Thank you for the opportunity to be your Talks & Telescopes speaker tonight! When Dan Kohne invited me to be the speaker, I asked what would the audience like to hear about? He said: We tell a lot about Shapley’s achievements here. Why don’t you tell what he did after Mount Wilson?

Tonight I share three stories from Shapley’s five decades of public life after he left to become Director of the Harvard College Observatory in 1921. They show how his character – which made him a non-conformist here – also drove him to depart onto odd, bold paths. Why these three stories? Each of these Shapley initiatives have important legacies for us today.

Tonight on the big poster at the entrance and on this slide we launch a ‘new’ portrait of Shapley. It’s about 1925, not long after he left here. He looks like the bold young astronomer. He is recognizable unlike other early ones frequently used. This new Mount Wilson poster is from an excellent print in the US Naval Observatory Archives/Margaret Harwood-Maria Mitchell Observatory Collection. Note what’s unusual: no telescope. A scholar of Shapley’s later life JoAnn Palmeri writes that he preferred not to pose with a telescope because he didn’t do that much observing compared to other leading astronomers. He was known more as Director of Harvard observatory and for his writing; hence the book. (Palmeri, Cosmos & Culture, p. 499)
Shapley arrived at the Harvard Observatory in April 1921 in a staff position but aiming to be Director in succession to Edward C. Pickering. On November 1, 1921, Shapley was made Director. He remained in the post for 32 years, though mandatory retirement December 31, 1952. His Paine Professorship continued through 1956.

Jumping ahead, my third story tonight tells how during a difficult phase in 1952-53, Shapley created a new path. In the 1950s and 1960s he spoke and wrote widely about the likely abundance of life on other worlds. In a closing video, you’ll hear him say his hopeful message, which inspired many.

CONTEXT: Shapley was awarded many medals, and maybe a dozen honorary degrees. He served many scientific organizations, some for years, such as Science Service. Shapley was author or editor of ~13 books (1926 – 1973). His full bibliography is searchable and prints as a 36-page pdf at https://harlowshapley.org/bibliography.

Harlow and Martha Betz Shapley raised their five children at the large Director’s Residence of where they often held parties for men and women observatory staff, visiting scientists, including those from abroad. See https://harlowshapley.org/blog/close-up-life-with-the-director.

Shapley had an eventful public life for five decades after he left Mount Wilson in April 1921 in line to be Director of Harvard College Observatory. He received the formal appointment November 1, 1921, one day before he turned 36. He had many achievements as Director and important member of the astronomical community. But he took on unconventional, bold tasks, too.

Tonight I extract three stories to how how his character – innovative, non-conforming, and thinking big – made him take on big challenges.

The question in these stories is “compared to what?” Not whether he realized his entire goals which were ambitious. But did he use his talents constructively? Did he bring results? At what cost?

I hope you’ll agree that by trying to conquer these “mountains,” Harlow Shapley left us great legacies today.
First let’s view what we could see of the Center of the Milky Way then and now. Using the 60-in at Mount Wilson Shapley mapped surprising distances to globular clusters. They revealed a skeletal structure with the Center far from where everyone thought since Copernicus placed our sun at the center in 1543. Shapley showed in Paper VII (1918) that the globular clusters were arrayed around a region in the constellation Sagittarius.

The actual Center could not be seen with optical telescopes. Yet this black-white image of the densest part of Sagittarius is dramatic. It was taken in 1921 at the Harvard station in Arequipa Peru. This print was saved by Margaret Harwood who worked at Harvard College Observatory and directed the Maria Mitchell Observatory. I show it by permission of USNO Archives Harwood Collection.

Decades later, using infrared, astronomers could study the Center in detail. The main image is Wide Field Infrared Milky Way Center by Judy Schmidt in 2016. https://www.flickr.com/photos/geckzilla/30413693773.

The real center is the supermassive black hole Sgr A*. In May 2022 a group of astronomers using the Event Horizon Telescope released an image of this amazing black hole. You may see where the center or Sgr A* is on these images by request at https://harlowshapley.org/contact. Harlow Shapley Project Advisor Jeff Kanipe has put an arrow overlay pointing to Sgr A* on each. But tonight we wanted to show you the center in its naked glory as seen, then and now.

