BETTER, FASTER, MORE AFFORDABLE WATER FILTRATION MEDIA SOLUTION Introducing a 100% green, highly effective, light-weight, non-toxic filtration media that will revolutionize water filtration for municipalities, businesses, homeowners and consumers. Glanris is the best, fastest and most affordable way to filter water and here's why: - **Hybrid Technology.** Glanris can remove metals as well as organics and removes a wider breadth of contaminants than Granular Activated Carbon (GAC), ion-exchange resins and other technologies in a sustainable fashion. - Single-Pass Efficiency. Glanris can achieve in one pass what it takes other filtration media multiple passes to accomplish. - Low-Cost. Glanris is dramatically less expensive to produce, ship and dispose of than GAC or any other type of media. #### PROVEN PERFORMANCE Glanris' patent-pending technology has undergone independent pilots and tests to verify its efficacy. In tests against current filtration processes at six different large manufacturers, Glanris resulted in a significant reduction in contaminants over current technologies. Furthermore, a single pass of these solutions through a bed of Glanris media consistently delivered more effective results than multiple passes of competing GAC, resins and chemical treatments. #### **SUSTAINABLE** Glanris' media is made from a plentiful agricultural bi-product grown globally in millions of metric tons. Compared to granular activated carbon made from coconut shells, Glanris' manufacturing process uses 98% less CO₂. # CONTACT US www.glanris.com → hello@glanris.com +1 901 312-7700 ### MAKING SAFE DRINKING WATER **A REALITY** Glanris' renewable water filtration media and filters provide the highest level of safety for drinking water and unparalleled protection for our natural resources. Glanris stands alone in its ability to: - Remove heavy metals: color/turbidity, chlorine and chloramine, suspended solids and colloids, gas and oil, solvents and low molecular weight organics, as well as odors - Regenerate with a weak acid - Comply with FDA food-grade specifications #### PRACTICAL APPLICATIONS Glanris filtration media is ideal for: - The removal of lead and other contaminants in tap water - Failing, aging municipal water treatment plants - Environmental remediation - Removal of metals from manufacturing process - Reuse/Recycling of grey water and tertiary water ## DID YOU KNOW... According to McKinsey & Co, by the year 2030, the demand for water will exceed sustainable supplies by 40 percent. This means it is mission-critical to find more effective ways to filter water for reuse. Past tragedies have proven that point-of-use filtration is required for businesses and homes to ensure safe. clean water. # HOW GLANRIS COMPARES TO OTHER FILTRATION MEDIA & METHODS | Application | Glanris | GAC | Ion Exchange (IX) | Zeolites | Current Carbon
Block (CBT) | |---|---|---|---|--|--| | Production | Processed for 10 minutes,
lower material cost | Coconut/Clamshells
baked at 1,000°C for 8
hours or more | Petroleum-based,
manufacturing
creates plastic waste | Fossil fuel-based | Grinding of shell
material is costly and
timely | | Raw Material
Availability | Sustainable agricultural
bi-product grown globally | Coconuts, clams and
bones have limited
availability, variable cost | Raw divinyl benzene
requires time and
costly processing | Mining dependent,
disruptive to water
and consumes fossil
fuels | Uses varying raw
materials due to
market volatility | | Weight (lbs/cu ft) | 14-22/ft³ | 29-45 lbs/ft³ | 50-60 lbs/ft ³ | 16-50 lbs/ft³ | 40-60 lbs/ft ³ | | Causes Odors | No | Tendency to produce odor when capacity is exhausted | Users often complain
of a fishy smell | No | Tendency to produce odor when capacity is exhausted | | Organic Removal | Yes | Limited, slow acting,
surface area easily
plugged up | lon exchange resins
foul, are ineffective
with organic material | Efficient at odor removal, not organic chemical removal | Limited by combination of GAC and IX. | | Chlorine Removal | Yes. Fast kinetics, high affinity
for chloramine removal.
Removes metals in presence
of chlorine | Yes. Slow acting surface
area easily plugs
up. Less effective at
chloramine removal.
Ineffective at metals
removal | No. Chlorine destroys
most IX resin and
causes it to lose its
ability to remove
metals and organics | Partially effective. Not
a target of zeolite.
Chlorine may destroy
zeolite | Effective at chlorine
removal, less effective
at chloramine,
very limited metals
removal | | Metal Removal | 0.6 mEq/gm
0.5 lbs/cu ft | .0102 mEq/gm | 2.0 mEq/gm | N/A | Minimal | | Distinguish
Between Harmless
and Harmful Metals | Yes. Refuses harmless cations,
capacity is totally available to
harmful metals | Poor ability to remove
metals. Requires
addition of IX resin
or zeolites to remove
metals | Metals removal requires narrow pH range, low organics debris and chlorine. Cannot differentiate between harmless and harmful metals. Costly | Effective at water softening. Requires chemical regeneration. Heavy. Metal removal may be due to adsorption and not electrical attraction, results not predictable, reliable or repeatable | Current CBT uses a
sprinkling of IX media
to achieve extremely
limited metal removal
capacity. Emits fishy
odor | | Effective pH Range
for Metals Removal | 4-10 pH | Does not remove metals
to any significant
degree | 6.5-8 pH | 6.5-8 pH | Tap water pH range is favorable to metals removal | | Longevity | Will not prematurely exhaust
due to water hardness. Low
cost favors replacement
versus regeneration | Durable. Loses
effectiveness as surface
area becomes blocked | Varies widely and is
unpredictable | Varies widely and is
unpredictable | Capacity dependent
on tap water quality.
Disposable nature of
filter does not require
durability | | Changes pH of
Water | No | No | Yes | Yes | Somewhat | | Eliminates Color | Yes | To a far less degree | Limited and only
with costly esoteric
resin | Highly limited | No | | Cost | \$0.65-\$1.20/lb: powdered carbon \$0.90-\$2.00/lb: granular filtration \$3.00-\$6.00/lb: specialty metals removal \$3.00-\$10.00/lb: nutritional/vitamin grade | \$35-\$200/ft ³ | \$100-\$2,000/ft ³
\$0.08-\$0.20/gallon
to remove metal | \$100-\$1,000/ft ³ Wide fluctuations | \$0.30/gallon. Depends on water quality | | Disposal | Organic media (less disposal
cost), compactable, non
hazardous. Metals can be
recycled using acetic acid | Not easily compacted. Heavy to transport, requires super-heated steam to rejuvenate. Metals not readily recycled | Plastic resin beads
create plastic
waste. Metals only
recoverable with
strong acids and
alkali | Disposal difficult
due to weight issues.
Hazardous metals not
easily removed | Residential waste
disposal |