

Liquid Rocket Engine Sizing LPL Crash Course Lecture Series

By: John Targonski April 27, 2018

Topics to Cover

- Introduction
- Propellants
- Nozzle Sizing
- Chamber Sizing
- Jessie & James Example

This lecture will be focused on application and minimal theory will be discussed

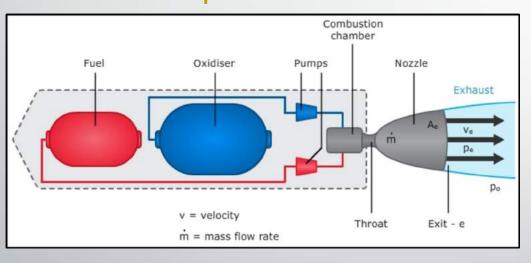
-Assuming Knowledge of basic thermodynamics, fluid dynamics, and converging/diverging nozzles

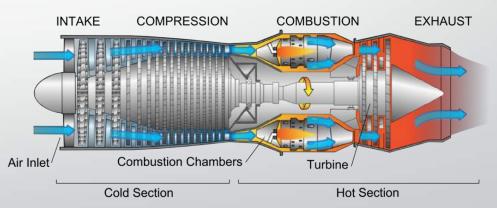
USCViterbi

School of Engineering

Ideal Rocket Equation

mf = full mass M = instantaneous mass of rocket me = empty mass u = velocity of rocket mp = mass of propellant t = time $F = net force = thrust = m V_{eq}$ lsp = specific impulse V_{eq} = equivalent engine exhaust velocity = lsp g_{0} Newton's second law of motion: $\frac{d M u}{dt} = F = V_{eq} \frac{d m p}{dt}$ $M du + u dM = V_{eq} dmp$ Assume we move with rocket --> u = 0 $M du = -V_{eq} dM$ Mass of rocket varies with time: $du = -V_{eq} \frac{dM}{M}$ M(t) = me + mp(t) dM = - dmp $\Delta u = -V_{eq} \ln (M)$ me MR = propellant mass ratio = $\frac{mf}{me}$ $\Delta u = V_{eq} \ln \left(\frac{mt}{me}\right) = V_{eq} \ln MR = Isp g_o \ln MR$

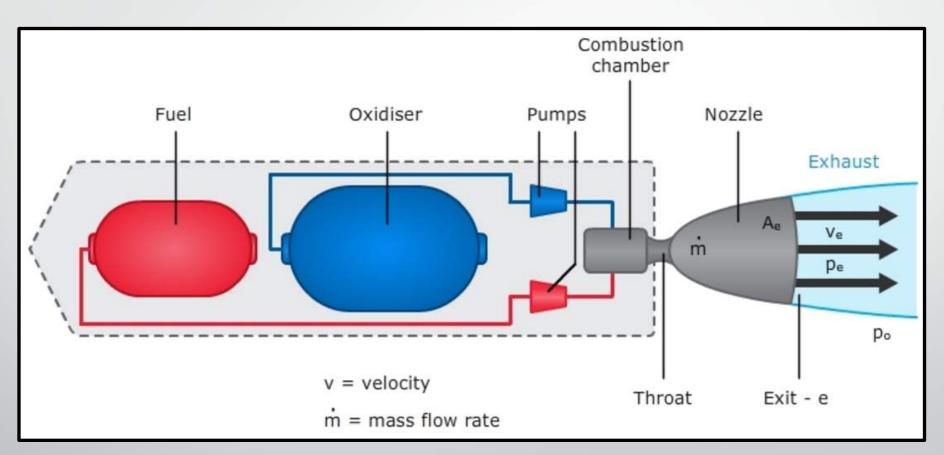

From https://spaceflightsystems.grc.nasa.gov/education/rocket/rktpow.html


Introduction

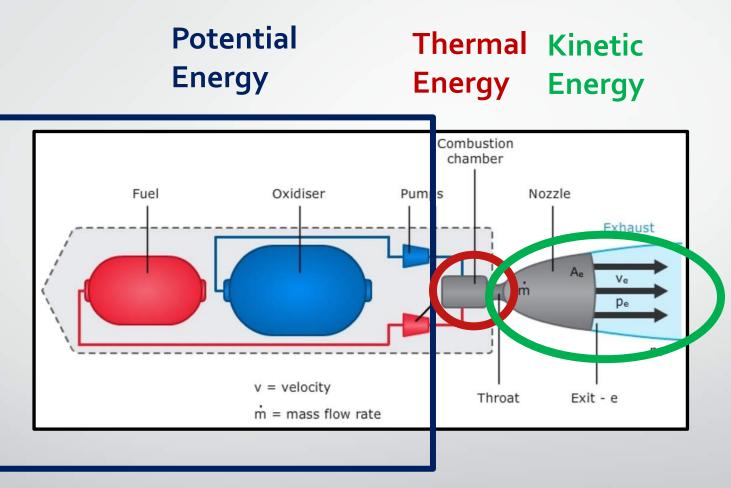
Difference between a rocket and jet engine?

