LACTIC ACID-PRODUCING YEAST CELLS HAVING NONFUNCTIONAL L- OR D-LACTATE:FERRICYTOCHROME C OXIDOREDOCTASE CELLS

Inventors: Matthew Miller, Boston, MA (US); Pirko Suominen, Maple Grove, MN (US); Aristos Aristidou, Highland Ranch, CO (US); Benjamin Matthew Hause, Currie, MN (US); Pim Van Hoek, Camarillo, CA (US); Catherine Asleson Dundon, Minneapolis, MN (US)

Assignee: Cargill Inc., Wayzata, MN (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 824 days.

Appl. No.: 12/093,757
PCT Filed: Nov. 17, 2006
PCT No.: PCT/US2006/044815
§ 371 (c)(1), (2), (4) Date: Jul. 15, 2008
PCT Pub. No.: WO2007/117282
PCT Pub. Date: Oct. 18, 2007

Prior Publication Data

Related U.S. Application Data
Provisional application No. 60/739,458, filed on Nov. 23, 2005, provisional application No. 60/739,824, filed on Nov. 23, 2005.

Int. Cl.
C12N 1/19 (2006.01)
C12N 1/00 (2006.01)
C12N 15/70 (2006.01)
C12Q 1/68 (2006.01)

References Cited
U.S. PATENT DOCUMENTS
6,429,066 B1 8/2002 Porro
6,485,947 B1 11/2002 Rajgarhia
7,109,010 B2 9/2006 Rajgarhia
7,141,410 B2 11/2006 Rajgarhia

FOREIGN PATENT DOCUMENTS
WO WO 02/42471 5/2002
WO WO 03/049525 6/2003

OTHER PUBLICATIONS

* cited by examiner

Primary Examiner — Anand Desai
Attorney, Agent, or Firm — Gary C Cohn PLLC

ABSTRACT
Yeast cells having an exogenous lactate dehydrogenase gene modified by reducing L- or D-lactate:ferricytochrome c oxidoreductase activity in the cell. This leads to reduced consumption of lactate by the cell and can increase overall lactate yields in a fermentation process. Cells having the reduced L- or D-lactate:ferricytochrome c oxidoreductase activity can be screened for by resistance to organic acids such as lactic or glycolic acid.

7 Claims, 15 Drawing Sheets

FIGURE 5

pMM38
11130 bps

3' PDC Flank'

KmCyb2

5' KmCyb2

AmpR

ori

EcoO109I

BpmI

BsaI

NdeI

AarI

BspMI

BglI

BssHII

SfiI

EcoNI

AleI

SpeI

MfeI

HpaII

Van91I

BbeI

KodI

NarI

SbiI

SgrAI

SacI

EcoCR1

BamHI

SapI

DraI

SspI

GAL10t

LhLDH

G418

KtSEQ1

KtSEQ1

pMM38
11130 bps
FIGURE 8

pMI355
7828 bps

ScGALT term
IoPGK prom

hph

7000

1000

LhLDH

ScCYC1 term

IoPDC 5

5000

4000

amp

BamHI

PstI

EcoRI

XhoI

NcoI

SphI

NotI

XhoI

XhoI

Sall

NcoI

NcoI

SacI

EcoRI

SmaI

BamHI

XbaI

XhoI

Apal

NcoI

NcoI
FIGURE 12

pMI454

7391 bps

CkCYB2A promoter

CkPGK promoter

K1 Homologous Flank

ori

AmpR

Ndel

Pvull

HindIII

SpeI

SacII

Sphi

SnaBI

Sph1

EcoRI

Xhol

XbaI

StuI

EcoRV

SmaI

Nael

HindIII

StuI

SacII

KpnI

XbaI

Sphi

Spel

KpnI

pMI454

CkCYB2A term1 (+part of ORF)

MEL5

K1 Homologous Flank

7000

6000

5000

4000

3000

2000

1000

0

7391 bps
FIGURE 15

pCM149
7634 bps
LACTIC ACID-PRODUCING YEAST CELLS HAVING NONFUNCTIONAL L- OR D-LACTATE:FERROCYTOCHROME C OXIDOREDUCTASE CELLS

This application claims benefit of U.S. Provisional Application Nos. 60/739,458 and 60/739,824, both filed Nov. 23, 2005.

This invention was made with Government support under Cooperative Agreement DE-FC36-03GO13145 awarded by the United States Department of Energy. The Government has certain rights in this invention.

This invention relates to certain genetically modified yeast, methods to make these yeast and fermentation processes to produce lactic acid using those genetically modified yeast.

Lactic acid is manufactured through an industrial fermentation process. The fermentation is conducted using various types of bacterial species, which consume sugars (principally glucose) and convert those sugars to the desired acid. As lactic acid is produced, the fermentation medium becomes increasingly acidic. Most bacteria that produce these organic acids do not perform well in strongly acidic environments—thereby do not survive under those conditions or else produce the product so slowly as to be economically unviable.

For this reason, commercial acid fermentation processes are buffered by the addition of an agent which neutralizes the acid as it is formed. This maintains the broth at or near a neutral pH and allows the bacteria to grow and produce efficiently. However, this converts the acid to a salt, which subsequently must be split to obtain the product in its desired acid form.

The most common buffering agent is a calcium compound, which neutralizes the organic acid to form the corresponding calcium salt. After the calcium salt is recovered from the fermentation broth, it is split by the addition of a mineral acid, typically sulphuric acid, to regenerate the organic acid and form an insoluble calcium salt of the mineral acid. This process therefore involves direct expense for the buffering agent and mineral acid as well as costs for handling and disposing the unwanted calcium salt by-product. These costs could be reduced or eliminated if the biocatalyst could grow and produce efficiently under lower pH conditions.

Yeast species have been considered as candidates for such low pH fermentations. Many yeast species naturally ferment hexose sugars to ethanol, but few if any naturally produce desired organic acids such as lactic acid. Accordingly, efforts have been made to genetically modify various yeast species to insert one or more genes that will enable the cell to produce lactic acid. In order to divert sugar metabolism from ethanol production to lactic acid production, these cells have also been genetically modified to disrupt or delete the native pyruvate decarboxylase (PDC) gene. This work is described, for example, in WO 99/14335, WO 00/71738 A1, WO 02/42471 A2, WO 03/049525 A2, WO 03/102152 A2 and WO 03/102201 A2.

There remains a desire to provide even better biocatalysts for organic acid fermentation processes. In particular, it is desirable to improve the productivities and yields of these fermentation processes, particularly in unbuffered, low pH fermentation processes.

In one aspect, this invention is a genetically modified yeast cell having at least one functional exogenous lactate dehydrogenase (LDH) gene which yeast cell is unable to grow on D-lactate, L-lactate or both D- and L-lactate as the sole carbon source.

This invention is also a genetically modified yeast cell having (a) at least one functional exogenous lactate dehydrogenase (LDH) gene integrated into its genome and (b) a deletion or disruption of at least one native L- or D-lactate:ferrocytochrome c oxidoreductase gene. In preferred embodiments at least one L-lactate:ferrocytochrome c oxidoreductase gene is deleted and disrupted when said LDH gene is an L-LDH gene, and at least one native D-lactate:ferrocytochrome c oxidoreductase gene is deleted or disrupted when the LDH gene is a D-LDH gene.

This invention is also a fermentation process in which a genetically modified yeast cell of the invention is cultured under fermentation conditions in a fermentation broth that includes a fermentable sugar to produce lactic acid or a salt thereof.

This invention is also a method for producing a genetically modified yeast cell as described above, comprising (a) disrupting or deleting a native L- or D-lactate:ferrocytochrome c oxidoreductase gene in a yeast cell and (b) transforming the yeast cell having the deleted or disrupted L-lactate:ferrocytochrome c oxidoreductase gene with a vector containing a functional exogenous LDH gene cassette to integrate the LDH gene cassette into the genome of the yeast cell. It is preferred that the LDH gene cassette includes a functional L-LDH gene in the case of a disruption or deletion of a L-lactate:ferrocytochrome c oxidoreductase gene and includes a functional D-LDH gene in the case of a disruption or deletion of a D-lactate:ferrocytochrome c oxidoreductase gene.

This invention is a method for producing a genetically modified yeast cell as described above, comprising a) transforming a yeast cell having a native L-lactate:ferrocytochrome c oxidoreductase gene with a construct containing an exogenous L-LDH gene cassette to produce a mutant having a functional exogenous L-LDH gene integrated into its genome and then (b) disrupting or deleting the native L-lactate:ferrocytochrome c oxidoreductase gene.

This invention is a method for producing a genetically modified yeast cell as described above, comprising transforming a yeast cell having a native L-lactate:ferrocytochrome c oxidoreductase gene with a construct containing (a) a native L-lactate:ferrocytochrome c oxidoreductase gene 5' flanking region; (b) a native L-lactate:ferrocytochrome c oxidoreductase gene 3' flanking region and (c) an exogenous L-LDH gene cassette residing on the construct downstream of the native L-lactate:ferrocytochrome c oxidoreductase gene 5' flanking region and upstream of the native L-lactate:ferrocytochrome c oxidoreductase gene 3' flanking region, the construct being devoid of a functional L-lactate:ferrocytochrome c oxidoreductase gene cassette.

This invention is still further a method for producing a genetically modified yeast cell of the first aspect, comprising a) transforming a yeast cell having a native L-lactate:ferrocytochrome c oxidoreductase gene with a construct containing an exogenous D-LDH gene cassette to produce a mutant having a functional exogenous D-LDH gene integrated into its genome and then (b) disrupting or deleting the native D-lactate:ferrocytochrome c oxidoreductase gene.

This invention is in addition a method for producing a genetically modified yeast cell of the first aspect, comprising transforming a yeast cell having a native D-lactate:ferrocytochrome c oxidoreductase gene with a vector containing (a) a native D-lactate:ferrocytochrome c oxidoreductase gene 5' flanking region; (b) a native D-lactate:ferrocytochrome c oxidoreductase gene 3' flanking region and (c) an exogenous D-LDH gene cassette residing on the construct downstream of the native D-lactate:ferrocytochrome c oxidoreductase gene 5' flanking region and upstream of the native D-lactate:ferrocytochrome c oxidoreductase gene 3' flanking region, the
vector being devoid of a functional D-lactate:ferricytochrome c oxidoreductase gene cassette.

The genetically modified cell of the invention has been found to produce lactate at higher productivities and higher lactate titers, especially under low pH conditions, than similar cells containing the same exogenous LDH gene cassette but having a functional L-lactate:ferricytochrome c oxidoreductase gene (in the case of an L-LDH gene cassette) or D-lactate:ferricytochrome c oxidoreductase gene (in the case of a D-LDH gene cassette). The transformed cells lack the ability to grow on a medium containing lactate as its sole carbon source, and so the deletion of the L- or D-lactate:ferricytochrome c oxidoreductase gene allows the transformed cells to be identified, if desired, based on the inability of the transformants to grow on lactate as the sole carbon source. In addition, the deletion of the L-lactate:ferricytochrome c oxidoreductase gene in accordance with the invention has been found to improve the acid resistance of the transformed cell, and in particular to improve its resistance to glycolic acid. This permits successful transformants to be selected using an acidic medium such as a glycolic acid-containing medium. The ability to use acids such as glycolic acid as a selective agent makes it possible to avoid using antibiotic or other resistance gene markers when transforming the strains to delete or disrupt the L-lactate:ferricytochrome c oxidoreductase gene.

FIG. 1 is a diagram depicting the pMM22 plasmid.
FIG. 2 is a diagram depicting the pMM28 plasmid.
FIG. 3 is a diagram depicting the pMM35 plasmid.
FIG. 4 is a diagram depicting the pBH76 plasmid.
FIG. 5 is a diagram depicting the pMM38 plasmid.
FIG. 6 is a diagram depicting the pMI318 plasmid.
FIG. 7 is a diagram depicting the pMI321 plasmid.
FIG. 8 is a diagram depicting the pMI355 plasmid.
FIG. 9 is a diagram depicting the pMI356 plasmid.
FIG. 10 is a diagram depicting the pMI433 plasmid.
FIG. 11 is a diagram depicting the pMI449 plasmid.
FIG. 12 is a diagram depicting the pMI454 plasmid.
FIG. 13 is a diagram depicting the pMM44 plasmid.
FIG. 14 is a diagram depicting the pMM45 plasmid.
FIG. 15 is a diagram depicting the pCM149 plasmid.

The genetically modified yeast of the invention is made by performing certain genetic modifications to a host yeast cell. The host yeast cell is one which as a wild-type strain, is natively capable of metabolizing at least one sugar to pyruvate. It may be natively unable to grow on lactate as a sole carbon source. S. bulderi is an example of such a yeast cell. In other embodiments of the invention, the cell is genetically modified to render it incapable of growing on lactate as the sole carbon source. When transformed to introduce an exogenous L-LDH gene as described herein, the host yeast cell preferably is one that as a wild-type strain has a native, functional L-lactate:ferricytochrome c oxidoreductase gene. The host yeast cell preferably is one that as a wild-type strain that contains at least one native, functional D-lactate:ferricytochrome c oxidoreductase gene if it is to be transformed with an exogenous D-LDH gene as described below.

An L-lactate:ferricytochrome c oxidoreductase is a gene that encodes for a functional L-lactate:ferricytochrome c oxidoreductase enzyme, which catalyzes the metabolism of lactate to pyruvate. Although such an enzyme can help the cell metabolize the reverse reaction of pyruvate to lactate, it is much more efficient in catalyzing the reverse reaction of lactate back into pyruvate, so the wild-type cells produce essentially no L-lactate despite the presence of this functional gene. The L-lactate:ferricytochrome c oxidoreductase enzyme is also known by the systematic name (S)-lactate:ferricytochrome-c 2-oxidoreductase or as L-lactate dehydrogenase (cytochrome). The L-lactate:ferricytochrome c oxidoreductase gene is suitably one having a coding region identified as SEQ. ID. NO. 1 (the L-lactate:ferricytochrome c oxidoreductase gene CYD2 of a wild-type K. marxianus strain), SEQ. ID. NO. 79 (the CYB2A gene of a wild-type L. orientalis strain) or SEQ. ID. NO. 81 (the CYB2B gene of a wild-type L. orientalis strain), or is a gene which is at least 40%, preferably at least 75%, more preferably at least 90% and even more preferably at least 95% homologous to at least one of SEQ. ID. NOs. 1, 79 or 81. The L-lactate:ferricytochrome c oxidoreductase gene is suitably one that encodes a protein having an amino acid sequence identified as SEQ. ID. NO. 2, SEQ. ID. NO. 80 or SEQ. ID. NO. 82, or encodes for a protein which is at least 40%, preferably at least 75%, more preferably at least 90% and even more preferably at least 95% homologous to at least one of SEQ. ID. NOs. 2, 80 or 82.

A D-lactate:ferricytochrome c oxidoreductase is a gene that encodes for a functional D-lactate:ferricytochrome c oxidoreductase enzyme, which catalyzes the metabolism of D-lactate to pyruvate much more strongly than it catalyzes the reverse reaction. The D-lactate:ferricytochrome c oxidoreductase enzyme is also known by the systematic name (R)-lactate:ferricytochrome-c 2-oxidoreductase or as D-lactate dehydrogenase (cytochrome). The D-lactate:ferricytochrome c oxidoreductase gene is suitably one having a coding region identified as SEQ. ID. NO. 83 (the D-lactate:ferricytochrome c oxidoreductase (DLD1) gene of a wild-type K. marxianus strain), the DLD1 gene of S. cerevisiae, the DLD1 gene of L. orientalis, or is a gene which is at least 40%, preferably at least 75%, more preferably at least 90% and even more preferably at least 95% homologous to at least one of such genes. The D-lactate:ferricytochrome c oxidoreductase gene is suitably one that encodes a protein having an amino acid sequence identified as SEQ. ID. NO. 84, a protein having the amino acid sequence of a protein encoded by the S. cerevisiae DLD1 gene, a protein having the amino acid sequence of a protein encoded by the L. orientalis DLD1 gene, or a protein which is at least 40%, preferably at least 75%, more preferably at least 90% and even more preferably at least 95% homologous to one of those.

A “construct” is a DNA sequence that is used to transform a cell. The construct may be, for example, in the form of a circular plasmid or vector, in the form of a linearized plasmid or vector, may be a portion of a circular plasmid or vector (such as is obtained by digesting the plasmid or vector with one or more restriction enzymes), or may be a PCR product prepared using a plasmid, vector or genomic DNA as a template.

