Purpose: To retrospectively look at the measurement of meibum existing lid functionality after probing. This was for all lids that had an initial diagnosis of non-functional (NF) meibum secreting lids pre-probing. Pre-probe diagnosis of NF lid could be categorized as complete distal obstruction (CDO) or complete distal obstruction non-functional (CDO NF). Non-obstructive MGD classification diagram in previous column. Functionality means the patient must have at least 3 expressible glands in a lid with a maximum number of glands counted being 5 expressible glands per lid.

Methods: Intravenous imaging, diagnostic expression was performed on each lid to see if there was a presence or absence of meibum secretions. A classification system was generated to explain the differences in functionality between NF meibum secreting lid and NF meibum secreting lid.

Results: Post probing meibum secretion lid functionality was evaluated in 49 lids of 25 patients with initial NF lid. The average follow-up was 21.1 ± 14.8 months. Of the 38 % in 12 patients that were functional after probing, 36.7 ± 7.2 glands expressible per lid. When measuring functionality from any time less than or equal to one week after probing, 60.5 % (18/29) of the lids measured werefunctioning with 6.0 ± 1.8 glands expressible per lid. At greater than one week but ≤ 6 months post probing, 67.9 ± 15.9 glands expressible per lid. At greater than 6 months and less than or equal to 12 months post probing, 85.5 ± 9.7 (75/87) lids were functioning with 9.6 ± 3.4 glands expressible per lid. The NF lids evaluated in 92 lids of 45 patients with initial NF lids. The average follow up was 49.7 ± 23.4 months. Of the 69.7 % (65/92) lids, 72 % (18/25) lids were functioning with 8.00 ± 2.59 glands expressible per lid. At greater than 6 months and less than or equal to 12 months post probing, 89 % (54/60) lids were functioning with 8.4 ± 8.8 glands expressible per lid. At greater than one year post probing, 77.3 % (32/41) lids were functioning with 5.9 ± 2.2 glands expressible per lid. At greater than 12 months and less than or equal to 24 months post probing, 76.6 % (30/39) lids were functioning with 6.7 ± 3.5 glands expressible per lid. At greater than 24 months post probing, 65.9 % (26/39) lids were functioning with 7.5 ± 2.9 glands expressible per lid. Of the lids removed ≤ 12 months post probing, 79.1 % (47/57) lids were reprobed at average follow up of 11.8 ± 9.84 months. Of the lids removed ≥ 12 months but ≤ 24 months post probing, 47.2 ± 24.8 lids were functioning with 7.84 ± 2.89 glands expressible per lid. At greater than 24 months post probing, 49.1 ± 23.4 lids were functioning with 8.00 ± 2.59 glands expressible per lid. N = number of patients

findings

• Of a total of 18459 globs probed, 7555 or 41.15% had globs with meibum in situ, 12252 or 66.37% had globs that were dry, 4657 or 25.23% had globs with a trace of meibum or hair, and 3795 or 54.35% had globs that had no meibum or hair in them. The total amount of globs removed was 19054 or 83.34% of the total globs probed.

Conclusions:

1. Online publication and intraductal meibum gland probing has macroscopic results consistent with mechanical obstruction of meibum flow. Intraductal meibum gland probing has microscopic results consistent with mechanical obstruction of meibum flow. Intraductal meibum gland probing has microscopic results consistent with mechanical obstruction of meibum flow. Intraductal meibum gland probing is macroscopic evidence of ductal obstruction which prevents meibum flow and secretion in all glands probed. Lacking histopathologic evidence of intraductal fibrosis suggests the location of fibrotic obstruction to be post meibomian gland secretory units. Positron emission tomography (PET) scans has been reported to show fibrotic obstruction to be post meibomian gland secretory units. Positron emission tomography (PET) scans has been reported to show fibrotic obstruction to be post meibomian gland secretory units. Positron emission tomography (PET) scans has been reported to show fibrotic obstruction to be post meibomian gland secretory units. Probing was used to pop through the fibrotic tissue. After completion of probing, dilation of the meibum ducts allows for a larger amount of meibum to flow into ducts that were not flowing before.

Follow Up Study: Findings from Meibomian Gland Probing

Purpose: To re-examine characteristics of intraductal meibomian gland probing (MGP) findings to evaluate frequency of an audible "pop" and tactile relief (pops) of intraductal resistance suggestive of fibrotic obstruction as well as getty consultations (gics) suggestive of keratinized cellular debris.

Methods: Intraductal meibomian gland probing data were reviewed from 2 individuals over a 2 year period. A total of 100 globs were described in a Pearson correlation analysis. There were 58 probed glob with 78.6 ± 14.3% of a range of 17 to 25. Mean female ratio was 69/31 or 0.4/1.

Results: Of a total of 18459 globs probed, 7555 or 41.15% had globs with meibum in situ, 12252 or 66.37% had globs that were dry, 4657 or 25.23% had globs with a trace of meibum or hair, and 3795 or 54.35% had globs that had no meibum or hair in them. The total amount of globs removed was 19054 or 83.34% of the total globs probed.