Rocket Propulsion

Air-Breathing Propulsion


Rockets need to bring their full stock of propellant with them (Fuel and Oxidizer)

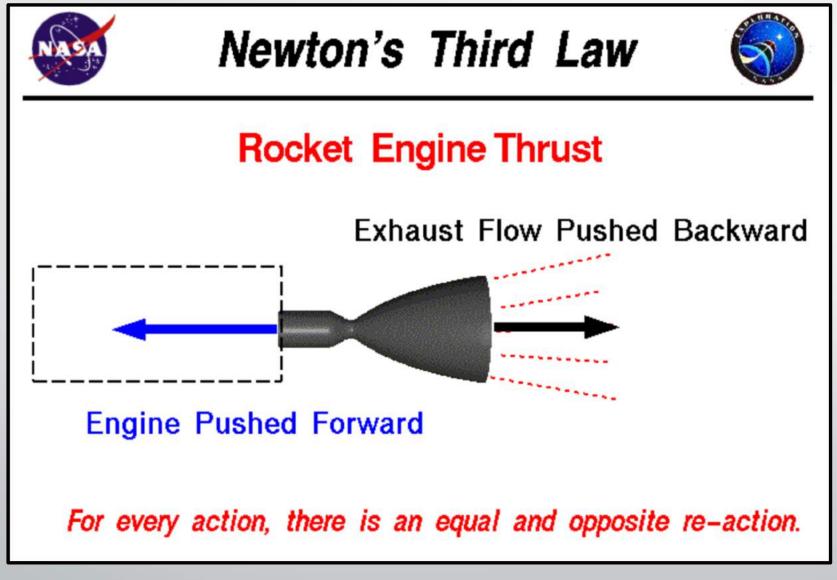
Air-breathing propulsion pulls oxidizer in from the environment


Basic Rocket Architecture

From https://www.grc.nasa.gov/www/k-12/rocket/lrockth.html

Thrust Generation

Rocket Engines generate thrust by taking potential energy (propellants), converting that to thermal energy (combustion chamber), and converting that into kinetic energy (nozzle)

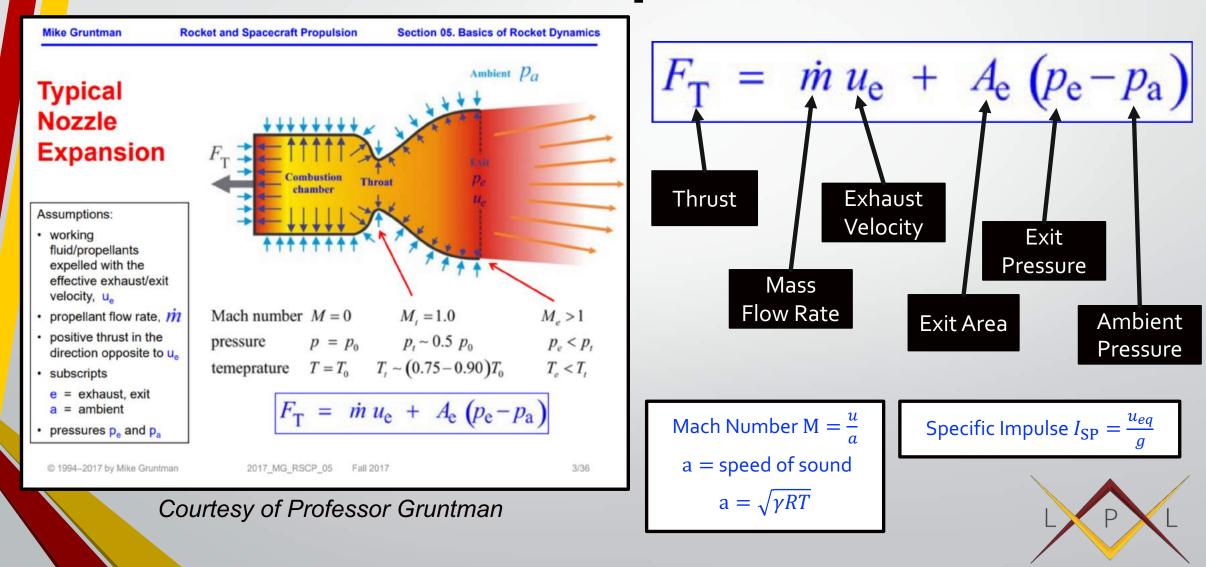


USCViterbi

School of Engineering

USCViterbi

School of Engineering



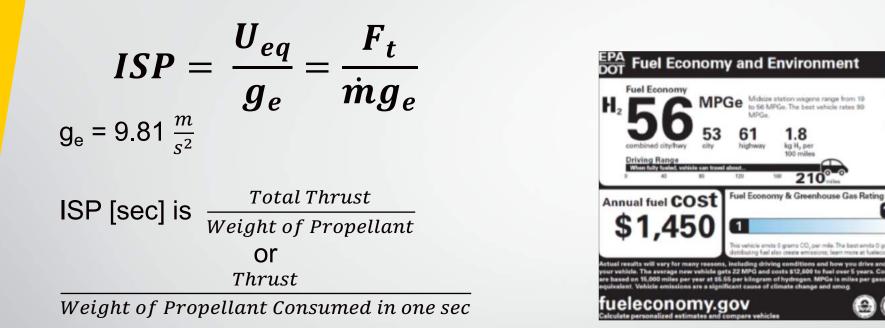
From https://spaceflightsystems.grc.nasa.gov/education/rocket/newton3r.html

