Online Appendix to:

Can Good Politicians Compensate for Bad Institutions?

Evidence from an original survey of Italian mayors

Maria Carreri*

^{*}Assistant Professor, University of California San Diego, mcarreri@ucsd.edu

Contents

A1.	Additional Data	A-1
A2.	Collecting Unbiased Responses	A-7
A3.	Obtaining Interviews	A-8
A4.	Validity of the Competence Score	A-9
A5.	Reliability of the Competence Score	A-12
A6.	Robustness Tables, Survey Instrument, and Recruitment Materials	A-15
	- Balance between interviewed and non-interviewed mayors across areas	A-16
	- Balance between interviewed and all comparable mayors in Italy	A-17
	- Competence Score and Surplus (Cross-section): South vs. rest of Italy	A-18
	- Competence Score and Surplus (Diff-in-Diff): South vs. rest of Italy	A-19
	- Robustness to Inverse-Covariance Weighted Competence Score - Cross-section	A-20
	- Robustness to Inverse-Covariance Weighted Competence Score - Diff-in-Diff	A-21
	- Robustness to Latent Competence measured by Factor Analysis - Diff-in-Diff	A-22
	- Reliability of Competence Score (in South)	A-23
	- Competence Score components (in South)	A-24
	- No Correlation with Previous Mayors Characteristics in the North	A-25
	- No Correlation with Previous Mayors Characteristics in the Centre	A-25
	- Competence Score and Human Capital Measures	A-26
	- Robustness to Balanced Sample	A-27
	- Results not driven by more competent mayors generating negative deficit	A-28
	- Dropping one municipality at a time (Surplus outcome)	A-29
	- Dropping one municipality at a time (Services outcome)	A-30

- Social Capital as a Measure of Institutions	
Cross-section	A-31
No difference in pre-election surplus for high- vs. low-competence mayors	A-32
Diff-in-Diff	A-33
No Correlation with Previous Mayors Characteristics	A-34
Competence Score and Surplus Components	A-35
Competence Score and Quality of Service Provision	A-36
Timing of Surplus Reduction	A-37
Competent mayors bridge the service provision gap	A-38
- Survey Instrument	A-39
- Recruitment Materials	A-41

A1. Additional Data

I complement the data collected through my phone survey of 306 mayors with administrative records from the Italian Ministry of Interior on i) the budget outcomes of each municipality and on *ii*) the demographic characteristics of the interviewed mayors and of their predecessors. Table A1 presents summary statistics for all available characteristics of the interviewed mayors and of their municipalities and for budget outcomes of the municipalities. Tables A2-A4 present separate descriptive statistics for the same variables for the Italian North, South and Center separately. Mayors' characteristics obtained through administrative records include their age, gender, skill content of the job held before taking office, education, prior office holding experience in municipal governments, and which year of the 5-years term was the mayor serving at the time of the interview. Mayors are classified as having had an high-skilled job as previous employment if they were professionals (such as doctors and lawyers, engineers or architects), had a skill-intensive or administrative white collar occupation (such as high school professor) or were managers/selfemployed. Jobs classified as having a low skill content are blue collar occupations and low skilled white collar occupation. I further distinguish mayors who were, before taking office, unemployed or outside of the labor force, such as pensioners or students. Prior office holding experience is defined as the number of years during which the interviewed mayor held an elected position in the municipal government, measured at the time of the interview. Mayors' characteristics measured in the survey include the administrative competence score, and self-reported ideological leaning.³⁰ The variable Mafia Presence is an indicator recording if any business, building or good was confiscated in 2015 by the Italian police forces because of mafia involvement. The variable was obtained from Agenzia Nazionale per l'Amministrazione e la Destinazione di Beni Sequestrati e Confiscati alla Criminalità *Organizzata*, the national authority in charge of assets confiscated from organized crime.

³⁰Italian municipal elections in small and mid-sized municipalities are largely non–partisan, with the majority of mayors running under non-partisan lists (*liste civiche*).

The variable Low Social Capital is an indicator taking value one for municipalities having a value of the social capital index below the 25th percentile of the social capital index distribution, a value corresponding to the 40th percentile in the Italian South. The social capital index is an inverse-covariance weighted index (Anderson 2008) constructed using data from Nannicini et al (2013) on blood donations, number on non profit organizations, number of non-sport daily newspapers sold, answer to trust question in the World Value Survey, and turnout in the most recent referendum. The indicator Sent Letter Back is an original behavioral measure of bureaucratic norms in the municipal postal office, as described in section 5.5.2. All budget variables are winsorized at the one percent level to reduce the influence of outliers but results shown in the paper are insensitive to this choice. The municipal surplus is expressed as a function of the total budget size. All other budget variables are expressed in per capita euros. Table A1 shows that while being low on average, the municipal surplus shows a large variance. Supplemental Material (not copyedited or formatted) for: Maria Carreri. 2021. "Can Good Politicians Compensate for Bad Institutions? Evidence from an Original Survey of Italian Mayors." The Journal of Politics 83(4). DOI: https://doi.org/10.1086/715062.

	Mean	Std. Dev.	Min.	Max.	Ν
Panel A. Cross-Sectional Variables					
	-				
Mayor characteristics					
Mean Competence Score	3	0.84	1	5	306
Mean Competence Score (Inverse-Covariance Weighted)	0	0.98	-2.37	2.33	305
Age	52.37	10.33	28	81	306
Female	0.13	0.34	0	1	306
Job - High Skill	0.68	0.47	0	1	303
Job - Low Skill	0.19	0.4	0	1	303
Job - Unemployed/Pension	0.12	0.33	0	1	303
Education - Less than High School	0.05	0.22	0	1	306
Education - High School	0.42	0.49	0	1	306
Education - University	0.53	0.5	0	1	306
Years in Municipal Government	12.73	6.87	0	31	306
Year of Current Term	2.43	0.84	1	5	306
Party - Left	0.17	0.37	0	1	306
Party - Centre Left	0.39	0.49	0	1	306
Party - Centre/Independent	0.22	0.41	0	1	306
Party - Centre Right	0.21	0.41	0	1	306
Party - Right	0.01	0.11	0	1	306
Interview length in minutes	30.44	9.95	6.9	65	306
Municipality characteristics					
Population	4946.29	770.03	3555	6468	306
Low Social Capital	0.21	0.41	0	1	306
No Letter	0.15	0.36	0	1	306
Mafia Presence (in South)	0.07	0.25	0	1	75
Panel B: Panel Variables					
Surplus	0.13	0.11	-0.13	0.36	2362
Total Expenditures (euros per capita)	1185.81	554.29	473.45	3863.21	2362
Total Revenues (euros per capita)	1183.96	556.25	463.43	3798.69	2362
Current Expenditures (euros per capita)	569.31	217.37	269.42	1562.92	2362
Capital Expenditures (euros per capita)	259.84	302.47	12.25	1990.57	2362
Other Expenditures (euros per capita)	208.05	212.83	46.47	1119.35	2362
Tax Revenues (euros per capita)	441.85	181.84	104.65	1165.12	2362
Transfer Revenues (euros per capita)	150.86	129.06	9.56	644.35	2362
Other Revenues (euros per capita)	578	442.45	130.28	2661.91	2362
Quality of Service Provision Index	6.17	2	1	10	190

Table A1: Summary Statistics

	Mean	Std. Dev.	Min.	Max.	Ν
Panel A: Cross-Sectional Variables					
Mayor characteristics	-				
Mayor Characteristics	2 92	0.85	1	4.5	75
Mean Competence Score (Inverse-Covariance Weighted)	_0.02	1	_2 37	ч.0 1.82	75
Age	53 59	10.21	31	81	75
Female	0.07	0.21	0	1	75
Job - High Skill	0.84	0.20	0	1	73
Job - Low Skill	0.01	0.35	0	1	73
Job - Unemployed/Pension	0.03	0.16	0	1	73
Education - Less than High School	0.01	0.12	0	1	75
Education - High School	$0.01 \\ 0.25$	0.44	0	1	75
Education - University	0.73	0.45	0 0	1	75
Years in Municipal Government	13.48	6.77	2	31	75
Year of Current Term	2.63	1.09	1	5	75
Party - Left	0.16	0.37	0	1	75
Party - Centre Left	0.43	0.5	0	1	75
Party - Centre/Independent	0.29	0.46	0	1	75
Party - Centre Right	0.09	0.29	0	1	75
Party - Right	0.03	0.16	0	1	75
Interview length in minutes	30.89	9.63	14.53	65	75
Municipality characteristics					
Population	4811.07	784.64	3622	6462	75
Low Social Capital	0.41	0.5	0	1	75
No Letter	0.12	0.33	0	1	75
Panel B: Panel Variables					
Surplus	0.13	0.12	-0.13	0.36	588
Total Expenditures (euros per capita)	1276.95	589.80	473.45	3863.21	588
Total Revenues (euros per capita)	1287.35	596.41	463.43	3798.69	588
Current Expenditures (euros per capita)	528.59	190.94	269.42	1516	588
Capital Expenditures (euros per capita)	342.83	379.73	12.25	1990.57	588
Other Expenditures (euros per capita)	249.11	245.14	61.24	1119.35	588
Tax Revenues (euros per capita)	391.93	176.66	104.65	1165.12	588
Transfer Revenues (euros per capita)	208.44	159.81	9.56	644.35	588
Other Revenues (euros per capita)	674.95	524.02	130.28	2661.91	588
Quality of Service Provision Index	4.75	1.78	1	8.80	48

