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ABSTRACT
Socioeconomic status (SES) has a measurable impact on many ed-
ucational outcomes and likely also influences computer science
(CS) achievement. We present a novel model to account for the
observed connections between SES and CS achievement. We exam-
ined possible mediating variables between SES and CS achievement,
including spatial ability and access to computing. We define access
as comprised of measurements of prior learning opportunities for
computing, perceptions of computer science, and encouragement
to pursue computing. The factors (SES, spatial ability, access to
computing, and CS achievement) were measured through surveys
completed by 163 students in introductory computing courses at
a college level. Through the use of exploratory structural equa-
tion modeling, we found that these variables do impact each other,
though not as we originally hypothesized. For our sample of stu-
dents, we found spatial ability was a mediating variable for SES and
CS achievement, but access to computing was not. Neither model
explained all the variance, and our subject pool of US college stu-
dents had higher than average SES. Our findings suggest that SES
does influence success in computer science, but that relationship
may not be due to access to computing education opportunities.
Rather, SES might be influencing variables such as spatial ability
which in turn influence CS performance.
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1 INTRODUCTION
There is a strong, positive relationship between socioeconomic
status (SES) and academic achievement [17, 34, 48]. Students from
low-SES households are less likely to attain high scores on achieve-
ment tests and grade-point average (GPA) measures, while being
from a high-SES household tends to predict academic success. This
finding has been replicated in STEM fields [18], and we have ev-
idence that this holds true for computer science achievement as
well [24]. Obviously, it is not the mere presence of money that
produces the ability to achieve in computer science. SES leads to
other benefits, such as living in a neighborhood with less crime
and better schools. Those other factors are more likely having an
impact on academic achievement rather than just SES.

If we can define how SES impacts CS achievement, we might be
able to mitigate the effect by designing interventions that would
affect the intermediate variables. Socioeconomic status could affect
access to computing hardware, broadband networks, community
and family members with positive perceptions of computer science,
encouragement to pursue computer science, availability of toys or
trips to the museum that develop spatial reasoning skills, or other
variables that might give a student a better chance at achieving in
computer science [9, 13]. Giving every student enough wealth to
boost their SES would likely be impossible. But some of those other
intervening variables might be significant and be manipulable with
reasonable resources. For example, we might be able to distribute
low-cost hardware, if access to computing hardware turned out to
be a significant intervening variable.

We wanted to begin to explore the intervening variables (also re-
ferred to as mediating variables) between SES and CS achievement.
A better understanding of this could help inform interventions to
help level the playing field for all students in CS. Our research ques-
tion is:What are the mediating variables X between socioeconomic
status and computer science achievement such that socioeconomic
status affects X and X affects CS achievement?

We focus on two possible intervening variables: spatial ability
and access to computing. Spatial ability, spatial reasoning, or spatial
cognition deals with the locations of objects, their shapes, their
relationship to each other, and the manipulation of them [26]. We
refer to spatial reasoning as the assessment of spatial ability. Spatial
ability is connected to SES [7, 23] and to CS achievement [9]. In
this study, access to computing is defined by access to learning
opportunities, as well as encouragement to pursue computing, and
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perceptions of computing. Access to computing is also connected
to SES [24] and CS achievement [2, 10]. We chose these variables
because of their known connections to SES and CS achievement,
but their unknown roles as intervening variables to describe the
effect of SES on CS achievement.

We sought to build a novel model for computer science educa-
tion to account for the observed connections between SES and CS
achievement. To do this, we surveyed undergraduate students in
their first college computer science course. We administered four
surveys to assess SES, spatial ability, prior access to computing,
and CS achievement. We created methods to score the surveys and
then analyze the relationships between them. We began analyses
with Pearson’s correlations, which showed significant correlations
between each of our four variables. We continued with exploratory
structural equation modeling which resulted in a model of spatial
ability as an intervening variable between SES and CS achievement,
but access to computing was not found to be an intervening variable.
We discuss the implications of our findings for the CS Education
community.

2 EXISTING LITERATURE
Our work is grounded in the literature of the connections between
SES, access to computing, spatial reasoning, and CS achievement.
We separate our literature into the two intervening variables we
explore: spatial reasoning and access to computing.

