) and under 
the assumption that physicians are able or willing to perform single- 
lesion image acquisitions, limitations that we have improved upon 
or addressed in this research. Our best performing VGG-BTF 
model demonstrated a performance AUCmicro = 0.97 and all-class accu-
racy = 79.94% after being trained mostly on nondermoscopy images.

Although our algorithmic approach and study are both promis-
ing, there are several limitations that can be improved in future 
work. First, because of the nature of our classification task is based 
on suspiciousness as opposed to malignancy, we selected the con-
sensus of three board-certified dermatologists as our ground truth. 
However, our dataset could potentially benefit from the addition of 
biopsy information to evaluate whether our algorithm missed any 
malignancies and to best compare our system to other CAD systems 
in dermatology focused on melanoma detection. Another aspect 
that could be improved is the scope of the dataset to cover a larger 
variety of acquisition strategies including different cameras, settings, 
and photographers. In this sense, additional training data from 
more sites could allow for improved generalizability potential in 
our models across a wider variety of environments and conditions. 
This could also allow us to more explicitly formulate an out-of- 
distribution test set for our investigated classification task, which is 

now derived from a held-out image subset coming from a similar 
distribution as our training and validation sets. In addition, the per-
formance of the system might be affected and, therefore, could be 
better characterized by using it with extreme imaging conditions 
such as low light, out-of-focus images, and possibly larger imaging 
distance. Although we realize that the use of different imaging hard-
ware and our integrated CAD system needs more validation in 
clinical settings, several of our design decisions align well with the 
expected clinical workflow of these tools. In particular, the capacity 
of our CAD system to run multilesion analysis for a wide-field im-
age could be helpful in the task of passively running SPL screening 
during primary care visits and other type of consultations. Further-
more, by leveraging multiple wide-field images our system could be 
adapted to implemented redundancy as well as to incorporate, 
pose estimation and three-dimensional mapping to improve trace-
ability of lesions in clinical practice. Although future work needs 
to be conducted to address these limitations and the mentioned 
clinically relevant improvements, the presented results suggest that 
deep learning systems adapted for wide-field analysis are a feasible 
and potentially attractive approach to provide full-body dermato-
logical triaging of suspicions pigmented lesions for primary care 
settings.

Fig. 4. DCNN system for SPL and ugly duckling identification using wide-field images. (A) Example wide-field image with multiple pigmented lesions on the back 
of a female subject. A SIFT-based blob detection algorithm provides key points at multiple scales for localization and cropping of single-lesion images. DCNN is used on 
each rescaled single-lesion image for class inference, and the activation map is overlaid over the original wide-field image. Pigmented lesions classified as NSPL-B are 
marked with yellow, whereas those classified as SPL are marked in red. (B) Comparison of intrapatient lesion ranking and ugly duckling (UD) heatmaps generated from 
dermatological consensus and from DCNN extracted features. The t-SNE graph shown visually represents the clustering of all lesions in the field of view for the user. 
Color-coded pigmented lesion montages and UD heatmaps are shown for the consensus and DCNN-based scorings. (C) Sweep surface of percentage agreement for al-
lowed n (algorithm-dependent) and k (dermatologist-dependent) rank values in the 1 to 10 range, with the indicated numerical accuracy for a top-u = 3 ranking and 
top-k = 10 with at least one common lesions between the two ranked lists (96.3%). (D) Percentage agreement for top-u = 3 when considering at least one, two, or all three 
lesions to be common. (E) Pairwise compilation of normalized VuS values for each k, n sweep surface for individual dermatologists, the dermatological consensus, and the 
DCNN UD algorithm. The dermatological consensus is derived from the averaged rankings of the three evaluating experts. Matching with at least one common lesion per 
set is considered to constitute a true-positive sample for this calculation. The normalized agreement of our DCNN UD algorithm compared with individual dermatologists 
was 0.86 ± 0.03, and 0.88 as compared with the dermatological consensus.
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Complete skin screenings typically consist of large body surface 
examinations by certified dermatologists. As part of these evaluations, 
clinicians recognize and compare a variety of lesion features, includ-
ing asymmetry, border unevenness, color distribution, diameter, evo-
lution according to ABCDE criteria, and multilesion saliency often 
referred to as the ugly duckling feature. Comparing fine-grained sim-
ilarities in these lesions is a challenging task that requires the ex-
traction of between-class and within-class patterns. Along with these 
examinations, a handheld dermoscope is often used to allow the phy-
sician to observe in detail salient cutaneous lesions to improve clinical 
diagnostic capacity. The lesions that are deemed suspicious for skin 
cancer are typically biopsied and sent for histopathologic evaluation, 
which is still considered the gold standard in melanoma diagnosis. Ex-
isting shortages in the dermatology workforce in recent years have 
often led to substantial wait times for patients seeking dermatologic 
care in the United States (47) and substantial bottlenecks in care for all 
patients, including patients with SPLs (48). Increasing the referral vol-
ume of low-risk patients via indiscriminate screening events would 
only exacerbate these difficulties in access. Therefore, in the context of 
dermatological evaluations, tools that facilitate identification of pa-
tients with SPLs in primary care settings such as the one presented in 
this work could allow for optimization of referrals and improved triag-
ing. In particular, the use of wide-field photography for automatic SPL 
identification becomes an attractive option for quick assessment of 
high-risk patients, assisting nonexperts in the correct identification of 
SPLs to refer patients to an expert dermatologist or conduct a biopsy.