NEWS SOURCE AND POPULARIZER

- Shapley had been a newspaper reporter in tough towns in Kansas and Missouri.
- Besides scientific papers and correspondence, Shapley’s Harvard office became a hub for news of astronomy and other fields.
- Hale’s brainchild, the Science Service wire news service, started at this time. Its first editor Edwin Slosson and Shapley allied in the cause of better science journalism.
- Shapley became a ready source for reporters. He began lecturing in a learned yet witty style. His simple language was quotable.

Here is Shapley in his office dictating with a Dictaphone. His famous revolving desk at left. Image is Family Collection.

The Dictaphone was modern. Mostly he relied on wax cylinders he spoke into. He had one machine in his bedroom, one in his office and eventually one in his car!

When he had finished dictating a batch of correspondence, articles, lectures, etc, he would carry the cylinder to the desk of his secretary, Arville D. Walker. “Billy” Walker would set that cylinder going and start typing like the wind! I have now read hundreds of pages of documents typed by ‘ajw,’ but there are thousands. She stuck with him from 1922 through 1952 at least. She was a Christian Scientist so never missed a day due to illness!

Here is Shapley in his office dictating with a Dictaphone. His famous revolving desk at left. Image is Family Collection.

The Dictaphone was modern. Mostly he relied on wax cylinders he spoke into. He had one machine in his bedroom, one in his office and eventually one in his car!

When he had finished dictating a batch of correspondence, articles, lectures, etc, he would carry the cylinder to the desk of his secretary, Arville D. Walker. “Billy” Walker would set that cylinder going and start typing like the wind! I have now read hundreds of pages of documents typed by ‘ajw,’ but there are thousands. She stuck with him from 1922 through 1952 at least. She was a Christian Scientist so never missed a day due to illness!

In the 1920s science articles sell papers! The new radio broadcasters sought to fill the airwaves. Shapley made his Harvard office a news hub, by wiring stories to reporters and to Science Service. Science Service itself wrote and sent more quality science news to subscribing papers. The 1925 trial of Professor Scopes for teaching evolution in Tennessee was a watershed. News coverage of science spiked.

Shapley was carrying out G.E. Hale’s wish that astronomers get out of ivory towers and reach out to the public. The modern science press was born.

Shapley continued assisting Science Service through the 1950s, eventually on the Executive Committee and as President.

“Astronomy Talks Over Radio Listed,” Boston Globe, November 2, 1925. Shapley initiated this series of 15 talks by him and other members of HCO staff.

“Science at Threshold of a Golden Age in Astronomy,” New York Times Nov 8, 1931. This was one in a series of yearly roundups Shapley provided the press which got wide coverage. See op. cit. Bryant, “The Great Communicator.”

Chart shows the ratio of science to non-science content in popular magazines grew 1911-1955, Fig 2.1 in Marcel C.LaFollette, Making Science Our Own, U. of Chicago Press, 1990.

The Rockefeller Foundation made two decisions in 1928 that were fateful for US astronomy. It awarded funds to Caltech for the next generation telescope, double the size of the 100 in on Mount Wilson. Thus Caltech, Carnegie, Mount Wilson and Lick would benefit. The decision was a long-term blow to East Coast astronomers and Harvard.

Shapley compensated skilfully by using Harvard’s extensive array of southern and northern telescopes to map many star and cluster types and galaxies. This work expanded and used Harvard’s huge catalog of past plates. The Shapley-Ames Catalog of Brightest Galaxies published in 1932, using Hubble’s classification system, was used by West Coast astronomers. See Owen Gingerich, Marcia Bartusiak and other sources. Carnegie’s Allan Sandage later wrote that the Shapley-Ames catalog “was the best thing Shapley ever did.” It was updated only in 1981 - by Sandage.

“200-INCH EYE” is New York Times, 11-6-30.

