MediaPipe: A Framework for Perceiving and Processing Reality

Camillo Lugaresi, Jiugiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays,
Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua,
Manfred Georg and Matthias Grundmann
Google Research

mediapipe@google.com

Abstract

Building an application that processes perceptual in-
puts involves more than running an ML model. Devel-
opers have to harness the capabilities of a wide range
of devices; balance resource usage and quality of results;
run multiple operations in parallel and with pipelining;
and ensure that time-series data is properly synchronized.
The MediaPipe framework addresses these challenges. A
developer can use MediaPipe to easily and rapidly com-
bine existing and new perception components into proto-
types and advance them to polished cross-platform appli-
cations. The developer can configure an application built
with MediaPipe to manage resources efficiently (both CPU
and GPU) for low latency performance, to handle syn-
chronization of time-series data such as audio and video
frames and to measure performance and resource consump-
tion. We show that these features enable a developer to fo-
cus on the algorithm or model development, and use Me-
diaPipe as an environment for iteratively improving their
application, with results reproducible across different de-
vices and platforms. MediaPipe will be open-sourced at
https://github.com/google/mediapipe.

1. Introduction

To enable augmented reality (AR), a typical application
processes sensory data such as video and audio at high
frame rates to enhance the user experience. Modifying such
a perception application to incorporate additional process-
ing steps or inference models can be difficult due to exces-
sive coupling between steps. Further, developing the same
application for different platforms is time consuming as it
usually involves optimizing inference and processing steps
to run correctly and efficiently on a target device.

MediaPipe addresses these challenges by abstracting and
connecting individual perception models into maintainable
pipelines. With MediaPipe, a perception pipeline can be
built as a graph of modular components, including, for in-
stance, inference models and media processing functions.

Camera

FRAME
FrameSelection

SELECTED_FRAME

DETECTIONS FRAME FRAME

DetectionTracking ObjectDetection

ML_MODEL

TRACKED_DETECTIONS DETECTIONS

LABEL_MAP

UPDATED_DETECTIONS NEW_DETECTIONS

DetectionMerging

MERGED_DETECTIONS

DETECTIONS FRAME
DetectionAnnotation

ANNOTATED_FRAME

Display

Figure 1: Object detection using MediaPipe.

Sensory data such as audio and video streams enter the
graph, and perceived descriptions such as object detection
results or face landmark annotations leave the graph. An
example in shown in Figure 1.

Graphs of operations are used in projects such as Tensor-
Flow [1], PyTorch [4], CNTK [5] or MXNet [2] to define a
neural network model. MediaPipe takes a complementary
role: our graphs do not define the internals of a neural net-
work, but instead specify larger-scale pipelines in which one
or model models are embedded.

OpenCV 4.0 introduced the Graph API (G-API) [3]
which allows specifications of sequences of OpenCV im-
age processing operations in the form of a graph. How-
ever, MediaPipe allows operations on arbitrary data types
and provides native support for streaming time-series data.

https://github.com/google/mediapipe

2. Basic Concepts

MediaPipe consists of three main parts: (1) a framework
for inference from sensory data, (2) a set of tools for perfor-
mance evaluation, (3) a collection of reusable inference and
processing components.

A pipeline is defined as a directed graph of components,
where each component is a Calculator. Developers can
define custom calculators. The graph description is speci-
fied via a GraphConfig protocol buffer and then run us-
ing a Graph object.

In a graph, data flows through each calculator via data
Streams. The basic data unit in MediaPipe is a Packet.
A stream carries a sequence of packets with monotonically
increasing timestamps. Calculators and streams together
define a data-flow graph. Each stream in a graph maintains
its own queue to allow the receiving graph node to consume
packets at its own pace.

Changes to the pipeline to add or remove components
can be made by updating the GraphConfig file. A devel-
oper can also configure global graph-level settings to mod-
ify graph execution and resource consumption in this file.
This is useful for tuning the performance of the graph on
different platforms (e.g., on desktop vs. on mobile).

3. Usage Examples

Object Detection A common requirement for AR appli-
cations is real-time object detection from a live camera feed.
Depending on the target device platform, running ML-based
object detection at a full frame rate (e.g., 30 FPS) can re-
quire high resource consumption or be potentially infeasible
due to long inference times. An alternative is to apply object
detection to a temporally sub-sampled stream of frames and
propagate the detection results, i.e., bounding boxes and the
corresponding class labels, to all frames using a lightweight
tracker. For optimal performance, tracking and detection
should be run in parallel, so the tracker is not blocked by
the detector and can process every frame. This perception
pipeline can be easily implemented with MediaPipe, as pre-
sented in the example graph in Figure 1.

There are two branches in the beginning of the graph:
a slow branch for detection and a fast branch for track-
ing. Calculators for these tasks can be configured to run
on parallel threads with the specification of executors in the
pipeline’s graph configuration.

In the detection branch, a frame-selection node picks a
subset of frames on which to run the detection model (based
its decision on, e.g., a frequency limit, or scene-change
analysis), dropping the rest. The object-detection node uses
an ML model and the associated label map to perform in-
ference on the incoming selected frames using an inference
engine (e.g., TFLite [0]) and outputs detection results.

In parallel to the detection branch, the tracking branch

Figure 2: Object detection output.

updates earlier detections and advances their locations to
the current camera frame.

After detection, the detection-merging node compares
results and merges them with detections from -earlier
frames, removing duplicate results based on their location
in the frame and/or class proximity.