From a policy perspective, implementing large-scale melanoma 
screening programs is not only likely to be a complicated task but 
rather an infeasible one in most resource-constrained healthcare 
systems around the world. In the United States, for example, there 
are less than 12,000 practicing dermatologists (49), and with fewer 
than 15 visits per 100 individuals annually (50), it is expected that 
most dermatology practices across the nation are already too satu-
rated and time-constrained to provide additional screening services. 
Unlike dermatologists, primary care physicians such as family prac-
titioners and internists already attend to about 330 million patients 
per year in the United States (50). These substantial coverage rates 
place primary care providers in a prime position to execute mean-
ingful melanoma screening programs in large cohorts of patients 
(51). Unfortunately, most of the providers are now not trained to 
perform pigmented lesion assessments (52) and tend to have short 
turnaround times in which to examine patients for many high-priority 
diseases (53, 54). This situation has led to reports concluding poor 
diagnostic and referral accuracy for providers conducting direct vi-
sual assessments in melanoma screenings (55–57). Considering the 
reach of primary care providers, convenient and scalable tools for 
SPL detection at the primary care level could increase appropriate 
dermatological referrals and earlier treatment for patients with mel-
anoma. To address this need, here, we have presented an automated 
deep-learning classification system capable of identifying and rank-
ing suspicious pigmented skin lesions from wide-field images, 
which could allow for rapid melanoma screenings during primary 
care visits. We have selected this data flow and analysis modality to 
enable fast evaluations of multiple lesions within large skin regions 
at the primary care, with minimal equipment or training. This wide- 
field DCNN classification strategy allows our system to overcome a 
variety of challenges regarding the differentiation of pigmented le-
sions from base skin and complex backgrounds, as well as to pro-
vide a holistic analysis of patient’s risk for melanoma to guide 

dermatological referral and biopsies. DCNN systems such as that 
developed in this work can be used to extract information in pig-
mented lesions images, which outperform handcrafted visual features 
such as ABCDE criteria for the support of a variety of classification 
tasks as seen in other systems (58). Furthermore, the use of CNNs 
promises superior classification robustness compared with tradi-
tional image pigmented lesion classification methods, even in the 
presence of obstructions, shadows, and geometric and chromatic 
aberrations.

Our approach is intended to improve the likelihood that a large 
number and variety of SPLs and NSPLs are evaluated in a single vis-
it. The intention of these classification systems has, in general, been 
to help dermatologists differentiate among borderline lesion diagno-
sis and to assist nondermatologists with faster access to specialists 
through teleconsultation. However, to maximize sensitivity and avoid 
missing melanomas, the vast majority of lesions on a high-risk pa-
tient should be assessed. These thorough evaluations now require a 
substatantial time investment if not using specialized full-body im-
aging tools. Because of substantial time constraints in primary care 
practice, the use of computer-based melanoma screening in a non-
expert setting has been limited exclusively to research settings. De-
spite the importance of these results, a recently proposed model (25) 
was implemented and trained to assume a use case where suspicious 
lesions were preselected by the observer and then imaged individu-
ally for analysis. Moreover, in this implementation, the probability 
of malignancy and therefore suspiciousness is only determined at 
the single-lesion level without considering interlesion dependencies. 
To address this challenge of SPL screening in uncontrolled settings, 
we constructed a deep learning model and computer-aided system 
capable of processing wide-field skin examinations without the need 
to excessively burden primary care physicians or technicians with 
time-consuming tasks such as lesion localization, image segmenta-
tion, and preliminary classification.

Despite the promising performance presented by our proof-of-
concept system for wide-field SPL identification, the generated im-
plementation holds various limitations. For instance, although we 
observed acceptable behavior from the blob detector used in our 
test samples, particularly during ugly duckling evaluations, the ac-
curacy of said blob detection framework was not directly evaluated 
here. However, considering that the blob detector constitutes a widely 
used implementation of the scale-invariant feature transformation 
(SIFT)–Laplacian of Gaussians (LoG) algorithm in the field of com-
puter vision, available from OpenCV libraries used by hundreds of 
thousands of researchers worldwide, it is expected to be robust. To 
mitigate this potential uncertainty, all the detected and analyzed 
blobs in wide-field images for ugly duckling analysis are provided in 
the Supplementary Materials to allow for direct analysis of these 
outputs by the reader. Furthermore, in our system, the established 
filtering parameters extract most blob-like points from the field of 
view, all of which were ultimately analyzed and confirmed to be pig-
mented lesions (NSLP-A, NSPL-B, and SPL) by the selected DCNN 
inference model, minimizing the number on unevaluated lesions 
from this stage.

MATERIALS AND METHODS
Study design
The overall goal of our study was to demonstrate the feasibility of 
detecting and classifying suspicious pigmented skin lesions from 
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wide-field input images. We focused on the use of deep neural net-
works to perform both single-lesion classification and outlier (ugly 
duckling) detection based on the extracted features from all visible 
lesions in a patient wide-field image. We first examined the effect of 
using data augmentation on the accuracy of a simple convolutional 
neural network architecture. Next, we explored potential improve-
ments in accuracy by leveraging transfer learning in various archi-
tectures with higher capacity than the baseline model. Then, we 
selected the best-performing network and evaluated its use as an 
integrated multilesion detector and feature extractor in wide-field 
images for ugly duckling detection, as to compared with the consensus of 
three certified dermatologists. Throughout the study, we exploited 
a need-driven approach for the design of our computer-aided iden-
tification system for primary care use, along with an independent 
testing set randomly selected before any data augmentation or anal-
ysis. Sample size of our single-lesion dataset and wide-field images 
for ugly duckling evaluation was determined on the basis of avail-
ability, allowing for accuracy and agreement calculations. Conclu-
sions were drawn on the basis of multiclass ROCs and agreement 
plots with the measured dermatological consensus.