The term “native”, when used herein with respect to genetic materials (e.g., a gene, promoter, terminators or other DNA sequence), refers to genetic materials that are found (apart from individual-to-individual mutations which do not affect function) within the genome of wild-type cells of that species of yeast. “Native capability” (and its variations such as “natively capable”) indicates the ability of wild-type cells to perform the indicated function. For example, a cell is natively capable of metabolizing a sugar to pyruvate if wild-type cells of that species possess that capability prior to any genetic modifications. A gene is considered to be “functional” within a cell if it functions within the cell to produce an active protein.

In this invention, “exogenous” means with respect to any genetic material that the genetic material is not native to the host cell.

Suitable yeast cells include those from the genera Candida, Saccharomyces, Shizosaccharomyces, Kluyveromyces,
Pichia, Issachenkia and Hansenula. Cells from the genera Candida, Kluyveromyces, Saccharomyces and Issachenkia are particularly preferred. Especially preferred cells are C. sonorensis, K. marxianus, K. thermotolerans, C. methanosor- bosa, S. bulderi and I. orientalis. Most preferred cells are K. marxianus, S. cerevisiae, C. sonorensis and I. orientalis. I. orientalis is referred to sometimes as Candida kruzei or Pichia kudriavzevii. Suitable strains of K. marxianus and C. sonorensis include those described in WO 00/71738 A1, WO 02/42471 A2, WO 03/049525 A2, WO 03/102152 A2 and WO 03/102014 A2. A suitable strain of I. orientalis is ATCC strain 32196.

The cell of the invention also contains at least one functional, exogenous lactate dehydrogenase (LDH) gene integrated into its genome. An LDH gene is one that encodes for a functional lactate dehydrogenase enzyme. LDH genes are specific for producing either the L- or D-lactate acid enantiomer (or their salts). It is possible that the modified cell of the invention contains both L- and D-LDH genes, and thus is capable of producing both lactate acid enantiomers. However, it is preferred that only L- or only D-LDH genes are present, so the cell produces a more optically pure lactate acid product.

Suitable LDH genes include those obtained from bacterial, fungal, yeast or mammalian sources. Examples of specific L-LDH genes are those obtained from L. helveticus, L. casei, B. megaterium, P. acidilactici, and bovine sources. Examples of specific D-LDH genes are those obtained from L. helveticus, L. johnsonii, L. bulgaricus, L. delbruecki, L. plantarum and L. pentosus. Functional genes that are identical or at least 80% homologous to any of these L-LDH or D-LDH genes are suitable. The native genes obtained from any of these sources may be subjected to mutagenesis if necessary to provide a coding sequence starting with the usual euagkyotic starting codon (ATG), or for other purposes. A preferred L-LDH gene is that obtained from L. helveticus or one that is at least 80%, 85%, 90% or 95% homologous to such gene. Another preferred L-LDH gene is that obtained from B. megaterium or one that is at least 80%, 85%, 90% or 95% homologous to such gene. A preferred D-LDH gene is that obtained from L. helveticus or one that is at least 80%, 85%, 90% or 95% homologous to such gene.

Percent homology of DNA, RNA or other genetic material and of protein amino acid sequences can be computed conveniently using BLAST version 2.2.1 software with default parameters. Sequences having an identities score of at least XX%, using the BLAST version 2.2.1 algorithm with default parameters, are considered at least XX% homologous.

Particulary suitable LDH genes include those that encode for an enzyme with an amino acid sequence that has an identities score of at least 60%, especially at least 80%, 85% or 95%, compared with SEQ ID. NO. 45 of WO 03/049525 or compared with SEQ ID. NO. 49 of WO 03/049525. Particularly suitable LDH genes also include those that encode an enzyme having a protein sequence that is at least 60%, 80%, 85% or 95% homologous to SEQ ID. NO. 46 or 50 of WO 03/049525.

The transformed cell may contain a single LDH gene or multiple LDH genes, such as from 1-10 LDH genes, especially from 1-5 LDH genes. When the transformed cell contains multiple LDH genes, the individual genes may be copies of the same gene, or include copies of two or more different LDH genes. Multiple copies of the exogenous LDH gene may be integrated at a single locus (so they are adjacent each other), or at several loci within the host cell’s genome.

The exogenous LDH gene is under the transcriptional control of one or more promoters and one or more terminators, both of which are functional in the modified yeast cell. As used herein, the term “promoter” refers to an untranscribed sequence located upstream (i.e., 5’) to the translation start codon of a structural gene (generally within about 1 to 1000 bp, preferably 1-500 bp, essentially 1-100 bp) and which controls the start of transcription of the structural gene. Similarly, the term “terminator” refers to an untranscribed sequence located downstream (i.e., 3’) to the translation finish codon of a structural gene (generally within about 1 to 1000 bp, more typically 1-500 base pairs and especially 1-100 base pairs) and which controls the end of transcription of the structural gene. A promoter or terminator is “operatively linked” to a structural gene if its position in the genome relative to that of the structural gene is such that the promoter or terminator, as the case may be, performs its transcriptional control function.

Promoter and terminator sequences may be native or exogenous to the host cell.

One suitable type of promoter is at least 50%, 70%, 90%, 95% or 99% homologous to a promoter that is native to a yeast gene. A more suitable type of promoter is at least 50%, 70%, 90%, 95% or 99% homologous to a promoter for a gene that is native to the host cell. Particularly useful promoters include promoters for yeast pyruvate decarboxylase (PDC1), phosphoglorycerate kinase (PGK), xylose reductase (XIR), yxtitol dehydrogenase (XDH), L-(+)-lactate-cytochrome c oxidoreductase (CYB2) and transcription elongation factor-1 (TEF1) and transcription elongation factor-2 (TEF2) genes, especially from the respective genes of the host cell.

An especially useful promoter includes the functional portion of a promoter for a PDC1, PGK, TEF1 or TEF2 gene of the host cell or at least 80%, 85%, 90% or 95% homologous to such a promoter.

One suitable type of terminator is at least 50%, 70%, 90%, 95% or 99% homologous to a terminator for a gene that is native to a yeast cell. The terminator may be at least 90%, 95% or 99% homologous to a terminator that is native to the host cell. Particularly useful terminators include terminators for yeast pyruvate decarboxylase (PDC1), xylose reductase, (XR), yxtitol dehydrogenase (XDH), L-lactate-cytochrome c oxidoreductase gene or iso-2-cytochrome c (CYC) genes, or a terminator from the galactose family of genes in yeast, particularly the so-called GAL10 terminator.

An especially preferred terminator includes a functional portion of a terminator for a PDC1 gene of the host cell or at least 80%, 85%, 90% or 95% homologous thereto.

The use of native (to the host cell) promoters and terminators, together with respective upstream and downstream flanking regions, can permit the targeted integration of the LDH gene into specific loci of the host cell’s genome, and for simultaneous integration the LDH gene and deletion or disruption of another native gene, such as, for example, a PDC1 gene.

When multiple exogenous LDH genes are introduced into the host cell, it is possible for the different LDH genes to be under the control of different types of promoters and/or terminators.

The exogenous LDH gene may be integrated randomly into the host cell’s genome or inserted at one or more targeted locations. Examples of targeted locations include the locus of one or more genes that are desirably deleted or disrupted, such as that of a PDC1 gene or that of the L- or D-lactate-cytochrome c oxidoreductase gene.

In embodiments in which the cell contains a functional L-LDH gene cassette, the modified cell of the invention must
preferably includes a deletion or disruption of at least one native L-lactate:ferricytochrome c oxidoreductase gene. By “delete or disrupt”, it is meant that the entire coding region of the gene is eliminated (deletion), or the gene, its promoter and/or its terminator region is modified (such as by deletion, insertion, or mutation) so that the gene either no longer produces the protein or an active version of the protein, or produces an enzyme with severely reduced (at least 75% reduced, preferably at least 90% reduced) activity. The deletion or disruption can be accomplished by genetic engineering methods, forced evolution or mutagenesis, followed by appropriate selection or screening to identify the desired mutants. If the cell contains multiple L-lactate:ferricytochrome c oxidoreductase genes (either multiple copies of the same gene or two or more different L-lactate:ferricytochrome c oxidoreductase paralogs), at least one of those genes is deleted or disrupted, and it is preferred to delete or disrupt all of those L-lactate:ferricytochrome c oxidoreductase genes.

In embodiments where the cell contains a functional D-LDH gene cassette, the modified cell of the invention preferably includes a deletion or disruption of at least one native D-lactate:ferricytochrome c oxidoreductase gene. As before, it is preferred to delete or disrupt all of those genes when multiple copies or alleles of the gene are present in the wild-type strain.

The genetically modified yeast cell of the invention may include additional genetic modifications that provide one or more desired attributes to the cells. An additional modification of particular interest includes a deletion or disruption of pyruvate decarboxylase gene(s), thereby reducing the cell’s ability to produce ethanol.

Another additional modification of particular interest is one (or more) which individually or collectively confers to the cell the ability to ferment pentose sugars to desirable fermentation products. Among the latter type of modifications are (1) insertion of a functional xylose isomerase gene; (2) a deletion or disruption of a native gene that produces an enzyme that catalyzes the conversion of xylose to xylitol; (3) a deletion or disruption of a functional xylitol dehydrogenase gene and/or (4) modifications that cause the cell to overexpress a functional xylulokinase. Methods for introducing those modifications into yeast cells are described, for example, in WO 04/099381, incorporated herein by reference.

A third modification of particular interest is the integration of one or more functional selection marker cassettes into the host cell genome, to allow for selection of successful transformants.

Deletion or disruption of the L- or D-lactate:ferricytochrome c oxidoreductase gene can be accomplished in a variety of ways, including by genetic engineering methods, forced evolution or mutagenesis, coupled with selection or screening to identify the desired mutants.

Ultraviolet and EMS mutagenesis methods can be used to delete or disrupt the L- or D-lactate ferricytochrome c oxidoreductase gene. These methods are well known. In these methods, cells are exposed to ultraviolet radiation or a mutagenic substance, under conditions sufficient to achieve a high kill rate (60-99%, preferably 90-99%) of the cells. Surviving cells are then plated and selected or screened for cells having deleted or disrupted L- or D-lactate:ferricytochrome c oxidoreductase genes. In the case of a deletion or disruption of an L-lactate:ferricytochrome c oxidoreductase gene, this is conveniently done by selecting for cells that are resistant to glycolic acid.

Genetic engineering of the host cell (to delete or disrupt the L- or D-lactate:ferricytochrome c oxidoreductase gene or make other modifications) is conveniently accomplished in one or more steps via the design and construction of appropriate constructs and transformation of the host cell with those constructs. Electroporation and/or chemical (such as calcium chloride- or lithium acetate-based) transformation methods can be used. The constructs in each case can either be cut with particular restriction enzymes, used as circular DNA or used as the template to generate a PCR product.

In a suitable genetic engineering method for deleting or disruption the L- or D-lactate:ferricytochrome c oxidoreductase gene, a deletion construct is conveniently assembled by first cloning two non-contiguous DNA sequences of the native L- or D-lactate:ferricytochrome c oxidoreductase gene and/or its upstream or downstream flanking regions. In this context, “non-contiguous” means that the DNA sequences are not immediately adjacent each other in the wild-type genome, but instead are separated from each other in the wild-type genome by some other genetic material (which may be as little as a single base pair). Between them, these non-contiguous sequences must include at least a portion of the coding region of the gene and/or its promoter and terminator regions. It is preferred that one of the sequences includes a 5' flanking region of the L- or D-lactate:ferricytochrome c oxidoreductase gene (including all or a portion of the promoter region and all or a portion of the coding sequence) and the other of the sequences includes a 3' flanking region of the L- or D-lactate:ferricytochrome c oxidoreductase gene (including all or a portion of the terminator region and all or a portion of the oxidoreductase coding sequence).

The non-contiguous sequences may be separately cloned. Alternatively, the entire region, including the 5' and 3' flanks and the L- or D-lactate:ferricytochrome c oxidoreductase gene can be cloned with subsequent deletion of at least part of the gene to render it non-functional. The non-contiguous sequences may include all or a portion of the L- or D-lactate:ferricytochrome c oxidoreductase promoter and terminator regions, respectively. A deletion construct is then produced containing the two non-contiguous sequences oriented in the same direction, and the construct is used to transform the host cell. The construct inserts at the locus of the L- or D-lactate:ferricytochrome c oxidoreductase gene in some of the transformants. A homologous double cross-over recombination event results in a deletion of the functional L- or D-lactate:ferricytochrome c oxidoreductase gene in some of the transformants. Successful transformants can be selected for by resistance to glycolic acid (in the case of an L-lactate:ferricytochrome c oxidoreductase gene disruption or deletion) or (2) screened for lack of ability to grow on lactate as the sole carbon source or on the basis of characteristics imparted to the cell through the use of a selection marker as described more fully below. Alternatively, screening can be performed by PCR. PCR or Southern analysis can be used to confirm that the desired deletion has taken place.

The L- or D-lactate:ferricytochrome c oxidoreductase deletion construct may also include one or more functional structural genes, notably an LDH gene cassette, inserted downstream of the 5' flanking portions of the L- or D-lactate:ferricytochrome c oxidoreductase gene and upstream of the 3' flanking portion of the L- or D-lactate:ferricytochrome c oxidoreductase gene. This approach allows for insertion of the structural gene at the locus of the L- or D-lactate:ferricytochrome c oxidoreductase gene. In a preferred case, the structural gene is an LDH gene cassette, in which case deletion of the L- or D-lactate:ferricytochrome c oxidoreductase gene and insertion of the LDH gene cassette at the locus of the L- or D-lactate:ferricytochrome c oxidoreductase gene can be
accomplished in a single transformation step. Successful transformants can be identified by PCR or Southern hybridization methods, or by detecting the activity of the inserted structural gene using any convenient assay methods. In the case where the structural gene is an LDH gene, successful transformants can be identified by their ability to produce lactic acid. Transformants in which an L-lactate:ferrixytochrome c oxidoreductase gene is deleted or disrupted can be selected for on the basis of their resistance to glycolic acid.

The L- or D-lactate:ferrixytochrome c oxidoreductase deletion construct may also include a selection marker gene instead of or in addition to the structural gene. The use of a selection marker gene has the advantage of introducing an additional means of selecting for successful transformants, but is not required. A "selection marker gene" is one that encodes a protein needed for the survival and/or growth of the transformed cell in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, (such as zeocin (Streptothricus kindtianus ble bleomycin resistance gene), G418 (kanamycin-resistance gene of Tn903) or hygromycin (aminoglycoside antibiotic resistance gene from E. coli), (b) complement auxotrophic deficiencies of the cell (such as amino acid lesions deficiency (K. marxianus LEU2 gene) or uracil deficiency (e.g., K. marxianus or S. cerevisiae URA3 gene)), (c) enables the cell to synthesize critical nutrients not available in simple media or (d) confers ability for the cell to grow on a particular carbon source, (such as the MEL1 or MEL5 genes from S. cerevisiae, which confers the ability to grow on melibiose as the sole carbon source. Preferred selection markers include the zeocin resistance gene, G418 resistance gene, a MEL1 and MEL5 genes and hygromycin (hph) resistance gene.

The selection marker cassette will further include promoter and terminator sequences, operatively linked to the selection marker gene, and which are operable in the host cell. Suitable promoters include those described above with respect to the LDH gene, as well as others such as are described in WO 99/14335, WO 00/71738, WO 02/42471, WO 03/102201, WO 03/102152 and WO 03/049525. An especially preferred promoter is a TEF1, PGK or PDC1 promoter (or functional portion thereof) of yeast species, especially the host strain, or a sequence that is at least 80, 85, 90 or 95% homologous to such a TEF1, PGK or PDC1 promoter. Suitable terminators include those described above with respect to LDH genes.

The selection marker gene is similarly positioned on the construct downstream of the 5' flanking portion of the L- or D-lactate:ferrixytochrome c oxidoreductase gene and upstream of the 3' flanking portion of the L- or D-lactate: ferrixytochrome c oxidoreductase gene. In a portion of the cells transformed with this construct, a homologous recombination event causes the selection marker cassette (and structural gene cassette, if present) to become integrated at the CYB2 or DLD1 gene locus, respectively. Successful transformants can be selected on the basis of the characteristics imparted to it by the selection marker gene. Transformants in which the L-lactate:ferrixytochrome c oxidoreductase gene becomes deleted or disrupted can be selected for based on their resistance to glycolic acid and/or screened for their inability to grow on lactate as a sole carbon source. PCR and Southern analysis methods can be used as before to characterize the transformants.

Methods for transforming yeast strains to insert an exogenous LDH gene are described in WO 99/14335, WO 00/71738, WO 02/42471, WO 03/102201, WO 03/102152 and WO 03/049525; these methods are generally applicable for transforming cells in accordance with this invention. The constructs can either be cut with particular restriction enzymes, used as circular DNA, or used as the template to generate a PCR product.