Table A2: Summary Statistics for Southern Italy

	Mean	Std. Dev.	Min.	Max.	Ν
Panel A: Cross-Sectional Variables					
Mayor characteristics					
Mean Competence Score	2.99	0.83	1	5	180
Mean Competence Score (Inverse-Covariance Weighted)	-0.01	0.97	-2.37	2.33	179
Age	51.7	10.26	28	76	180
Female	0.17	0.38	0	1	180
Job - High Skill	0.63	0.49	0	1	179
Job - Low Skill	0.23	0.42	0	1	179
Job - Unemployed/Pension	0.14	0.35	0	1	179
Education - Less than High School	0.07	0.26	0	1	180
Education - High School	0.51	0.5	0	1	180
Education - University	0.42	0.49	0	1	180
Years in Municipal Government	12.26	6.91	0	31	180
Year of Current Term	2.39	0.78	1	5	180
Party - Left	0.15	0.36	0	1	180
Party - Centre Left	0.34	0.48	0	1	180
Party - Centre/Independent	0.22	0.41	0	1	180
Party - Centre Right	0.28	0.45	0	1	180
Party - Right	0.01	0.11	0	1	180
Interview length in minutes	29.86	10.25	6.9	58	180
Municipality characteristics					
Population	4988.85	783.71	3555	6468	180
Low Social Capital	0.1	0.3	0	1	180
No Letter	0.11	0.32	0	1	180
Panel B: Panel Variables					
Surplus	0.12	0.11	-0.13	0.36	1143
Total Expenditures (euros per capita)	1053.65	510.59	473.45	3863.21	1143
Total Revenues (euros per capita)	1044.53	504.23	463.43	3798.69	1143
Current Expenditures (euros per capita)	548.22	222.68	269.42	1562.92	1143
Capital Expenditures (euros per capita)	206.17	236.91	12.25	1990.57	1143
Other Expenditures (euros per capita)	169.81	166.19	46.47	1119.35	1143
Tax Revenues (euros per capita)	443.03	186.95	117.31	1165.12	1143
Transfer Revenues (euros per capita)	120.33	104.9	9.56	644.35	1143
Other Revenues (euros per capita)	463.49	327.68	130.28	2661.91	1143
Quality of Service Provision Index	7.13	1.63	2.8	10	101

Table A3: Summary Statistics for Northern Italy

	Mean	Std. Dev.	Min.	Max.	Ν
Panel A: Cross-Sectional Variables	-				
Mayor characteristics					
Mean Competence Score	3.14	0.85	1	4.88	51
Mean Competence Score (Inverse-Covariance Weighted)	0.15	0.99	-2.37	2.16	51
Age	52.94	10.78	34	77	51
Female	0.1	0.3	0	1	51
Job - High Skill	0.67	0.48	0	1	51
Job - Low Skill	0.14	0.35	0	1	51
Job - Unemployed/Pension	0.2	0.4	0	1	51
Education - Less than High School	0.02	0.14	0	1	51
Education - High School	0.35	0.48	0	1	51
Education - University	0.63	0.49	0	1	51
Years in Municipal Government	13.29	6.84	0	30	51
Year of Current Term	2.29	0.58	2	5	51
Party - Left	0.24	0.43	0	1	51
Party - Centre Left	0.49	0.5	0	1	51
Party - Centre/Independent	0.12	0.33	0	1	51
Party - Centre Right	0.16	0.37	0	1	51
Party - Right	0	0	0	0	51
Interview length in minutes	31.84	9.37	15	53	51
Municipality characteristics					
Population	4994.92	686.05	3819	6332	51
Low Social Capital	0.31	0.47	0	1	51
No Letter	0.35	0.48	0	1	51
Panel B: Panel Variables					
Surplus	0.13	0.1	-0.13	0.36	382
Total Expenditures (euros per capita)	1453.32	613.56	623.31	3863.21	382
Total Revenues (euros per capita)	1455.75	621.07	629.54	3798.69	382
Current Expenditures (euros per capita)	642.94	219.49	269.42	1562.92	382
Capital Expenditures (euros per capita)	327.38	354.83	12.25	1990.57	382
Other Expenditures (euros per capita)	282.78	281.99	55.51	1119.35	382
Tax Revenues (euros per capita)	480.46	167.2	169.78	1078.65	382
Transfer Revenues (euros per capita)	167.39	129.61	9.56	644.35	382
Other Revenues (euros per capita)	798.33	556.04	130.28	2661.91	382

Table A4: Summary Statistics for Central Italy

A2. Collecting Unbiased Responses

The data collected on politicians' competence is potentially subject to both interviewee and interviewer induced bias. The interviewee could answer untruthfully, systematically gearing her answer toward what she believes is the best answer. The interviewer might systematically under or over score responses based on the interviewees' characteristics and preconceptions he might have about the competence of the interviewee. In this section I describe how the use of a double-blind survey technique based on Bloom and Van Reenen (2007) minimizes these two biases.

Interviewee bias, or bias from self-reporting, is minimized in two ways: mayors are unaware of being scored and the questions they are posed are open-ended (e.g., "What types of professional development opportunities are provided for top performers?") rather than being closed (e.g., "Do you provide professional development opportunities for top performers[yes/no]?") so as not to clearly indicate a "best" and a "worst" answer. Interviewer bias is limited by the fact that the interviewer has no information on the performance of the municipality. Moreover, since the mayors interviewed represent small and medium-sized Italian municipalities, the interviewer is unlikely to have any information and therefore preconceptions about the mayor or her municipality. Each interviewer reported, for each interviewed municipality, whether he i) had ever heard of it, ii) had visited it, and iii) had any knowledge regarding its administration. Interviewers reported having heard of 10 percent, having visited 1.4 percent, and having prior knowledge of none of the municipalities whose mayors were interviewed. Regional accents in Italy are easily detectable. This could be a concern if interviewers had preconceptions about the competence of mayors from different regions. However, my analysis includes fixed effects for each of the 20 Italian regions: while regional accents are detectable, within-region variation in accents is minimal. Finally, all interviewers went through a training workshop during which much emphasis was placed on scoring each answer separately, based on the scoring grid, rather than on the overall impression of the interviewee. I further validated the reliability

of the data collected by double scoring a random subset of the interviews. The correlation coefficient between the quality scores assigned by 2 different interviewers on this subset of interviews is 67 percent.³¹,³²

A3. Obtaining Interviews

Obtaining a high response rate was key given the size of the target population yet challenging given the characteristics of the survey, such as the fact that mayors are busier and harder to reach than the average survey respondent, the interviewer has to pass a series of screens (telephone switchboard and secretary of the mayor), and participation was not compensated. The achieved response rate was 50.2 percent, which is comparable to the response rate of 54 percent obtained in a similar setting in Bloom and Van Reenen (2007). Several steps were taken to maximize the response rate. Firstly, in order to encourage mayor's responses we portrayed their participation as least controversial as possible by i) presenting the interview as a "conversation" and without mentioning the word "interview" or "survey", *ii*) never mentioning or asking about the performance or fiscal soundness of the municipality, and *iii*) by stressing throughout that the project we were inviting the mayors to take part in was an academic endeavor. Moreover, questions were presented to the mayor with the least controversial questions leading the interview (question on target setting: "Could you describe the main objectives that you set for your term in office and what are the practical targets associated to each of these main objectives? How are these targets cascaded down to the individual members of the administration and the municipal bureaucracy?"). Finally, securing the institutional endorsement of Anci (Association of Italian Municipalities), an apolitical non-profit organization representing Italian Municipalities, was key in proving to the mayors that they were being invited to participate in a

³¹As a comparison, Bloom and Van Reenen (2007), obtain a correlation coefficient of 73 percent.