2.1 Spatial Reasoning
Our discussion of spatial reasoning in Computer Science stems
from a previous report on the connection between these two vari-
ables, and the incidental role SES played in the study. Cooper et
al. found that students did better on a CS assessment when they
offered spatial skills training for 45 minutes for eight of the ten days
of a workshop [9]. The other students received additional review
time during those 45 minutes. In other words, even with less CS
content, students with spatial skills training performed better than
students without that spatial skills training and with more time on
CS content. Their argument was built on the literature that shows
correlations between spatial and programming abilities by attempt-
ing to improve spatial abilities in hope of improving programming
ability [11, 12, 19, 20, 25, 46].

While SES was not part of the Cooper et al. initial hypotheses,
their post hoc analysis found an interesting result. They found
that spatial skills training helped low-SES students perform at the
same level as their high-SES counterparts. The control group had a
significant difference in performance between high- and low-SES
students.

We build on the Cooper et al. study to understand why these
connections occur. Below, we detail prior literature on the connec-
tions between SES and spatial reasoning, and spatial reasoning and
CS achievement.

2.1.1 SES and Spatial Reasoning. Work in the areas of Develop-
mental and Cognitive Sciences has found a connection between SES
differences and disparities in spatial cognition, along with other
neurocognitive functions [15, 27]. Furthermore, research has found
that spatial reasoning is sensitive to SES differences, moderating the
differences in spatial reasoning among gender groups; boys from

middle- to high- SES backgrounds outperform girls from similar
backgrounds on spatial tasks, but there is little difference in per-
formance among low-SES boys and girls [23]. Other studies have
found that SES can affect a student’s ability to apply spatial reason-
ing skills to their academic performance [7]. In Casey et al., spatial
skills were found to relate to academic performance in high-SES
communities, but not low-SES ones. They found that children in
low-income communities were less likely than their affluent peers
to benefit, in terms of academic performance, from good spatial
skills. This is an extension of work that studies low-SES students
with high-level computational skills that are unable to transfer their
skills into a mathematics classroom [31, 32].

These results do not give us a clear answer to the question of the
role of spatial reasoning and academic performance. Spatial reason-
ing seems to be playing a role for high-SES students, but not for
low-SES students. We suggest that these prior studies are studying
students where they are. Perhaps low-SES students take classes that
do not tax their spatial reasoning. We can imagine teaching (for
example) algebra in ways that make demands on spatial reasoning
(e.g., that emphasize the sides of an equals sign and the need to
balance the two sides [1]), or in ways that may not make as many
demands (e.g., with a greater focus on mathematical calculation).
Because of the differences in classes, we cannot clearly say if the
need for spatial reasoning ability is inherent to the demands of
these academic disciplines, or if spatial reasoning plays a role only
when specific teaching methods are used or only for specific learn-
ing outcomes. Our study uses one measure of CS achievement, for
students with varying SES backgrounds, in the same introductory
classes.

2.1.2 Spatial Reasoning and CS Achievement. Wai et al. have
solidified the importance of spatial reasoning in developing exper-
tise in the STEM fields at large [43]. Looking within CS Education,
several studies have explored the connection between spatial rea-
soning and CS achievement [9, 11, 12, 19, 20, 25, 46]. Measuring
CS achievement through grades and spatial ability through a vi-
sualization task, the correlation is small, but positive [11]. Using
the completion time of code comprehension exercises and mental
rotation skills, there is a strong correlation [19, 20]. Spatial ability
has been found to be a predictor of scores on a Logo program, BA-
SIC exams, and adapted AP CS tests [9, 25, 46]. Other research has
found a link between spatial cognition and source code navigation
and program comprehension [12].

These studies have measured CS achievement in different ways
and defined spatial ability through different measures, which makes
it difficult to make a general statement about the relationship. Still,
there are consistent positive correlations between spatial reasoning
and CS achievement over a variety of measures, definitions, and
curricula. These multiple studies showing a positive relationship
create a kind of replication of the results across different contexts,
strengthening the argument for the relationship between these two
variables. In our study, we have a single definition of CS achieve-
ment and of spatial ability that we based on our survey instruments,
which gives us the opportunity for a clearer statement about the
relationship between the two variables.