For targeted insertion of the LDH gene cassette at the locus of the host cell's L- or D-lactate:ferrixytochrome c oxidoreductase gene (with simultaneous deletion of the L- or D-lactate:ferrixytochrome c oxidoreductase gene) are described above. When it is not desired to insert the LDH gene cassette at the locus of the L- or D-lactate:ferrixytochrome c oxidoreductase gene, differently designed vectors are used.

Generally, an exogenous LDH gene is inserted by preparing a construct that contains the LDH gene cassette (i.e. the structural gene and associated promoter and terminator sequences). The construct may contain restriction sites of various types for linearization or fragmentation. The construct may further contain a backbone portion (such as for propagation in E. coli) which is conveniently obtained from commercially available yeast or bacterial vectors.

The LDH insertion construct preferably contains one or more selection marker gene cassettes. Targeted integration of the LDH gene cassette can be accomplished by creating a construct having non-contiguous sequences that are homologous to the upstream (5') and downstream (3') flanks of a target gene. These non-contiguous regions each are suitably from about 50 to 3000 bp in length, especially from about 200-2000 bp in length. Either or both of these non-contiguous sequences may include a portion of the coding region of the target gene as well as a portion or all of the respective promoter or terminator regions. The LDH gene cassette is arranged on the construct between the two non-contiguous sequences. A preferred target gene (other than the L- or D-lactate:ferrixytochrome c oxidoreductase gene) is a pyruvate decarboxylate (PDC) gene, as the cell of the invention preferably has a disruption or deletion of at least one native PDC gene(s). Accordingly, preferred non-contiguous sequences are taken from the locus of a native PDC gene. However, other native genes may serve as targets for insertion of the LDH gene cassette, using non-contiguous sequences from the locus of the target gene in the LDH insertion construct in an analogous way.

The LDH cassette (including associated promoters and terminators in different from those of the target gene) and selection marker(s) (with associated promoters and terminators as may be needed) will reside on the LDH insertion construct between the regions that are homologous to the upstream and downstream flanks of the target gene, downstream from the 5' homologous flank and upstream from the 3' homologous flank.

If a selection marker cassette is used, it similarly resides on the vector between the two non-contiguous sequences taken from the locus of the target gene, as described before.

A portion of cells transformed with this construct will undergo a homologous recombination event in which the target gene is deleted or disrupted and the LDH cassette (and selection marker cassette, if present) is integrated at the locus of the target gene. In the preferred case in which the target gene is a PDC gene, the transformants will have a deletion or disruption of the PDC gene. Successful transformants can be selected for in known manner, using approaches as described above.

When the LDH insertion and the L- or D-lactate:ferrixytochrome c oxidoreductase gene deletion or disruption are done sequentially, the steps can be conducted in either order, i.e., the L- or D-lactate:ferrixytochrome c oxidoreductase gene deletion may be performed first, followed by the LDH inser-
tation, or the LDH insertion can be performed first, followed by the L- or D-lactate:ferricytochrome c oxidoreductase gene deletion or disruption.

When an L-lactate:ferricytochrome c oxidoreductase gene is deleted first, it becomes possible to use the L-lactate:ferricytochrome c oxidoreductase gene itself as a selection marker during the LDH insertion and/or other subsequent transformations. In such a case, the LDH transformation vector includes a L-lactate:ferricytochrome c oxidoreductase gene cassette, in which the L-lactate:ferricytochrome c oxidoreductase gene is operatively linked to a promoter and terminator sequence. The L-lactate:ferricytochrome c oxidoreductase gene cassette is located on the LDH insertion vector between the non-contiguous sequences from the locus of the target gene. A portion of the transformants will contain both the LDH cassette and the L-lactate:ferricytochrome c oxidoreductase cassette at the locus of the target gene (which in this case is preferably a PDC gene or other gene that is desirable deleted or disrupted). Successful transformants can be selected for on the basis for their ability to grow on lactate as the sole carbon source, or by other methods as described above.

If one wants to use the L-lactate:ferricytochrome c oxidoreductase gene as a selection marker gene for a second time in accordance with this invention, it is necessary that the first L-lactate:ferricytochrome c oxidoreductase marker gene subsequently becomes deleted or disrupted. A convenient way of accomplishing this is to design a construct such that the L-lactate:ferricytochrome c oxidoreductase gene cassette is flanked by direct repeat sequences. Direct repeat sequences are identical DNA sequences, which may be native but preferably are not native to the host cell, and which are oriented in the same direction with respect to each other on the construct. The direct repeat sequences are advantageously about 50-1500 bp in length. It is not necessary that the direct repeat sequences encode for anything. In a small number of transformants, this construct permits a homologous recombination event to occur, resulting in a deletion of the L-lactate:ferricytochrome c oxidoreductase marker gene and one of the direct repeat sequences. It is usually necessary to grow transformants on nonselective media to allow for the spontaneous homologous recombination between the direct repeat sequences to occur. Also as before, cells in which the L-lactate:ferricytochrome c oxidoreductase gene has become deleted can be selected on the basis of their resistance to glycolic acid or screened for using their inability to grow on lactate as the sole carbon source.

It is preferred to delete or disrupt a native PDC gene in the host cell, so that the transformed cell has a reduced ability to produce ethanol. If the host cell contains multiple PDC genes, it is especially preferred to delete or disrupt all of the PDC genes, although it is possible to delete fewer than all such PDC genes. PDC deletion can be accomplished using methods analogous to those described in US 99/14335, WO 02/42471, WO 03/049525, WO 03/102152 and WO 03/102201. PDC deletion can also be accomplished with simultaneous insertion of an LDH gene cassette or other structural or selection marker gene cassette. In a method of particular interest, (1) sequences from the locus of the PDC gene(s) are cloned, optionally together with a portion of the functional PDC gene; (2) a construct containing the non-contiguous sequences is produced (optionally containing a non-functional portion of the PDC structural gene), and (3) the host cell is transformed with the construct. A homologous recombination event results in a deletion or disruption of the functional PDC gene in a portion of the transformants. This can be repeated if necessary to delete or disrupt multiple PDC genes. In some yeast species, such as L. orientalis, multiple PDC genes or alleles exist that are closely homologous. It has been found that in such instances non-contiguous sequences taken from the locus of either gene can be used in the construct to delete or disrupt both of the PDC genes. The construct used to disrupt the PDC gene(s) may include one or more functional structural genes inserted downstream of the 5' flanking portion of the native PDC gene and upstream of the 3' flanking portions of the native PDC gene. The structural gene preferably is a cassette that includes functional promoter and terminator sequences operatively linked to the structural gene. This approach allows for the deletion of the PDC gene and insertion of the functional gene cassette in a single transformation step. The construct may include a selection marker gene cassette instead of or in addition to the structural gene. Again, the selection marker gene cassette is positioned on the vector as before, between the non-contiguous sequences taken from the locus of the PDC gene being targeted, and becomes inserted in the locus of the functional PDC gene in a portion of the transformants.

Suitable methods for inserting a functional xylose isomerase gene, deleting or disrupting a native gene that produces an enzyme that catalyzes the conversion of xylose to xylitol, deleting or disrupting a functional xylitol dehydrogenase gene modifying the cell to overexpress a functional xylulokinase are described, for example, in WO 04/099381, incorporated herein by reference.

In the fermentation process of the invention, the cell of the invention is cultivated in a fermentation medium that includes a sugar that is fermentable by the transformed cell. The sugar may be a hexose sugar such as glucose, glycogen or other polymeric of glucose, glucose oligomers such as maltose, maltotriose and isomaltotriose, panose, fructose, and fructose oligomers. If the cell natively has or is modified to impart an ability to ferment pentose sugars, the fermentation medium may include a pentose sugar such as xylose, xylan or other oligomer of xylose. Such pentose sugars are suitably hydrolysates of a hemimellanocontaining biomass. In ease of oligomeric sugars, it may be necessary to add enzymes to the fermentation broth in order to digest these to the corresponding monomeric sugar for fermentation by the cell.

The medium will typically contain nutrients as required by the particular cell, including a source of nitrogen (such as amino acids, proteins, inorganic nitrogen sources such as ammonia or ammonium salts, and the like), and various vitamins, minerals and the like.

Other fermentation conditions, such as temperature, cell density, selection of substrate(s), selection of nutrients, and the like are not considered to be critical to the invention and are generally selected to provide an economical process. Temperatures during each of the growth phase and the production phase may range from above the freezing temperature of the medium to about 50°C, although this depends to some extent on the ability of the strain to tolerate elevated temperatures. A preferred temperature, particularly during the production phase, is from about 30-45°C.

During the production phase, the concentration of cells in the fermentation medium is typically in the range of about 0.1-20, preferably about 0.1-5, even more preferably about 1-3 g dry cells/liter of fermentation medium. The fermentation may be conducted aerobically, microaerobically or anaerobically. If desired, oxygen uptake rate can be used as a process control, as described in WO 03/102200. The cells of the invention exhibit a good ability to ferment sugars to lactic acid or lactic acid/ethanol mixtures, at high volumetric and specific productivities under even anaerobic conditions.
The medium may be buffered during the production phase of the fermentation so that the pH is maintained in a range of about 3.5 to about 9.0, such as from about 4.5 to about 7.0. Suitable buffering agents are basic materials that neutralize lactic acid as it is formed, and include, for example, calcium hydroxide, calcium carbonate, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, ammonium carbonate, ammonia, ammonium hydroxide and the like. In general, those buffering agents that have been used in conventional fermentation processes are also suitable here.

In a buffered fermentation, acidic fermentation products such as lactic acid are neutralized as they are formed to the corresponding lactate salt. Recovery of the acid therefore involves regenerating the free acid. This is typically done by removing the cells and acidulating the fermentation broth with a strong acid such as sulfuric acid. A salt by-product is formed (gypsum in the case where a calcium salt is the neutralizing agent and sulfuric acid is the acidulating agent), which is separated from the acid. The acid is then recovered through techniques such as liquid-liquid extraction, distillation, absorption, etc., as described in T. B. Vickroy, Vol. 3, Chapter 38 of Comprehensive Biotechnology, (Ed. M. Moo-Young), Pergamon, Oxford, 1985; R. Datta, et al., FEMS Microbiol. Rev., 1995, 16:221-231; U.S. Pat. Nos. 4,275,234, 4,771,001, 5,132,456, 5,420,304, 5,510,526, 5,641,406, and 5,831,122; and WO 93/00440.

It is preferred, however, to allow the pH of the fermentation medium to drop from a starting pH that is typically 5.5 or higher, to at or below the pKa of the acid fermentation product, such as in the range of about 1.5 to about 3.5, in the range of from about 1.5 to about 3.0, or in the range of from about 1.5 to about 2.5. The cells of this invention have an unexpected ability to grow and produce well even in non-buffered fermentation media where the final pH falls below 3.5, below 3.0, below 2.5, and even below 2.0.

It is also possible to conduct the fermentation by maintaining the pH at or below the pKa of lactic acid throughout the process. In such a case, the pH of the fermentation broth is adjusted to at or below the pKa of lactic acid prior to or at the start of the fermentation process, and maintained at that level as the fermentation proceeds. In this embodiment, the pH is preferably maintained within the range of about 1.5 to about 3.5, in the range of from about 1.5 to about 3.0, or in the range of from about 1.5 to about 2.5.

Recovery of lactic acid from a low pH fermentation medium can be conducted using methods such as those described in U.S. Pat. Nos. 6,229,046. The process of the invention can be conducted continuously, batch-wise, or some combination thereof.

The deletion or disruption of the L- or D-lactate: ferricicytochrome c oxidoreductase gene, as the case may be, can lead to several benefits. Lactic acid titers are often increased. This is seen especially when the host cell is a Kluyveromyces strain, such as Kluyveromyces marxianus. Yields to lactic acid as well as lactate production rates are increased as well, compared to similar strains that do not have the L-lactate: ferricicytochrome c oxidoreductase deletion. Again, this is especially seen in modified Kluyveromyces strains. A further advantage is that low pyruvate production is seen.

The following examples are provided to illustrate the invention, but are not intended to limit the scope thereof. All parts and percentages are by weight unless otherwise indicated.
Samples are withdrawn periodically to measure glucose, lactate, ethanol and pyruvate by HPLC using methods such as described in Example 1M of WO 03/102201.

One strain is designated strain CD635. Strain CD635 results from the UV mutagenesis treatment described above. Strain CD635 produces about 13 g/L lactate after 88 hours, compared to less than 9 g/L for the parent strain, CD607. Strain CD635 consumes slightly more glucose than strain CD607 during that time period, and achieves a significantly higher yield of lactate. Strain CD635 is able to grow on lactate as the sole carbon source.

EXAMPLE 1B

Further Mutagenesis of *K. marxianus* Strain CD635 and Selection of Mutant Strains (CD832, CD839, CD840, CD841, CD850, CD851 and CD853) having Resistance to Glycolic Acid

Cells of strain CD635 (Example 1A) are subjected to mutagenesis using the methods described in Example 1A, with the resulting mutagenized cells being selected for colonies that are able to grow on PDA containing 25 g/L glycolic acid. From a total of 23 mutagenesis events, approximately 5.9×10^8 cells are plated, from which several colonies are produced which are resistant to glycolic acid. Some of these colonies result from mutagenesis with EMS, others result from mutagenesis with UV light, and still others result from spontaneous mutations.

The glycolic acid-resistant colonies are separately grown overnight in YP+100 g/L glucose in shake flasks at 30°C and 250 rpm agitation. Biomass is collected by centrifugation and 2 g/L dry weight of cells is inoculated into 50 mL YP+50 g/L glucose in a baffled shake flask. The flasks are cultivated at 30°C and 250 rpm agitation for approximately 92 hours. Seven mutants that produce significantly higher final lactate titers, compared to parent strains CD607 and CD635, are designated as strains, CD832, CD839, CD840, CD841, CD850, CD851 and CD853.

Strains CD832, CD839, CD840, CD841, CD850, CD851 and CD853 are unable to grow on lactate as the sole carbon source, indicating that the Km CYB2 gene has become non-functional in these mutants. Therefore, the KmCYB2 coding region plus ~500 bp upstream and downstream from the KmCYB2 coding region is separately amplified for each of these strains using PCR with high fidelity Mutan enzyme and genomic DNA as the template. The resulting ~2.7 kb PCR products are purified via Qiaqen column purification and sequenced over the entire KmCYB2 coding region.

Strain CD635 can grow on lactate as the sole carbon source, which indicates that it contains a functional KmCYB2 gene. Sequencing of the CYB2 gene from CD635 confirms that it has the wild-type CYB2 sequence. The DNA sequence of the KmCYB2 gene of strain CD635 is given as SEQ. ID. NO. 1. The amino acid sequence of the protein encoded by that CYB2 gene is given as SEQ. ID. NO. 2.

Strains CD832, CD839, CD840, CD841, CD850, CD851 and CD853 all lack the ability to grow on lactate as the sole carbon source, and have an increased resistance to glycolic acid compared with strain CD607. Each of these characteristics indicate that these strains lack a functional KmCYB2 gene. The DNA sequences within the KmCYB2 coding regions for these strains in each case show mutations within the coding portion of the KmCYB2 gene, compared with the KmCYB2 gene of strain CD635, which has the wild-type CYB2 sequence. Amino acid sequences for the enzymes produced by these coding regions also show differences. The differences in the DNA and amino acid sequences are:

Strain CD832: a point mutation at amino acid position 457 causes a nonsense mutation, changing an arginine to a stop codon. This mutation truncates the protein by 135 amino acids.

Strain CD839: a point mutation at amino acid position 272 causes a missense mutation, changing a proline to a threonine.

Strain CD840: a point mutation at amino acid position 222 causes a nonsense mutation, changing a tryptophan to a stop codon. This mutation truncates the protein by 370 amino acids.

Strain CD841: a point mutation at amino acid position 147 changes a histidine to a tyrosine.

Strain CD850: a double point mutation at amino acid position 309 changes a serine to a phenylalanine.

Strain CD851: a two-base pair deletion at base pair 219 (amino acid position 74) causes a frame-shift mutation, resulting in a stop codon at amino acid position 76 and truncating the protein.

Strain CD853: a four-base insertion at amino acid position 62 causes a frame-shift mutation, resulting in a stop codon at amino acid position 76 and truncating the protein.

EXAMPLE 2A

Construction of a Plasmid (pMM22, FIG. 1) Containing a G418 Resistance Gene Cassette between the 5' and 3' Flanking Regions of the *K. marxianus* CYB2 Gene

The *K. marxianus* L-lactate: ferricytochrome c oxidoreductase gene (KmCYB2) gene coding region is identified within the genomic DNA sequence of a wild-type strain of *K. marxianus* (designated CD21, ATCC 52486) by comparing homology to the known homology of the *S. cerevisiae* L-lactate: ferricytochrome c oxidoreductase gene gene. A ~2 kb flanking region directly 5' of the KmCYB2 coding region is amplified, with introduction of MluI and PstI restriction sites, by PCR using primers identified as SEQ. ID. NO. 3 and SEQ. ID. NO. 4 and genomic DNA as the template. Similarly, a ~2 kb flanking region directly 3' of the CYB2 coding region is amplified with introduction of Apal and NgolI restriction sites by PCR using primers identified as SEQ. ID. NO. 5 and SEQ. ID. NO. 6 and genomic DNA as the template.