In 1931 Howard Blakeslee of AP asked Shapley what he would do with a 200-inch telescope. Shapley replied: “See Exodus, Chapter 20, 17th verse. Thou shalt not covet thy neighbor’s house.” Bryant, op cit, p. 27.
Shapley's writing and media activities from 1920 got the public excited about the baffling revelations by LeMaître, Slipher, Hubble, Einstein and others. The stories made popular newspaper copy in the gay 1920s and in the Great Depression.

Sorry, this chart didn’t have space for medals and honorary degrees Shapley received in this era. He also was on the cover of Time June 29, 1934.

Page does not show Shapley’s service for & leadership of major scientific societies: American Philosophical Society, Sigma Xi, Phi Beta Kappa, AAAS, etc. A more complete list is at See Harlow Shapley by Owen Gingerich in Dictionary of American Biography, Scribner’s, vol. 12, New York,1975, pp. 345-352.

By the early 1930s Shapley had a good life; his observatory was growing, new equipment was coming online, the first PhDs in astronomy were emerging from his new graduate program; The big Residence had five lively Shapley children and a competent warm wife to manage it; the family hosted musicales, seminars, and distinguished guests. "Let’s invite everybody" he said when "cooking up" a party.

Yet from 1933 Shapley added another bold departure: his campaign to rescue scientists displaced by the Nazis and bring them to good jobs in the US.

Obstacle One was strict US immigration rules. Ken Burns’ “The US and the Holocaust” makes clear that the top State Department official, Breckinridge Long, did not want foreigners including Jews entering our country. In fact most Americans did not want them, either.

An applicant could only get a visa if they showed a valid job offer so they would not become a “public charge.” Shapley asked Harvard and other universities to identify suitable jobs to be matched with scientists and scholars needing to flee.

Obstacle Two was the Depression. University department heads pinched to give jobs and eventual pensions to home-grown talent. Shapley’s program required both pay and a pension as part of the deal for each man.

So he went around raising funds for the “rescues.” But his goal of a national asylum program led by Harvard did not happen.
Notice this photo of Shapley in the 1930s. So where's the happy, successful astronomer? We never saw him glower like this! The photo was chosen for the only detailed account of Shapley's campaign to rescue scientists and scholars – most of them Jews – from the Nazis. On the left is Bessie Judith Zaban Jones. I'll call her Bessie on account of her lovely lace collar. She was one of eight children in an orthodox Jewish family which emigrated from eastern Europe to Atlanta in 1895. She got to the University of Chicago. There she met Howard Mumford Jones, a Harvard Professor. They married in 1927. Later, Bessie co-authored a history of the Harvard Observatory. But in the histories she found a gap. Shapley's campaign to save Jewish and other scholars was missing! She went to the Harvard Archives and produced this, the only account, published in 1984. (The files are there. Someone could go back and fill the story in and find their descendants.)

Tonight my question is: Compared to what? When have the leaders of science jumped into humanitarian rescue of colleagues devastated by evil regimes and war? Syria? Iraq? Ukraine? In the 1930s, which other institutions and leaders took on this challenge?

From 1933 Shapley served on the Emergency Committee Executive Committee, with other pre-eminent supporters “to make the activity appear to the public to be worthy of approval.”

Shapley’s “asylum plan” for US universities to take scholars became the National Research Associates, “a small group of displaced scholars at an age beyond which places might be found at a college or university.” pp 84-85 The funds he raised were turned over to the Emergency Committee to provide a “modest yearly grant” until the fund was expended in the early 1950s.

I digress briefly to another fascinating legacy. You’ve heard of Edward R. Murrow?

Murrow served from London as Assistant Secretary of the Emergency Committee from 1932. He arranged the exits of scholars and scientists needing to get out. He had sources behind enemy lines and elsewhere – reporting who was hiding under a bridge, or last seen on a road somewhere. In 1935 Murrow joined CBS Radio as European Chief of Staff. From 1937 Murrow’s live broadcasts reporting on the unfolding war in Europe were based on the network of informants he developed for the Emergency Committee. After going to CBS, Murrow continued to aid refugee scholars and Emergency Committee. p 185. Murrow photo: wikis.uit.tufts.edu.
At Harvard College Observatory Shapley hired British, Canadian, Dutch astronomers. In the 1930s and 1940s he hired several from threatened countries. In the 1939 “foreign group” photo we circled Richard Prager, the variable star expert from Berlin.