2.2 Access to Computing
In our study, we hypothesized a path from socioeconomic status to
access to computing, and then access to computer science achievement.
This path was motivated by the existing literature that connected
these variables.

We define access to computing across four different dimensions:
formal exposure to computing, informal exposure to technology,
perceptions of computing, and encouragement to pursue computing.
This definition is further explored in Section 3.2.1.

2.2.1 SES and Access. Previous reports have seen that not only
are higher-income households more likely to have computers in
the home [2], the way in which these computers are used varies
by SES. Based on reports from the National Telecommunication
and Information Administration [38], SES also impacts the speed of
internet connection in the home, number of computers per house-
hold, and the quality of those computers. In addition to technical
factors, SES can also impact various social factors that relate to
access – for instance, having peers [24] and family members [3]
who are sophisticated users of technology can impact your own
understanding of it, and these can also be affected by SES. Outside
of the home, school-level SES can impact how computers are used.
For instance, lower-SES teachers often have less technical support
for their computers in the classroom [45] so they use them less
often. Additionally, because they often can’t assume that students
will have home access to computers, they spend a large portion
of their time teaching basic computer skills and are hesitant to
send children home with computer assignments [44]. There are
even broader differences in the ways in which access is provided to
students in different SES schools – for instance, low-SES schools
are more likely to use computers for "remediation of skills" and
review, while higher-SES schools are more likely to use computers
for creative expression [4].

We know that SES can be a determining variable as to whether
students’ perceptions of software are more affected by home com-
puter or by in-classroom exposure [30], though how SES was mea-
sured in that case is unclear. One study found that SES (measured
according to parents’ occupation(s)) does not predict computer
ownership but does affect attitudes, use, and competencies [40]. We
also have evidence that students without prior access, exposure,
and opportunities to use technology fall behind in college due to
simply not knowing how to use the technological tools that colleges
depend on in this digital age [13]. As evidenced above, these stud-
ies have operationalized SES differently and cover three different
types of technology–software, computer ownership, and college
technology use.

2.2.2 Access and CS Achievement. Past literature has also shown
a link between home access to computing and achievement, al-
though this research has focused on math and science achievement
rather than computer science achievement in particular. For in-
stance, Attewell and Battle [2] find that eighth grade students with
home access to computers score an average of 5 points higher on
math than those without home computers, even when controlling
for various SES predictors. This relationship is found elsewhere as

Table 1: Participant demographics

Gender Race/Ethnicity Major
71% Female 23% Asian 91% Non-Computing

Major
28% Male 5% Black 8% Computing area Ma-

jor
1% Did not dis-
close

64% White <1% Undeclared

8% Two or more

well, with home access to “information and communication tech-
nologies” related to math and science achievement in 9th graders
in Turkey [10].

3 METHODS
3.1 Student Population
Participants in this study were asked to complete four surveys: (1)
SES survey, (2) Access to Computer Science survey, (3) Spatial Rea-
soning Skills survey, and (4) a CS Achievement assessment. These
surveys were completed near the end of the participant’s first col-
lege computing course, which was intentionally placed to prevent
a floor-effect on the achievement assessment. Participants were
recruited from two universities in the southeastern United States
and given three weeks to complete this study for extra credit in
their course. Alternatively, students could elect to complete a set
of programming problems for the same extra credit. Most of our
study population was recruited from an Introduction to Media
Computation course, a media-centric computing course designed
to interest students that are typically disinterested in traditional
computing courses. Six students came from another introductory
course designed for computer science majors using the C program-
ming language.

195 responses were recorded to our consent form. However, some
participants submitted multiple times or did not complete all the
forms. If a student repeated a submission, they were excluded from
the final pool if their results were not consistent across submissions.
163 participants met all requirements for inclusion into the study.
A summary of participant demographics can be found in Table 1. In
addition to those demographics, our participants had a mean SES
value of 11.18 on a 14-point scale, with a standard deviation of 1.94.