A plasmid designated pVR29 (described in Example 1C and FIG. 4 of WO 03/102152) is digested with MluI and PstI and the 5' KmCYB2 flank is ligated to the resulting fragment to produce a plasmid designated as pMM21. Plasmid pMM21 contains the KmCYB2 5' flank upstream of a G418 resistance gene cassette.

Plasmid pMM21 is digested with Apal and NgolI and the resulting fragment is ligated to the 3' KmCYB2 flank to produce a plasmid designated pMM22 (FIG. 1). Plasmid pMM22 contains the KmCYB2 5' flank upstream of the G418 resistance gene cassette, and the KmCYB2 3' flank downstream of the G418 resistance gene cassette.

EXAMPLE 2B

Generation of a *K. marxianus* Mutant (CD936) with an Integrated LDI1 Gene, Deleted PDC Gene and Deleted KmCYB2 Gene by Transforming *K. marxianus* Strain CD607 with Plasmid pMM22 (FIG. 1, EX. 2A)

A *K. marxianus* colony corresponding to CD607 (see Ex. 1A) is cultured and 20 ml of cells are spun down. Plasmid
pMM22 is digested with Nhel and Nael (both of which cut into the KmCYB2 flanks on the plasmid) and the resulting fragments are used to transform *K. marxianus* strain CD607 using standard electroporation methods. Transformants are selected based on resistance to G418.

Selected transformants are screened on yeast nitrogen base (YNB)+1% lactate plates and YNB (6.7 g/L Yeast Nitrogen Base, Difco Laboratories, Sparks Md., Cat. No. 0392-15)+1% glucose. Transformants that show reduced growth in the lactate medium are selected. These transformants are screened using an inside-out colony PCR using primers designated as SEQ. ID. NO. 7 and SEQ. ID. NO. 8. The 5′ primer is positioned on the 5′ CYB2 flank outside the homology of the disruption construct and the 3′ primer is positioned within the G418 cassette. Each of the selected transformants shows an insertion of the G418 cassette at the KmCYB2 locus. Genomic DNA from four of these transformants is isolated and PCR analysis of the KmCYB2 locus performed using primers designated as SEQ. ID. NO. 9 and SEQ. ID. NO. 10. These primers are positioned ~500 bp up and/or downstream of the CYB2 coding region to ensure complete amplification of the locus. PCR products having an increased size relative to the native CYB2 coding region indicate the substitution of the G418 cassette for the CYB2 gene for each of these four transformants. One of these transformants is designated as strain CD936.

EXAMPLE 2C

Generation of a *K. marxianus* Mutant (CD998) with an Integrated LDI2 gene, Deleted PDC Gene and Deleted KmCYB2 Gene by Transforming *K. marxianus* Strain CD635 with Plasmid pMM22 (FIG. 1, Ex. 2A)

Cells of strain CD635 (Example 1A) are transformed with plasmid pMM22 in the general manner described in Example 2B. Transformants are selected based on resistance to G418.

Selected transformants are screened on YNB+1% lactate plates and YNB+1% glucose. All transformants show reduced growth in the lactate medium. These transformants are screened using an inside-out colony PCR as described in Example 2B, and 11 of the transformants are found to have an insertion of the G418 cassette at the KmCYB2 locus. Genomic DNA from four of these transformants is isolated and PCR analysis of the KmCYB2 locus performed as described in Example 2B. As before, the primers are positioned ~500 bp up and/or downstream of the KmCYB2 coding region to ensure complete amplification of the locus. PCR products having an increased size relative to the native KmCYB2 coding region indicate the substitution of the G418 cassette for the KmCYB2 gene for three of these four transformants. One of these three transformants is designated as CD998.

EXAMPLE 3A

Construction of a Plasmid (pMM28, FIG. 2) containing the KmCYB2 Gene Cassette between *K. thermotolerans* Direct Repeat Sequences

The entire *K. marxianus* CYB2 (KmCYB2) gene cassette, including promoter and terminator regions, is PCR amplified from the genomic genomic DNA of a wild-type *K. marxianus* strain designated as CD21, with introduction of BamH1 and SalI restriction sites, by PCR using primers identified as SEQ. ID. NO. 11 and SEQ. ID. NO. 12. The PCR product is ligated to a commercial vector designated as pUC18 (from Invitrogen Corp., Carlsbad, Calif., USA) that is digested with BamH1 and SalI. The resulting plasmid is designated as pMM25.

A 705 bp sequence identified as SEQ. ID. NO. 13 is PCR-amplified from the genomic DNA of *K. thermotolerans*, with introduction of Spel and SalI restriction sites, using primers identified as SEQ. ID. NO. 14 and SEQ. ID. NO. 15. This *K. thermotolerans* sequence does not encode for any active protein. Plasmid pMM25 is digested with Spel and SalI and the *K. thermotolerans* sequence is ligated to it upstream (5′) to the KmCYB2 cassette to form a plasmid designated as pMM27.

An identical *K. thermotolerans* sequence is PCR-amplified with addition of BamH1 and Xma1 restriction sites, using primers identified as SEQ. ID. NO. 16 and SEQ. ID. NO. 17. Plasmid pMM27 is digested with BamH1 and Xma1 and the *K. thermotolerans* sequence is ligated to it downstream (3′) from the KmCYB2 cassette to form a plasmid designated as pMM28 (FIG. 2). Plasmid pMM28 contains the KmCYB2 cassette flanked by *K. thermotolerans* direct repeat sequences, both oriented in the same direction.

EXAMPLE 3B

Construction of a Plasmid (pMM35, FIG. 3) containing a *S. cerevisiae* MEL1 Gene Expression Cassette between Identical *K. thermotolerans* Sequences and between 5′ and 3′ KmCYB2 Flanking Regions

A vector designated as pNC16 is obtained from the National Research Energy Laboratories in Golden, Colo. This plasmid contains the *S. cerevisiae* MEL1 gene under the control of the *S. cerevisiae* PDC1 promoter and *S. cerevisiae* GAL10 terminator. The MEL1 gene cassette is PCR-amplified with addition of BglII and SalI restriction sites using primers designated as SEQ. ID. NO. 18 and SEQ. ID. NO. 19. Plasmid pMM28 (FIG. 2, Ex. 3A) is digested with BamH1 and SalI and ligated to the MEL1 cassette. This simultaneously deletes the KmCYB2 cassette of plasmid pMM28 and replaces it with the MEL1 cassette. The resulting plasmid is designated pMM31. It contains the MEL1 cassette flanked by the *K. thermotolerans* direct repeat sequences.

A ~2 kbp flanking region directly 3′ of the KmCYB2 coding region is amplified with introduction of Xma1 and SalI restriction sites by PCR using primers identified as SEQ. ID. NO. 20 and SEQ. ID. NO. 21 and genomic DNA as the template. The resulting fragment is ligated to Xma1/SalI-digested plasmid pMM31 to insert the 3′ CYB2 flank downstream (3′) of the *K. thermotolerans* direct repeat sequence that is itself downstream of the MEL1 cassette. The resulting plasmid is designated pMM32.

A ~2 kbp flanking region directly 5′ of the KmCYB2 coding region is amplified with introduction of AatII and NdeI restriction sites by PCR using primers identified as SEQ. ID. NO. 22 and SEQ. ID. NO. 23 and genomic DNA as the template. The resulting fragment is ligated to AatII/NdeI-digested plasmid pMM32. The resulting plasmid (designated pMM35, FIG. 3), contains, in order, the 5′ KmCYB2 flanking region, a first *K. thermotolerans* direct repeat sequence, the MEL1 cassette, the second *K. thermotolerans* direct repeat sequence and the 3′ KmCYB2 flanking region.

EXAMPLE 3C

Generation of a *K. marxianus* Mutant (CD1287) with a Deleted KmCYB2 Gene by Transforming a Wild-Type *K. marxianus* Strain with Plasmid pMM35

Plasmid pMM35 is digested with BsmI and Nhel and used to transform cells of a wild-type *K. marxianus* strain, using...
standard electroporation methods. Transformants are selected for growth by plating on YNB+2% melibiose, with the addition of 32 mg/L XaGal (5-bromo-4-chloro-3-indolyl-
alpha-D-galactoside, LabScientific, Inc., Livingston, N.J., Cat. No. X-566). All transformants that grow on this medium are blue in color. They are subsequently streaked to melibiose plates for further analysis. The transformants are screened for homologous recombination at the KmCYB2 locus via 5' inside-out colony PCR using primers identified as SEQ. ID. NO. 7 and SEQ. ID. NO. 8. Colonies yielding a positive PCR product are twice single colony isolated on YNB+2% melibiose and 32 mg/L XaGal to eliminate background contamina-
genomic DNA is obtained from these strains.

The entire KmCYB2 locus is amplified via PCR using primers identified as SEQ. ID. NO. 24 and SEQ. ID. NO. 25. Four colonies give a PCR product as expected for a homologous recombination at KmCYB2 resulting in an insertion of the MEL1 gene cassette at the KmCYB2 locus. One of these colonies is designated CD1286.

Strain CD1286 is streaked on a non-selective medium for two rounds and plated for single colony isolates, to screen for a loopout of the MEL1 cassette. Three out of approximately 1300 colonies appear to be white, indicating the absence of the MEL1 gene. Genomic DNA is obtained from these three colonies, and PCR of the entire KmCYB2 locus is performed, again using primers identified as SEQ. ID. NO. 24 and SEQ. ID. NO. 25. After three colonies give the expected PCR product for a loopout event, indicating that the MEL1 cassette has become deleted from the cell's genome. One of these strains is designated CD1287.

EXAMPLE 4A

Construction of a Plasmid (pMM38, FIG. 5) containing the 5' KmPDC1 Flanking Region, an L. helveticus LDH Gene Expression Cassette, a KmCYB2 Gene Expression Cassette Flanked by a K. thermotolerans Direct Repeat Sequences, and the 3' KmPDC1 Flanking Region

The TEF2 promoter region from a wild-type K. marxianus strain is amplified with the addition of KpnI/XbaI sites using primers identified as SEQ. ID. NO. 26 and SEQ. ID. NO. 26, using genomic DNA as the template. The subsequent ligation of this product into a plasmid designated pH767 (FIG. 4) yields a plasmid designated as pMM36. Plasmid pMM36 contains, in order, the 5' KmPDC1 flanking region, the KmTEF2 promoter, the LhLDH gene and the SeGAL10 terminator. The 3' KmPDC1 flanking region is then amplified by PCR with addition of XmaI/PciI sites using primers identified as SEQ. ID. NO. 28 and SEQ. ID. NO. 29 and genomic DNA as the template. This amplicon is ligated into pMM28 (FIG. 2, Ex. 3A) by cutting with XmaI/PciI to yield a plasmid designated pMM37. The KmPDC1 region and LhLDH expression cassette from plasmid pMM36 are amplified with the addition of NruI/Ndel sites using primers designated as SEQ. ID. NO. 30 and SEQ. ID. NO. 31, and this region is ligated into NruI/Ndel-digested pMM37 to produce plasmid pMM38 (FIG. 5). Plasmid pMM38 is designed for targeted insertion of LhLDH and KmCYB2 gene expression cassettes at the K. marxianus PDC1 locus.

EXAMPLE 4B

Generation of a K. marxianus Mutant (CD 1300) having an Exogenous LDH Gene, a Deleted PDC Gene and Loop Out CYB2 Gene, by Transforming Strain CD1287 with Plasmid pMM38 (FIG. 5, Ex. 4A)

Plasmid pMM38 is digested with Nsil and used to transform strain CD 1287, using standard electroporation meth-
ods. Transformants are selected for growth on YNB+2% lactate plates. Transformants growing on the lactate plates are streaked to lactate plates and to YPD plates. These transformants are screened for a homologous recombination at the PDC1 locus via 3' inside-out PCR using primers identified as SEQ. ID. NO. 32 and SEQ. ID. NO. 33. Transformants yielding a PCR product of the expected size (2251 bp) are streaked for single colony isolation. Genomic DNA of three single colony isolates from each positive transformant is obtained and the PDC1 locus is amplified via PCR using primers identified as SEQ. ID. NO. 34 and 35. Isolates giving the expected PCR product (8453 bp vs. 3730 bp for the wild-type PDC locus, indicating the loss of the PDC gene and integration of the LDH gene) are then tested for the Pdc-phenotype by evaluating whether they produce ethanol. One of the strains that does not produce ethanol is designated strain CD1298. Strain CD1298 contains a deleted PDC gene, the exogenous LDH gene cassette, and the CYB2 gene cassette from plasmid pMM38.

Strain CD1298 is streaked onto non-selective YPD media for three rounds and a slurry of cells are plated onto PDA+7.5 g/L glycolic acid plates. After 72 hours at 30°C, colonies are picked and screened via colony PCR for a loopout of the KmCYB2 gene, using primers identified as SEQ. ID. NO. 36 and 37. Four colonies give the correct product size for a loopout of the CYB2 gene (1109 bp vs 5129 bp for the product containing the CYB2 cassette). Single colonies are isolated from each of these four strains. Genomic DNA is obtained from each of these single colonies and the PDC1 locus is amplified via PCR using primers identified as SEQ. ID. NO. 38 and 36. Two strains yield a PCR product of the size expected for a loopout of the CYB2 cassette (3249 bp vs 7269 bp for the product containing the CYB2 cassette and 2546 for the wild-type PCR product). One of these two strains is designated as strain CD1300.
Strain CD998 consumes 21.9 g/L glucose and produces 18.5 g/L lactate, more than 60% more than strain CD635. Yield to lactate is ~65% for strain CD635, whereas yields for strains CD385 and CD998 are ~86.6% and 84.5%, respectively.

EXAMPLE 5B

Evaluation of Resistance to Glycolytic Acid for Strains CD635 (Ex. 1A), CD853 (Ex. 1A) and CD998 (Ex. 2C)

Duplicate PDA plates are made containing concentrations between 5 g/L through 25 g/L of glycolic acid. Control plates containing no glycolic acid are also prepared. A dilution series of strains CD635, CD853 and CD998 is prepared, and 5 μL of each dilution of the dilution series is spotted onto each of the above plates. The inoculated plates are cultured at 30°C for three days. Comparative strain CD635 grows on plates containing glycolic acid up to a concentration of 15 g/L, but fails to grow on any of the glycolic acid-containing plates with higher concentration. Strain CD853 exhibits ability to grow on glycolic acid plates containing up to 25 g/L glycolic acid. Strain CD998 can grow on plates containing up to 22.5 g/L glycolic acid. These tests indicate that glycolic acid can be used as a selective medium for mutant strains having a non-functional CYB2 gene.

EXAMPLE 6

Microaerobic Shake Flask Characterizations of Comparative Strain CD607 (Ex. 1A), Strain CD936 (Ex. 2B) and Strain CD1300 (Ex. 3C)

Strains CD607, CD936 and CD1300 are separately cultivated under the conditions described in Example 5A. After 93 hours of cultivation, comparative strain CD607 has consumed 16.5 g/kg of glucose and produces 10.8 g/kg lactate. In the same time period, strain CD936 consumes 21.6 g/kg of glucose and produces 19.3 g/kg lactate, slightly less than the strain produced by strain CD607. Strain CD1300 consumes 29.9 g/kg glucose and produces 24.6 g/kg lactate, more than 125% more than strain CD607. Yield to lactate is 65.5% for strain CD607, whereas yields for strains CD936 and CD1300 are 89.4% and 82.3%, respectively. The strain CD607 also produces 2.02 g/kg pyruvic acid in this time frame, whereas CD936 and CD1300 produce 0.68 g/kg and 0.83 g/kg pyruvic acid respectively. Also in this time frame, CD607 produces 0.67 g/kg acetic acid in comparison to no acetic acid production for either CD936 or CD 1300.

Growth is also monitored during this experiment. After 93 hours, comparative strain CD607 has grown to an OD600 of about 5.7, whereas strains CD936 and CD1300 have grown to an OD600 of about 7.5 and 3.2, respectively. The much lower growth of strain CD 1300 indicates that the specific productivity of this strain is much higher than that of comparative strain CD607 and strain CD936.