Dataset compilation and image acquisition
Our dataset consisted of nbaseline = 33,980 manually curated images 
from various sources including publicly available atlases of pig-
mented lesions (59–61), single-lesion and wide-field images collected 
via web scraping in conventional search engines (Google, Yahoo, 
and Bing) using QImageScraper version 1.4 (https://github.com/
stereomatchingkiss/QImageScraper), and nonoverlapping image crops 
from wide-field dermatological images from 133 individual patients 
recruited at Hospital Gregorio Marañón (Madrid, Spain). A STARD 
(Standards for Reporting Diagnostic Accuracy) diagram depicting the 
image collection process and sample distribution for this study is shown 
in fig. S1. Lesion images collected from wide-field images were curated 
using crops obtained using a multilevel nonoverlapping sliding-window 
process (maximum window size = 299 × 299 and maximum hori-
zontal padding = 150 and maximum vertical padding = 299 pixels) 
applied over the collected wide-field images. This process generated 
unique image sections or crops that were then divided into six cat-
egories as follows: 8888 backgrounds, 2528 skin-edge images, 10,935 
bare-skin patches, 10,759 low-priority NSPL-A, 1110 medium-pri-
ority NSPL-B, and 4063 high-priority SPLs. SPLs included 568 basal 
cell carcinomas, 589 squamous cell carcinomas, and 2906 melano-
mas (90% nondermoscopy). For all pigmented-lesion classes, dermos-
copy and nondermoscopy images were included to generalize the analysis 
of both imaging modalities. Nondermoscopy images were primarily 
obtained using a wide-field technique, defined here as the acquisition 
of an image including at least one pigmented lesion using a personal 
camera or smartphone, and were taken at least 10 cm away from a 
patient. Wide-field images, including multiple lesions, bare-skin, 
and nonskin regions, were cropped at multiple scales, with each crop 
placed in its respective class. Single- pigmented lesions in wide-field 
images were cropped, considering a 1:3 ratio between the lesion’s 
average radius and its surrounding skin region. This cropping pro-
cess was assisted by the standard blob detection algorithm on the 
basis of a SIFT, using LoG according to the specifications present-
ed in fig. S9. All images within the pigmented-lesion classes in 
the database were then independently evaluated by three board-cer-
tified dermatologists (R.R.S., C.C.K., and M.M.S.). Lesion classifi-
cations differing among raters were resolved by consensus.

From the 15,932 images corresponding to pigmented lesions, a 
subset of 4800 single-lesion images was extracted from 600 clinical 
wide-field images from 133 consenting patients evaluated at the 
Gregorio Marañón Hospital (Madrid, Spain), in collaboration with 
the Massachusetts Institute of Technology (MIT). The clinical im-
ages obtained at the Gregorio Marañón Hospital were captured us-
ing an Olympus E-420 camera (10 M pixels, 14- to 42-mm lens) at a 
distance of 0.2 m from the patient and anonymized before process-
ing and analysis. The camera was operated by an expert dermatolo-
gist specialized in melanoma (J.A.-I.) while performing full-body 
skin examinations. Illumination was not controlled during image 
acquisition, and any artifacts present in these images were not cor-
rected before analysis. At a 20-cm distance using this camera, the 
image pixel size was confirmed to be around 67 m using a positive 
United States Air Force (USAF) 1951 resolution test target (Thorlabs). 
This resolution is comparable to high-end smartphone cameras and 
eye reading/viewing resolution at the same distance (~58 to 72 m 
at 0.2 to 0.25 m from visual target). A distance range between 0.2 and 
0.5 m also corresponds to the approximate distance at which lesions 
are visually evaluated by expert dermatologists during full-body ex-
aminations. All other lesions and nonlesion images were obtained 
from online dermatological image repositories, published pigmented 
lesion atlases, and online scraping. Once compiled, all these images 
were verified as an integrated image corpus by three board-certified 
dermatologists.

Human subjects
The images acquired from patients at the Department of Dermatolo-
gy Gregorio Marañón Hospital were obtained under a clinical proto-
col (promoter: ILP_AP_HGUGM v1/code: 126/16) and reviewed 
and approved by the Ethical Committee from Hospital General Uni-
versitario Gregorio Marañón (Madrid, Spain) and Committee on the 
Use of Humans as Experimental Subjects from the Massachusetts 
Institute of Technology (Cambridge, MA, USA) under reference no. 
1501006861. Inclusion criteria for participants were signed informed 
consent, aged greater than 18 years old, and assured mental integrity. 
Exclusion criteria were marks on the subject’s body that would pre-
vent full anonymization.

Data taxonomy
Background images (class 0) included various types of fabric patches, 
furniture, and walls. Skin-edge images (class 1) consisted of skin- 
background intersection crops manually selected from dermatolog-
ical wide-field photographs. Skin images (class 2) included crops 
from dermoscopy, near-field, and wide-field photographs of pa-
tients with Fitzpatrick tones I to VI. Skin images in this class included 
hair obstructions, folds, wrinkles, freckles, nail sections, nonpig-
mented formations, as well as nonhomogeneous illumination and 
other artifacts. NSPL-A images (class 3) included low-priority pig-
mented lesions with a high likelihood of being benign. Lesions in 
this category include benign melanocytic nevi, dermal nevi, junc-
tional nevi, combined nevi, congenital nevi, seborrheic keratoses, 
acrochordons, cherry angiomas, dermatofibroma, and lentigo. Be-
cause of their low probability of being skin cancer, NSPL-A lesions 
can often be evaluated by nondermatologist primary care providers 
to visually confirm this low-priority classification, particularly in 
places where access to expert dermatologic care is limited. NSPL-B 
images (class 4) include medium-priority pigmented lesions that 
should be tracked over time or considered for biopsy. Lesions in 
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this category are unlikely to be skin cancer; however, given con-
straints in input image quality and classification accuracy, there is 
reasonable doubt that prevents this pigmented lesion from being 
wholly excluded from malignancy diagnosis. An in-person evalua-
tion with dermoscopy is recommended for patients with these types 
of lesions, which should be prioritized secondarily to those with high- 
priority lesions. Lesions included in this category include melano-
cytic, dysplastic, blue, Clark, recurrent, Reed Spitz, and congenital 
nevi. SPL images (class 5) include high-priority SPLs with features 
indicative of skin cancer. Urgent referral to a dermatologist is rec-
ommended for further evaluation, because it is likely that a biopsy 
will be necessary for definitive diagnosis and management. Patients 
presenting with SPLs should be given the highest priority within the 
constraints of an existing system of care. Lesions commonly diag-
nosed in this category are melanoma, melanoma in situ, basal cell 
carcinoma, and squamous cell carcinoma.