3.2 Assessment Instruments
Four survey instruments were used in our study to measure each
of our variables. We used the validated Family Affluence Scale (FAS
III) as our SES survey instrument. This survey consists of five mul-
tiple choice questions that reflect “market forces, economic trends,
technological advances, as well as cultural, social and geographical
norms in consumption across Europe and North America” [16].
We used the Revised Purdue Spatial Visualization Test (Revised
PSVT:R) as an indicator of spatial ability. This assessment measures
the ability to complete mental rotations, an indication of spatial
ability [49]. We developed a survey to measure access to learning
computing opportunities. This survey is described in more detail
in Section 3.2.1. We measured CS Achievement with an adapted



version of the validated psuedocode-based CS1 assessment, SCS1
[29]. We drew 12 questions from the 27 question test, based on their
previous difficulty and discrimination values from an item response
theory analysis. We chose to maintain the make-up of the exam
by including four questions from each question type (definitional,
tracing, and code completion) and focused on four content areas
(if statements, for loops, while loops, and logical operators). We
collected demographic information following the completion of the
four surveys to reduce stereotype threat [36].

3.2.1 Access Survey Construction andQuality. We defined access
using four constructs: formal access through school and summer
camps; informal access through proximity to internet, technology,
and media; perceptions of self and the field; and encouragement to
pursue the field. An example of questions in each category can be
found in Table 2.

Formal access is defined by access to learning opportunities
with a curriculum. We have seen a similar distinction made in
computing education research literature when considering the role
of curriculum versus exploratory learning opportunities online
[22]. Formal access includes traditional education pathways, such
as whether students had opportunities to access CS teachers and
computing courses in elementary, middle, or high school. We also
included in this category outside-of-school learning opportunities
with curricula, such as computing clubs or coding camps.

Informal access includes access to technologies that do not have
a curriculum, but could be used for exploratory learning. This
includes questions on access to the Internet, technology, and media.
Questions on access to the Internet included whether they had
an internet connection at home, but also what kind of internet
access (DSL, dial up, etc.), and whether internet access was limited
to a mobile phone. Questions on technology assessed if students
had a personal or family computer growing up, where they had
access to a computer (at home or a library) and whether they had
someone in their household to fix their computer. Questions on
media asked if students watched television or movies that were
related to programming or computer science, and if they played
video games.

Encouragement questions asked if anyone had encouraged the
participant to pursue computing and, if so, who. We know from
prior work that access can improve perceptions of ability, but per-
ceptions of ability alone do not predict higher self-efficacy or intent
to pursue computing without encouragement for females and mem-
bers of under-represented minority groups [8, 14]. Perceptions of
ability alone predicts self-efficacy and intent to persist for white or
Asian males [14]. Because access alone is unlikely to be effective
for underrepresented groups and women in computing without
encouragement, we included encouragement as part of our access
construct.

The perceptions portion of the survey included questions on
whether students saw themselves represented in computing fields
and if they felt they were computer scientists. We also asked ques-
tions about what the participants perceived the field to be, if they
thought computing would be a viable career to them, and their val-
ues and whether computing met those values. We included these all
in the perceptions variable, and included them in our hypothesized
access construct because we saw the perceptions to be the desirable

outcomes of access. As we found in the Principal Component Anal-
ysis (Section 4.1), the perceptions variable does not represent the
same underlying construct as the other three access components,
and thus adds a new dimension to our access survey.

To grade the survey, three coders, including two authors, graded
11% of the questions and 16% of the participants. Each person graded
individually. Each question was ranked on a 5-point scale. We
performed an inter-rater reliability analysis using Cohen’s Kappa
to determine consistency among raters. This process was repeated,
discussing the questions and codings, until a Cohen’s Kappa of 0.7
was achieved. Then one coder graded all the surveys, according to
the developed coding scheme, to construct the final access survey
score, with accompanying categorical scores.

Since we constructed a survey to assess variables of access to
computing, we assessed the reliability of the survey. We found
the survey to have a Cronbach’s alpha of 0.84, which indicates
acceptable reliability [28].