EXAMPLE 7A

Cloning of *I. orientalis* PGK (IoPGK1) Promoter Region; Construction of a Plasmid (pM318, FIG. 6) having the *E. coli* Hygromycin Gene under the Control of the IoPGK1 Promoter and the *S. cerevisiae* GAL10 Terminator

A 920 bp probe fragment of the *C. sonorensis* PGK1 gene is obtained from the genomic DNA of *C. sonorensis* in the same manner as described in Example 22 of WO 02/042471, using primers identified as SEQ. ID. NO. 39 and SEQ. ID. NO. 40. Genomic DNA is isolated from a growing *I. orientalis* strain and resuspended in 10 mM Tris-HCl (pH 8) (TE). The *I. orientalis* genomic DNA is cut with HindIII, and a Southern blot is prepared and hybridized using standard methods with the *C. sonorensis* PGK1 gene as a probe. Fragments of ~2 kbp size are isolated from agarose gel and cloned into a HindIII-cut plasmid. Colony hybridization of the *E. coli* transformants with the PGK1 probe result in isolation of a HindIII fragment containing most of the *I. orientalis* PGK1 (IoPGK1) protein coding sequences but no promoter sequences, as verified by sequencing.

Genomic fragments containing the IoPGK1 promoter region are obtained with ligation-mediated PCR amplification (Mueller, P. R. and Wold, B. 1989, “In vivo footprinting of a muscle specific enhancer by ligation mediated PCR.” Science 246:780-786). A mixture of a linker identified as SEQ. ID. NO. 41 and a linker identified as SEQ. ID. NO. 42 is ligated to HaelII-digested *I. orientalis* genomic DNA with T4 DNA ligase (New England BioLabs). Samples of the ligation mixtures are used as templates for 50 μl PCR reactions containing 0.1 μM of a primer identified as SEQ. ID. NO. 43 and 1 μM of a primer identified as SEQ. ID. NO. 44. The reaction mixture is heated at 94°C for 3 minutes after 2 U of Dynazyme EXT is added. The reactions are cycled 30 times as follows: 1 minute at 94°C, 2 minutes at 68°C, and 2 minutes at 72°C, with a final extension of 10 minutes at 72°C. A diluted sample of this first PCR-amplification is used as the template in a nested PCR reaction (50 μl) containing 0.05 μM of a primer identified as SEQ. ID. NO. 45 and 0.5 μM of a primer identified as SEQ. ID. NO. 46. The reaction mixture is heated at 94°C for 3 minutes after 2 U of Dynazyme EXT is added. The reactions are then cycled 30 times as follows: 1 minute at 94°C, 2 minutes at 67°C, and 2 minutes at 72°C, with a final extension of 10 minutes at 72°C.

A ~600 bp PCR fragment is isolated and sequenced. Nested primers identified as SEQ. ID. NO. 47 and SEQ. ID. NO. 48 are designed and used in a ligation-mediated PCR amplification together with oligonucleotides identified as SEQ. ID. NO. 49 and SEQ. ID. NO. 50 similarly as above except that Splh-digested *I. orientalis* DNA is used and the PCR is carried out using an annealing temperature of 65°C. The *I. orientalis* PGK1 promoter is PCR amplified using primers identified as SEQ. ID. NO. 51 and SEQ. ID. NO. 52 and the *I. orientalis* genomic DNA as the template. The fragment is filled in using the Klenow enzyme and then cut with Xbal. A 633 bp fragment is gel purified and ligated to a 4428 bp fragment obtained by digesting a plasmid designated as pM270 (described in FIG. 4 of WO 03/049525) with Xhol, filling the fragment in using the Klenow enzyme and 0.1 mM dTTP, and digesting with XbaI. Plasmid pM270 contains the *E. coli* hygromycin gene linked to a *C. sonorensis* PGK1 promoter and a *S. cerevisiae* GAL10 terminator. The resulting plasmid is designated pM318 (FIG. 6). Plasmid pM318 contains the *E. coli* hygromycin gene under the control of the *I. orientalis* PGK1 promoter and the *S. cerevisiae* GAL10 terminator.

EXAMPLE 7B

Construction of a Plasmid (pM321, FIG. 7) containing the Hygromycin Gene under the Control of the IoPGK1 Promoter and the *S. cerevisiae* GAL10 Terminator, and the *I. helveticus* LDH Gene under the Control of the IoPGK1 Promoter and *S. cerevisiae* CYC1 Terminator

The *I. orientalis* PGK1 promoter from Example 7A is PCR amplified using primers identified as SEQ. ID. NO. 53 and
SEQ. ID. NO. 54 and the *L. orientalis* genomic DNA as the template. The fragment is filled in using the Klenow enzyme and 0.1 mM dNTP, and then cut with NcoI. A 633 bp fragment is gel isolated.

Plasmid pVR1 (described in WO 03/102152 FIG. 7) contains the *L. helveticus* LDH gene under the control of the *S. cerevisiae* TEF1 promoter and the *S. cerevisiae* CYC1 terminator. Plasmid pVR1 is digested with XhoI, filled in using the Klenow enzyme, and cut with NcoI. A 7386 bp fragment from plasmid pVR1 is ligated to the 633 bp *IopPGK1* promoter fragment. The resulting plasmid is designated pMI330. Plasmid pMI320 contains the *L. helveticus* LDH gene under the control of the *IopPGK1* promoter and the *S. cerevisiae* CYC1 terminator.

Plasmids pMI318 (FIG. 6, Ex. 7A) and pMI320 are digested with Apal and NotI. A 5008 bp fragment from plasmid pMI318 is ligated to a 1995 bp fragment from plasmid pMI320 to form plasmid pMI321 (FIG. 7).

The hygromycin gene (and its terminator) is positioned on plasmid pMI321 between two copies of the *IopPGK1* promoter, which serve as direct repeat sequences. This construct can permit a cell transformed with plasmid pMI321 to engage in a homologous recombination to “loop out” the hygromycin gene and terminator, together with one copy of the *IopPGK1* promoter.

EXAMPLE 7C

Cloning of *L. orientalis* PDC (*IopPDC1A*) Promoter Region; Construction of a Plasmid (pMI355, FIG. 8)

having the *E. coli* Hygromycin Gene under the Control of the *IopPGK1* Promoter and the *S. cerevisiae* GAL10 Terminator, the *L. helveticus* LDH Gene under the Control of the *IopPGK1* Promoter and *S. cerevisiae* CYC1 Terminator, and the *IopPDC1A* 5' Flanking Region

A genomic library of the wild-type *L. orientalis* strain ATCC PTA-6658 is constructed into the SuperCosI (Stratagene) cosmids vector according to instructions provided by the manufacturer. PDC-like sequences are amplified by PCR from the genomic DNA of the strain with primers designated as SEQ. ID. NO. 55 and SEQ. ID. NO. 56. A 700 bp fragment of a PDC gene is amplified. The genomic library is screened using hybridization techniques with labeled PCR fragments as probes as described in WO 03/049525 and cosmids clones containing the PDC gene are isolated and sequenced. The *L. orientalis* PDC1A 5' region from 1000 bp to 167 bp upstream of the start of the open reading frame is PCR amplified using primers identified as SEQ. ID. NO. 57 and SEQ. ID. NO. 58 and the *L. orientalis* PDC cosmids DNA as the template. The fragment is cut with Sall and ScaI. An 836 bp fragment is gel isolated and ligated to a 6992 bp fragment obtained by digesting plasmid pMI321 (FIG. 7, Example 7B) with Sall and ScaI. The resulting plasmid is named pMI355 (FIG. 8).

EXAMPLE 7D

Cloning of *L. orientalis* PDC (*IopPDC1A*) Terminator Region; Construction of Plasmids (pMI356 (FIG. 9) and pMI357) and having the *IopPDC1A* 5' Flanking Region, the *E. coli* Hygromycin Gene under the Control of the *IopPGK1* Promoter and the *S. cerevisiae* GAL10 Terminator, the *L. helveticus* LDH Gene under the Control of the *IopPGK1* Promoter and *S. cerevisiae* CYC1 Terminator, and the *IopPDC1A* 3' Flanking Region

The *L. orientalis* PDC 3' region corresponding to sequences from 233 bp to 872 bp downstream of the PDC translation stop codon is PCR amplified using primers identified as SEQ. ID. NO. 59 and SEQ. ID. NO. 60 and the *L. orientalis* PDC1A cosmids DNA (Example 7C) as the template. The fragment is cut with Apal and SmaI. A 630 bp fragment is gel isolated and ligated to a 7809 bp fragment obtained by digesting plasmid pMI355 (FIG. 8, Ex. 7C) with Apal and SmaI. The resulting plasmid is named pMI356 (FIG. 9). It contains the hygromycin and LDH cassettes from plasmid pMI355 between the 5' flank and a portion of the 3' flank of the IopPDC1A gene.

Plasmid pMI357 is made in a similar way, except that it differs from plasmid pMI356 with respect to the portion of the 3' IopPDC1A flank that is present. This regions corresponds to the sequence 5 bp upstream and 216 bp downstream of the PDC translation stop codon.

EXAMPLE 7E

Generation of an *L. orientalis* Mutant (CD1184) with Deleted *IopPDC1A* and *IopPDC1B* Genes and Integrated LhLDH Gene in One Step by Transforming Wild-Type *L. orientalis* Strain with Plasmid pMI356 (FIG. 9, Ex. 7D)

** EXAMPLE 7F**

Construction of Plasmid pMI433 (FIG. 10) containing the *IopPDC1A* 5' Flanking Region, the ScMEL5 Gene under the Control of the *IopPGK1* Promoter, the *L. helveticus* LDH Gene under the Control of the *IopPGK1* Promoter and *ScCYC1* Terminator, and the *IopPDC1A* 3' Flanking Region

The *L. orientalis* PGK1 promoter is PCR amplified using primers identified as SEQ. ID. NO. 61 and SEQ. ID. NO. 62 and the *L. orientalis* genomic DNA as the template. The fragment is filled in using the Klenow enzyme and 0.1 mM dNTP, and then cut with SphI. A 669 bp fragment is gel isolated. A plasmid designated as pMI233 (described in FIG. 23C of WO 03/049525) is cut with XhoI. The fragment is filled in with the Klenow enzyme and cut with SphI. The 4534 bp and the 669 bp fragments are ligated and the resulting plasmid is named pMI319. Plasmid pMI319 contains the *S. cerevisiae* MEL5 (ScMEL5) gene and the *IopPGK1* promoter region.

Plasmid pMI319 plasmid is cut with Apal, made blunt ended with T4 polymerase, and cut with NotI. A 2317 bp fragment is gel isolated. It is ligated to a 6498 bp fragment obtained by digesting plasmid pMI357 (Example 7D) with Sall, making it blunt ended with the Klenow enzyme and then cutting with NotI. The resulting plasmid contains the ScMEL5 gene (with its native terminator) in place of the hygromycin gene of plasmid pMI357. The resulting plasmid is designated pMI433 (FIG. 10).

EXAMPLE 7G

Construction of Plasmids pMI449 (FIG. 11) and pMI454 (FIG. 12) containing *L. orientalis* CYB2 5' Flanking Region, ScMEL5 Gene Cassette between *K. thermotolerans* Direct Repeat Sequences and *L. orientalis* CYB2 3' Flanking Region

Plasmid pMM28 (FIG. 2, Ex. 3A) is digested with BamH1, filled in with the Klenow enzyme, and digested with Sall. The
The 3' flanking region of the \textit{I. orientalis} \textit{L}-lactate:ferricytochrome c oxidoreductase (IoCYB2A) gene (corresponding to sequences from 90 to 676 bp downstream of the predicted open reading frame) is amplified by PCR using primers identified as SEQ. ID. NO. 63 and SEQ. ID. NO. 64 using a CYB2-2 cosmide clone as a template. The PCR product is digested with SacI and Smal and the 607 bp fragment is ligated to the 6386 bp SacI-Smal fragment of plasmid pMI445. The resulting plasmid is designated pMI448.

The IoCYB2A 5' flanking region (corresponding to sequences from 913 to 487 bp upstream of the predicted open reading frame) is amplified by PCR using primers identified as SEQ. ID. NO. 65 and SEQ. ID. NO. 66, again using the CYB2-2 cosmide clone as a template. The PCR product is digested with SphiI and the 454 bp fragment is ligated to the 6993 bp SphiI fragment obtained by partially digesting pMI448. The resulting plasmid is designated pMI449 (Fig. 11).

The IoCYB2A 5' flanking region (corresponding to sequences from 466 to 77 bp upstream of the predicted open reading frame) is amplified by PCR using primers identified as SEQ. ID. NO. 67 and SEQ. ID. NO. 68, once again using the CYB2-2 cosmide clone as the template. The PCR product is digested with SphiI and the 493 bp fragment was ligated to the 6993 bp SphiI fragment obtained by partially digesting plasmid pMI448. The resulting plasmid is designated pMI453.

The IoCYB2A 3' flanking region (corresponding to sequences from 402 bp upstream to 77 bp downstream of the predicted stop codon) is amplified by PCR using primers identified as SEQ. ID. NO. 69 and SEQ. ID. NO. 70 using the CYB2-2 cosmide as a template. The PCR product is digested with Apal and Smal and the 506 bp fragment is ligated to the 6886 bp Apal-Smal fragment of plasmid pMI453. The resulting plasmid is designated pMI454 (Fig. 12).

\textbf{EXAMPLE 7H}

\textit{Generation of \textit{I. orientalis} Mutant Strain (CD1496) by Successively Transforming Strain CD1184 (Ex. 7E) with Plasmids pMI449 and pMI454, Followed by Mutagenesis}

Strain CD1184 is transformed with plasmid pMI449 using the lithium acetate method and transformants (blue colonies) are selected based on melibiose activity on YPD X-\alpha-gal plates. The replacement of the IoCYB2A gene of strain CD1184 with the transformed DNA is confirmed by colony PCR and Southern analysis in some of the transformants. The MEL marker is looped out from one of those transformants via a homologous recombination event through the \textit{K. thermotolerans} repeat sequences, as confirmed by Southern analysis. The second CYB2A allele is deleted from this transformant using plasmid pMI454. Transformants are analyzed by colony PCR for the absence of a 1000 bp CYB2A specific PCR product. The MEL marker from plasmid pMI454 is looped out of a transformant having a deletion of the second CYB2A allele via recombination as before. This transformant is designated strain CD1436.

Strain CD1436 is subjected to EMS mutagenesis using the conditions set forth in Example 1A, except the exposure conditions are 8 ul. for 1 hour. Mutagenized cells are allowed to recover for 6 hours on YPD and then plated onto PDA+35 g/L lactic acid plates and incubated for one week at 30°C. A strain that produces more lactate and less glycerol than strain CD1436 is designated as strain CD1496. Strain CD1496 has a deletion of both PDC1 alleles (with replacement by a functional L-LDH gene cassette, and a deletion of each of its two native IoCYB2A alleles).

\textbf{EXAMPLE 7I}

\textit{Shake Flask Fermentations using Strains CD1184, CD1436 and CD1496}

Strains CD1184 and CD1436 are evaluated in microaerobic shake flask fermentations in the general manner described in Example 5A, except the starting dextrose concentration is 100 g/L and agitation is at 100 rpm. Each strain stops consuming glucose after about 80 hours of production. After 144 hours of cultivation, final lactate titer is lactate production is about 60 g/kg for strain CD1184 and 53 g/kg for strain CD1436. Lactate yield is about 88% for strain CD1184 and 86% for strain CD1436. Glycerol yield is about 5.5% for strain CD1184 and 8.5% for strain CD1436.

Strains CD 1436 and CD 1496 are similarly evaluated in duplicate microaerobic cultivations. After 144 hours of cultivation, final lactate titer is lactate production is about 58 g/kg for strain CD1436 and 65 g/kg for strain CD1496. Lactate yield is about 68% for each strain. Glycerol yield is about 11% for strain CD1436 and only about 8% for strain CD1496.

\textbf{EXAMPLE 7J}

\textit{pH 3 Fermentations of Strains CD1436 (Example 7H) and CD1496 (Example 7H)}

Strains CD1436 and CD1496 are used in separate fermentations buffered to a pH of 3.0. In each instance the cells are inoculated to a 5 L Braun-B fermentor with a working volume of 3 L. The fermentation broth contains 110 g/L of dextrose at the beginning of the fermentation. Potassium hydroxide is added as needed to maintain the pH of the fermentation broth at 3.0. Fermentation temperature is 30°C. Oxygen is added to maintain an oxygen uptake rate of 5-6 mmol/L-hr.

Strain CD1436 produces lactate at a rate of 0.77 g/L/hr, to a final yield of 69%. Strain CD1496 produces lactate at a rate of 0.83 g/L/hr, to a final yield of 64%. Strains CD1436 and CD1496 produce 0.8 and 0.0 g/L pyruvate, respectively. They produce 18 and 23 g/L glycerol, respectively. Neither produces measurable acetate.