USCViterbi

School of Engineering

Thrust Equation

Specific Impulse (ISP)


USCViterbi

Hydrogen Fu Cell Vehic

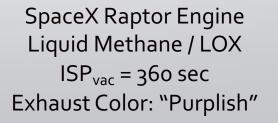
H

You Save

School of Engineering

Think of ISP like you do for gas mileage for a car How efficient is your conversion of propellant energy to spacecraft impulse?
Higher ISP the better rocket engine performance ISP is a function of chemistry

USC Viterbi School of Engineering


ISP of Various Propellants

Chemistry	ISP [sec]
Solids	220-300
Monopropellant	150-230
Liquid Hydrocarbon	250-350
Liquid Hydrogen / LOX	450

Saturn V F1 Engine RP-1/LOX ISP_{vac} = 300 sec Exhaust Color: "Yellowish"

Space Shuttle Main Engine Liquid Hydrogen / LOX ISP_{vac} = 450 sec Exhaust Color: "Clear"

USCViterbi

School of Engineering

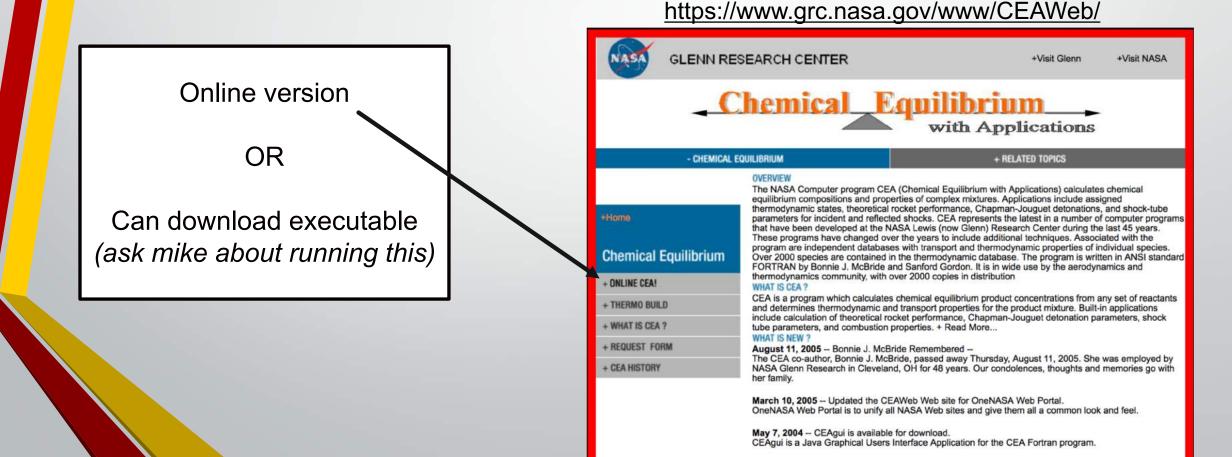
Design Choices

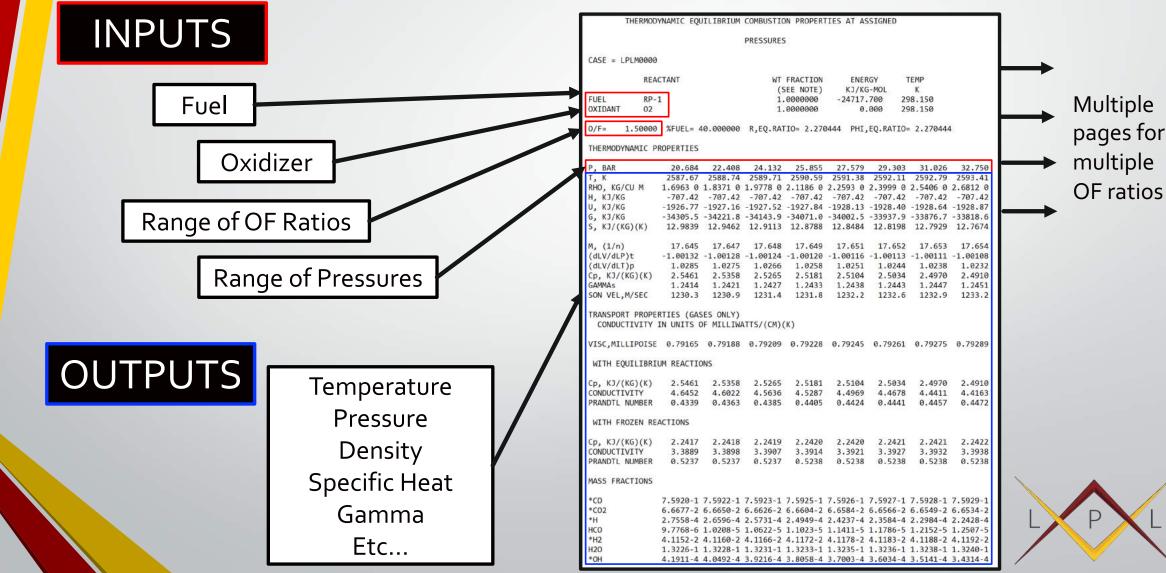
Which Propellants?