³²Moreover, each interviewer conducted an average of 40 interviews, allowing me to account for interviewer fixed effects in the analysis. This controls for an interviewer's general tendency to over- or underscore responses irrespective of the interviewees' characteristics. Including interviewer fixed effects produces results that are qualitatively similar to the ones presented here. These results are available upon request.

worthwhile project with official support.

Each interviewed mayor was contacted by phone an average of 5 times before the actual interview. At the beginning of the process, each mayor was contacted by phone and received a short description of the project and an invitation to participate, followed by an email presenting the project in details and sharing the letter of support by the Association of Italian Municipalities. Anonymised versions of the body of the email and of the letter of support are shown at the end of the Appendix. All subsequent phone calls were necessary to set up a date and time for the interview and to conduct the interview. Each mayor was contacted and interviewed by one interviewer only.

A4. Validity of the Competence Score

My original measure of politicians' competence is valuable if it meets a minimum of two conditions: i it meaningfully captures the competence of a politician, and ii it explains a dimension of politicians' competence that is not captured by other readily available measures. In this section I provide two suggestive tests that my measure meets the two conditions mentioned above.

If my variable satisfies condition i, it should correlate with politicians' characteristics that intuitively correlate with their competence. If my variable satisfies condition ii, a substantial portion of its variation should be unaccounted for by the alternative measures of politicians' competence employed in the literature. I test these claims in Table A5 which shows coefficient estimates and the R-squared for a set of OLS regressions of my original measure of politicians competence on a series of mayor and municipality-specific characteristics. Column (1) shows that my measure of quality is negatively correlated with age and that female and male mayors do not seem to differ, on average, in terms of their managerial competence. Column (2) shows that both high school and university graduates have higher competence scores than mayors who have not completed high school.³³ Column (3)

³³The coefficients on *Education- High School* and *Education - University* are indistinguishable from

reports the correlation between the quality score and the skill content of the previous job held by the mayor before taking office. We can see that mayors with a high-skilled or lowskilled job perform better in terms of the quality score than those mayors who were unemployed or out of the labour force (like pensioners and students).³⁴ Columns (4) shows that, conditional on educational attainment and skill content of the previous job, the competence score is not correlated to the length of the mayor's career as a local administrator. Columns (5) to (7) suggest no systematic association between the politicians' self-declared party identification and their competence score.

Looking at the R-squared in columns (1) through (7), we can see how the residual variation in my measure of competence is sizeable. Columns (5) to (7) further include fixed effects for the party of the mayor, for the year of the term that the mayor is serving (one through five), and for the macro region where the mayor was elected (South, Center, North). Column (7), in which the most comprehensive set of variables is included, shows that only 17 percent of the variation in the competence score is accounted for. Table A5 provides evidence that my original measure of politicians' competence is positively correlated to standard measures of politicians' human capital but at the same time the latter measures leave a sizeable portion of the politicians' competence unexplained. This is not surprising in light of the evidence that i human capital is an insufficient measures of competence (Carnes and Lupu 2015, Dal Bó et al. 2017) that ii it does not adequately capture at least two relevant dimensions of my competence score: leadership (Dal Bó et al. 2017) and effort.

Finally, I conduct principal component analysis on the scores received by each mayors on the seven questions measuring managerial competence. Results, presented in Table A6, confirm that the seven scores are capturing one latent dimension (notice that Component 1 is the only component with an eigenvalue larger than 1), which accounts for half of the

each other. I cannot reject that their difference is different from zero, with a p-value of 0.76.

 $^{^{34}}$ The coefficients on Job - High skill and Job - Low skill are indistinguishable from each other. I cannot reject that their difference is different from zero with a p-values of 0.88.

variability in my sample.

Dependent Variable: Mean Competence Score						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
-0.014***	-0.014***	-0.010**	-0.011**	-0.012**	-0.012**	-0.012**
(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
-0.052	-0.066	-0.077	-0.077	-0.123	-0.143	-0.127
(0.139)	(0.139)	(0.137)	(0.137)	(0.139)	(0.141)	(0.149)
	0.505^{**}	0.527^{**}	0.536^{**}	0.492^{**}	0.496^{**}	0.450^{*}
	(0.225)	(0.226)	(0.226)	(0.228)	(0.229)	(0.231)
	0.476^{**}	0.459^{**}	0.471^{**}	0.432^{*}	0.429^{*}	0.443^{*}
	(0.223)	(0.230)	(0.231)	(0.235)	(0.236)	(0.239)
		0.428^{***}	0.421^{***}	0.416^{***}	0.412^{***}	0.445^{***}
		(0.152)	(0.153)	(0.152)	(0.153)	(0.156)
		0.408^{**}	0.407^{**}	0.398^{**}	0.409^{**}	0.451^{**}
		(0.182)	(0.183)	(0.182)	(0.184)	(0.187)
			0.004	0.004	0.002	0.001
			(0.007)	(0.007)	(0.008)	(0.008)
				0.261^{*}	0.261^{*}	0.277^{*}
				(0.153)	(0.155)	(0.163)
				0.230^{*}	0.234^{*}	0.194
				(0.128)	(0.129)	(0.135)
				-0.000	-0.019	-0.057
				(0.146)	(0.149)	(0.158)
				0.540	0.565	0.805^{*}
				(0.423)	(0.425)	(0.433)
					-0.212	-0.254
					(0.588)	(0.635)
					-0.089	-0.136
					(0.594)	(0.640)
					0.154	0.506
					(0.685)	(0.722)
					-0.015	0.095
					(0.613)	(0.661)
306	306	303	303	303	303	303
0.029	0.045	0.073	0.074	0.097	0.105	0.170
No	No	No	No	No	No	Ves
	(1) -0.014*** (0.005) -0.052 (0.139) 306 0.029 No	Depending (1) (2) -0.014*** -0.014*** (0.005) (0.005) -0.052 -0.066 (0.139) (0.139) 0.505** (0.225) 0.476** (0.223) 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Dependent Vari. (1) (2) (3) -0.014*** -0.010*** (0.005) (0.005) (0.005) (0.005) -0.052 -0.066 -0.077 (0.139) (0.139) (0.137) 0.505** 0.527** (0.225) (0.226) 0.476** 0.459** (0.223) (0.230) 0.428*** (0.152) 0.408** (0.182)	Dependent Variable: Mean (1) (2) (3) (4) -0.014*** -0.010** -0.011** (0.005) (0.005) (0.005) (0.005) -0.052 -0.066 -0.077 -0.077 (0.139) (0.139) (0.137) (0.137) 0.505** 0.527** 0.536** (0.225) (0.226) (0.226) 0.476** 0.459** 0.471** (0.223) (0.230) (0.231) 0.428*** 0.421*** (0.152) (0.152) (0.153) 0.407** (0.152) (0.183) 0.004 (0.007) (0.007)	Dependent Variable: Mean Competen (1) (2) (3) (4) (5) -0.014*** -0.010** -0.011** -0.012** (0.005) (0.005) (0.005) (0.005) (0.005) -0.052 -0.066 -0.077 -0.077 -0.123 (0.139) (0.139) (0.137) (0.139) (0.139) 0.505** 0.527** 0.536** 0.492** (0.225) (0.226) (0.226) (0.228) 0.476** 0.459** 0.471** 0.432* (0.223) (0.230) (0.231) (0.235) 0.428*** 0.421*** 0.416*** (0.152) (0.153) (0.152) 0.408** 0.407** 0.398** (0.182) (0.183) (0.182) 0.004 0.004 0.004 (0.128) -0.000 (0.146) 0.540 -540 (0.423) 0.029 0.045 0.073 0.074 0.097	Dependent Variable: Mean Competence Score (1)(1)(2)(3)(4)(5)(6) (0.014^{***}) -0.010^{**} -0.011^{**} -0.012^{**} -0.012^{**} (0.005)(0.005)(0.005)(0.005)(0.005)(0.005) -0.052 -0.066 -0.077 -0.123 -0.143 (0.139)(0.137)(0.137)(0.139)(0.141) 0.505^{**} 0.527^{**} 0.536^{**} 0.492^{**} 0.496^{**} (0.225)(0.226)(0.226)(0.228)(0.229) 0.476^{**} 0.459^{**} 0.471^{**} 0.432^{*} 0.429^{*} (0.223)(0.230)(0.231)(0.235)(0.236) 0.428^{***} 0.421^{***} 0.416^{***} 0.412^{***} (0.152)(0.153)(0.152)(0.153) 0.498^{**} 0.407^{**} 0.398^{**} 0.409^{**} (0.182)(0.183)(0.182)(0.184) 0.004 0.004 0.004 0.002 (0.007)(0.007)(0.008) 0.230^{*} 0.230^{*} 0.234^{*} (0.128)(0.129) -0.000 -0.019 (0.146)(0.149) 0.540 0.565 (0.423)(0.425) -0.212 (0.588) -0.089 (0.594) 0.565 (0.643) 0.029 0.045 0.073 0.074 0.097 0.029 0.045 0.073 0.074 0.097 0.029 0.045 0.073 <td< td=""></td<>