\textbf{EXAMPLE 7K}

\textit{pH 3 Fermentations of Strain CD1436 (Ex. 7H) and its Parent Strain CD1184 (Ex. 7E)}

Strain CD1436 and its parent strain CD1184 are used in separate fermentations buffered to a pH of 3.0. In each instance the cells are inoculated to a 5 L Braun-B fermentor with a working volume of 3 L. The fermentation broth contains 130 g/L of dextrose at the beginning of the fermentation. Potassium hydroxide is added as needed to maintain the pH of the fermentation broth at 3.0. Fermentation temperature is 30°C. Oxygen is added to maintain an oxygen uptake rate of 2 mmol/L-hr.

Strain CD1436 produces a 66 g/L of lactate after about 160 hours of cultivation, whereas strain CD1184 produces only 56 g/L of lactate. Strain CD1436 also produces lactate at a higher volumetric rate than strain CD1184 (0.43 vs. 0.35 g/L-hr). In addition, strain CD1436 accumulates no acetate or pyruvate whereas strain CD1184 produces about 1 g/L of pyruvate and 3 g/L of acetate. Strain CD1436 has an overall
yield of lactic on glucose of about 67% vs. 69% for its parent. The comparable yields are obtained because strain CD1436 produces more glycerol than strain CD1184.

EXAMPLE 8A

Deletion of DLD1 Gene from a K. marxianus Strain Containing an Exogenous D-LDH Gene Cassette

The 3' downstream locus of the DLD1 gene of a wild-type K. marxianus strain is amplified with addition of NruI and Smal restriction sites using primers identified as SEQ. ID. NO. 71 and SEQ. ID. NO. 72 and genomic DNA as the template. The cloned region is ligated to plasmid pPM31 (Ex. 3B) to form plasmid pMM44 (FIG. 13). The 5' downstream locus of the DLD1 gene of a wild-type K. marxianus strain is amplified with the addition of Xmal/NcoI restriction sites using primers identified as SEQ. ID. NO. 73 and SEQ. ID. NO. 74 and genomic DNA as the template. The cloned region is ligated to plasmid pMM31 (Ex. 3B) to form plasmid pMM45 (FIG. 14).

A fragment is amplified from plasmid pMM44 using primers identified as SEQ. ID. NO. 71 and SEQ. ID. NO. 75. Another fragment is amplified from plasmid pMM45 using primers identified as SEQ. ID. NO. 74 and SEQ. ID. NO. 76. The amplified products (~2.8 kb from pMM44 and ~2.5 kb from pMM45) are gel purified and used to transform a K. marxianus strain containing an exogenous D-LDH gene cassette (having an intact PDC gene), which is prepared according to methods similar to those described in WO 03/102152. Following a 4 hour recovery, cells are plated on YNB 2% melibiose + 32 mg/L XaGal plates.

Transformants are screened for a homologous recombination of the transformed DNA at the DLD1 locus via inside-out colony PCR using primers identified as SEQ. ID. NO. 77 and SEQ. ID. NO. 78. The primers are homologous to a region upstream of the cloned 5' region and to the coding region of the selection marker ScMEL1, respectively. Three out of 32 transformants screened gave the expected PCR product of 1.8 kb and are streaked for single colony isolates.

The entire DLD1 locus is amplified from genomic DNA from single colony isolates of two of the three positive transformants using primers identified as SEQ. ID. NO. 74 and SEQ. ID. NO. 77. All single colonies yield the expected product for a knockout of the DLD1 gene. One of these strains is identified as strain CD1603.

Strain CD1603 and the parent strain were separately streaked to YNB plates containing 2% D-lactic acid as the sole carbon source. The parent strain grows well in this medium, but strain CD1603 shows negligible growth.

Strain CD1603 and the parent strain are separately cultivated in the general manner described in Example 5A. Lactic acid and byproduct production are measured via HPLC throughout the cultivations. Lactic acid production is improved in strain CD1603 compared to the parent strain. Both lactic production rate and lactic titer are higher in strain CD1603 than in the parent strain.

EXAMPLE 8B

Strains CD1603 and its parent are used in separate fermentations buffered at a pH of 3.0. In each instance the cells are inoculated to a 5 L Braun-B fermenter with a working volume of 3 L. The fermentation broth contains 90 g/L of dextrose at the beginning of the fermentation. Potassium hydroxide is added as needed to maintain the pH of the fermentation broth at 3.0. Fermentation temperature is 30°C. Oxygen is added to maintain an oxygen uptake rate of 5-6 mmol/L-hr.

Strain CD1603 produces lactate at a rate of 0.58 g/l-hr, to a final yield of 69%. It produces pyruvate at a yield of 0.8% and glycerol at a yield of 7.3%. The parent strain produces lactate at a rate of only 0.09 g/l-hr, to a final yield of 68%. The pyruvate and glycerol yields of the parent strain are 21% and 6.9%, respectively. These values indicate that the parent strain consumes lactate as it forms, converting it to pyruvate. In addition, the parent strain produces a yield of 15% acetate.

EXAMPLE 9

Production of S. bulderi Yeast Cells having an Exogenous LihLDH Gene and an Exogenous G418 Gene Cassette

S. bulderi is a yeast that, as a native strain, lacks ability to grow on lactate as the sole carbon source. Primers identified as SEQ. ID. NO. 85 and SEQ. ID. NO. 86 are used for walking in conjunction with AP1 from the Universal Gene Walking kit (BD Biosciences Clontech, Palo Alto, Calif., Catalog No. K1807-1) to elucidate a ~1 kb sequence upstream from the S. bulderi TEF1 gene. A 880 bp sequence of the that upstream sequence is cloned immediately upstream of an LihLDH gene, using Sael/XbaI cloning sites on primers identified as SEQ. ID. NO. 87 and SEQ. ID. NO. 88, to produce a plasmid designated as pCM149 (FIG. 15). Plasmid pCM149 contains, in order, the SbTEF1 promoter, the LihLDH gene, a Saccharomyces exiguus PG1 terminator, a G418 gene cassette under the control of the ScPDC1 promoter and the ScG410 terminator. The ScPG1 terminator is obtained by amplifying S. exiguus genomic DNA with primers identified as SEQ. ID. NO. 89 and SEQ. ID. NO. 90. The G418 gene cassette is described in Example 1A (FIG. 4) of WO03/102152.

Cells of a wild-type S. bulderi (ATCC strain MYA-403) are transformed with plasmid pCM149 using standard lithium acetate methods. Transformants are plated onto YPD+300 mg/L G418, and three transformants produce faint purple halos using a LASSO assay, which indicates that these strains are producing lactic acid. These three strains are separately inoculated onto YPD shake flasks, and all three are found to produce lactic acid. All three strains produce from 5-7 g/L lactic acid after about 24 hours of cultivation. The parent wild-type strain does not produce any lactic acid.
<400> SEQUENCE: 1

atgagatcgg cagctagagct caacaacaag agctgttagcg gctctgctct ttccagaaaaa 60
tgtctggaaat aacgagcctt cagctagagct atggagattt taagtaacttc gaacatcgca 120
gtcagaaaag gttctaaaaggg cacgaggttaa aacaggtattt gttttttgt 180
gctggggttct cagctctgagc cggaggtggc ccaggcttcct aatttaagcga caggcttgg 240
aatgtaagcgg aagaagcagtt gaaacaagcga aaggtttcgcg gttcaggggt cgcaaaagcc 300
tggagcttgg atgctgtgcg ggtggttgactc tctcaaatctt gacaggaattc 360
attagcgcct atcctggtgg accagctatc atgagacacg aacagcgttga aaggtgtgacg 420
gccatcttg gcccaccaatc ttgcgcaagat gtcattgaga agatactgtcg cccggaacc 480
cagatcggcct ctttctagaggg gaaaatgcocgc gacagacttg gctgtcgtgcac atagagccc 540
gccagagtcc ctggaggtccg tggccagaaaag gaggaggtgc gtcgaatattt gccagacttc 600
gactgtggttg cccttcaatttc cgtttctgag tttcttggtct cccagattttt gaccaaaacgc 660
gcgtctcttc actacttcttt ggctgcgcgat ggcagaaagtc gcaacacgaagacagac 720
gcataaccac gttccctccc caaagccagata atctctgtcgc aggctcaaaagg ggtgagact 780
tccacacacac ccgtagaggtt ccacttccaatc aacagctaaag ctggcagact 840
tgcaaatagg gcaaacagaa ggaagggtaaa accagagctcg ctgagagtttggcttgacagc 900
gctcgaagc caaactcgagt attctccacc gcgttccttct cttcctcctggagaagaatgctc 960
gaagacgcct ctgcaagaggca aaacacacaccc gggcttccagat tagtctactt gcaactaagt 1020
aagattacgc aggactcgggc cccaaagatgct gaaagcgtgctg tttctgaggg tattacgtgt 1080
acggtggtgag ccctacacttc cgcagaaaga gaaagagtagtg ctgagcgctt ggtcataaccc 1140
aagcagacgc ctgagcagcc actgaaagacgc gacagactcgc gcaaggcttcg gtttgccttc 1200
agagctcttct ccaccttccct tggctttctc tggctttccttc gacgacagagc 1260
tccagacgc ctgtaagcctc ctgccgagtt gttgcttgag tggactctctt gcttttatcg 1320
gcagccagaa ttgggtgctgc cgggtgct tgtccacaccc acgttggtagg aacactagac 1380
tttctcagac ccgcaacctca gttcttgccca gaaacaagtc ctattttctt ccgaaagaa 1440
cctagacaatc aagatgcaaat ttacactgctc ggctggtgtgc caaagactctg cgttattttg 1500
aagagctccttt gttgtggtgc ccaggtggtcc ggtttagggta gaccattctc gtaaacaggca 1560
agtggttacc gtagctcaagagac ctcgctgaat gtagctcaatcc ggaacatagaa 1620
atgctactg ggttctggac ctgactcgtgc ctgcttacatct gccctaatgc gttacgctttg 1680
tctatcactc tttccttcag aactcttgag gtcactctgct gaaactgtttt ccagggcttg 1740
tattctccag cagacacaaactcgcttacacg gaaatggtcgc 1799

<211> SEQ ID NO 2
<212> LENGTH: 592
<213> ORGANISM: Kluveromyces marxianus

<400> SEQUENCE: 2

Met Arg Ser Ala Ala Arg Val Ile Ann Lys Ser Cys Ser Gly Ser Ala
1 5 10 15

Leu Ser Arg Arg Cys Leu Arg Lys Ser Ser Leu Ser Met Ser Met Arg
20 25 30

Tyr Leu Ser Thr Ser Asn Ile Gly Val Arg Lys Gly Phe Ann Gly Gin
35 40 45
Gly Lys Ser Ser Arg Lys Thr Met Leu Phe Leu Ala Ala Gly Ala Ser 50 55 60
Ala Val Ala Gly Ile Gly Leu Leu Ser Gln Phe Ser Asp Ser Leu Gln 65 70 75 80
Asn Ala Thr Lys Glu Glu Leu Asn Lys Pro Lys Val Ser Pro Leu Glu 85 90 95
Val Ala Lys His Ser Ser Pro Asp Asp Cys Trp Val Val Ile Asp Gly 100 105 110
Phe Val Tyr Asn Leu Thr Glu Phe Ile Ser Ala His Pro Gly Gly Pro 115 120 125
Ala Ile Ile Glu Asn Asn Ala Gly Asp Val Thr Ala Ile Phe Gly 130 135 140
Pro Ile His Ala Pro Asp Val Ile Glu Lys Tyr Ile Ala Pro Glu Asn 145 150 155 160
Arg Ile Gly Pro Leu Asp Gly Lys Met Pro Asp Asp Leu Ile Cys Ala 165 170 175
Pro Leu Thr Pro Gly Glu Thr Pro Glu Asp Val Ala Arg Lys Glu Glu 180 185 190
Leu Arg Gln Asn Met Pro Asp Leu Ser Val Leu Asn Ile Tyr Asp 195 200 205
Phe Glu Phe Leu Ala Ser Gln Ile Leu Thr Lys Gln Ala Thr Ser Tyr 210 215 220
Tyr Ser Ser Ala Ala Asp Asp Glu Val Thr His Arg Glu Asn His Ala 225 230 235 240
Ala Tyr His Arg Ile Phe Phe Lys Pro Arg Ile Leu Val Asn Val Lys 245 250 255
Glu Val Asp Thr Ser Thr Met Leu Gly Glu Lys Val Gly Val Pro 260 265 270
Phe Tyr Val Ser Ala Thr Ala Leu Cys Lys Leu Gly Asn Pro Lys Glu 275 280 285
Gly Glu Lys Asp Ile Ala Arg Gly Cys Gly Glu Ser Asp Val Lys Pro 290 295 300
Ile Gln Met Ile Ser Thr Leu Ala Ser Cys Ser Leu Gln Glu Ile Val 305 310 315 320
Glu Ala Ala Pro Ser Lys Asp Gln Ile Gln Trp Phe Gln Leu Tyr Val 325 330 335
Asn Ser Asp Arg Lys Ile Thr Glu Leu Ile Lys Asn Val Glu Lys 340 345 350
Leu Gly Leu Lys Ala Ile Phe Val Thr Val Asp Ala Pro Ser Leu Gly 355 360 365
Asn Arg Glu Lys Asp Ala Val Lys Phe Thr Asn Lys Asp Ser Ser 370 375 380
Ala Lys Ala Met Glu Lys Ser Asn Val Lys Glu Ser Lys Gly Ala Ser 385 390 395 400
Arg Ala Leu Ser Thr Phe Ile Asp Pro Ala Leu Cys Trp Asp Asp Ile 405 410 415
Val Thr Leu Lys Ser Lys Thr Leu Pro Ile Val Ile Lys Gly Val 420 425 430
Gln Cys Val Glu Asp Val Leu Lys Ala Ala Glu Ile Gly Ala Ala Gly 435 440 445
Val Val Leu Ser Asn His Gly Arg Glu Leu Asp Phe Ser Arg Ala 450 455 460
Pro Ile Glu Val Leu Ala Glu Thr Met Pro Ile Leu Lys Glu Lys Lys 465 470 475 480
Leu Asp Asp Lys Ile Glu Ile Phe Ile Asp Gly Gly Val Arg Arg Gly
485 490 495
Thr Asp Ile Leu Lys Ala Leu Cys Leu Gly Ala Lys Gly Val Gly Leu
500 505 510
Gly Arg Pro Phe Leu Tyr Ala Asn Ser Cys Tyr Gly Lys Glu Gly Val
515 520 525
Lys Lys Ala Ile Glu Leu Leu Lys Asp Glu Leu Leu Met Ser Met Arg
530 535 540
Leu Leu Gly Val Thr Ser Ile Asp Gin Leu Ser Glu Lys Tyr Leu Asp
545 550 555 560
Leu Ser Thr Leu His Gly Arg Thr Val Ser Val Pro Arg Asp Asn Leu
565 570 575
Tyr Asn Gly Val Tyr Val Pro His Glu Pro Thr Asp Phe Lys Glu Asn
580 585 590

<210> SEQ ID NO 3
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 3

ccgataaca gcgtcggtcg atacctctta ttc

<210> SEQ ID NO 4
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 4
tgcgactgc agtgcactcg gttgctatt act

<210> SEQ ID NO 5
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 5
attatgagc ccacaaat gttatctct cttcc

<210> SEQ ID NO 6
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 6
tatatgccgc gcgcaggtc tctcgatct cttcc

<210> SEQ ID NO 7
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 7
cctgaccact aacgctctac

<210> SEQ ID NO 8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 8
cacctctttg ctaggctttg

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 9
cctgatctac aggattcttc

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 10
tgtaaccggt gtccttaaac

<210> SEQ ID NO 11
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 11
tcccggtac aacggaacct aaccttacgc tc

<210> SEQ ID NO 12
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 12
ttgcgagatt cctgagctca gtatgctgta ac

<210> SEQ ID NO 13
<211> LENGTH: 706
<212> TYPE: DNA
<213> ORGANISM: Kluyveromyces marxianus
<400> SEQUENCE: 13
cactgcaag ctagtgcaca gcgcaacggt taattataag aaataaact cagocoaaca 60
catatctctct ccaaatgtaa ggcacactta cattgtaag agatcatttt 120
tttcaaggtg ttgtaatatg ttttctgaat cttcctgaaa tatgcgggtt 180
waamtaaccc ggacatcacc tacatgcaag gaaaaacgg aaccgacggat attcctcag 240
taacgtaaca ttagtaatct tttcagcttc atcatcacttt tccaatgttc taagcttataa 300
-continued

gttcaa.gc.ct agatacgctg tgtaaggttgaaaacatcta attct cittac titcatc cctd aggittaaagt tagtgatctt Wmaaaaaama aamrmaagaa ccagaggagc attaacaaaa ttgtcatttit gtcgtttic ct <210s, SEQ ID NO 14 &211s LENGTH: 30 &212s TYPE: DNA