Shapley writes in Rugged (1969 p. 127) “Nearly a hundred rescues went through or touched my office.” But the folders in Harvard Archives are thick suggesting more than a hundred people were likely helped by his campaign. Note: Activists like Shapley kept quiet to avoid getting others involved in trouble, so great was the suspicion of helping foreigners.

The Shapleys welcomed foreign arrivals to parties to share some “joys,” as he put it. In one letter he wrote: “Tonight, it happens, the wife of professor Philipp Frank is teaching about 30 of the Observatory people Hungarian folk dances in my home.” Jones, op. cit. p 229.

The FBI began following him in 1946. (He did not know this.) Actually Shapley had no past or current communist inferences, unlike Robert Oppenheimer, for example.

In that era many people were scared. Among co-workers and friends were there spies? Thank you for coming to my lecture tonight instead of the premiere of Oppenheimer! You'll feel the tension and suspicion people felt toward others when you see the film or read Kai Bird and Martin J. Sherwin’s terrific biography American Prometheus.

Shapley’s liberal political activities made him enemies on the Harvard Corporation which oversees the Observatory.

In 1946 Shapley was subpoenaed by John Rankin (D-Miss) Chair of the Investigations Subcommittee of the House Un-American Activities Committee (HUAC). The charge was way off - baseless. But Shapley with the Harvard lawyer and their secretary appeared in the Subcommittee Hearing Room November 14, 1946. Rankin made the lawyer and secretary leave, so only him, Shapley and one committee staff were left. A contretemps; Shapley wrote their words on notepaper, which Rankin grabbed.

The press was outside the hearing room when they came out. The afternoon editions quoted Rankin (“never…more contempt”) and Shapley's charge of “Gestapo Tactics” by a “Star Chamber.” Shapley’s defiance of Rankin and HUAC was widely reported. He became a hero to the Hollywood Ten whom HUAC was also targeting.

Shapley called to abolish HUAC immediately and in following years. October 27, 1947 NBC broadcast a "Parade of Stars" opposed to HUAC. Shapley spoke along with Humphrey Bogart, Lauren Bacall and other stars. A typical appearance.

Edward U. Condon was the most prominent scientist targeted by the Right in the late 1940s. But Condon was in government and could not speak out. Shapley had the platform of the university and his fame. He spoke for academic and government scientists, intellectuals – everybody. Shapley stood up for Negro rights and championed Truman’s anti-lynching bill.
About his meetings with refugees Shapley wrote: “The Federal Bureau of Investigation watched all this, but we didn’t worry too much about that….We knew that a person who had escaped from an East European country might be tinged with communism.” Through Rugged ways to the Stars (1969) p. 127.

In his politics “Shapley showed the same independence of thinking and approach that had brought him fame during his studies that led to the discovery of the center of the galaxy,” Bok “Harlow Shapley, Biographical Memoir” op. cit. p 255.

1943 Shapley organized with US Polish society Copernican Quadracentennial 1943 to a packed Carnegie Hall. Albert Einstein, Henry Ford, other celebrities honor Polish freedom.

Martha Sharp (of Ken Burns’ Sharp & War) ran for Congress from Massachusetts. She asked for funds from ICSAAP, a peace group Shapley was involved with. This set off suspicion by HUAC and the FBI.

Shapley chaired ICSAAP’s peace conference in 1949, opposed by right wing press and others. 20,000 gathered at Madison Square Garden with police outside.

1950 Shapley opposed publication of Velikovsky’s Worlds in Collision.

1950 Martha Shapley was told by military security not to go near the MIT lab she had worked at fulltime since 1942. Family organized her appeal for reinstatement and won; she went back.

In 1952 he learned Harvard Corporation will not make him a University Professor. He continues as Paine Professor through 1956.

HCO has too many facilities. Staffing low. So is pay. Whipple and Menzel get HCO large federal funds.

At Rome IAU conference in Sept 1952 he hears Walter Baade present findings there are two populations of Cepheids remeasures the universe. Shapley missed it!