Data preprocessing
Images used for model training were preprocessed to ensure they 
were all in Portable Network Graphics (PNG) format, cropped, and 
rescaled to standard input size of 299 × 299 pixels. Preprocessed images 
were then transformed from RGB (red, green, and blue) to hue, satura-
tion, and value representation to adjust the V channel via contrast- 
limited adaptive histogram equalization (CLAHE) (62) and then 
transformed back to RGB space. This ensures consistent individual 
image contrast and normalizes illumination across images in the base 
dataset (fig. S3). Rescaling of images to different input sizes depend-
ing on the requirements of the selected DCNN architecture (150 × 
150 pixels) was carried out at run time during training or inference 
without any further modification from this base dataset. Random-
ized transformations for data augmentation included rotations (0° to 
30°), horizontal flips, vertical flips, horizontal shifts (0 to 10%), verti-
cal shifts (0 to 10%), color-channel shifts (0 to 10%), and zooming (0 
to 20%) (fig. S4). If transformations required pixel filling to match 
the original image size, then the nearest pixel reflection was used. 
Randomized dataset splitting into training (60%), validation (20%), 
and testing (20%) sets were performed before data augmentation to 
prevent overlap of augmented images across training and testing sets.

Baseline DCNN model
The baseline DCNN model (fig. S2, A and B) was trained using the 
collected dataset with CLAHE preprocessing and random split into 
training (60%), validation (20%), and testing (20%) sets (fig. S3). 
The architecture of this network consisted of three sets of convolu-
tional layers with rectified linear unit (ReLU) activation, followed 
by corresponding max- pooling layers. A flattening layer and a dense 
layer with ReLU activation were then applied before a final dropout 
layer (pdrop = 0.5). The output of this network was then connected 
to a final six-neuron dense layer (one neuron per class) with Softmax 
activation to output the final class probability vector of the DCNN 
(fig. S2, A and B). Loss was calculated using categorical cross-entropy, 
with a standard Adam optimizer (learning rate = 0.001, 1 = 0.9, 
2 = 0.999, and  = 1 × 107, no AMSGrad) and accuracy across all 
categories as the metric to evaluate performance. No other model 
hyperparameter was manually tuned. The training process began by 
training for a total of 100 epochs. The validation subset was used 
during every training epoch to assess and prevent overfitting 
through an early stopping DCNN training routine. Thus, by epoch 
35 of this training process, the algorithm detected that accuracy was 

not changing for more than 10 consecutive iterations, activating an 
early-stopping callback to avoid overfitting (Fig. 3A). ROCs are pre-
sented for all six classes (Fig. 3B), as well as the equally aggregated 
ROC average (macro) and the aggregated ROC average weighting 
for the individual contributions of each class (micro). Therefore, the 
micro-averaged ROCs result from adjusting the class-aggregated 
macro-averaged curves by the relative number of images from each 
class presented during testing.

Baseline DCNN model with data augmentation 
and class balancing
The same baseline DCNN model architecture was also trained us-
ing an augmented dataset with 300,000 images separated into six 
balanced classes that were created through random transformations 
(for example, rotation, scaling, and translations). By applying this 
randomized transformation scheme (fig. S4A), we balanced the 
classes and artificially enhanced our training set to be trained with a 
larger number of unseen images (fig. S4B). Such database augmenta-
tion was performed after randomly separating into training (60%), 
validation (20%), and testing (20%) sets, which was intended to re-
duce overfitting and allow better generalization capability for the 
networks trained with this augmented dataset. By epoch 35, the al-
gorithm detected that accuracy was not changing for more than 
10 consecutive epochs, activating an early-stopping callback used to 
avoid overfitting (Fig.  3C). ROCs are presented for all six classes 
(Fig. 3D), as well as the equally aggregated ROC average (macro) 
and the aggregated ROC average weighting for the individual count 
contributions of each class (micro).

VGG16 transfer learning DCNN model
Our VGG16 transfer learning model (fig. S5) was trained using the 
balanced and augmented dataset (fig. S4A). For the bottleneck 
transfer learning approach (fig. S5A), we fixed the first 15 layers of 
the pretrained VGG16 network to retrain the final flattened, dense, 
dropout, and SoftMax activation layers for the desired six classes. 
Loss was calculated using categorical cross-entropy, a standard 
Adam optimizer (learning rate = 0.001, 1 = 0.9, 2 = 0.999, and 
 = 1 × 107, no AMSGrad) and accuracy across all categories as the 
metric to evaluate performance. No other model hyperparameter 
was manually tuned. The training began by instructing a total of 
100 epochs. The validation subset was used during every training 
epoch to assess and prevent overfitting through an early stopping 
DCNN training routine. Thus, by epoch 25 of this training event, 
the algorithm detected that accuracy was not changing for more 
than 10 consecutive iterations, activating an early-stopping call-
back to avoid overfitting, and converging at an accuracy value 
(Fig. 3E). ROCs are also presented for all six classes (Fig. 3F), as 
well as the equally aggregated ROC average (macro) and the aggre-
gated ROC average weighting for the individual count contribu-
tions of each class (micro).