<210> SEQ ID NO 14
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer

<400> SEQUENCE: 14
tgcagcagt cactagoaag ctttgccatc

<210> SEQ ID NO 15
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer

<400> SEQUENCE: 15
aaccttgctg actagccggc atagaagcc acc

<210> SEQ ID NO 16
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer

<400> SEQUENCE: 16
tgcagaggac cactgoaag ctttgccatc

<210> SEQ ID NO 17
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer

<400> SEQUENCE: 17
aaccttcccc ggtagcgggc atagaagacc acc

<210> SEQ ID NO 18
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer

<400> SEQUENCE: 18
aaaaagtcg acaggataca agctcatgca ang

<210> SEQ ID NO 19
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 19

aaaaaagat ctcgcttaacg aatataatcc gc

SEQ ID NO 20
LENGTH: 32
TYPE: DNA
ORIGIN: Artificial
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 20

aaaaaaccgc gcgtctccgc gcgtcaggttc ca

SEQ ID NO 21
LENGTH: 32
TYPE: DNA
ORIGIN: Artificial
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 21

aaaaagagc tcgaagtctc tgtatctctc tc

SEQ ID NO 22
LENGTH: 33
TYPE: DNA
ORIGIN: Artificial
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 22

aaaaagagc tcctggtcgc atactctta ttc

SEQ ID NO 23
LENGTH: 32
TYPE: DNA
ORIGIN: Artificial
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 23

aaaaagggc cgctggcag ataactagtc ag

SEQ ID NO 24
LENGTH: 20
TYPE: DNA
ORIGIN: Artificial
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 24

cgcttgctcg tgtactgtaa

SEQ ID NO 25
LENGTH: 32
TYPE: DNA
ORIGIN: Artificial
FEATURE:
OTHER INFORMATION: Primer

SEQUENCE: 25

aaaaaagagc tcgaagtctc tgtatctctc tc

SEQ ID NO 26
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 26

aaaaagta cccgacac acccaagga at

<210> SEQ ID NO 27
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 27

aaaaatatct gataagtta cttctcttg ag

<210> SEQ ID NO 28
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 28

aaaaaaccg ggagaggg gaggataaag ag

<210> SEQ ID NO 29
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 29

aaaaaacat gtccccatc tgcgtatgc tc

<210> SEQ ID NO 30
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 30

aaaaacata tgcgcaggtg cgcaccgaa tg

<210> SEQ ID NO 31
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 31

aaaaagagcc cggcgtaacg aataatcc gc

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE: Primer
<400> SEQUENCE: 32
acaccaagc tgcctatcattg

<210> SEQ ID NO 33
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 33
cggtacggtc gtctcagagt

<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 34
cggccacaa gaccacaaag

<210> SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 35
cggtacggtc gtctcagagt

<210> SEQ ID NO 36
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 36
ggctgggttg tgggtggtgtg

<210> SEQ ID NO 37
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 37
gtcaacgcga atttcttcac

<210> SEQ ID NO 38
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 38
cggccacaaa gaccacaaag

<210> SEQ ID NO 39
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 39

aaccaagaa ttgttgctgc ttt 23

<210> SEQ ID NO 40
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 40

ttcgaaca ccctgccgac cgctc 25

<210> SEQ ID NO 41
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 41

gcggtagccc ggagagctag aatcc 25

<210> SEQ ID NO 42
<211> LENGTH: 12
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 42

gaattcagat ct 12

<210> SEQ ID NO 43
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 43

gcggtagccc ggagagctag aatcc 25

<210> SEQ ID NO 44
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 44

ccaattctgc agcaactgcc ttaacg 27

<210> SEQ ID NO 45
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 45

gcggtagccc ggagagctag aatcc 25

<210> SEQ ID NO 46
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 46

gcttcaccat ttggtctgcc c 21

<210> SEQ ID NO 47
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 47

gactccccgg agtgcgaaa tatga 25

<210> SEQ ID NO 48
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 48

gtgatagcgg gtcctttcgc tacc 24

<210> SEQ ID NO 49
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 49

gcgtgacct gcgagatctg aatc 25

<210> SEQ ID NO 50
<211> LENGTH: 12
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 50

gaattcagat ct 12

<210> SEQ ID NO 51
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 51

gcgatctcga gtttgctgc aacggcaca tcaatg 36

<210> SEQ ID NO 52
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 52
ctagcatctg attgtgttg tcgtgttttt tgtttt 36

<210> SEQ ID NO 53
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 53

gcgatctcga gattgtgtgc aacggaaca tcaatg 36

<210> SEQ ID NO 54
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 54

acttggccat ggttgttgtt gttgtcgttg ttttgt 36

<210> SEQ ID NO 55
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 55

cgggaatttg ataattgggc wggkaatgcc aaygarttra atgc 44

<210> SEQ ID NO 56
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 56

cgggatcga ggcttcagta ngaraawgaa congtrttrra artc 44

<210> SEQ ID NO 57
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 57

actgtgacgc tcgtatatag gaatggacgg ctcacg 36

<210> SEQ ID NO 58
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 58
actgacgcgt egaegtatca ttttgtacc acgacacc
<210> SEQ ID NO: 59
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 59

ctcccccccc gtgtatgaa gggtgtatg taatt
<210> SEQ ID NO: 60
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 60

ccaagagta tggggccoca gttg
<210> SEQ ID NO: 61
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 61

ggatctcga gattgtgtgc aacggcaaca tcaatg
<210> SEQ ID NO: 62
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 62

tggactagta catgctagcg tgagaagt aagacaaac cattgttgtt gtttctctcg
<210> SEQ ID NO: 63
<211> LENGTH: 69
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 63

tgtctttttg
<210> SEQ ID NO: 64
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 64

cctcccccgg ggtatatgaa gttatatatatatgcttca
<210> SEQ ID NO: 65
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 65

ggagagagc tggggcocat gacttcaag ttttactg acgtttgag tgg
<210> SEQ ID NO: 66
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: Primer
<400> SEQUENCE: 66
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 65
ggacatgtac gggactcaaa tgcgtgacac cgccatgtg gttg

<210> SEQ ID NO 66
<211> LENGTH: 52
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 66
ggacatgtac ggtactgatt ctcgagggca ccaacagaa caccacactg aa

<210> SEQ ID NO 67
<211> LENGTH: 43
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 67
ggacatgtac ggtactgctt agtgaacaag acactggcatt ttg

<210> SEQ ID NO 68
<211> LENGTH: 52
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 68
ggacatgtac ggtactgcct ctcaggtgt gtgaacactg gttatgtgg ag

<210> SEQ ID NO 69
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 69
cctcccccg ggatatctgt ttagattacg cctctccaa tcgatattt agc

<210> SEQ ID NO 70
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 70
ggacagagac tcgggoccta cgtctatgtta tcataaatt gg

<210> SEQ ID NO 71
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 71
aaaaaggggc cgatgttta gcaccaactg g
<210> SEQ ID NO 72
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 72

aaaaagtca ccaagcaca ta cagagaga c

<210> SEQ ID NO 73
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 73

aaaaacatg gaatgtggtg gctggtggtg c

<210> SEQ ID NO 74
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 74

aaaaaccgg gtgaatcgga cttgaacac g

<210> SEQ ID NO 75
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 75
tctccagact cttgtgtgctg

<210> SEQ ID NO 76
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 76
gtggaggaag aatcgcacag

<210> SEQ ID NO 77
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer

<400> SEQUENCE: 77
gctgtggga tattcttocc

<210> SEQ ID NO 78
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
agggacagct aggttatgc

<210> SEQ ID NO 79
<211> LENGTH: 1737
<212> TYPE: DNA
<213> ORGANISM: Issatchenkia orientalis
<222> OTHER INFORMATION: n is a, c, g, or t

<400> SEQUENCE: 79

atgtactca gataaactaa cttcttctgc gctgttggtca aacaaacaac cagaacaag
 60
ggtaggtatc tcgcccagct cagttgtgcga acatggtgca aacctcactt gaagacacac
tcgagagat ccacaaatct cgaasactat ctaatgtgctg cttgtcagac atggtgctga
 120
ttcacttca tcagagcttc cgcagtcctg tctataaagc cggctagggg
 180
tagtaggattc ccagacagc atctttgattg cttcataact ttagaaaagc cggctagggg
ttgatctcag cttcttactc gactactcag atggtggtgc aaggttacctg
 240
tgagagatc ggcagtcagct aaggttacctg cctcacttc gactactcag atggtggtgc
 300
tggagaaac ccagagacat ctaatgatctc aggtacagc cggctagggg
 360
tcgccacagc ttgagtaagc ggtgagttc cggctagggg
 420
tgattccacag cttgttctag aacaaacaac cggctagggg
 480
tcgagatgct ccagagacat ctaatgatctc aggtacagc cggctagggg
 540
tcagagcct ccagagacat ctaatgatctc aggtacagc cggctagggg
 600
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
 660
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
 720
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
 780
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
 840
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
 900
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
 960
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
1020
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
1080
tcgagagat ccagagacat ctaatgatctc aggtacagc cggctagggg
1140

ggtggttcag ctgaggtcgtt cggctagggg
1200

ggtggttcag ctgaggtcgtt cggctagggg
1260

ggtggttcag ctgaggtcgtt cggctagggg
1320

cgtgacttc ccagagacat ctaatgatctc aggtacagc cggctagggg
1380

cgtgacttc ccagagacat ctaatgatctc aggtacagc cggctagggg
1440

cgtgacttc ccagagacat ctaatgatctc aggtacagc cggctagggg
1500

cgtgacttc ccagagacat ctaatgatctc aggtacagc cggctagggg
1560

cgtgacttc ccagagacat ctaatgatctc aggtacagc cggctagggg
1620

cgtgacttc ccagagacat ctaatgatctc aggtacagc cggctagggg
1680

tgagagatc ggcagtcagct aaggttacctg cctcacttc gactactcag atggtggtgc
1737
SEQUENCE:

Met Leu Leu Arg Ser Leu Asn Ser Ser Ala Arg Cys Val Lys Gln Thr 1 5 10 15
Thr Arg Thr Lys Val Arg Tyr Leu Ser His Val Ser Gly Ala Ser Met 20 25 30
Ala Lys Pro Thr Leu Lys Asn Ser Arg Glu Asn Lys Ser Arg 35 40 45
Asn Tyr Leu Ile Ala Ala Val Thr Ala Leu Ala Val Ser Thr Ser Ile 50 55 60
Gly Val Ala Val His Val Lys Asp Pro Leu Tyr Asp Ala Thr Gly 65 70 75 80
Ser Asp Ser Pro Arg Ser Ile Ser Val Asp Glu Phe Val Lys His Asn 85 90 95
Ser Glu Asn Asp Cys Trp Ile Ala Ile Lys Gly Val Tyr Asp Phe 100 105 110
Thr Asp Phe Ile Pro Asn His Pro Gly Val Val Pro Leu Val Arg 115 120 125
His Ala Gly Tyr Asp Gly Thr Lys Leu Tyr Gly Lys Leu His Pro Lys 130 135 140
Gly Thr Ile Glu Lys Phe Leu Pro Lys Asp Lys Phe Leu Gly Val Leu 145 150 155 160
Asp Gly Glu Ala Pro Lys Leu Glu Ala Asp Tyr Leu Val Asp Asp 165 170 175
Glu Glu Glu Arg Leu Tyr Leu Gly Asn Leu Pro Pro Leu Ser Ser Ile 180 185 190
Gln Asn Val Tyr Asp Phe Glu Tyr Leu Ala Lys Lys Ile Leu Pro Lys 195 200 205
Asp Ala Trp Ala Tyr Tyr Ser Cys Gly Ala Asp Asp Glu Ile Thr Met 210 215 220
Arg Glu Asn His Tyr Ala Tyr Gln Arg Val Tyr Phe Arg Pro Arg Ile 225 230 235 240
Cys Val Asp Val Lys Glu Val Asp Thr Ser Tyr Glu Met Leu Gly Thr 245 250 255 260
Lys Thr Ser Val Pro Phe Tyr Val Ser Ala Thr Ala Leu Ala Lys Leu 265 270
Gly His Pro Asp Gly Glu Cys Ser Ile Ala Arg Gly Ala Gly Lys Glu 275 280 285
Gly Val Glu Gln Met Ile Ser Thr Leu Ser Ser Met Ser Leu Asp Glu 290 295 300 305
Ile Ala Ala Ala Arg Ile Pro Gly Ala Thr Gln Trp Phe Glu Leu Tyr 310 315 320
Ile Asn Glu Asp Arg Asn Val Ala Lys Gly Leu Val Lys His Ala Glu 325 330 335
Asp Leu Gly Met Lys Ala Ile Phe Ile Thr Val Asp Ala Pro Ser Leu 340 345 350
Gly Asn Arg Glu Lys Asp Arg Leu Lys Phe Val Asn Asp Thr Asp 355 360 365 370
Val Asp Leu Gly Asp Ser Ala Asp Arg Asn Ser Gly Ala Ser Lys Ala 375 380 395 400
Leu Ser Ser Phe Ile Asp Ala Ser Val Ser Trp Asn Val Tyr Ala 390 395 400 405
Val Lys Ser Trp Thr Lys Leu Pro Val Leu Val Lys Gly Val Glu Thr 410 415 415
Val Glu Asp Val Ile Glu Ala Tyr Asp Ala Gly Cys Gin Gly Val Val
420 425 430
Leu Ser Asn His Gly Gly Arg Gin Leu Asp Thr Ala Pro Pro Pro Ile
435 440 445
Glu Leu Leu Ala Glu Thr Val Pro Thr Leu Lys Arg Leu Gly Lys Leu
450 455 460
Arg Pro Asp Phe Glu Ile Leu Ile Asp Gly Val Lys Arg Gly Thr
465 470 475 480
Asp Ile Leu Lys Ala Val Ala Ile Gly Gin Asp Val Arg Val Ser
485 490 495
Val Gly Met Gly Arg Pro Phe Leu Tyr Ala Asn Ser Cys Tyr Gly Glu
500 505 510
Ala Gly Val Arg Lys Leu Ile Gin Asn Leu Lys Asp Glu Leu Glu Met
515 520 525
Asp Met Arg Leu Leu Gly Val Thr Lys Met Asp Gin Leu Ser Ser Lys
530 535 540
His Val Asp Thr Lys Arg Leu Ile Gly Arg Asp Ala Ile Asn Tyr Leu
545 550 555 560
Tyr Asp Asn Val Tyr Ser Pro Ile Glu Thr Val Lys Phe Asn Asn Glu
565 570 575
Asp