3 INSPIRING MANY ABOUT SCIENCE, LIFE IN THE UNIVERSE

1952-1953 were difficult years. Yet Shapley created a Harvard course that combined disciplines in the field now called Cosmic Evolution.

New science led Shapley to change his past views. He concluded life must be abundant in the universe. In 1953 Shapley defined the “liquid water belt” among six conditions for a planet to support life.

In 1953 he set out a calculation of the odds a star might host a habitable planet. He spoke and wrote on this theme through the 1950s. In January 1960 Frank Drake credited Shapley’s estimation of the odds. So Shapley framed the 1961 Drake Equation, the second most famous equation in science.

Shapley shared his new vision of man’s place in the universe in talks, books and a film ‘Of Stars and Men.” You’ll hear him to the tune of lovely imagery in a few minutes.

Explore further: Shapley described “cosmography” Shapley, H._American Scientist_42 (3)_July 1954_p. 471-486.
Shapley’s retirement allowed him to connect with projects and speak on themes that related to his widening world (or cosmic) view. Science sources:

He was in Albion, South Dakota on October 4, 1957, History changed on October 4, 1957 when the Soviet Union changed history by launching the earth-orbiting Sputnik satellite. Americans were shocked by the Soviet achievement. The hall he spoke in was jammed.

"I couldn’t roll ‘em in the aisles. No place to roll!”, Shapley writes to the Phi Beta Kappa office, from a motel in Vermillion, S. D.

The liquid water belt test suggests which planets around a star might have life and be worth searching for, which was technologically impossible at that time. Yet Shapley’s discussion of how to locate “life theaters” was prescient. The test - also called the habitable zone test - is used in today’s exoplanet search at the frontier of astronomy and astrophysics.

For the record: The concept of “zones” of distance from a star that might host life was introduced in 1953 by Hubertus Strughold, an aviation medical expert, in Mars the Green and Red Planet. The term used in exoplanetary studies is CHZ, Circumstellar Habitable Zone. The term “habitable zone” was introduced in 1959 by American astrophysicist Su-shu Huang.

- UNCONVENTIONAL RETIREMENT

Shapley’s retirement allowed him to connect with projects and speak on themes that related to his widening world (or cosmic) view. Science and religion was one theme. He spoke in favor of ‘rational religion’ and against ‘hocus pocus.’ He knew the fundamentalist cultures from his midwest upbringing, so had points of connection with these audiences. He wanted them to see the world more through the eyes of science not “hocus-pocus.”

He chose to visit small underserved colleges in the Midwest and south. Albion College, U of Arkansas, LaFayette College, Randolph-Macon Women’s College and Southwestern at Memphis were among those he visited in 1957-58 for the Phi Beta Kappa Society.

"6 - Finally, life must get started and establish a tenacious hold on seas, shores or inland."

The liquid water belt test suggests which planets around a star might have life and be worth searching for, which was technologically impossible at that time. Yet Shapley’s discussion of how to locate “life theaters” was prescient. The test - also called the habitable zone test - is used in today’s exoplanet search at the frontier of astronomy and astrophysics.

For the record: The concept of “zones” of distance from a star that might host life was introduced in 1953 by Hubertus Strughold, an aviation medical expert, in Mars the Green and Red Planet. The term used in exoplanetary studies is CHZ, Circumstellar Habitable Zone. The term “habitable zone” was introduced in 1959 by American astrophysicist Su-shu Huang. Wiki CHZ article.

- "WE ARE NOT ALONE" - 1953

Shapley responded fast as a scientist away from his previous view that life could not occur elsewhere. In the 1950s most scientists saw no way advanced life could exist elsewhere; their views were important rebuts to the UFO scares of the period.

Then astronomers began to agree that planet formation could occur naturally around star. To this Shapley factored in Miller’s results, that validated earlier theories of the British biochemist J. B. S. Haldane and the Russian biochemist Aleksandr I. Oparin (1924, 1936, 1938).

Graphic: Representation of early earth (Ron Miller) Source: Earth Lighteningimages.pages

Shapley went on the road. He chose to visit underserved colleges in the Midwest and South and women’s colleges. He believed all people benefit from exposure to science. As more people engage with science society matures. "So let me tell you what happened to my 20 people who came from people who came there."