	Table A5:	Validity -	Correlates	of the	Competence	e Score
--	-----------	------------	------------	--------	------------	---------

Notes: The education variables refer to the highest completed educational level. The excluded category is "Less than High School". The job variables refer to the last job held by the politician before taking office. I classify as high-skilled all professionals (lawyers, doctors, engineers, architects), self-employed and individuals holding administrative white collar jobs. Jobs classified as low skill are blue collar jobs and non-administrative white collar jobs. The excluded category includes individual who are unemployed or out of the labor force (pensioners, students, housewives). The excluded category for the party is an indicator taking value one if the mayor self-identifies as "centrist" or "independent". Year of current term indicators capture the year (1 to 5) of the current term that the mayor is serving. Areas are North, Center and South. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

Component	Eigenvalue	Difference	Proportion	Cumulative						
Component 1	3.39412	2.47621	0.4849	0.4849						
Component 2	.917912	.0674081	0.1311	0.6160						
Component 3	.850504	.223183	0.1215	0.7375						
Component 4	.627321	.0945207	0.0896	0.8271						
Component 5	.5328	.145308	0.0761	0.9032						
Component 6	.387493	.0976451	0.0554	0.9586						
Component 7	.289847	-	0.0414	1.0000						
N=935										
Municipalities=	Municipalities=306									

 Table A6: Validity - Principal Component Analysis of components of the Competence

 Score

Notes: The table above presents results for a Principal Component Analysis of the seven individual scores obtained by each interviewed mayor on the seven questions measuring managerial competence.

A5. Reliability of the Competence Score

My measure of politicians' competence could suffer from measurement error. Therefore, I present a series of tests that lends support to the reliability of my competence score measure.

Firstly, I validated the reliability of the data collected by double scoring a random subset of 43 interviews. These is the subset of interviews that were recorded, making it possible for a different interviewer to listen to the interview and assign scores to each answer at a later point in time than when the original phone interview was conducted. The interrater reliability, *i.e.* the correlation coefficient between the competence scores assigned by 2 different interviewers on this subset of interviews, is 0.675 (p-value of 0.000). The relationship is shown graphically in Panel A of Figure A1. Moreover, as shown in Panel B of the same figure, there is no relationship between the degree of measurement error in the scoring and the competence score: this means that high scores are as likely to be well measured as average and low scores.

Figure A1: Reliability of the Competence Score.

Notes: Panel A shows the correlation between the competence score assigned to the same mayor by two different interviewers. Panel B shows the correlation between the measurement error in the competence score (calculated as the absolute value of the difference of the two scores in Panel A) and the competence score by interviewer 1.

Secondly, I show that the four components of the competence score are strongly positively correlated. Table A7 shows the coefficients from a series of pairwise regressions of the components of the competence score: with an average coefficient of .432, these correlations suggest that mayors who score high in one of the components of the competence score are likely to score high also on the other components. Moreover, as an alternate measure of internal reliability consistency, I calculate the Cronbach's alpha (Cronbach, 1951) of the competence score which yields a value of .754.

	Target Setting	Operations	Performance Monitoring
Operations Performance Monitoring	.382*** .405***	.456***	
Incentives	.459***	.402***	.486***

Table A7: Reliability - pairwise correlations of components

Notes: Each coefficient reported in the table is from a regression of the variable reported in the column on the variable reported in the row and a constant term using survey measures for all 306 observations (mayors) in the full samples. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

Finally, the results presented in Table 4 are not driven by any single component of the mean competence score: Table A14 in the robustness section of the Appendix shows that results are robust to substituting the unweighted administrative competence score with its inverse-covariance weighted version. More over, Table A16 shows that results are robust to excluding from the administrative competence score, one at a time, i) each of the four management practices, or ii) each of the seven questions that compose the competence score.

A6. Robustness Tables

Table A8: Balance between interviewed and non-interviewed	mayors
---	--------

	Declined	Accepted	Diff.	s.e. of Diff.
Panel A: Mayor characteristics				
Female	0.16	0.13	-0.02	(0.03)
Age	51.46	52.37	0.91	(0.83)
Job - High Skill	0.72	0.68	-0.04	(0.04)
Job - Low Skill	0.14	0.19	0.06	$(0.03)^*$
Job - Unemployed/Pensioner	0.12	0.12	0.00	(0.03)
Education - Less than High School	0.06	0.05	-0.01	(0.02)
Education - High School	0.38	0.42	0.05	(0.04)
Education - University	0.57	0.53	-0.04	(0.04)
Panal B. Municipality characteristics				
Total Revenues (€ per capita - 2015 budget)	1375.91	1331.97	-43.94	(63.39)
Total Expenditures ($\in~$ per capita - 2015 budget)	1331.81	1287.98	-43.84	(61.78)
Surplus (2015 budget)	0.19	0.19	-0.00	(0.01)
Observations	304	306	610	××× · · 0

Notes: Observations for the *Job* variables are 289 for the non-interviewed sample. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	Declined	Accopted		so of
	Interview	Interview	Difference	Difference
-	Interview	Interview	Difference	Difference
Panel A: South				
Age	52.20	53.59	1.39	(1.45)
Female	0.10	0.07	-0.04	(0.04)
Job - High Skill	0.82	0.84	0.02	(0.06)
Job - Low Skill	0.09	0.14	0.05	(0.05)
Job - Unemployed/Pensioner	0.09	0.03	-0.06	(0.04)
Education - Less than High School	0.03	0.01	-0.01	(0.02)
Education - High School	0.30	0.25	-0.05	(0.07)
Education - University	0.67	0.73	0.06	(0.07)
Total Revenues (euros per capita)	1810.79	1753.21	-57.58	(150.79)
Total Expenditures (euros per capita)	1747.09	1716.19	-30.91	(147.66)
Surplus	0.18	0.16	-0.02	(0.02)
-				× /
Observations	106	75	181	
Panel B: North	51 19	51 70	0 50	(1 10)
Age	0.10	51.70 0.17	0.08	(1.18)
Female Job High Skill	0.19	0.17	-0.02	(0.04)
Job Low Skill	0.09	0.03	-0.00	(0.05)
Job Unemployed /Densioner	0.10	0.23	0.07	(0.03)
Fducation Loss than High School	0.13	0.14	-0.01	(0.04)
Education - Less than High School	0.08	0.07	-0.00	(0.03)
Education - High School	0.45	0.31	0.08	(0.00)
Total Pavenues (euros per espita)	0.49	1067.02	-0.07	(0.00)
Total Exponditures (ouros per capita)	990.00	1007.02 1031.15	62.17	(51.04) (50.56)
Surplus	908.98	0.20	02.17	(0.01)
Surplus	0.21	0.20	-0.00	(0.01)
Observations	145	180	325	
Panel C: Center	F 0.00	7 2.04	2.02	(1.00)
Age	50.92	52.94	2.02	(1.98)
Female	0.17	0.10	-0.07	(0.07)
Job - High Skill	0.63	0.67	0.03	(0.10)
JOD - LOW SKIII	0.18	0.14	-0.05	(0.07)
Job - Unemployed/Pensioner	0.12	0.20	0.07	(0.07)
Education - Less than High School	0.08	0.02	-0.06	(0.04)
Education - High School	0.36	0.35	-0.01	(0.09)
Education - University	0.57	0.63	0.06	(0.10)
Iotal Revenues (euros per capita)	1573.15	1670.26	97.11	(143.73)
Total Expenditures (euros per capita)	1526.54	1588.22	61.68	(138.94)
Surpius	0.18	0.20	0.02	(0.02)
Observations	78	84	162	