<210> SEQ ID NO 81
<211> LENGTH: 1698
<212> TYPE: DNA
<213> ORGANISM: Issatchenkia orientalis
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (941) ... (941)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (943) ... (943)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 81

atgttaagat ccacagttcag aaaaatgtaa acaagaaccac tttctotagg
60
agaactttta cttccagcag ctcasaagcct gcggaaaaagt cttcataacaa tcgcaagatt
120
atatotgcac cgcggcgcct gatttggtgca gcagotggcct ottagatattgct ggtcagacgc
180
tcactgattc atgagsgagc acagcctgcct atcccaacata ggsagatctc tggagcgcag
240
tttgataac acacacactgc gagtattggt tggacactcttg ttaacggttaa cgtotatgac
300
tgagtattc tcatcaagtt gctacccagg gttataccca cattgatccaa aaacgcaggt
360
cagcagcgcg ctagataatga ccaagacgtt cactcagacgg gtaacattca gaacattctta
420
ccagsagggcta gcacatgggct gtttgtttggt ggtgagacgc ctaaatacag aagttgctt
480
gacggaagagg agaadacagc atgggagtttgt tgaactcactac tcccagactctctggctcagatgca
540
cacaacactt atgatcggc acataatcgtct tctagagttt tggcagacac acgatggaac
600
tatctctcg gttgagcacc gagatcggc acctgagcgc gaaacattca ggatacctac
660
agaacctct ctacagcacaat agttgctgct aagttgctagctttgctcagctggcagacgcatctc
720
atttagtta ccaagtgcgtct gtcgctctctc cagctgccgagcagcctcagctgggtcgct
780
gggcagaggg atggcgagtt ttcagctgct agaggcagc gtaaggaggg cgcttataccaag
840
atgtttctctc tctcgtctctcaacac gccggtctcgg gagaagatgc cagactacagc aattcctgag
900
gcagacactac gcagctctactacatgcaatcgcagacacgag ggnaatcag cagactctta
960
<p>| Met Leu Arg Ser Glu Phe Lys Asn Ile Leu Asn Val Asn Lys Asn |
|--------------|----------------|----------------|----------------|----------------|
| 1 | 5 | 10 | 15 |
| His Ser Leu Arg Thr Phe Thr Ser Ser Thr Ser Lys Ala Gly Lys | 20 | 25 | 30 |
| Asn Ala Ser Tyr Asn Ala Lys Ile Ile Ser Ala Thr Val Ala Ser Ile | 35 | 40 | 45 |
| Val Ala Ala Gly Ser Tyr Met Leu Val Gin Pro Ser Leu Ala Asn | 50 | 55 | 60 |
| Asp Glu Ala Gin Ser Ala Gin Ser Pro Thr Arg Lys Ile Ser Val Asp Glu | 65 | 70 | 75 | 80 |
| Phe Val Lys His Asn His Ala Asp Cys Thr Trp Ile Thr Val Asn Gly | 85 | 90 | 95 |
| Asn Val Tyr Asp Leu Thr Asp Phe Ile Ser Met His Pro Gly Gly Thr | 100 | 105 | 110 |
| Thr Pro Leu Ile Gin Asn Ala Gly His Asp Ala Thr Glu Ile Tyr Asn | 115 | 120 | 125 |
| Lys Ile His Pro Lys Gly Thr Ile Gin Asn Phe Leu Pro Lys Glu Lys | 130 | 135 | 140 |
| Gin Leu Gly Val Leu Asp Gin Gly Ala Pro Lys Ile Gin Val Val Leu | 145 | 150 | 155 | 160 |
| Asp Glu Lys Gin His Arg Leu Gin Leu Gin Asn His Leu Pro Ala | 165 | 170 | 175 |
| Leu Ser Arg Ile Gin Gin Ile Tyr Asp Phe Gin His Gin Asp Ser Arg | 180 | 185 | 190 |
| Val Leu Ser Gin Gin Ala Trp Gin Tyr Ser Cys Gin Glu Gin Gin Gin | 195 | 200 | 205 |
| Glu Ile Thr Leu Arg Gin Gin Gin Tyr Gin Gin Gin Gin Gin Gin | 210 | 215 | 220 |</p>
<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U8137953B2-65-continued</td>
<td>Lys Pro Lys Cys Cys Val Asn Val Ala Glu Val Asp Thr Ser His Glu 225 230 235 240</td>
</tr>
<tr>
<td>U8137953B2-66</td>
<td>Ile Leu Gly Thr Lys Ala Ser Val Pro Phe Tyr Val Ser Ala Ala Ala 245 250 255</td>
</tr>
<tr>
<td>U8137953B2-67</td>
<td>Ser Ala Lys Leu Gly His Glu Asp Gly Glu Cys Ser Ile Ala Arg Gly 260 265 270</td>
</tr>
<tr>
<td>U8137953B2-68</td>
<td>Ala Gly Lys Gly Val Ile Glu Met Ile Ser Ser Phe Ser Ser Asn 275 280 285</td>
</tr>
<tr>
<td>U8137953B2-69</td>
<td>Ser Leu Glu Glu Ile Ala Glu Ser Arg Ile Pro Gly Ala Thr Gly Trp 290 295 300</td>
</tr>
<tr>
<td>U8137953B2-70</td>
<td>Phe Glu Leu Tyr Val Asn Glu Asp Lys Xaa Xaa Val Lys Lys Thr Lys 305 310 315 320</td>
</tr>
<tr>
<td>U8137953B2-71</td>
<td>Lys Arg Ala Glu Asn Leu Gly Met Lys Ala Ile Phe Val Thr Val Asp 325 330 335</td>
</tr>
<tr>
<td>U8137953B2-72</td>
<td>Ala Ala Ser Arg Gly Asn Arg Glu Lys Asp Ile Thr Met Arg Ile Thr 340 345 350</td>
</tr>
<tr>
<td>U8137953B2-73</td>
<td>Glu Asp Thr Asp Glu Leu Ile Asp Ser Ser Val Arg Ala Gly Ser 355 360 365</td>
</tr>
<tr>
<td>U8137953B2-74</td>
<td>Thr Ser Gly Ala Leu Pro Ala Phe Ile Asp Lys Arg Leu Thr Trp Asp 370 375 380</td>
</tr>
<tr>
<td>U8137953B2-75</td>
<td>Glu Val Lys Asp Ile Ile Ser Trp Thr Lys Leu Pro Val Leu Leu Lys 385 390 395 400</td>
</tr>
<tr>
<td>U8137953B2-76</td>
<td>Gly Val Gln Arg Thr Asp Asp Ile Glu Lys Ala Ile Asp Ile Gly Cys 405 410 415</td>
</tr>
<tr>
<td>U8137953B2-77</td>
<td>Lys Gly Val Val Leu Ser Asn His Gly Gly Arg Gln Leu Asp Thr Ser 420 425 430</td>
</tr>
<tr>
<td>U8137953B2-78</td>
<td>Pro Pro Pro Ile Glu Val Met Ala Glu Ser Val Pro Ile Leu Lys Gln 435 440 445</td>
</tr>
<tr>
<td>U8137953B2-79</td>
<td>Lys Gly Lys Leu Asp Pro Asn Phe Ser Ile Phe Val Asp Gly Gly Val 450 455 460</td>
</tr>
<tr>
<td>U8137953B2-80</td>
<td>Arg Arg Gly Thr Asp Ile Leu Lys Ala Leu Ala Ile Gly Gly Arg Asp 465 470 475 480</td>
</tr>
<tr>
<td>U8137953B2-81</td>
<td>Cys Lys Val Ala Val Gly Leu Gly Arg Pro Phe Leu Tyr Ala Asn Thr 485 490 495</td>
</tr>
<tr>
<td>U8137953B2-82</td>
<td>Gly Tyr Gly Gln Gly Val Arg Lys Ala Val Gln Ile Leu Arg Glu 500 505 510</td>
</tr>
<tr>
<td>U8137953B2-83</td>
<td>Glu Leu Lys Ala Asp Met Arg Met Leu Gly Val Thr Ser Leu Asn Glu 515 520 525</td>
</tr>
<tr>
<td>U8137953B2-84</td>
<td>Leu Asp Asp Ser Tyr Ile Asp Thr Arg Arg Leu Gly Arg Asp Ala 530 535 540</td>
</tr>
<tr>
<td>U8137953B2-85</td>
<td>Val Asn His Ile Tyr Asn Asn Tyr Tyr Pro Met Ser Lys Ile Gln 545 550 555 560</td>
</tr>
<tr>
<td>U8137953B2-86</td>
<td>Phe Lys Arg Glu Lys 565</td>
</tr>
</tbody>
</table>

SEQ ID NO: 93
LENGTH: 1778
TYPE: DNA
ORGANISM: Kluyveromyces marxianus
SEQUENCE: 83

```
tagctaccaagtgctcgggctagatctgggtgcggcagggsgaaacatcgggtcttgatttcc
actcgttaatgtagaccatctttctcagaagtactggctcaatgacctgtgtgtgcagcacaag
ccctattctaccgcggactacaaagtcaatggcgagtggcagtagccagagcagtggagctcaggg
```
ttgttgggg gtgtttttgg aggtactttg atcggttgtg ggctgggtgc gtacattttg 240
ggtgcaggt tcggccaga ccagagctca tctccagcaag tcacggtttg gtccatttgtc 300
agactagagg atttggact gccaaggtac tcggacaaaga agacctttgg tacgctgtgc 360
gaggagttga aacgaggttg gataaacaacc ccagagaact ttcggagacgc caagagcgac 420
ttgacttcgc actcagacat atatgttccag tggccatacg gcagccagaac acagagaccc 480
gaacttcggt ttgctccgagg taacagggaa gaacgctcaag aattactccag catatgcccag 540
aagactcctca ttctgtcatt tcattccctcc ggtgagcacc gctctagagg ccattctctg 600
cccaagagcc gcggctctcg cgctgcttttg gcatactccag aagtacatgaa ccattatacc 660
agtgataagc ggaagacotc gcagcgtgctg tgcaaggggg gatcctcattg gagaactgta 720
agcgactacct gcagcagccag ggcgttttgtg tcggctgctg gtcctgtgctca agtgaagcgg 780
tcgcctggtc tatttggattc ttctgtccag gaaccaatgc gcacggtctac gcgtatttga 840
agaagaaaaagt gcggacacat aacatcggtg tcggcagctgg tattacatcag aacgacagaa 900
gagaacagag aaatctctct gcctttggcata acctgagcgg tcggatctac gcggagcagc 960
gtcctgtcgg tgttcgctgg cccacggctgg cggcagtgctg ctgctgtgttct ctcctagtta 1020
tccagggcctg ttaacctgggt actttttggc ggatccatga atvgaactagta 1120
tacaacagag cgctgtacct tcagaacagaa actggctcga atcaccacatt ctattttcca 1200
agatgctggg gagaacggaag aaagccatca aagagcgtgt ttaaagctgct gagaagattcg 1260
cctctcaccaca ccaaccagcc aactttgcaat ttgctctgtga tgaagaacag taaatgggat 1320
tgtggagagc tgaggatacg cctttttggt ctactttgtga tctcagagta aagttggattc 1380
caaaacgtcag cgtttggacc acogatgtttg cgcttcaatt accacacaatta gcccaggtta 1440
tcagcgtac acagagagga atgtacctgt ctgattattag aaccctctctct gttgctcatg 1500
coggtgacgg taatttttca ggtttccatca tttstcaactg ccagaaagct caagctgagc 1560
aaaaacggat gcaaaattag tcggagagac ccctgaggcc caaggttcgg atgtctgggtt 1620
aaacgctgt ttgattttag aaagagagat ttttggggtg aaggtctgggcc gaagatacacc 1680
ttgccggtc gagaagagtg aaacggtcct cggactctcaag gagagttttg aaccctgaca 1740
aggtcctcaag gatggacgcc aacagattaag 1778

<210> SEQ ID NO 94
<211> LENGTH: 592
<212> TYPE: PRT
<213> ORGANISM: Kluvyveromycetes marxianus
<400> SEQUENCE: 84

Met Leu Pro Arg Phe Val Val Arg Ser Gly Ala Ala Gly Arg Aen Leu
1 5 10
Gly Phe Ser Phe Thr Arg Lys Cys Aep His Thr Phe Leu Ser Lys Thr
20 25
Val Arg Aen Aep Leu Ser His Arg Pro Tyr Ser Thr Gly Thr Aen Gly
35 40 45
Aen Gly Ser Ala Ala Gly Lys Ser Gin Ser Gin Gly Leu Leu Phe Gly
50 55 60
Val Phe Gly Gly Thr Leu Ile Gly Gly Gly Gly Leu Val Ala Tyr Phe Leu
65 70 75
Gly Ser Lys Phe Aep Gin Gin Gin Ser Ser Gin Gin Val Ser Aep
95

Leu Ser Ile Ala Arg Leu Glu Asp Leu Asp Ser Pro Lys Tyr Cys Asp
100 105 110
Lys Lys Thr Phe Ala Thr Ala Val Glu Glu Leu Lys Gln Val Leu Asp
115 120 125
Asn Asn Pro Glu Asn Phe Ser Asp Ala Lys Ser Asp Leu Asp Ser His
130 135 140
Ser Asp Thr Tyr Phe Asn Ser His Ala Thr Pro Glu Gln Arg Pro
145 150 155 160
Glu Ile Val Leu Phe Pro Arg Asn Thr Glu Asp Val Ser Lys Leu Leu
165 170 175
Lys Ile Cys His Lys Tyr Ser Ile Pro Val Ile Pro Phe Ser Gly Gly
180 185 190
Thr Ser Leu Glu Gly His Phe Met Pro Thr Arg Pro Gly Ser Cys Val
195 200 205
Val Leu Asp Ile Ser Lys Tyr Met Asn Gln Ile Gln Leu Asn Lys
210 215 220
Glu Asp Leu Asp Val Val Gln Gly Gly Val Pro Trp Glu Asp Leu
225 230 235 240
Asn Asp Tyr Leu Asn His Gly Leu Leu Phe Gly Cys Asp Pro Gly
245 250 255
Pro Gly Ala Gln Ile Ala Gly Cys Ile Ala Asn Ser Cys Ser Gly Thr
260 265 270
Asn Ala Tyr Arg Tyr Gly Thr Met Lys Glu Asn Val Val Asn Ile Thr
275 280 285
Met Cys Leu Ala Asp Gly Thr Ile Lys Tyr Thr Lys Arg Arg Pro Arg
290 295 300
Lys Ser Ser Ala Gly Tyr Asn Leu Asn Gln Ile Ile Gly Ser Glu
305 310 315 320
Gly Thr Leu Gly Ile Val Thr Glu Ala Thr Ile Lys Cys His Val Arg
325 330 335
Ser Asn Phe Glu Thr Val Ala Val Pro Phe Pro Ser Val Ala Asp
340 345 350
 Ala Ala Ser Cys Ser Ser His Leu Ile Gln Ala Gly Ile Gln Leu Asn
355 360 365
Ala Met Glu Leu Leu Asp Asp Asn Met Met Lys Ile Ile Asn Lys Ser
370 375 380
Gly Ala Thr Ser Arg Thr Asn Trp Val Glu Ser Pro Thr Leu Phe Phe
385 390 395 400
Lys Ile Gly Gly Arg Ser Glu Lys Ala Ile Lys Glu Val Val Lys Glu
405 410 415
Val Glu Lys Ile Ala Ser Gln His Asn Asn Ser Asn Phe Glu Phe Ala
420 425 430
Ser Asp Glu Thr Lys Leu Glu Leu Trp Glu Ala Arg Lys Val Ala
435 440 445
Leu Thr Ser Thr Ile Asp Ala Gly Lys Leu Asp Pro Asn Val Asn
450 455 460
Val Trp Thr Thr Asp Val Ala Val Pro Ile Ser Lys Phe Ala Gln Val
465 470 475 480
Ile Asn Asp Thr Lys Glu Glu Met Asn Ala Ser Gly Leu Leu Thr Ser
485 490 495
71 Lieu Val Gly His Ala Gly Asp Gly Asn Phe His Ala Phe Ile Ile Tyr 500 505 510
Asn Ala Glu Gln Arg Lys Thr Ala Glu Thr Ile Val Glu Asn Met Val 515 520 525
Lys Arg Ala Ile Asp Ala Glu Gly Thr Cys Thr Gly Glu His Gly Val 530 535 540
Gly Ile Gly Lys Arg Glu Phe Leu Val Glu Leu Gly Glu Asp Thr 545 550 555 560
Ile Ala Val Met Arg Lys Leu Ala Leu Asp Pro Lys Arg Ile 565 570 575
Leu Asn Pro Asp Lys Val Phe Lys Ile Asp Pro Asn Asp His Gln His 580 585 590

<210> SEQ ID NO 85
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 85
gcgtatccaa tggtgatacc tc

<210> SEQ ID NO 86
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 86
gaaccaagc gtacttgaaa g

<210> SEQ ID NO 87
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 87
attaagacg ttatgtaga gtcgatcctca gg

<210> SEQ ID NO 88
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 88
ataatcttcga tatttgtaga atgtgtgaa tttg

<210> SEQ ID NO 89
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 89
gaagatccg tttgtaatta gtaagtttc tag

<210> SEQ ID NO 90
We claim:

1. A genetically modified yeast cell having (a) at least one functional exogenous lactate dehydrogenase (LDH) gene integrated into its genome and (b) a deletion or disruption of at least one native L- or D-lactate:ferricytochrome c oxidoreductase gene.

2. The genetically modified yeast cell of claim 1 having (a) a deletion or disruption of at least one native L-lactate:ferricytochrome c oxidoreductase gene and (b) at least one functional exogenous L-lactate dehydrogenase gene integrated into its genome.

3. The genetically modified yeast cell of claim 2, which is a cell of the genera *Candida*, *Saccharomyces*, *Shizosaccharomyces*, *Kluyveromyces*, *Pichia*, *Isschenkia* or *Hansenula*.

4. The genetically modified yeast cell of claim 2, which is a cell of the species *K. marxianus*, *S. cerevisiae*, *C. sonorensis*, *S. budleri* or *I. orientalis*.

5. The genetically modified yeast cell of claim 2 further having a deletion or disruption of at least one native pyruvate decarboxylase gene.

6. The genetically modified yeast cell of claim 2 wherein the deleted or disrupted L-lactate:ferricytochrome c oxidoreductase gene is a gene having a sequence identified as SEQ ID NO: 1, SEQ ID NO: 79 or SEQ ID NO: 81.

7. The genetically modified yeast cell of claim 2 wherein the deleted or disrupted L-lactate:ferricytochrome c oxidoreductase gene encodes for an enzyme having an amino acid sequence identified as SEQ ID NO: 2 SEQ ID NO: 80 or SEQ ID NO: 82.

* * * * *