One example He was the first Visiting Scholar in Phi Beta Kappa’s Visiting Scholars Program. VPS was cooked up by PBK’s President Kirtley Mather and Shapley himself.

VPS was introduced in 1959 by American astrophysicist Su-shu Huang. Bibcode:1953Sci...117..528M. doi:10.1126/science.117.3046.528. PMID 13056598.

Shapley responded fast as a scientist away from his previous view that life could not occur elsewhere. In the 1950s most scientists saw no way advanced life could exist elsewhere; their views were important rebuts to the UFO scares of the period.

Then astronomers began to agree that planet formation could occur naturally around star. To this Shapley factored in Miller’s results, that validated earlier theories of the British biochemist J. B. S. Haldane and the Russian biochemist Aleksandr I. Oparin (1924, 1936, 1938).

Shapley responded fast as a scientist away from his previous view that life could not occur elsewhere. In the 1950s most scientists saw no way advanced life could exist elsewhere; their views were important rebuts to the UFO scares of the period.

Then astronomers began to agree that planet formation could occur naturally around star. To this Shapley factored in Miller’s results, that validated earlier theories of the British biochemist J. B. S. Haldane and the Russian biochemist Aleksandr I. Oparin (1924, 1936, 1938).

Graph: Representation of early earth (Ron Miller) Source: Earth Lighteningimages.pages

Shapley’s retirement allowed him to connect with projects and speak on themes that related to his widening world (or cosmic) view. Science and religion was one theme. He spoke in favor of ‘rational religion’ and against ‘hocus pocus.’ He knew the fundamentalist cultures from his midwest upbringing, so had points of connection with these audiences. He wanted them to see the world more through the eyes of science not “hocus-pocus.”

He chose to visit small underserved colleges in the Midwest and south. Albion College, U of Arkansas, LaFayette College, Randolph-Macon Women’s College and Southwestern at Memphis were among those he visited in 1957-58 for the Phi Beta Kappa Society.

History changed on October 4, 1957 when the Soviets launched the earth-orbiting Sputnik satellite. Americans were shocked by the Soviet advance.

Shapley writes to the Phi Beta Kappa office, from a motel in Vermillion, S. D.

At Albion “there was a riot” People along the edges and in the aisles. “I couldn’t roll ‘em in the aisles--no place to roll!”
Actually the PBK Visiting Scholar program was created by then President Kirtley Mather, a Harvard geologist, with Shapley. The Scholar would agree to make "a few" visits to campuses during an academic year. He would be paid $250 for completing two days on a campus, plus travel expenses. Shapley would speak to the school audience, meet with faculty and students, maybe also speak at chapel. Local reporters covered the famous visitor, so his message spread via the press.

In 1971 Mather said no Visiting Scholar had equaled Shapley's record of visiting 25 campuses in one academic year. The PBK office loaned me an old folder with Shapley's correspondence with Frances Robb, the official who managed Shapley's travel arrangements and expense account. Now I'll quote from their letters shown on the slide. These are about the last visits on his tour.

October 1957 "Goshamitey! I find a scrap of paper+ for a few minutes [to report] that the tour (if you will kindly excuse the understatement) is something. People, dammem, like me and I talk, talk, talk..." But Dr. Shapley what's this about Hoyle, and about flying saucers, and Russian spies? When you grow up and do this tour, don't come to Cornell..."

Deb read their final humorous exchange about his expense account, in May, 1958.

The V Program is going strong today. See https://www.pbk.org/VisitingScholars.

Quote sources:
Of Stars and Men: "Millions of planetary systems..." p. 112.
"Whenever the physics...emerge, persist and evolve" p. 113
"Biochemical evolution on... equaled or attained much greater development" p. 144.

Filmmakers John and Faith Hubley approached Shapley about turning his book into an animated film. "Of Stars and Men" was released at the Venice film festival in 1961. Previously Shapley was heard in lecture halls and the radio. Now the public also heard him read the poetic text of his book. You'll hear him too in a few minutes.