Table A9: Balance between interviewed and non-interviewed mayors by area

Notes: The number of observations for the variables *Job - High-skill, Job - Low-skill,* and *Job - Un-employed* is 176 (103 not interviewed and 73 interviewed) in Panel A, 261 (114 not interviewed and 147 interviewed) in Panel B, and 155 (72 not interviewed and 83 interviewed) in Panel C. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	Reference	Interviewed	Diff	se of Diff
Panel A: Mayor characteristics	ropulation	Interviewed	Din.	5.c. of Diff.
Female	0.15	0.13	-0.03	(0.02)
Age	51.70	52.44	0.74	(0.68)
Job - High Skill	0.65	0.61	-0.04	(0.03)
Job - Low Skill	0.25	0.27	0.03	(0.03)
Job - Unemployed/Pensioner	0.11	0.12	0.01	(0.02)
Education - Less than High School	0.07	0.05	-0.02	(0.02)
Education - High School	0.38	0.40	0.02	(0.03)
Education - University	0.55	0.55	-0.00	(0.03)
Panel B: Municipality characteristics				
Total Revenues (\in per capita - 2015 budget)	1413.73	1348.59	-65.14	(57.59)
Total Expenditures (€ per capita - 2015 budget)	1365.87	1315.38	-50.49	(57.02)
Surplus (2015 budget)	0.20	0.19	-0.01	(0.01)
Observations	961	306	1,267	

Table A10:	Balance	between	intervi	ewed	mayors	and	all	comparable	mayors
TUDIO ITIO.	Datance	DOUNCOIL	THUCH VI	.cwcu	mayorb	and	CULL.	Comparable	mayorb
					•			1	•/

Notes: The table above shows t-test for difference in means between the interviewed mayors (and their cities) and all other Italian mayors (and their cities) of municipalities with a population between 3,500 and 6,500 inhabitants - the population from which I sampled. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)	
	Surplus	Surplus	Surplus	Surplus	
-					
Mean Competence Score \times South	-0.023*	-0.029**	-0.026**	-0.027**	
	(0.012)	(0.012)	(0.013)	(0.012)	
Mean Competence Score	0.004	0.005	0.005	0.005	
	(0.005)	(0.006)	(0.005)	(0.005)	
Observations	939	927	927	927	
Municipalities	306	303	303	303	
R-squared	0.082	0.091	0.097	0.108	
SD DV	0.0907	0.0911	0.0911	0.0911	
Standardized Effect	-0.016	-0.020	-0.017	-0.017	
Mayor Controls		Υ	Υ	Υ	
Party FE			Υ	Υ	
Year of Term FE				Υ	

Table A11: Competence Score and Surplus: South vs. rest of Italy

Notes: The dependent variable is the value of the per-capita municipal surplus relative to the budget size (total revenues minus total expenditures) over total expenditures, winsorized at the 1 percent level. The variable South is an indicator taking value one for all municipalities in southern Italy and value zero for municipalities in Northern and Central Italy. All specifications include year and region fixed effects. The South indicator is absorbed by region fixed effects. The standard deviation of the dependent variable is reported in the table. Mayor controls include: i) the gender of the mayor, ii) the age of the mayor, iii) the mayor's previous occupation, iv) the mayor's educational attainment, and v) fixed effects for the year of the mayor's current mandate (1-5). Standardized Effects reported in the table represent the sum of the coefficients of MeanCompetenceScore × South and the coefficient of MeanCompetenceScore, multiplied by the standard deviation of the Mean Competence Score in the South. Standard errors clustered at the municipality level are shown in parenthesis. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)	
_	Surplus	Surplus	Surplus	Surplus	
Mean Competence Score \times Post \times South	-0.029^{***} (0.008)	-0.026^{***}	-0.029^{***} (0.009)	-0.029^{***} (0.010)	
Mean Competence Score \times Post	0.005	0.003	0.003	0.004	
Post \times South	(0.000) 0.081^{***} (0.024)	(0.000)	(0.000)	(0.000)	
Observations	2,362	2,362	2,339	2,339	
R-squared	0.693	0.699	0.700	0.701	
Municipalities	306	306	303	303	
SD Surplus Pre	0.109	0.109	0.109	0.109	
Standardized Effect	-0.020	-0.019	-0.021	-0.020	
Region FE		Υ	Υ	Y	
Mayor Controls			Υ	Υ	
Party FE				Υ	

Table A12: Competence Score and Surplus (Diff-in-Diff): south vs. rest of Italy

Notes: The dependent variable is the value of the per-capita municipal surplus (total revenues minus total expenditures) relative to the budget size, winsorized at the 1 percent level. The variable *Post* is an indicator taking value one for each year of the interviewed mayor's term following the mayor's first election. The variable *South* is an indicator taking value one for each numicipalities in southern Italy and value zero for municipalities in Northern and Central Italy. In columns (2)-(3) the variable *Post* × *South* is absorbed by region fixed effects interacted with the *Post* dummy. The standard deviation of the dependent variable in the pre-period is reported in the table. All specifications include fixed effects for the municipality, the year since the mayor's age, gender, educational attainment, years in an elected position in the municipal government, and skill content of previous employment. All controls, as well as region and party indicators, are interacted with the *Post* indicator. Standardized Effects reported in the table represent the sum of the coefficients of *MeanCompetenceScore* × *Post* × *South* and the coefficient of *MeanCompetenceScore* × *Post*, multiplied by the standard deviation of the *Mean Competence Score* in the South. Standard errors clustered at the municipality level are shown in parenthesis. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)
	Surplus	Surplus	Surplus	Surplus
—		1	1	1
Panel A: Full Sample				
Mean Competence Score	-0.001	-0.001	-0.000	-0.000
(Inverse-Covariance Weighted)	(0.004)	(0.005)	(0.004)	(0.004)
(()	()	()	()
Observations	938	926	926	926
Municipalities	305	302	302	302
R-squared	0.074	0.079	0.088	0.099
SD DV	0.0907	0.0911	0.0911	0.0911
Standardized Effect	-0.001	-0.001	0.000	0.000
Panel B: South				
Mean Competence Score	-0.020**	-0.027**	-0.029**	-0.028**
(Inverse-Covariance Weighted)	(0.009)	(0.012)	(0.013)	(0.013)
Observations	240	233	233	233
Municipalities	75	73	73	73
R-squared	0.168	0.198	0.211	0.230
SD DV	0.0934	0.0939	0.0939	0.0939
Standardized Effect	-0.019	-0.025	-0.027	-0.027
Panel C: North				
Mean Competence Score	0.006	0.007	0.008	0.008
(Inverse-Covariance Weighted)	(0.006)	(0.006)	(0.006)	(0.006)
Observations	551	546	546	546
Municipalities	179	178	178	178
R-squared	0.092	0.095	0.111	0.119
SD DV	0.0892	0.0896	0.0896	0.0896
Standardized Effect	0.005	0.007	0.008	0.008
Panel D: Center				
Mean Competence Score	0.001	-0.010	-0.002	0.001
(Inverse-Covariance Weighted)	(0.008)	(0.009)	(0.012)	(0.013)
Observations	147	147	147	147
Municipalities	51	51	51	51
R-squared	0.100	0.256	0.284	0.301
SD DV	0.0916	0.0916	0.0916	0.0916
Standardized Effect	0.001	-0.010	-0.002	0.001
Mayor Controls		Y	Y	Y
Party FE			Υ	Y
Year of Term FE				Y

Table A13: Robustness to Inverse-Covariance Weighted Competence Score - Cross-section

Notes: see Table 2 for Table notes. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level. The unweighted competence score is measured for one more observation in Northern Italy (180) with respect to the weighted competence score (179) because of a missing score for one of the seven scores that are averaged in the two indices. Standardized Effects reported in the table represent the coefficients of *Mean Competence Score (Inverse-Covariance Weighted)* multiplied by the standard deviation of *Mean Competence Score (Inverse-Covariance Weighted)*.