3.3 Procedure
We distributed the study at the end of the semester after students
had learned the concepts that were included in the CS achievement
assessment. The entire study took place online. After obtaining
participants’ consent, participants were directed to the next survey.
This process of linking surveys continued until all surveys were
completed. Participants were directed, in this manner, to complete
surveys in the following order: SES, spatial reasoning, access to
computing, and CS achievement. We acknowledge that the Revised
PSVT:R is supposed to be a timed test; takers are typically only
allowed 25 minutes to complete. However, due to technological
constraints, we could not make the spatial reasoning assessment
timed. For completion of all the surveys and assessments, students
received extra credit on one of their homework assignments in their
computing course.

3.4 Structural Equation Modeling
In order to determine the relationship between our four constructed
variables (SES, access to computing, spatial ability, and CS achieve-
ment), structural equation modeling (SEM) was employed. SEM can
be thought of as a combination of exploratory factor analysis and
multiple regression [41]. This method creates a series of regression
equations to represent the hypothesized relationships being studied,
and organizes those relations visually to create a clear conceptual-
ization of the theory being explored [6]. SEM allows researchers to
explore and test theory regarding how constructs are linked and
the directionality of relationships [33]. SEM is the most appropri-
ate method to answer our research question regarding mediating
variables between SES and CS achievement.

SEM is confirmatory by nature, because of the emphasis on
building models grounded in theory and literature [33]. SEM is not
the same as Confirmatory Factor Analysis (CFA) modeling. CFA
is a type of SEM, along with path analysis, structural regression
models, and latent change models [39]. SEM can be exploratory
when building structural regression models to test or disconfirm
proposed theories involving explanatory relationships among vari-
ous latent variables [39]. We withhold discussion on our individual
models until Section 5 due to the importance of these models being



Table 2: Participant demographics

Category Example question Answer choices
Formal access Did your school have a computer science teacher in ele-

mentary, middle, or high school?
Elementary School, Middle School, High School (Select
many)

Informal access If there was a computer in your family house, who was
most likely to fix the computer when something went
awry?

Dad, Mom , Brother, Sister, Me, Nobody in my house
took care of it, Other (Select many)

Perceptions Please rate how much you agree or disagree with the
following statements: I can picture myself as a computer
scientist.

Strongly Agree, Agree, Neutral, Disagree, Strongly Dis-
agree (Select one)

Encouragement Has anyone offered you personal advice on how to suc-
ceed in computing? Select all that apply.

HS Teachers, HS Advisors, College/Univ. Faculty,
College/Univ. Advisors, Parents, Friends/Peers, Other
(Please explain) (Select many)

considered in comparison with each other, rather than on their
own.

There are five steps to build any SEM: model specification, iden-
tification, estimation, evaluation, and modifications [39]. Model
specification is the step of gathering existing theories to formally
state the hypothesized relationships among the variables. Hence,
our models are built from the relationships explored in the literature
described in Section 2. Model identification involves applying data
to the variables in the hypothesized model. This data for our study
is described in Section 3.2. Model estimation is using software to
determine path coefficients between variables. In our study, we use
the EQS software [5] to determine the impact of one variable on
another. The scale of impact is described as a path coefficient, which
is analogous to β in a regression equation [39]. These numbers are
standardized, and typically fall in the range of -1 to 1. Model eval-
uation is using model fit indexes to determine how well the data
fit the model. While there are dozens of fit indexes, we focus on
Chi-square difference tests, Root mean square error of approxima-
tion (RMSEA), Comparative Fit Index (CFI), and Bayes Information
Criterion (BIC). The last step of building a SEM is model modifica-
tion, which involves adding or removing parameters to improve the
fit. One of our models is a modified version of our original model,
which lends itself to Chi-square difference tests to compare models.
Another one of our models is not a modification of the original
model, which necessitates the use of the BIC measure to compare
model fit.

A brief history of SEM and a primer for its role in education
research and practice can be found in Khine’s book on the topic
[21].

4 ANALYSIS
4.1 Principal Component Analysis
We used Principal Component Analysis to test whether our mea-
surements of access, spatial reasoning, and SES were reasonable.
First, we tested whether all the components of access belonged
together. Then, we tested whether SES was really part of the same
underlying construct as the others.