Xception DCNN transfer learning model
The Xception transfer learning model (fig. S7) was trained using the 
balanced and augmented dataset (fig. S4A). For the bottleneck 
transfer learning approach (fig. S7A), we fixed the first 126 layers of 
the pretrained Xception network (a Keras improvement on Google’s 
Inception v3 from ImageNet) to retrain the final convolutional 
and dense layers for the desired classes. Loss was calculated using 
categorical cross-entropy, with a standard Adam optimizer (learning 
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rate = 0.001, 1 = 0.9, 2 = 0.999, and  = 1 × 107, no AMSGrad) and 
accuracy across all categories as the metric to evaluate perform ance. 
No other model hyperparameter was manually tuned. The train-
ing began by instructing a total of 100 epochs. The validation subset 
was used during every training epoch to assess and prevent overfit-
ting through an early stopping DCNN training routine. Thus, by ep-
och 12 of this last training event, the algorithm detected that 
accuracy was not changing for more than 10 consecutive iterations, 
activating an early-stopping callback to avoid overfitting, converg-
ing at 61.05% accuracy (Fig. 3G). ROCs are also presented for all six 
classes (Fig. 3H), as well as the equally aggregated ROC average 
(macro) and the aggregated ROC average weighting for the individ-
ual count contributions of each class (micro).

DCNN system for SPL identification
In our DCNN SPL computer-aided identification system, a wide-
field image from the patient’s body acquired at the time of the visit 
is fed to the algorithm (Fig. 4A). This image is then processed by a 
blob detection algorithm on the basis of a SIFT, using LoG accord-
ing to the specifications presented in fig. S9. This routine detects all 
blob-like regions (Fig. 4A) in the image that resemble a pigmented 
lesion for classification or discrimination. Nonoverlapping image 
patches are then cropped around all detected regions and centered 
at each key point with at least a 50% margin from the blob diameter 
(d), with crop dimensions: (height = d × 2) × (width = d × 2). These 
square crops derived from the original wide-field image are then 
stored in an intra-patient database for further analysis. Once stored, 
each single-blob cropped image is rescaled to a suitable size (150 × 
150 × 3 pixels) to be classified using our VGG16-TF model. All pig-
mented lesions confirmed to contain skin (NSPL-A, NSPL-B, and 
SPL) were labeled and color-coded according to their single-lesion 
class probabilities generated by the DCNN. All pigmented lesions 
confirmed by the DCNN-based algorithm are placed into a second-
ary database to calculate our ugly duckling criteria through saliency 
assessment and ranking.

DCNN ugly duckling score definition
Given that our system was designed to use wide-field images to 
guide patient referral, we propose to improve the evaluation of pig-
mented lesions by considering both the patient-independent prob-
ability of each lesion being malignant, as well as the ugly duckling 
criteria mostly overlooked by other DCNN-based systems. Here, we 
define the ugly duckling criteria as the patient-dependent probabil-
ity of each lesion being suspicious given its disparities to all other 
observable lesions in the wide-field image. Such disparities can be 
measured and scored using naïve features (63) extracted through 
rule-based saliency algorithms (fig. S9) or by leveraging the features 
extracted by the DCNN for all evaluated lesions. Given that DCNN 
features can span a high-dimensional vector space useful in image 
comparison tasks (58), we decided to use the features extracted by 
our trained VGG16-TF DCNN to generate scores of pigmented lesion 
similarity. These scores can then be combined with the DCNN clas-
sification outputs into a single suspiciousness representation or 
map that integrates this information for primary care physicians 
and other clinical personnel performing full-body SPL screenings. 
The saliency or ugly duckling score that enables this was calculated 
using a geometric distance (cosine distance) from its DCNN output 
feature vector with respect to the averaged geometric feature center 
of all observable lesions in the wide-field image. This distance was 

then normalized and used to overlay a ranking heatmap over all the 
pigmented lesions in the image (“UD heatmap” in Fig. 4B).

DCNN ugly duckling score validation
Lesions from 135 wide-field dermatological images acquired from 
68 individuals were detected and assigned a numeric label using the 
previously described blob detection algorithm (Fig. 4A). All board- 
certified dermatologists were confirmed to have at least 10 years of 
experience assessing pigmented lesions and asked to rank up to 10 
lesions by “visual oddness,” starting from the oddest. The consensus 
was then derived by taking the average scoring of all rankings for each 
lesion. To quantify agreement, we compare the top-k–ranked lesions 
(from most to least “odd”) as evaluated by the dermatologists with the 
top-u–ranked lesions as predicted by our DCNN-based ugly duckling 
algorithm. From this agreement metric, surface plots can be generat-
ed by performing parametric sweeps across different n (allowable al-
gorithm ranking) and k (allowable consensus ranking) lists. A sample 
surface plot of percentage agreement for all n and k values ranging 
from 1 to 10 can be seen in Fig. 4C. Upon consultation with expert 
dermatologists, we determined that a top-three predicted ranking 
system (u = 3) with at least one common value from the top-three 
ranked consensus list (k = 3) constituted a reasonable and clinically 
meaningful measure of accuracy for this specific system. Extending 
this evaluation, we also calculated agreement scores for our system 
when using more conservative ranking approaches, such as a two- or 
three-lesion match requirement for agreement labeling (Fig. 4D). A 
pairwise comparison of the normalized VuS for individual dermatol-
ogists, the dermatological consensus, and our DCNN ugly duckling 
algorithm is provided in Fig. 4E.

Training and evaluation code
All models were trained using TensorFlow 1.13.1 and Keras 2.1.3 on 
a Google Cloud virtual instance with Ubuntu 16.04 operating sys-
tem, 250-gigabyte SSD, 8 CPUs, 30-gigabyte RAM, 2 NVIDIA Tesla 
K80 GPUs, CUDA 8.0 (Nvidia-384), cuDNN 6.0, Python 3.5, and 
OpenCV 3.1. The code needed to reproduce the results presented 
here is provided in the Supplementary Materials. All code is dated, 
documented, and referenced using Jupyter notebooks and marked 
down to facilitate reproduction of these results and can be found at 
DOI: 10.5281/zenodo.4292573.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/13/581/eabb3652/DC1
Materials and Methods
Fig. S1. STARD diagram of data aggregation.
Fig. S2. Baseline DCNN model architecture.
Fig. S3. Preprocessing and splitting of the base database into training, validation, and  
testing sets.
Fig. S4. Data augmentation strategy.
Fig. S5. Transfer learning DCNN model architecture based on VGG16.
Fig. S6. Training, validation, and testing of fine-tuned VGG16 DCNN model.
Fig. S7. Transfer learning DCNN model architecture based on Xception.
Fig. S8. Training, validation, and testing of fine-tuned Xception DCNN model.
Fig. S9. Blob detection and naïve saliency calculation.
Fig. S10. Selected samples of DCNN ugly duckling outputs as compared with naïve saliency 
and dermatological consensus.
Table S1. Taxonomy of pigmented lesions included in our study’s baseline dataset.
Table S2. Distribution of Fitzpatrick skin tones along all skin-relevant classes in the  
base dataset.
Data file S1. Montage of analysis outputs for wide-field images, numbers 1 to 35.
Data file S2. Montage of analysis outputs for wide-field images, numbers 36 to 70.
Data file S3. Montage of analysis outputs for wide-field images, numbers 71 to 105.
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Data file S4. Montage of analysis outputs for wide-field images, numbers 106 to 135.