The detection-merging node operates on the same frame
that the new detections were derived from. This is automat-
ically handled by the framework as it aligns the timestamps
of the two sets of detection results before they are processed
together. The node also sends merged detections back to the
tracker to initialize new tracking targets if needed.

For visual display, the detection-annotation node adds
overlays with the annotations representing the merged de-
tections on top of the camera frames, and the synchroniza-
tion between the annotations and camera frames is automat-
ically handled by the framework before drawing takes place
in this calculator. The result is an annotated viewfinder out-
put, as seen in Figure 2. The output may be slightly delayed
(e.g. by a couple of frames), but the frame rate remains
smooth and all annotations are correctly synchronized.

Face Landmark Detection and Segmentation Face
landmark estimation is another common perception appli-
cation. Figure 3 shows a MediaPipe graph that performs
face landmark detection along with portrait segmentation.

To reduce the computational load needed to run both
tasks simultaneously, one strategy is to apply the tasks on
two disjoint subsets of frames. This can be done easily in
MediaPipe using a demultiplexing node that splits the pack-
ets in the input stream into interleaving subsets of packets,
with each subset going into a separate output stream.

To derive the detected landmarks and segmentation
masks on all frames, the landmarks and masks are tempo-
rally interpolated across frames. The target timestamps for
interpolation are simply those of all incoming frames. Fi-

Camera

DATA

Demultiplexing

DEMUXED_O DEMUXED_1

FRAME FRAME
FaceLandmarkDetection FaceSegmentation

LANDMARKS MASK

TARGET_TIMESTAMP LANDMARKS FRAME TARGET_TIMESTAMP
LandmarkTemporalResampling

RESAMPLED_LANDMARKS

FrameTemporalResampling

RESAMPLED_FRAME

FRAME LANDMARKS MASK
FaceAnnotation

ANNOTATED_FRAME

Display

Figure 3: Face landmark detection and segmentation using
MediaPipe.

nally, for visualization the annotations from the two tasks
are overlaid onto the camera frames, with the three streams
automatically synchronized when entering the annotation
node. A snapshot of the visual annotation is shown in Fig-
ure 4.

The pipeline can be further
accelerated with GPU com-
pute while reusing most of the
pipeline configuration. For
example, the face-landmark-
detection node can switch to a
GPU-based implementation,
using a GPU inference engine
(e.g., [7D). Additionally,
temporal resampling and
annotation can also have a
GPU-based implementation.
Together with the GPU
support embedded in the
framework, the entire data
flow and compute can stay on
the GPU end-to-end, avoid-
ing bottlenecks commonly
observed from GPU-to-CPU
data transfer. Furthermore,
it is also straightforward
to leverage heterogeneous
computing with the detection branch being computed on
GPU while in parallel the segmentation branch is running
on CPU.

Figure 4: Landmark de-
tection and segmenta-
tion output.

4. Tooling and Platforms

MediaPipe offers developer tools to inspect the run-time
behavior of graphs and analyze their performance.

The MediaPipe tracer module follows individual data
packets across a graph and records timing events along the
way. The MediaPipe visualizer tool can help developers
understand the overall behavior of their pipelines by visual-
izing the recorded timing events. The visualizer also offers
a detailed view of the topology of the graph and lets a user
observe the full state of the graph, its calculators and pack-
ets being processed, at any point in time.

MediaPipe facilitates the deployment of perception tech-
nology into applications on a wide variety of hardware plat-
forms. MediaPipe supports GPU compute and rendering
nodes, and allows combining multiple GPU nodes, as well
as mixing them with CPU based nodes. GPU nodes can
be built using various APIs (e.g., OpenGL ES or Metal);
CPU nodes can use popular image processing nodes such
as OpenCV.

5. Conclusion

As newer devices with sophisticated CPUs and GPUs
surface in the mobile market, it has become challenging for
developers to quickly build and experiment with AR appli-
cations that utilize the hardware efficiently. In this paper,
we introduced MediaPipe, a framework for building a per-
ception pipeline as a graph of reusable components called
calculators.

MediaPipe makes it easy to build a perception pipeline,
optimize and improve it using its rich configuration lan-
guage and performance evaluation tools. As shown in the
above use cases, a developer can conveniently define cus-
tom calculators, configure their graph to use resources ef-
ficiently, and process media streams in parallel and at dif-
ferent rates to perform a complicated task in real-time. It
is easy to reuse the calculators in different pipelines across
successive applications as they share a common interface
oriented around time-series data. The pipelines can run on
a variety of platforms, enabling the developer to build the
application on workstations and then deploy it on mobile.

A key element of MediaPipe’s success is the ecosys-
tem of reusable calculators and graphs. We have built and
shipped many successful AR applications across millions of
users using this framework, such as planar object tracking,
augmented face effect filters, and real-time object augmen-
tation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. Ten-
sorflow: A system for large-scale machine learning. In /2th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265-283, 2016. 1

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Min-
jie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng
Zhang. Mxnet: A flexible and efficient machine learning li-
brary for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015. 1

Dmitry Matveev. OpenCV Graph API. Intel Corporation,
2018. 1

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017. 1

Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-
source deep-learning toolkit. In 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
pages 2135-2135, 2016. 1

TensorFlow. TensorFlow Lite, 2017. https://www.
tensorflow.org/lite, Lastaccessed on 2019-04-11. 2
TensorFlow. TensorFlow Lite on GPU, 2019. https:
//www.tensorflow.org/lite/performance/
gpu_advanced, Last accessed on 2019-04-11. 3

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/performance/gpu_advanced
https://www.tensorflow.org/lite/performance/gpu_advanced
https://www.tensorflow.org/lite/performance/gpu_advanced