Formal access, informal access, encouragement, and perceptions
were all expected to represent an underlying latent variable: access
to computing. To test this expectation, participants’ scores on these

four components of the access survey were run through a princi-
pal component analysis, which tests whether scores on different
measurements co-vary and, therefore, represent the same latent
variable. The principal component analysis yielded one reliable
component, Eigenvalue = 1.47, accounting for 37% of the variance,
with an elbow in the scree plot at the second component, Eigen-
value = 0.97 and accounting for 24% of the variance. The loadings
onto this variable were acceptable for formal access (0.69), informal
access (0.65), and encouragement (0.67), but the loading for percep-
tions (0.36) was too low to include. Therefore, the latent variable
represented by formal access, informal access, and encouragement
is likely highly related to access to computing, and perceptions does
not reliably represent the access variable.

After analyzing these four components in a separate analysis,
participants’ SES and spatial grade were added to an omnibus prin-
cipal components analysis to ensure that they did not represent
the same latent variable and contributed unique variance to the
model. This analysis yielded two reliable components, Eigenvalues
= 1.78 and 1.12 and accounting for 30% and 19% of the variance.
The third component had an Eigenvalue of 0.93 and accounted for
16% of the variance. The resultant scree plot had no clear elbow,
which makes sense given the loadings. The first component had
sufficient loadings for formal access (0.59), informal access (0.66),
and encouragement (0.56), similar to the previous analysis. The
second component had sufficient loadings for spatial grade (0.63)
and perceptions (0.52). SES did not load well onto either component
(first = 0.49 and second = -0.48). Therefore, SES is likely somewhat
related to each component, but independent enough to be its own
component, hence the ambiguous third component.

The Principal Components Analysis gave us support for doing
our analysis with access, spatial grade, and SES as separate and
distinct variables. Although the perceptions variable does not rep-
resent the same underlying construct as the other three access
components, we kept the variable in our models to represent a
different dimension of our access survey.

4.2 Structural Equation Modeling
We present our three models and provide estimation and evaluation
statistics for each. As mentioned in Section 3.4, we chose the model
fit indexes of Chi-square difference tests, Root mean square error of
approximation (RMSEA), and Comparative Fit Index (CFI). When



Figure 1: Our Model 1 includes the mediating variables of
access to computing and spatial ability such that socioeco-
nomic status affects access and spatial ability and access and
spatial ability affects CS achievement.

Figure 2: Our Model 2 includes the mediating variables of
spatial ability such that socioeconomic status affects spatial
ability and spatial ability affects CS achievement.

comparing models during an exploratory analysis, the higher CFI
value is better and the smaller RMSEA and BIC values are better
[33]. A summary of our analysis is presented in Table 3.

4.2.1 Model 1: Access and Spatial Ability. We began by testing
the overall fit of our original hypothesized model, as seen in Figure
1. Model 1 stated that SES would have an impact on both access
to computing and spatial ability, which in turn would each have
an impact on CS achievement. Access to computing was a latent
factor which was indirectly measured via scales of formal access,
informal access, encouragement, and perceptions, as described in
Section 3.2.1. In this model, spatial ability had a strong effect on CS
achievement (β = -1, p <0.05) and SES on spatial ability (β = 0.850,
p <0.05).

4.2.2 Model 2: Spatial Ability. We then tested Model 2, which
was a modified version of our Model 1. Model 2, as seen in Figure
2, represented a hypothesis that access to computing did not play a
role in affecting CS achievement. Rather, spatial ability is the only
variable included to mediate the effect of SES on CS achievement.
Thus, we removed all variables of access to computing, leaving a
simplified model of SES having an impact on spatial ability, which
in turn had an impact on CS achievement. This model again found
a strong relationship between spatial ability and CS achievement (β

Figure 3: Our Model 3 includes the mediating variables of
access to computing such that socioeconomic status affects
access and access affects CS achievement.

= 0.957, p <0.05) and a relationship between SES and spatial ability
(β = 0.405, p <0.05).