View/request a protocol for this paper from Bio-protocol.
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triage suspicious lesions for follow-up.
similarly to board-certified dermatologists and could potentially be used at primary care visits to help clinicians 
flagging them for further examination and ranking them in order of suspiciousness. The algorithm performed
signs of neoplasia, the algorithm identifies lesions that differ from most of the other marks on that patient's skin, 
those taken with cell phone cameras. Rather than evaluate a single lesion at a time looking for predetermined
convolutional neural network that examines lesions from a given patient present in wide-field images, including 
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MATERIALS AND METHODS  

Dermatological image database and expert class labeling verification 

Image dataset aggregation was conducted and controlled as specified in the STAndards for the 

Reporting of Diagnostic (STARD) diagram of fig. S1. After initial data aggregation, an image 

duplicate search was conducted using Gemini 2.5.8 (MacPaw Inc.) to ensure no image duplicates 

were included throughout our analyses. All expert dermatologists (R.S., C.K., & M.S.) were asked 

to label lesions according to their degree of confidence in malignancy. All pigmented lesions being 

assessed as “benign” with high confidence were labeled as NSPL-A. This low priority class entails 

that a patient having only this lesion does not need to be seen/followed by an expert dermatologist 

in the following 1-3 months and/or it is unlikely the lesion would need to be inspected with 

dermoscopy. Other lesions triggering considerable uncertainty of a benign assessment with the 

recommendation to be followed by an expert dermatologist within 1-3 months were classified as 

NSPL-B. Borderline lesions that are most likely benign, but with at least one expert dermatologist 

recommending inspection via dermoscopy or monthly follow-up to assess evolution were also 

assigned an NSPL-B label.  All other lesions with high confidence of being malignant, with a 

recommended biopsy intervention for pathological confirmation, were labeled as SPL. This class 

included melanomas, basal cell carcinomas (BCC), squamous cell carcinomas (SCC), and other 

malignant lesions. Dermatologists were asked to make their “best guess” even in lesion images of 

low resolution. In traditional teledermatology, the general protocol in the presence of a low-

resolution lesion image is to ask the user or patient for a better resolution image or to consider it for 

a referral to a dermatologist automatically; nonetheless, due to the low probability of reassessment 

in the case of primary care visits, we prepared our dataset to work even in the presence of low-

resolution images to the limit of human dermatological assessments. All classification labels 

(NSLP-A, NSPL-B and SPL) were generated by expert evaluation and majority consensus from 

R.S. M.M. and C.K. Pigmented lesions in our baseline dataset that differed in classification among 

all expert reviewers (nd=15) during primary evaluation were resolved by follow-up revision among 

all reviewers. No images from the baseline dataset were removed from analysis due lack of 

consensus. After revision, the number of individually labeled image crops was nbaseline=33,980 

divided into six classes comprising backgrounds (nb = 8,888), skin edges (nse = 2,528), bare skin 

sections (nsk = 10,935), non-suspicious pigmented lesions type A (nnspl-a = 10,759) of low priority, 

non-suspicious pigmented lesions type B (nnspl-b = 1,110) of medium priority, and suspicious 

pigmented lesions (nspl = 4,063). Although clinically relevant, the distribution of the suspicious 

pigmented lesion (SPL) class consisting of melanomas stages 0-IV (nm = 2,906), squamous cell 

carcinomas (nscc = 589), and 568 basal cell carcinomas (nbcc = 568) in our database does not 

actually emulate the proportion of such type of lesions seen in usual clinical practice. In turn, this 

distribution was chosen to ensure our trained DNN algorithms could reach high sensitivity and 

specificity in melanoma, which is the most clinically relevant SPL subclass. A notable concern 

among previous work in CAD DNNs for dermatology point to the low number of melanomas 

generally used to train and test these systems, which we aim to address by aggregating a larger 

number of those samples in our database than usually targeted. Although melanomas are rare 

relative to BCC and SCC, they still carry the greatest risk for potential harm if under or 

misidentified, therefore purposely increasing the number of this subclass of suspicious pigmented 

lesions is a design feature of our work towards exploring a clinically useful tool. 

 

 



  

Fitzpatrick skin type assessment  

The Fitzpatrick skin types were obtained for both single-lesion and wide-field images using an 

automated grading pipeline with subsequent expert validation. First, all images in RGB format 

were transformed to 8-bit HSV (hue, saturation, value) color space using OpenCV (OpenCV.org). 

Then binary masks for rough segmentation of visible skin regions were produced using a 

thresholding filter to allow for channel pixel values H = [0-20], S = [48-255] and V = [0-255]. 