- Not going to cover in this lecture
- Considerations include:
 - Storability
 - Cryogenic?
 - Toxic?
 - Stability
 - Heat Transfer Properties
 - Density
 - Freezing Point
 - Contained Energy

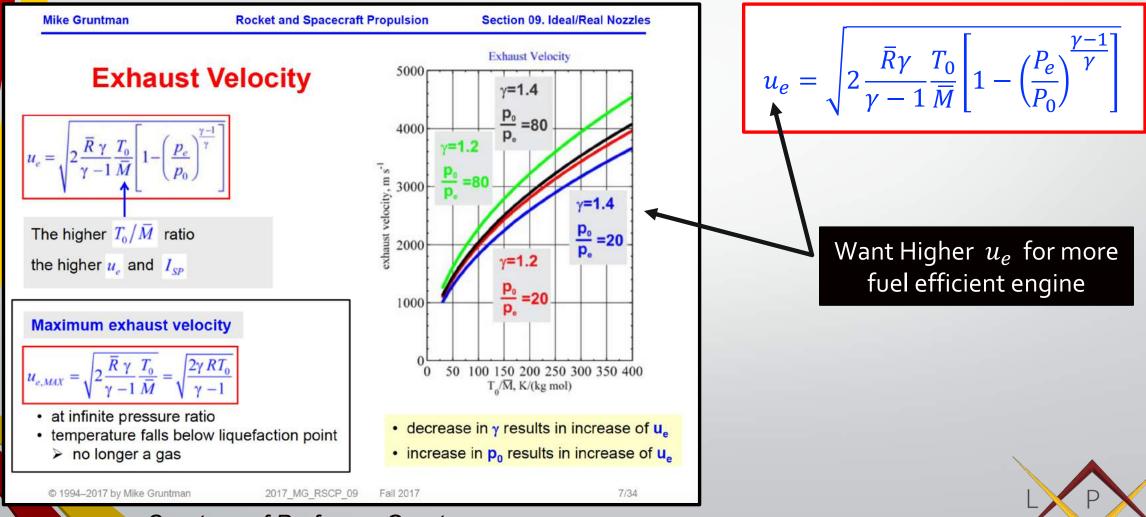
Thermodynamics

Not covered fully in this lecture


- Thermodynamics will tell us:
 - Chamber temperature
 - Combustion gas specific heat
 - Combustion gas ratio of specific heats
 - Much more....
 - How do we practically determine thermodynamic properties at LPL?
 - NASA CEA


NASA CEA

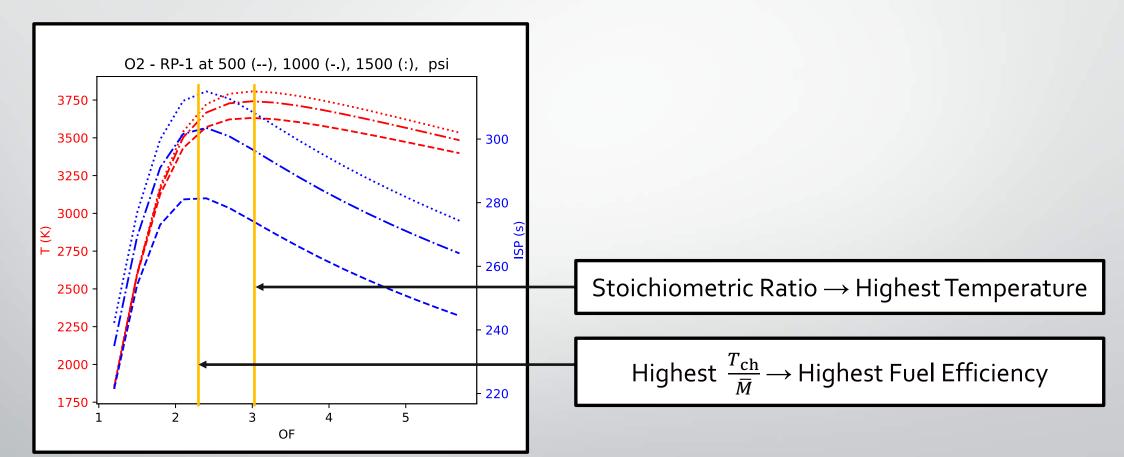
- Software used to determine thermodynamic properties of combustion gases
- Interpolates from lookup tables (that's why it's so quick!)