	(1)	(2)	(3)	(4)	
	Surplus	Surplus	Surplus	Surplus	
=			_		
Panel A: Full Sample					
Mean Competence Score \times Post	-0.002	-0.002	-0.002	-0.002	
(Inverse-Covariance Weighted)	(0.004)	(0.004)	(0.004)	(0.004)	
Observations	2,356	2,356	2,333	2,333	
Municipalities	305	305	302	302	
R-squared	0.691	0.698	0.698	0.699	
SD Surplus Pre	0.109	0.109	0.109	0.109	
Standardized Effect	-0.002	-0.002	-0.002	-0.002	
Panel B: South					
Mean Competence Score \times Post	-0.022***	-0.022***	-0.031***	-0.031***	
(Inverse-Covariance Weighted)	(0.006)	(0.006)	(0.007)	(0.009)	
	· · · ·				
Observations	588	588	571	571	
Municipalities	75	75	73	73	
R-squared	0.748	0.751	0.759	0.760	
SD Surplus Pre	0.120	0.120	0.120	0.120	
Standardized Effect	-0.022	-0.022	-0.030	-0.030	
Panel C: North					
Mean Competence Score \times Post	0.007	0.007	0.007	0.007	
(Inverse-Covariance Weighted)	(0.006)	(0.006)	(0.006)	(0.006)	
	· · ·	()			
Observations	1,386	1,386	1,380	1,380	
Municipalities	179	179	178	178	
R-squared	0.679	0.686	0.686	0.688	
SD Surplus Pre	0.107	0.107	0.107	0.107	
Standardized Effect	0.007	0.007	0.007	0.007	
Panel D. Center					
$\frac{1}{\text{Mean Competence Score} \times \text{Post}}$	-0.002	-0.008	-0.013	-0.001	
(Inverse-Covariance Weighted)	(0.007)	(0.007)	(0.008)	(0.013)	
	· /	()	()		
Observations	382	382	382	382	
Municipalities	51	51	51	51	
R-squared	0.705	0.718	0.745	0.750	
SD Surplus Pre	0.0978	0.0978	0.0978	0.0978	
Standardized Effect	-0.002	-0.008	-0.013	-0.001	
				37	
Kegion FE		Ŷ	Y	Y V	
Mayor Controls			Ŷ	Y V	
Party FE				Ŷ	

Table A14: Robustness to Inverse-Covariance Weighted Competence Score - Diff-in-Diff

Notes: see Table 4 for Table notes. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level. The unweighted competence score is measured for one more observation in Northern Italy (180) with respect to the weighted competence score (179) because of a missing score for one of the seven scores that are averaged in the two indices. Standardized Effects reported in the table represent the coefficients of $MeanCompetenceScore(Inverse - CovarianceWeighted) \times Post$ multiplied by the standard deviation of Mean Competence Score (Inverse-Covariance Weighted).

	(1)	(2)	(3)	(4)
-	Surplus	Surplus	Surplus	Surplus
Panel A: Full Sample				
Factor 1 (Competence) × Post	-0.005	-0.006	-0.006	-0.005
	(0.004)	(0.005)	(0.005)	(0.005)
	(0.001)	(0.000)	(0.000)	(0.000)
Observations	2,330	2,330	2,307	2,307
Municipalities	302	302	299	299
SD Surplus Pre	0.109	0.109	0.109	0.109
Panel B: South	0.004***	0.000***	0 099***	0.005***
Factor 1 (Competence) \times Post	$-0.024^{-0.02}$	-0.026	-0.033	-0.035^{-+++}
	(0.008)	(0.009)	(0.009)	(0.011)
Observations	580	580	563	563
Municipalities	74	74	72	72
SD Surplus Pre	0.120	0.120	0.121	0.121
1				
Panel C: North				
Factor 1 (Competence) \times Post	0.004	0.004	0.003	0.002
	(0.006)	(0.006)	(0.006)	(0.006)
Observations	1.368	1.368	1.362	1,362
Municipalities	177	177	176	176
SD Surplus Pre	0.107	0.107	0.107	0.107
Panel D: Center				
Factor 1 (Competence) \times Post	-0.008	-0.012	-0.029**	-0.026**
	(0.011)	(0.010)	(0.011)	(0.013)
Observations	382	382	382	382
Municipalities	51	51	51	51
SD Surplus Pre	0.0978	0.0978	0.0978	0.0978
Darian FF		V	V	V
Negion FE Mayor Controls		Ĭ	ľ V	r V
Dorty FF			Ĩ	I V
гану г Е				ľ

Table A15: Robustness to Latent Competence measured by Factor Analysis - Diff-in-Diff

Notes: see Table 4 for Table notes. The variable *Factor 1 (Competence)* is the first factor estimated through factor analysis of the seven items averaged in the *Mean Competence Score.* *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

Table A16: Reliability of Competence Score (in South)

			Dependen	t Variable :	Surplus		
Panel A - Mean Competence Score excludes practice:	Ta	rget tting	Operations	Perfor Monit	mance toring	Incer	ıtives
Mean Competence Score (excluding one practice) \times Post	-0.0	36^{**}	-0.039^{**} (0.011)	-0.02 (0.0	8*** 310)	-0.03	.6*** 110)
Observations Municipalities R-squared SD Surplus Pre Standardized Effect		71 73 761 120 031	571 73 0.761 0.120 -0.033	7 7 0.1 0.1	71 3 757 120 023	7 7 0.0-1 0.0-	71 3 61 120 332
Panel B - Mean Competence Score excludes question:	(1)	(2)	(3)	(4)	(5)	(9)	(2)
Mean Competence Score (excluding one question) \times Post	-0.040^{***} (0.011)	-0.039^{***} (0.010)	-0.039^{***} (0.011)	-0.035^{***} (0.011)	-0.037^{***} (0.011)	-0.041^{***} (0.011)	-0.039^{***} (0.011)
Observations Municipalities R-squared SD Surplus Pre Standardized Effect Standardized Effect Notes: The table above replicates results shown in Table 4 (1 Notes: The table above replicates results shown in Table 4 (1 A shows results for four alternate Competence Scores, each c tence Score used throughout the paper. Panel B shows result of the 7 questions used to calculate the Competence Score us party and region fixed effects and mayor controls (i.e., party dicator). Standardized Effects reported in the table represent <i>Competence Score (excluding one practice)</i> in panel A, and th respectively, in the South. *** significant at the 1 % level, **	571 73 0.762 0.762 0.120 -0.033 (for the Italia) calculated as the for seven a sed througho indicators, re the standard (571 73 0.762 0.120 0.120 -0.033 n south only) the average c ulternate Com ut the paper. egion indicate ents in both 1 deviation of .	571 73 0.762 0.120 0.120 -0.033) using alterna of three out of appetence Scor All columns ors and mayo panels above 1 Mean Compet vel, * significs	571 73 0.759 0.759 0.120 -0.028 $the four prises, each calc show results control var multiplied by ence Score (multiplied by ence Score (multiplied by the 10 multiplied by the 10 multip$	571 73 0.760 0.120 0.120 -0.029 is of the Con actices used ulated as the s for the full iables interaa <i>v</i> the standau <i>excluding on</i> 0% level.	571 73 0.762 0.762 0.120 -0.034 npetence Sco to calculate is average of ε specification the the view with the calculate of ε and ε and ε and ε are specification is ε and ε and ε and ε are specification is ε and ε and ε are specification is ε are sp	571 73 0.762 0.762 0.120 -0.034 are. Panel the Compe- all but one including $\geq Post$ in- of the <i>Mean</i> n panel B

	(1)	(2)	(3)	(4)
-	Surplus	Surplus	Surplus	Surplus
Panel A				
Target Setting × Post	-0.016**	-0.015*	-0.024**	-0.022*
	(0.008)	(0.018)	(0.010)	(0.011)
Observations	588	588	571	571
B-squared	0 743	0 747	0 754	0.756
Standardized Effect	-0.016	-0.014	-0.022	-0.020
	0.010	0.011	0.022	0.020
Panel B				
$\frac{1}{\text{Performance Monitoring} \times \text{Post}}$	-0.020***	-0.021***	-0.028***	-0.030***
	(0.006)	(0.007)	(0.007)	(0.008)
Observations	588	588	571	571
R-squared	0.749	0.753	0.762	0.763
Standardized Effect	-0.023	-0.025	-0.033	-0.036
Panel C	0.015***	0.01.4**	0.010**	0.015**
Operations × Post	-0.015	-0.014	-0.010	-0.015
	(0.005)	(0.006)	(0.007)	(0.007)
Observations	588	588	571	571
R-squared	0.744	0.748	0.753	0.755
Standardized Effect	-0.016	-0.016	-0.017	-0.017
Panel D				
Incentives \times Post	-0.014*	-0.013*	-0.017**	-0.014*
	(0.007)	(0.008)	(0.008)	(0.009)
Observations	588	588	571	571
R-squared	0.743	0.747	0.753	0.755
Standardized Effect	-0.014	-0.014	-0.017	-0.015
Municipalities	75	75	73	73
SD Surplus Pre	0.120	0.120	0.120	0.120
Region FE		Υ	Υ	Υ
Mayor Controls			Υ	Υ
Party FE				Υ

Table A17: Competence Score components (in South)