Once such skin regions were segmented, pixel-wise vector quantization was performed in all skin-

like pixels of each image to detect the main color cluster center using a K-Means strategy (Scikit-

learn Version 0.23.1). This extracted color cluster centers were considered to be the dominant skin 

color in each image. Fitzpatrick Skin tone classification (Type I-VI) was finally generated by 

analyzing value channel of the dominant color such that: Type I = [214-255], Type II = [171-213], 

Type III = [128-170], Type IV = [85-127], Type V = [43-84], Type VI = [0-42]. Using this 

automatically generated classification, images were placed in independent folders for non-expert 

initial visual grading inspection (L.S.), with subsequent expert-grading revision (R.S.). A total of 

153 images with incorrect Fitzpatrick grading were identified in the initial visual inspection (L.S.) 

and changed accordingly. Only 12 images additional images were changed in grading during 

single-expert revision (R.S.). The distribution of the Fitzpatrick skin types in the generated 

database can be seen in table S2. 

 

 

 

 

 

 

 

 



  

 
 

Fig. S1. STARD diagram of data aggregation. Data sources presented in the STAndards for the 

Reporting of Diagnostic (STARD) diagram are divided into three main components: 1) data 

collected from the Hospital Gregorio Marañón (Madrid, Spain); 2) data retrieved from selected 

open-source dermatological repositories such as the ISIC - 2017 (60), HAM10000 - 2018 (61) and 

Argenziano - 2003 (59) databases; and 3) data obtained through web scrapping on open resources 

for non-commercial reuse. Images collected from Hospital Gregorio Marañón (HGM) were 

acquired using an Olympus E-420 (10 Mega Pixel, 14-42mm lens) camera, in RAW format, at a 

distance of 0.2 m from the patient. Basic demographics of HGM recruited population are also 

provided. Image collection hardware for other data sources was not controlled. All three data 

sources were used for aggregation of pigmented lesions, skin and background crops, whereas wide-

field body images for ugly duckling (UD) analysis were obtained only from HGM and web 



  

scrapping. Only a non-overlapping randomized subset of 4,500 images was collected from each 

HAM10000 and ISIC datasets for this work. Images with assessment of low-resolution, substantial 

pixelation or blurriness by L.S., B.M., J.B., J.T. or J.A, were not added during data aggregation. 

The total number of aggregated images for deep convolutional neural network (DCNN) model 

training, validation and testing was 33,980 images. The total number of wide-field images for ugly 

duckling analysis was 135, spanning 68 different individuals. The distribution of observable body 

regions on these images is also specified, with the highest proportion (39%) for the upper back. 

NSPL= Non-suspicious pigmented lesions, SPL= Suspicious pigmented lesions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Fig. S2. Baseline DCNN model architecture. (A) Block diagram of the three-layered baseline 

convolutional neural network model. An image input size of 299x299x3 was chosen to 

accommodate for comparison with transfer learning models with maximum typical image input 

size of 299x299x3 (Xception), as well as models with smaller input sizes in the 150x150x3 

(VGG16). (B) Details of baseline network with layer input-out sizes as well as parameter count 

“Param #.” 

 

 



  

 

Fig. S3. Preprocessing and splitting of the base database into training, validation, and testing 

sets. Randomized dataset splits were done before any data augmentation and at single-lesion crop 

level. WF=wide-field. 

 



  

 

Fig. S4. Data augmentation strategy. (A) Dataset pre-processing yielding nbaseline=33,980 images 

are split into training (60%), validation (20%) and testing (20%) sets. Randomized dataset splits 

were done before any data augmentation and at single-lesion crop level. Then each split is 

augmented approximately 10-fold to generate naug=300,000 non-overlapping images across 

training, validation or testing sets, but exhibiting balanced classes (50,000 images per class). The 

augmentation strategy considers five basic types of data augmentation randomly selected from the 

provided ranges. A random combination of transformations was also allowed.  (B) Example 

augmentation outputs for a single image per class. 



  

 

 

Fig. S5. Transfer learning DCNN model architecture based on VGG16. (A) Block diagram of 

VGG16 convolutional neural network model with the indication of bottleneck trained sections 

corresponding to the last fully connected (FC) and activation (SoftMax) layers. An image input size 

of 150x150x3 was used. (B) Block diagram of VGG16 convolutional neural network model with 

the indication of fine-tuned block sections corresponding to Block 5 and 6. (C) Details of 

bottleneck VGG16 transfer learning network with layer input-out sizes as well as parameter count 

“Param #.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
Fig. S6. Training, validation, and testing of fine-tuned VGG16 DCNN model. (A) Recorded 

accuracy on training and validation sets per Epoch for the VGG16 architecture model using 

transfer learning and fine-tuning on the 10x augmented dataset. (B) Multi-class ROCs for the 

VGG16 architecture model using transfer learning and fine-tuning on the augmented dataset. 

 

 



  

 
Fig. S7. Transfer learning DCNN model architecture based on Xception. (A) Block diagram of 

Xception convolutional neural network model with the indication of bottleneck trained sections 

corresponding to the last global average max-pooling (Pool), dense and activation (SoftMax) 

layers. An image input size of 299x299x3 was used. (B) Block diagram of Xception convolutional 

neural network model with the indication of fine-tuned block sections corresponding to the last 

three blocks of the network (last block A and last two block Bs., global average max-pooling 

(Pool), dense and activation layers). (C) Details of bottleneck Xception transfer learning network 

with layer input-out sizes as well as parameter count “Param #,” vertical triple dots indicate 

intermediate layers not shown in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
Fig. S8. Training, validation, and testing of fine-tuned Xception DCNN model. (A) Recorded 

accuracy on training and validation sets per Epoch for the Xception architecture model using 

transfer learning and fine-tuning on the 10x augmented dataset. (B) Multi-class ROCs for the 

Xception architecture model using transfer learning and fine-tuning on the augmented dataset. 