4.2.3 Model 3: Access. We created Model 3 from changing the
variables explored in Model 1. Model 3, as seen in Figure 3, isolated
access to computing, testing the impact that the components of
access would have on CS achievement if spatial ability were not a
factor. In contrast toModel 2, we removed the spatial ability variable
and allowed for each aspect of access to be a separate, observed
variable with a path from SES and to CS achievement. It should be
noted that, since we changed the variables within the model, this
model is not considered a modification of Model 1. However, this
model included a significant relationship between SES and each
variable of access, except for formal access. However, we found
no relationship between the different variables of access and CS
achievement (β = 0, p <0.05).

5 DISCUSSION
None of ourmodels have statistical measurements that meet individ-
ual fit index thresholds for a good model (CFI > 0.95 for acceptance,
RMSEA < 0.08) [33]. However, our study and use of SEM is an ex-
ploratory one, not confirmatory. Hence, we can compare the models
against each other to determine which is the best fit.

5.1 Access and Spatial Ability as Mediating
Variables

Model 1 is not as good asModel 2, because of the higher RMSEA and
lower CFI. In other words, access and spatial ability are not likely
to both be mediating variables. We believed this would be the case,
given the evidence in the literature to support each path between
SES, access, spatial ability, and computer science achievement. How-
ever, the literature support does not necessitate both access and
spatial ability being mediating variables, which is mirrored in our
model fit index comparisons.

5.2 Access as a Mediating Variable
Model 3 is not as good as the other models based on CFI and RMSEA
values. CFI is lower and the RMSEA is higher in Model 3 than in
Model 2 or Model 1. Additionally, because our Model 3 is not nested
intoModel 1, it is appropriate to compare BIC values betweenModel



Table 3: A summary of the model variables and fit indexes

Model Intervening Vari-
able(s)

Standardized
Path Coefficient
from SES a

Standardized
Path Coeffi-
cient to CS
Achievement a

χ2 ∆χ2 d f RMSEA b CFI c BIC d

1 Access .654 .170 5712.967 – 21 1.2993 0.006 14386.361
Spatial ability .850* -1.00*

2 Spatial ability 0.405* 0.957* 5701.378 11.589 28 1.118 0.009 14385.721
3 Formal access 0.213 0.00* 5707.075 5.892 16 1.482 0.006 14452.543

Informal access 0.392* 0.00*
Perceptions 0.749* 0.00*
Encouragement 0.490* 0.00*

a * represents significance at the 5% level
b RMSEA: Root Mean Square Error of Approximation
c CFI: Comparative Fit Index
d BIC: Bayes Information Criterion

1 and Model 3. The BIC value is larger for Model 3, which again
implies that Model 3 is not as good of a model. All of this points to
Model 3 not being the best model that we explored. This means that
the variables that we used to approximate access (formal access,
informal access, perceptions, and encouragement) are notmediating
variables between SES and CS achievement, for our sample.

Within themodel, SES has a statistically significant impact on the
variables that approximate access, except for formal access to CS.
However, none of the variables had an impact on CS achievement.
It is also interesting to note that the variable with the highest path
coefficient with SES is perceptions, which we found in Section 4.1
to be representing a different construct than the other three access
variables. We add support to the literature on SES affecting access,
which is often assumed rather than shown. However, we encourage
further research on the connections between access to computing
and CS achievement. Perhaps when a child is exposed to computer
science is not nearly as important as other factors, and thus the
effects are mitigated by an introductory computing course.

5.3 Spatial Ability as a Mediating Variable
Model 2 is the best model among the three tested, implicating spatial
ability as a mediating variable between SES and CS achievement.
Model 2 has the highest CFI value and the lowest RMSEA value
among the models tested. Since this model is nested, we can use a
Chi-square difference test to compare Model 2 with Model 3. This
test value is insignificant (p>0.05) in our case, which means both
models fit equally well and the smaller model (Model 2) can be
accepted just as well [47]. Furthermore, each path within the model
is significant. SES has a medium effect on spatial ability, and spatial
ability has a large effect on CS achievement.

This finding extends the literature on SES, spatial ability, and CS
achievement. It means there is a connection between these three
variables, more so than access to computing. Spatial ability is a
better mediating variable for SES and CS achievement than access,
or in addition to access to computing. We can begin to answer our
research question with support that SES affects spatial ability and
spatial ability affects CS achievement.