Notes: see Table 4 for table notes. Each panel replicates Panel B (South) of table 4 using one of the four management practices or components of the Mean Competence Score in lieu of the Mean Competence Score. Standardized Effects reported in the table represent the coefficient reported in each panel multiplied by the standard deviation of the score received on the management practice presented in each panel, in the South. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
				Previous	Mayor's		
		Job	Job	Job	Education	Education	Education
	Age	High Skill	Low Skill	Unemployed	<high school<="" td=""><td>High School</td><td>University</td></high>	High School	University
Panel A							
Mean Competence Score	0.712	0.025	-0.040	0.015	-0.046*	-0.006	0.053
-	(0.798)	(0.043)	(0.043)	(0.042)	(0.028)	(0.045)	(0.045)
Observations	180	180	180	180	180	180	180
R-squared	0.004	0.002	0.005	0.001	0.016	0.000	0.008
Panel B							
Dependent Variable	0.082	0.079	0.192^{**}	0.015	0.052	0.013	-0.008
for interviewed Mayor	(0.064)	(0.074)	(0.082)	(0.100)	(0.089)	(0.075)	(0.076)
Observations	180	179	179	179	180	180	180
R-squared	0.009	0.006	0.030	0.000	0.002	0.000	0.000

Table A18: No Correlation with Previous Mayor's Characteristics in the North

Notes: See the data section in the Appendix for the variables' description. The unit of observation is the municipality. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
				Previous	Mayor's		
		Job	Job	Job	Education	Education	Education
	Age	High Skill	Low Skill	Unemployed	<high school<="" td=""><td>High School</td><td>University</td></high>	High School	University
D 14							
Panel A							
Mean Competence Score	0.081	0.007	0.072	-0.080	-0.039	-0.113	0.152^{*}
	(1.567)	(0.082)	(0.073)	(0.081)	(0.040)	(0.084)	(0.082)
Observations	E 1	E 1	E 1	E 1	E 1	E 1	E 1
Observations	51	16	51	51	16	16	51
R-squared	0.000	0.000	0.019	0.019	0.020	0.036	0.066
Panel B							
Dependent Variable	-0.219*	0.294^{**}	0.036	0.283	-0.060	-0.157	-0.204
for interviewed Mayor	(0.119)	(0.140)	(0.181)	(0.169)	(0.242)	(0.148)	(0.144)
Observations	51	51	51	51	51	51	51
B-squared	0.065	0.082	0.001	0 054	0.001	0.022	0.039
Notes: See the data section	$\frac{0.000}{10}$ in the A	Appendix for	the variable	s' description	The unit of obse	rvation is the m	unicipality ***

Table A19: No Correlation with Previous Mayor's Characteristics in the Center

Notes: See the data section in the Appendix for the variables' description. The unit of observation is the municipality. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	
	Surplus	Surplus	Surplus	
	South	North	Centre	
Mean Competence Score \times Post	-0.038***	0.008	-0.002	
•	(0.011)	(0.007)	(0.015)	
Female \times Post	-0.010	-0.006	0.027	
	(0.023)	(0.013)	(0.028)	
$Age \times Post$	-0.001	0.000	-0.001	
0	(0.001)	(0.001)	(0.001)	
Job - High Skill \times Post	0.027	0.002	-0.062***	
0	(0.041)	(0.015)	(0.022)	
Job - Low Skill \times Post	0.062	-0.004	-0.102***	
	(0.044)	(0.017)	(0.031)	
Education - University \times Post	0.002	0.013	0.251^{***}	
v	(0.021)	(0.023)	(0.029)	
Education - Highschool \times Post		0.014	0.242***	
0		(0.022)	(0.033)	
Years in Municipal Government \times Post	-0.001	-0.000	-0.002*	
-	(0.001)	(0.001)	(0.001)	
Observations	571	1 386	280	
Municipalities	73 000	170.000	51 000	
SD Sumplus Pro	0.120	0.107	0.008	
Stondardized Effect	0.120	0.107	0.090	
Domon FF	-0.051 V	0.007 V	-0.002 V	
Region FE	I	I	I V	
Party FE	Ŷ	Ŷ	Y	

Table A20: Competence Score and Human Capital Measures

Notes: Columns (1), (2), and (3) replicate column (4) of Table 4's Panel B, C, and D respectively. The coefficient on the variable *Education - Highschool* is not estimated because of limited variation in education in the South subsample. See Table 4 for table notes. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)	
	Surplus	Surplus	Surplus	Surplus	
	ourpius	Sulpius	bulpius	Surpius	
Panel A: Full Sample					
Mean Competence Score \times Post	0.000	0.000	-0.002	-0.001	
*	(0.006)	(0.006)	(0.006)	(0.006)	
Observations	1,296	1,296	1,287	1,287	
Municipalities	144	144	143	143	
R-squared	0.732	0.739	0.742	0.743	
SD Surplus Pre	0.0844	0.0844	0.0845	0.0845	
Standardized Effect	0.000	0.000	-0.001	-0.001	
Band B. Couth					
Moon Competence Score × Post	0.017**	0.010**	0.020***	0.022**	
Mean Competence Score × 1 ost	-0.017	(0.019)	-0.032	(0.013)	
Observations	(0.000)	(0.007)	(0.010)	224	
Municipalities	37	37	36	36	
B-squared	0.814	0.817	0.829	0.829	
SD Surplus Pre	0.0935	0.0935	0.0942	0.023	
Standardized Effect	-0.015	-0.017	-0.027	-0.027	
Standardized Effect	0.010	0.011	0.021	0.021	
Panel C: North					
Mean Competence Score \times Post	0.010	0.010	0.009	0.010	
	(0.009)	(0.009)	(0.009)	(0.009)	
Observations	774	774	774	774	
Municipalities	86	86	86	86	
R-squared	0.698	0 708	0.712	0 713	
SD Surplus Pre	0.0831	0.0831	0.0831	0.0831	
Standardized Effect	0.009	0.008	0.008	0.008	
Panel D: center			0.010**	0.000*	
Mean Competence Score \times Post	-0.009	-0.010	-0.019**	-0.020*	
	(0.008)	(0.007)	(0.007)	(0.011)	
Observations	189	189	189	189	
Municipalities	21	21	21	21	
R-squared	0.788	0.789	0.801	0.803	
SD Surplus Pre	0.0705	0.0705	0.0705	0.0705	
Standardized Effect	-0.009	-0.009	-0.019	-0.019	
Region FE		Υ	Y	Y	
Mayor Controls			Y	Υ	
Party FE				Υ	

Table A21: Robustness to Balanced Sample

Notes: The Table replicates Table 4 using a balanced panel sample. See Table 4 for additional table notes.

	(1)	(2)	(3)	(4)
	Surplus	Surplus	Surplus	Surplus
	(Absolute Value)	(Absolute Value)	(Absolute Value)	(Absolute Value)
Panel A · Full Sample				
$\frac{1}{\text{Mean Competence Score} \times \text{Post}}$	-0.000	-0.001	-0.002	-0.000
	(0.005)	(0.005)	(0.005)	(0.005)
	(0.000)	(0.000)	(0.000)	(0.000)
Observations	2,362	2,362	2,339	2,339
Municipalities	306	306	303	303
R-squared	0.684	0.692	0.694	0.696
SD Surplus Pre	0.0937	0.0937	0.0937	0.0937
Standardized Effect	0.000	-0.001	-0.001	0.000
Moon Competence Score y Dest	0.099***	0.094***	0 020***	0 0.00***
Mean Competence Score × Post	-0.025	-0.024	-0.030 * * *	-0.028
	(0.000)	(0.007)	(0.008)	(0.009)
Observations	588	588	571	571
Municipalities	75	75	73	73
R-squared	0.765	0.768	0.778	0.780
SD Surplus Pre	0.110	0.110	0.110	0.110
Standardized Effect	-0.020	-0.020	-0.025	-0.023
2	0.020	0.020		0.020
Panel C: North				
Mean Competence Score \times Post	0.009	0.008	0.006	0.007
	(0.007)	(0.007)	(0.006)	(0.006)
Observations	1,392	1,392	1,386	1,386
Municipalities	180	180	179	179
R-squared	0.655	0.666	0.668	0.670
SD Surplus Pre	0.0877	0.0877	0.0876	0.0876
Standardized Effect	0.007	0.007	0.005	0.006
			•	
Panel D: Center			·	
Mean Competence Score \times Post	0.001	-0.002	-0.011	-0.001
-	(0.007)	(0.008)	(0.009)	(0.015)
Observations	382	382	382	382
Municipalities	51	51	51	51
R-squared	0.737	0.743	0.771	0.775
SD Surplus Pre	0.0890	0.0890	0.0890	0.0890
Standardized Effect	0.001	-0.002	-0.009	-0.001
Manage Cantach	V	V	V	
Mayor Controls	Y	Y V	Y V	
Region FE		ĩ	ĭ V	

Table A22: Results not driven by more competent mayors generating negative deficit

Party FE . Notes: The Table replicates Table 4 using a the absolute value of the municipal surplus as dependent variable. See Table 4 for additional table notes.