 

 

 



  

 
Fig. S9. Blob detection and naïve saliency calculation. (A) Wide-field image analyzed for blob 

detection for both, DCNN analysis and naïve feature-based saliency using a standard SIFT-LoG 

algorithm based on geometrically defined features. (B) Geometrically defined features in blobs 

(i.e., circularity, convexity, inertia, intensity, and size) used for naïve detection of pigmented 

lesions in wide-field images with correspondence to the ABCD criteria (i.e., asymmetry, borders, 

color, and diameter). The detected blob-like key points were calculated using the OpenCV 

Computer Vision Library and the SimpleBlobDetector function (OpenCV.org) on grayscale 

versions of the analyzed wide-field images. The standard filter parameters used in this function 

included: Threshold filter (minThreshold = 0, maxThreshold = 255); Area filter (minArea = 10x10 

pixels, maxArea = image height * image width); Circularity filter (minCircularity = 0.1); 

Convexity filter (minConvexity = 0.1); and Inertia filter (minInertiaRatio = 0.1). This blob detected 

output was used as starting point for both DCNN analysis and naïve saliency calculation. (C) 

Sample of lesion segmentation from the detected blob-like regions using grayscale thresholding. 

Segmented masks are overlaid over a synthetically averaged monochrome wide-field image base 

on the input field. (D) The output of saliency-based visual attention based on the Itti et al. method 

(63), as an alternative saliency method independent for comparison with the deep learning feature 

method used primarily in this work. In this specific saliency algorithm, a visual attention 

mechanism inspired by the behavior of the early primate visual system is used. (E) Multiscale 

image features are combined into a single topographical with the non-DCNN saliency map created 

through lesion segments collaged into an inconspicuous (non-salient) synthetic background created 

by averaging the original wide-field dermatological image. In this naïve, but computationally 

efficient approach, saliency maps can be generated; unfortunately, this algorithm also appears to be 

sensitive to the presence of fabrics, backgrounds, and other outstanding features drawing attention 

to non-lesions (see data files S1 and S2).  



  

 
Fig. S10. Selected samples of DCNN ugly duckling outputs as compared to naïve saliency and 

dermatological consensus. Side-to-side ugly-duckling heatmaps and montages are shown with 

color-coded ranking. Varying degrees of success can be appreciated in this selection, from 

situations where belly button and nipples are automatically analyzed as suspicious pigmented 

lesions to events with a high agreement with dermatological consensus. The greater richness in 

evaluations can be seen in most images when analyzed using our DCNN system as compared with 

the top-10 dermatological consensus. 



  

Table S1. Taxonomy of pigmented lesions included in our study’s baseline dataset. All 

classification labels ( NSLP-A, NSPL-B and SPL) were generated by expert evaluation and 

majority consensus from R.S. M.M. and C.K. Pigmented lesions in our baseline dataset that 

differed in classification among all expert reviewers (nd=15) during primary evaluation were 

resolved by follow-up revision among all reviewers. No images from the baseline dataset were 

removed from analysis due lack of consensus. The total number of instances includes dermoscopy 

and non-dermoscopy images. The number of dermoscopy images from these subsets is also 

included evincing a more substantial proportion of non-dermoscopy images for all classes.  
 

Lesion Type Management 
Class/ 

Taxonomy 

Immediate 
Referral 
required 

Priority 
Count 

(n) 
Total 
(N) 

Dermoscopy 

Junctional Nevus Nothing NSPL-A NO Low 3334 

10,759 91 

Combined Nevus Nothing NSPL-A NO Low 203 

Congenital Nevus Nothing NSPL-A NO Low 178 

Dermal Nevus Nothing NSPL-A NO Low 4509 

Dermatofibroma Nothing NSPL-A NO Low 184 

Lentigo Nothing NSPL-A NO Low 177 

Seborrheic keratosis Nothing NSPL-A NO Low 754 

Acrochordons Nothing NSPL-A NO Low 782 

Cherry angiomas Nothing NSPL-A NO Low 638 

Atypical Nevus  
(i.e. Dysplastic, Clark) 

Follow NSPL-B NO Medium 960 

1,110 191 

Blue Nevus Follow NSPL-B NO Medium 118 

Recurrent Nevus Follow NSPL-B NO Medium 7 

Reed Spitz Nevus 
(Pigmented Spindle Cell 
Nevus of Reed) 

Follow NSPL-B NO Medium 7 

Miscellaneous  
(Other non-cancer) 

Follow NSPL-B NO Medium 18 

Basal Cell Carcinoma Excision SPL YES High 589 

4,063 398 Squamous Cell Carcinoma  Excision SPL YES High 568 

Melanoma (Stage 0 - IV) Excision SPL YES High 2906 

 

 

 

 

 

 

 

 

 



  

Table S2. Distribution of Fitzpatrick skin tones along all skin-relevant classes in the base 

dataset. Skin Type III is the most represented (36.17%), whereas Type VI is the least represented 

(0.46%). 

 

 
Skin Edge Skin NSPL-A NSPL-B SPL ALL 

Fitzpatrick  n % n % n % n % n % n % 

Type I 218 8.62% 887 8.11% 817 7.59% 455 40.99% 1322 32.54% 3699 12.58% 

Type II 533 21.08% 3197 29.24% 2872 26.69% 325 29.28% 1469 36.16% 8396 28.56% 

Type III 739 29.23% 4192 38.34% 4473 41.57% 254 22.88% 975 24.00% 10633 36.17% 

Type IV 527 20.85% 2484 22.72% 2235 20.77% 72 6.49% 220 5.41% 5538 18.84% 

Type V 388 15.35% 174 1.59% 357 3.32% 3 0.27% 72 1.77% 994 3.38% 

Type VI 123 4.87% 1 0.01% 5 0.05% 1 0.09% 5 0.12% 135 0.46% 

Total: 2528 10935 10759 1110 4063 29395 

 

  



  

Data file S1. Montage of analysis outputs for wide-field images, numbers 1 to 35.  
 

Data file S2. Montage of analysis outputs for wide-field images, numbers 36 to 70.  
 

Data file S3. Montage of analysis outputs for wide-field images, numbers 71 to 105.  

 

Data file S4. Montage of analysis outputs for wide-field images, numbers 106 to 135.  

 

 

 