As we mentioned, this model, as is true for the others, did not
meet thresholds of individual fit indexes for a "good" model. How-
ever, we were not using SEM to confirm a model by fitting it to data.
Rather, we were trying to build a novel model for CS education,
where there is a lack of theory to account for observed connec-
tions between SES and CS achievement. This model can serve as a
foundation for continued study to understand how SES affects CS
achievement.

6 LIMITATIONS
We identify our study’s shortcomings here as we currently see
them, in recognition of the need for future research to replicate and
extend this work in broader contexts. Our study limitations include
a privileged and biased sample, and the use of exploratory rather
than confirmatory statistics.

It is important to note that a majority of the students came from
an institution with a high average on standardized tests among
students, including SAT (1450 out of 1600) and ACT (32 out of 36)
scores. Additionally, the median family income is $130,000, which
is among the highest among highly selective public colleges. This
means that the population that we drew from is skewed towards
high-SES and, likely, high-spatial ability participants.

Additionally, all of our participants came from large, public uni-
versities in the United States. Our model is thus based on a sample
of individuals that are not representative of the whole. We encour-
age further research into whether our model holds in K-12 settings,
private and community colleges, and non-American schools and
universities.

Our study was exploratory in nature, rather than confirmatory.
While we are not contributing indisputable evidence that spatial
ability is a mediating factor between SES and CS achievement, we
have compared models and selected the best one to conduct con-
firmatory analyses with different populations. Our model reduces
uncertainty in the community about these variables, and allows for
more rigor and systematicity than starting future studies only at
the exploratory stage.



7 CONCLUSION
We started this exploration with a hypothesis that socioeconomic
status (SES) likely influenced CS achievement through the interven-
ing variable of access. We thought that high-SES students likely had
more positive access to computing education before they entered
their first CS classes, and that’s what led to higher achievement.
However, our results do not support that hypothesis.

Instead, we find that spatial ability is a more powerful interven-
ing variable than access. We had prior evidence from Cooper et al.
that the impact of SES on CS achievement was mediated by spatial
ability [9]. Our study specifically looked at that relationship, and
our findings support it. Our results suggest that high-SES students
tend to have higher spatial ability, and that higher spatial ability,
or the better ability to make use of spatial reasoning, thus predicts
greater CS achievement. Students from low-SES backgrounds tend
to have lower spatial ability, or are less able to make use of spatial
reasoning, which may be inhibiting their success in CS classes.

While surprising, the result is a positive one. Spatial ability can
be taught [37]. David Uttal and his colleagues developed an ap-
proach to teaching spatial ability that measurably led to improved
spatial ability that transfered outside the original testing context
and was retained for months later [42]. Sheryl Sorby successfully
taught spatial ability to Engineering students, which resulted in
better performance in Engineering classes [35]. Spatial ability is
an intervening variable that we can manipulate without changing
students’ SES.

We are not claiming that we have made an exhaustive search
for intervening variables. We certainly should explore more. SES,
spatial ability, and access do not explain all of CS performance.
The more we understand the relationship between SES and CS
performance, the more we might be able to mitigate the effects of
low-SES background in students.

While we have support for the model explaining SES impact on
CS performance with mediation from spatial ability, we are not
convinced that this model is complete and exhaustive. Because
we gathered data only at the post-secondary school level, we are
working from a biased sample. All of the students we studied already
made it to post-secondary school. Any low-SES students in our
sample already overcame odds to make it to this level. We do not
know much about low-SES students who tried CS before the post-
secondary level.

There may be different models at play between SES and CS
performance at the elementary and secondary school level. In par-
ticular, access may play a more critical role in primary or secondary
school achievement. Access is likely an important variable in broad-
ening participation in computing, but its impact may not be on
CS achievement. For example, a lack of access may lead to higher
attrition, so we do not even see the students without access in our
sample populations.

Our current model gives us a lever. We now have an explanation
for why SES impacts CS performance, and that explanation sug-
gests a possible intervention. That is a useful contribution, both for
understanding CS performance and for finding ways to mitigate
low-SES conditions.
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