Marilyn Monroe's copy of a first edition on Ebay. Shapley was a hero to many Hollywood stars from his calls to abolish the House Un-American Activities Committee. When Cong. John Rankin, Chairman of the HUAC Investigations Subcommittee subpoenaed Shapley in 1946, at the time he was going after the Hollywood Ten. This story is on previous slide.

Why it was daring:
Once word of Project OZMA leaked, Struve wrote that it has "aroused more vitriolic criticisms and more laudatory comments than any recent astronomical venture. It has divided the astronomers into two camps: those who are all for it and those who regard it as the worst evil of our generation."

Birth of SETI:
“Harlow Shapley was among the intellectual fathers of SETI, preceding even Drake and Sagan,” interview,

A.G.W. Cameron Interstellar Communication: A Collection of Reprints and Original Contributions (1963). Cameron’s introduction quotes Shapley’s “overly cautious view of the probabilities of life in the universe” on pp 1-2. One of the eleven was Carl Sagan, then a 29-year old graduate student.

Drake had studied at Harvard College Observatory from 1952. He earned his PhD in 1955. Per earlier slide, from 1952 Shapley launched is popular course in Cosmology and wrote the paper “Climate and Life” for Climatic Change, published 1953.

Author has lots of clips like this in Newspaper Clips 1959-61. See newspapers.com.

Main image is Stevens Point, Wisconsin, Danforth Lecture, Oct 15, 1959.
The text continues:
“Dr. Shapley is credited by some of his colleagues with having delivered more lectures on science especially astronomy than almost any other ranking American scientist. He combines wit, verve and eloquence with mastery of his own field and his knowledge of other fields of science. His interests extend from the psychology of the ant, on which he has written three technical papers, to the farthest reaches of space.”

Photos: Australia welcome and ‘cigars’ are by permission of Harvard University Archives.

Sources: Steven J. Dick interview with Deborah Shapley, April 2020. "Drake and Sagan get the credit but Shapley is the intellectual father of SETI!"—S J Dick interview.

Forerunner: In 1913 Lawrence J. Henderson put forth the idea “for the whole evolutionary process, both cosmic and organic, is one.” Quoted by Dick in Biological Universe p. 257. Henderson was not publishing in the 1950s and 1960s, when Shapley seized on Miller-Urey experimental results and the latest in plant formation to develop and promote this message.

Please note how long many of his books stayed in print. A Treasury of Science was a regular Book-of-the-Month Club selection, with five editions from 1943 to 1963.

Shapley’s relentless production of readable books (and articles) may be why Sylvia Nasar, in A Beautiful Mind, writes that Harlow Shapley’s name was known by every educated American household. “No doubt an exaggeration. But tonight my question is—What drove this unusual activity? And compared to whom? What was the legacy?”

Another quote from S.J. Dick: “In the 1960s Shapley’s books spread these ideas worldwide” intro to Cosmos & Culture p 47.

Quote source Biological Universe page 57. It continues: “Impressive photos of galaxies (fig 2.3 of Andromeda) belied [Alfred Russel] Wallace’s worldview and came to symbolize the new universe, without a center or even the possibility of a center.”

One statement of Shapley’s vision (Of Stars and Men p.149): “With our confreres on distant planets; with our fellow animals and plants of the land, air and sea; with the rocks and waters of all planetary crusts, and the photons and atoms that make up the stars— with all these we are associated in an existence and an evolution that inspires respect and deep reverence… As groping philosophers and scientists we are thankful for the mysteries that still lie beyond our grasp.”

Sources:
Bok quote in Heritage of Copernicus, Ch, 2 by Bok “Harlow Shapley and the Discovery of the Center of our Galaxy” p. 26.
Gingerich in “Harlow Shapley’s Impact,” reprinted in Matthews, Mildred Shapley Shapley’s Round Table, p. 287
Let's hear Shapley explain his message himself! Slow down. Get in the mood to look up at the stars in wonder. Now you can enjoy a video clip from the end of "Of Stars and Men". This is the animated film of his book made by John and Faith Hubley. They selected passages from the book to illustrate, music by Bach, Vivaldi, Mozart, and Shapley as the narrator reading his poetitic words.