NASA CEA

USCViterbi

School of Engineering

Exhaust Velocity



Courtesy of Professor Gruntman

USCViterbi

School of Engineering

CEA Results

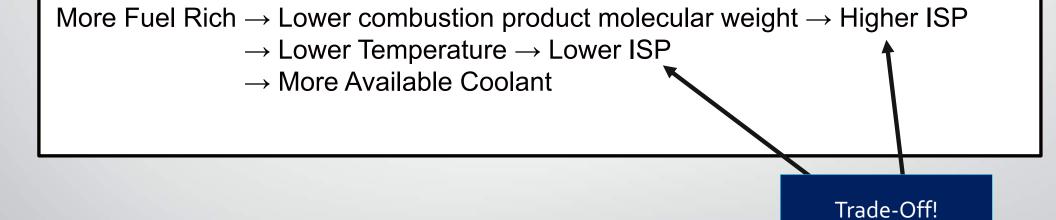
From LPL's CEA Execute & Read code

Design Choices

What Pressure?

Higher Pressure \rightarrow Higher ISP

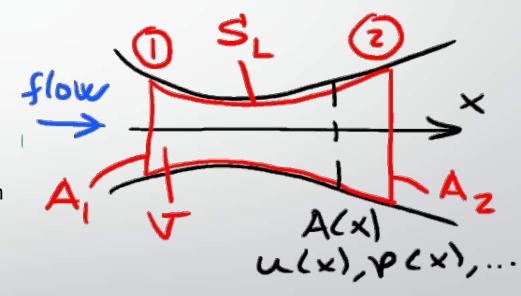
- \rightarrow Higher Stress \rightarrow More Engine Weight
 - \rightarrow More Feed System Weight
- \rightarrow Higher Temperature \rightarrow More Cooling



Design Choices

What OF Ratio?

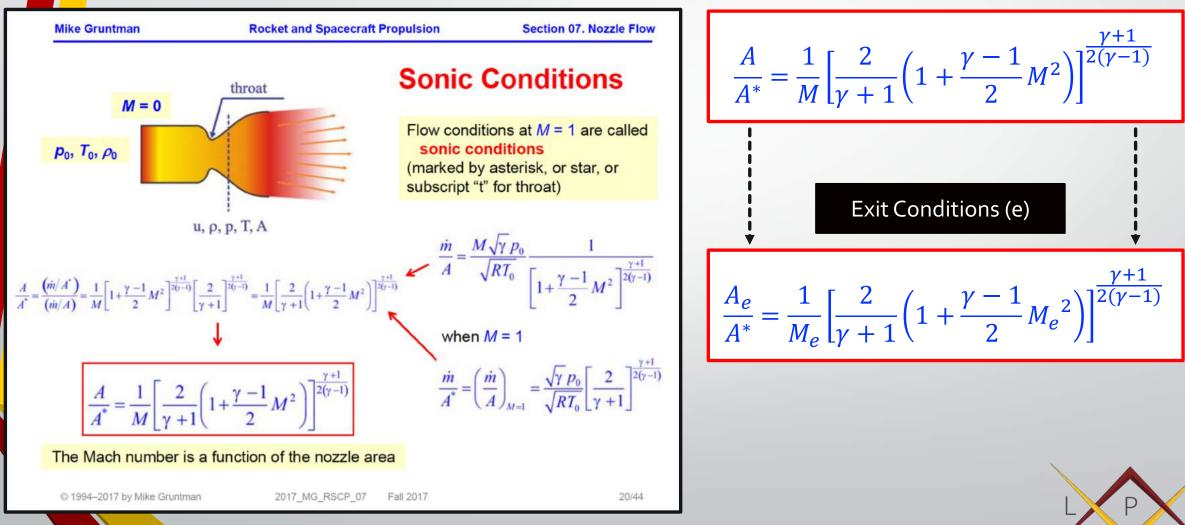
Usually fuel rich to some degree



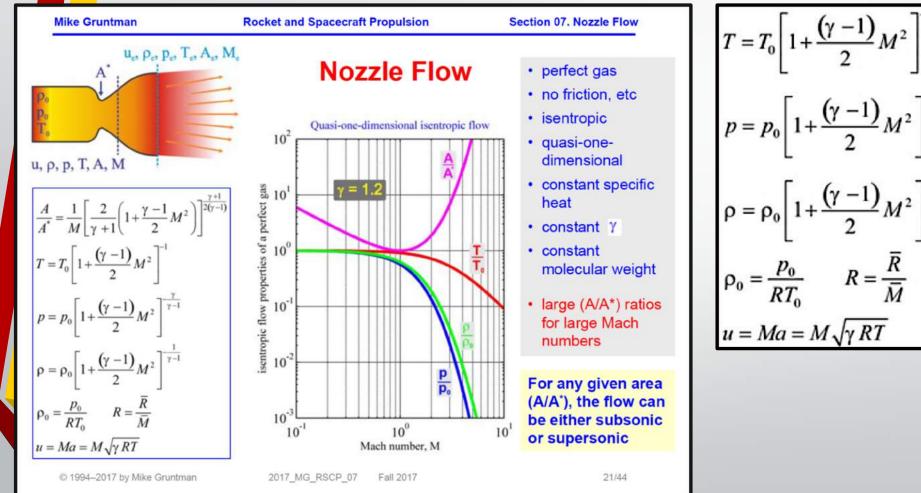
Nozzle Flow

Assumptions:

Quasi-1D Steady Isentropic Flow


<u>Quasi</u> – Involves a slowly varying cross section <u>1D</u> – flow properties are only changing in one dimension Flow properties are uniform across each cross section <u>Steady</u> – Flow is not changing in time <u>Isentropic</u> – Flow is adiabatic and reversible

Nozzle Flow



Courtesy of Professor Gruntman

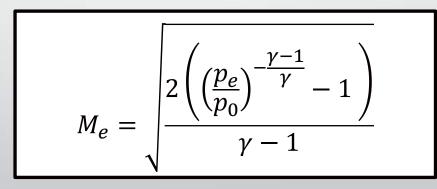
USCViterbi

School of Engineering

Nozzle Flow

Courtesy of Professor Gruntman

 $p = p_0 \left[1 + \frac{(\gamma - 1)}{2} M^2 \right]^{-\frac{\gamma}{\gamma - 1}}$ $\rho = \rho_0 \left[1 + \frac{(\gamma - 1)}{2} M^2 \right]^{-\frac{1}{\gamma - 1}}$ $\rho_0 = \frac{p_0}{RT_0} \qquad R = \frac{\overline{R}}{\overline{M}}$ $u = Ma = M\sqrt{\gamma RT}$



Nozzle Flow

Use to determine Throat Area

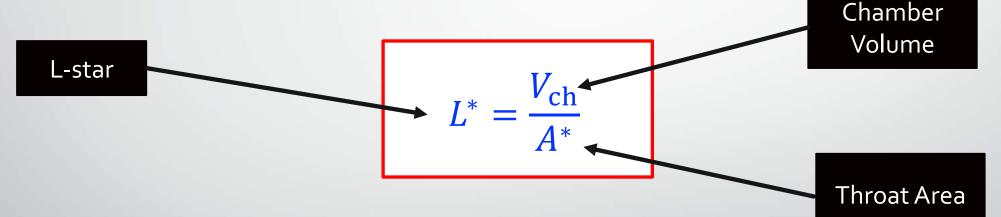
$$A^* = \frac{\dot{m}}{P_0} \sqrt{\frac{T_0 R}{\gamma}} \left(1 + \frac{\gamma - 1}{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Assuming Optimum Expansion at sea level

Chamber Sizing

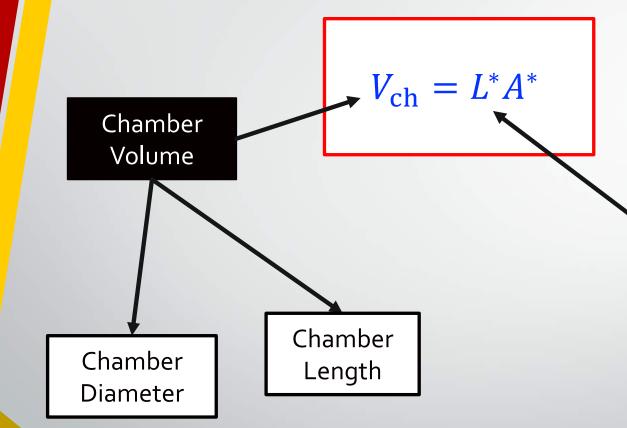
We now know:

- Nozzle Throat Area
- Nozzle Exit Area


But how big should the combustion chamber be?

Chamber Volume

- Traditional Chamber Sizing Method:
- Use Characteristic Chamber Length, L* (L-star)



- Review L-star for past/ current engines which:
 - Are in the same size-class as engine to be designed
 - Use the same propellants as the engine to be designed

Chamber Geometry

Propellant Combination	L*, cm
Nitric acid/hydrazine-base fuel	76-89
Nitrogen tetroxide/hydrazine-base fuel	76-89
Hydrogen peroxide/RP-1 (including catalyst bed)	152-178
Liquid oxygen/RP-1	102-127
Liquid oxygen/ammonia	76-102
Liquid oxygen/liquid hydrogen (GH ₂ injection)	56-71
Liquid oxygen/liquid hydrogen (LH ₂ injection)	76-102
Liquid fluorine/liquid hydrogen (GH ₂ injection)	56-66
Liquid fluorine/liquid hydrogen (LH ₂ injection)	64-76
Liquid fluorine/hydrazine	61-71
Chlorine trifluoride/hydrazine-base fuel	51-89

From <u>http://www.braeunig.us/space/propuls.htm#engine</u>

Chamber Geometry

Chamber diameter & length:

Long/ narrow chamber \rightarrow Faster gas flow \rightarrow More pressure losses due to friction \rightarrow More heat transfer to chamber walls

 \rightarrow More surface area to cool (bad)

Short/ fat chamber \rightarrow More hoop stress \rightarrow Thicker/ heavier walls

Engine Design Cheat-Sheet

 $V_{\rm ch} = L^* A^*$

J&J Design & Analysis Engine & Injector Sizing

School of Engineering

Single Engine Design Point

Design Point J&J	Thermochemistry
$\dot{M}_{TOT} = 1.15 \ kg/s$	From NASA CEA
OF ratio= 1.875	Chemistry: Kerosene/Gaseous Oxygen (GOX)
$P_c = 6.895 MPa, (1000 psi, 69 bars)$	$T_c = 3266 K$, (5418 °F)
$P_e = 101352.9 Pa (14.7 psi, 1.01325 bars)$	$\overline{M} = 20.05 \ kg/kmol$
$L^* = 1.27 m$, (50 inches)	$\gamma = 1.187$

J&J Design & Analysis Engine & Injector Sizing Single Engine Propellant Mass Flow Rates

School of Engineering

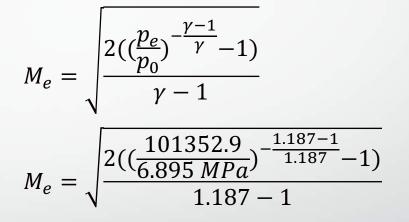
$\begin{aligned} \frac{\dot{m}_o}{\dot{m}_F} &= 1.875 \\ \dot{m}_o + \dot{m}_F &= 1.15 \ kg/s \\ \dot{m}_F &= 1.15 \ - \dot{m}_o \frac{\dot{m}_o}{1.15 - \dot{m}_o} \ 1.875 \\ \dot{m}_o &= 1.875(\ 1.15 \ - \dot{m}_o) \end{aligned}$

$$\dot{m}_F = 0.4 \text{ kg/s}$$

 $\dot{m}_o = 0.75 \text{ kg/s}$

• •

$$A^* = \frac{\dot{M}_{TOT}}{P_0} \sqrt{\frac{T_0 R}{\gamma} \left(1 + \frac{\gamma - 1}{2}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}}$$
$$A^* = \frac{1.15}{6.895 \, MPa} \sqrt{\frac{(3265.5)(414.66)}{1.187} \left(1 + \frac{1.187 - 1}{2}\right)^{\frac{1.187 + 1}{2(1.187 - 1)}}}$$


 $A^* = 300.4 \ mm^2$, (0.466 $inch^2$)

J&J Design & Analysis Engine & Injector Sizing Single Engine Throat Diameter

$$D^* = 2\left(\frac{A^*}{\pi}\right)^{0.5}$$
$$D^* = (2)\left(\frac{3E-4}{\pi}\right)^{0.5}$$

Exit Mach Number

D^{*} = 0.0195 m (0.770 inch)

 $M_e = 3.178$

USCViterbi

School of Engineering

J&J Design & Analysis Engine & Injector Sizing Single Engine Exit to Throat Area Ratio

$$\frac{A_e}{A^*} = \frac{1}{M} \left[\frac{2}{\gamma+1} \left(1 + \frac{\gamma-1}{2} M^2 \right) \right]^{\frac{\gamma+1}{2(\gamma-1)}}$$

$$\frac{A_e}{A^*} = \frac{1}{3.178} \left[\frac{2}{1.187 + 1} \left(1 + \frac{1.187 - 1}{2} \left(3.178 \right)^2 \right) \right]^{\frac{1.187 + 1}{2(1.187 - 1)}}$$

School of Engineering

Exit Velocity

$$u_e = \sqrt{2\frac{\bar{R}\gamma}{\gamma - 1}\frac{T_0}{M}\left[1 - \left(\frac{p_e}{p_0}\right)^{\frac{\gamma - 1}{\gamma}}\right]}$$

$$u_e = \sqrt{2 \frac{(8314)(1.187)}{1.187 - 1} \frac{3265.5}{20.05} \left[1 - \left(\frac{101352.9}{6.895 \, MPa}\right)^{\frac{1.187 - 1}{1.187}}\right]}$$

$$\frac{A_e}{A^*} = 9.1041$$

 $u_e = 2889.31 \, m/s$, (6464.8 mph)

J&J Design & Analysis Engine & Injector Sizing Single Engine Specific Impulse

$$Isp = \frac{u_{eq}}{g}$$
$$Isp = \frac{2889.311}{9.8}$$

USCViterbi

School of Engineering

Thrust

 $F_T = \dot{m}u_e + A_e(p_e - p_a)$

 $F_T = (1.15)(2889.31) + 0.0027(101352.9 - 6.895 * 10^6)$

$$Isp = 294.5 sec$$
 $F_T = 3.32 \text{ kN} (747 \text{ lbf})$

J&J Design & Analysis Engine & Injector Sizing Single Engine Chamber Volume

 $V_{ch} = L^* A^*$

 $V_{ch} = (1.27)(3.004 * 10^{-4})$

 $V_{ch} = 381.5 \ cm^3$, (23.28 inch³)

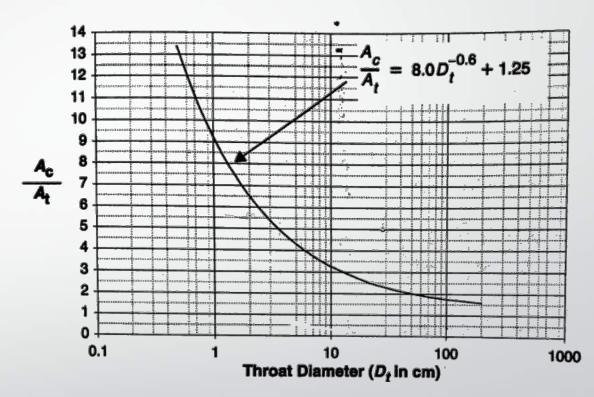
USCViterbi

School of Engineering

Propellants	Characteristic Length (L*)	
	Low (m)	High (m)
Liquid fluorine / hydrazine	0.61	0.71
Liquid fluorine / gaseous H ₂	0.56	0.66
Liquid fluorine / liquid H ₂	0.64	0.76
Nitric acid / hydrazine	0.76	0.89
N2O4 / hydrazine	0.60	0.89
Liquid O ₂ / ammonia	0.76	1.02
Liquid O ₂ / gaseous H ₂	0.56	0.71
Liquid O ₂ / liquid H ₂	0.76	1.02
Liquid O ₂ / RP-1	1.02	1.27
H ₂ O ₂ / RP-1 (including catalyst)	1.52	1.78

How to determine characteristic length

J&J Design & Analysis Engine & Injector Sizing Single Engine Chamber Length


 $A_{t} = 3E - 4 m^{2}, (0.466 inch^{2})$ $D_{t} = 1.96 cm, (0.77 inch)$ $\frac{A_{c}}{A_{t}} = 8D_{t}^{-0.6} + 1.25$ $\frac{A_{c}}{A_{t}} = (8)1.96^{-0.6} + 1.25$ $\frac{A_{c}}{A_{t}} = 6.59$ $A_{c} = 0.002 m^{2}, (3.10 inch^{2})$ $L_{c} = \frac{V_{c}}{A_{c}}$ $L_{c} = \frac{3.815 E - 4 m^{3}}{0.002 m^{2}}$ $L_{c} = 0.19 m (7.51 inch)$

Use as a starting point. Ended with:

 $L_C = 0.17 m (6.58 inch)$ $D_C = 54 mm (2.125 inch)$

USCViterbi

School of Engineering

Chamber Sizing

Chamber Book "spaghetti" Chamber Volume 23.28 *inch*³ *Chamber Length:* **7.51**" *Chamber Diameter:* **1.96**"

Chamber "Pancake" Chamber Volume 23.28 *inch*³ Chamber Diameter: **4"** Chamber Length: **2.43"**

Chamber Actual

Chamber Volume 23.28 *inch*³ Chamber Diameter: **6.58**" Chamber Length: **2.125**"

J&J Design & Analysis Engine & Injector Sizing Single Engine Nozzle Length (Conical) **USC**Viterbi

School of Engineering

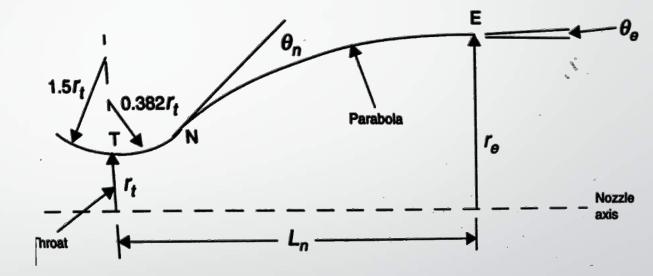


Diagram is for a parabola shaped nozzle. J&J used this diagram for sizing the converging & diverging part of the nozzle

 $L_n = \frac{D_e - D_t}{2tan\theta_{cn}}$ Where L_n =conical nozzle length D_t =nozzle throat diameter θ_{cn} = nozzle cone half angle (15°) $L_n = \frac{0.059 - 0.02}{2tan(15°)}$

 $L_n = 2.87 in (72.8 mm)$

J&J Design & Analysis Engine & Injector Sizing Summary of Engine Specifications

School of Engineering

Single Engine Static Fire

Propellant	Kerosene	Gaseous Oxygen
OF ratio	1.875	
М _{тот}	1.15 kg/s	2.5 lbm/s
P _c	6.895 MPa	1000 psi
P _e	101352.9 Pa	14.7 psi
<i>L</i> *	1.27 m	50 inches
D *	19.6 mm	0.770 inch
T _c	3266 K	5418 °F
A *	0.3004 mm ²	0.466 inch ²
<i>A</i> / <i>A</i> *	9.1041	
Isp	294.5 <i>s</i>	
F _T	3.32 kN	750 lbf
V _{ch}	381.5 cm ³	23.286 inch ³
L _c	0.17 m	6.58 inch
D _c	54 <i>mm</i>	2.125 inch
L _n	72.8 mm	2.87 inch
T _w	3.81 mm	0.15 inch

Thanks!