Figure A2: Competence Score and Budget Surplus: dropping one municipality at a time

Notes: The coefficient plot above represents 73 coefficient estimates for the same model (coefficient γ_t reported in Panel B of Table 4 from the difference-in-differences model in equation (4.3) estimating the effect of the *Mean Competence Score* on municipal service provision) estimated in 73 different samples. In each sample, I get rid of one of the 73 Southern municipalities in my sample. Vertical lines plot the 95 percent confidence intervals.

Figure A3: Competence Score and Quality of Service Provision: dropping one municipality at a time

Notes: The coefficient plot above represents 73 coefficient estimates for the same model (coefficient γ_t reported in column (1) of Table 7 from the difference-in-differences model in equation (4.3) estimating the effect of the *Mean Competence Score* on the municipal surplus) estimated in 73 different samples. In each sample, I get rid of one of the 73 Southern municipalities in my sample. Vertical lines plot the 95 percent confidence intervals.

	(1)	(2)	(3)	(4)
	Surplus	Surplus	Surplus	Surplus
Panel A: Full Sample	0.001	0.002	0.000	0.000
Mean Competence Score	-0.001	-0.002	-0.000	-0.000
	(0.000)	(0.005)	(0.000)	(0.000)
Observations	939	927	927	927
Municipalities	306.000	303.000	303.000	303.000
R-squared	0.075	0.080	0.088	0.100
SD DV	0.091	0.091	0.091	0.091
Standardized Effect	-0.001	-0.001	0.000	0.000
Panel B: Low Social Capital				
Mean Competence Score	-0.031***	-0.037***	-0.042***	-0.042***
r i i i i i i i i i i i i i i i i i i i	(0.011)	(0.012)	(0.014)	(0.015)
Observations	197	197	197	197
Municipalities	65.000	65.000	65.000	65.000
R-squared	0.193	0.232	0.246	0.264
SD DV	0.104	0.104	0.104	0.104
Standardized Effect	-0.027	-0.032	-0.036	-0.037
Panel C: High Social Capi-				
tal				
Mean Competence Score	0.006	0.006	0.007	0.007
	(0.005)	(0.005)	(0.005)	(0.005)
Observations	742	730	730	730
Municipalities	241.000	238.000	238.000	238.000
R-squared	0.107	0.111	0.122	0.131
SD DV	0.087	0.087	0.087	0.087
Standardized Effect	0.005	0.005	0.006	0.006
Mayor Controls		Y	Υ	Y
Party FE			Y	Y
Year of Term FE				Υ

Table A23: Social Capital as a Measure of Institutions: Cross-sectional Results

Notes: The dependent variable is the per-capita municipal surplus relative to the budget size (total revenues minus total expenditures) over total expenditures, winsorized at the 1 percent level. Its standard deviation is reported in the table. All specifications include fixed effects for the year, and region, and control for the length of the interview in minutes. Mayor controls include her gender, age, skill content of previous occupation, educational attainment, year of the 5-year term that she was serving at the time of the interview, years of prior office holding in the municipal government. The table reports Standardized Effects, i.e. the coefficient multiplied by the standard deviation of the *Mean Competence Score*. Standard errors clustered at the municipality level are shown in parenthesis. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)
	Surplus	Surplus	Surplus
	(Full Sample)	(Low Social	(High Social
		Capital)	Capital)
Mean Competence Score \times year -1	-0.005	-0.016	-0.002
	(0.007)	(0.018)	(0.009)
Mean Competence Score \times year -2	0.008	0.015	0.009
	(0.007)	(0.015)	(0.008)
Mean Competence Score \times year -3	-0.007	-0.005	-0.005
	(0.007)	(0.013)	(0.009)
Mean Competence Score \times year -4	-0.001	0.011	0.000
	(0.007)	(0.014)	(0.009)
Observations	1,212	264	783
R-squared	0.075	0.086	0.068
Municipalities	305	67	196
SD Surplus	0.106	0.113	0.106

Table A24: Social Capital as a Measure of Institutions: no difference in pre-election surplus for high- vs. low-competence mayors

Notes: the specification includes fixed effects for each year preceding the election year. Observations for one municipality are missing from the south sample in the analysis above because budget data is missing for this municipality in all pre-election years. Standard errors clustered at the municipality level are shown in parenthesis. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

	(1)	(2)	(3)	(4)
	Surplus	Surplus	Surplus	Surplus
-	*	*	*	*
Panel A: Full Sample				
Mean Competence Score \times Post	-0.003	-0.003	-0.003	-0.002
	(0.005)	(0.005)	(0.005)	(0.005)
Observations	2,362	2,362	2,339	2,339
Municipalities	306.000	306.000	303.000	303.000
R-squared	0.691	0.698	0.698	0.699
SD Surplus Pre	0.109	0.109	0.109	0.109
Standardized Effect	-0.002	-0.003	-0.003	-0.002
Danal P. Law Social Capital				
Moan Competence Score × Post	0 028***	0 030***	0.049***	0.045***
Mean Competence Score × 1 0st	-0.028	(0.052)	(0.042)	(0.043)
	(0.010)	(0.011)	(0.013)	(0.014)
Observations	515	515	515	515
Municipalities	68.000	68.000	68.000	68.000
R-squared	0.672	0.681	0.692	0.693
SD Surplus Pre	0.117	0.117	0.117	0.117
Standardized Effect	-0.023	-0.026	-0.034	-0.036
Panel C: High Social Canital				
Mean Competence Score × Post	0.007	0.006	0.007	0.008
	(0.006)	(0.006)	(0.006)	(0.006)
Observations	1.510	1,510	1,496	1,496
Municipalities	196.000	196.000	194.000	194.000
R-squared	0.691	0.699	0.700	0.703
SD Surplus Pre	0.108	0.108	0.108	0.108
Standardized Effect	0.006	0.005	0.006	0.007
	0.000	0.000	0.000	
Region FE		Υ	Υ	Y
Mayor Controls			Υ	Υ
Party FE				Y

Table A25: Social Capital as a measure of Institutions: Diff-in-Diff results

Notes: The dependent variable is the per-capita municipal surplus relative to the budget size (total revenues minus total expenditures) over total expenditures, winsorized at 1 percent. Its standard deviation is reported in the table. All specifications include fixed effects for the municipality, the year since the mayor was elected, and the calendar year, and control for the interview length in minutes. Mayor controls include her gender, age, skill content of previous occupation, educational attainment, and years of prior office holding in the municipal government. The variable *Post* is an indicator taking value one for each year of the interviewed mayor's first term. All controls, as well as region and party indicators, are interacted with the *Post* indicator. The standard deviation of the dependent variable in the pre-period is reported in the table. Standardized Effects, i.e. the coefficient multiplied by the standard deviation of the *Mean Competence Score*, are reported in the table. Standard errors are clustered at the municipality level. Standard errors clustered at the municipality level, ** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

Table A26: Social Capital as a measure of Institutions: No Correlation with Previous Mayor's Characteristics in Low Social Capital Municipalities

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
		Previous Mayor's					
		Job	Job	Job	Education	Education	Education
	Age	High Skill	Low Skill	Unemployed	<high school<="" td=""><td>High School</td><td>University</td></high>	High School	University
Panel A							
Mean Competence Score	2.139	-0.102	0.068	0.034	0.031	0.081	-0.112
	(1.353)	(0.075)	(0.064)	(0.073)	(0.045)	(0.075)	(0.076)
Observations	63	63	63	63	63	63	63
R-squared	0.039	0.029	0.019	0.003	0.008	0.019	0.034
Panel B							
Dependent Variable	-0.102	0.125	0.259^{*}	0.167	-0.097	-0.063	-0.085
for interviewed Mayor	(0.098)	(0.148)	(0.148)	(0.207)	(0.300)	(0.137)	(0.137)
Observations	63	63	63	63	63	63	63
R-squared	0.017	0.012	0.048	0.011	0.002	0.003	0.006

Notes: See the data section in the Appendix for the variables' description. The unit of observation is the municipality. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

Table A27: Social Capital as a measure of Institutions: Competence Score and Surplus Components in Low Social Capital Municipalities

		Expenditures			Revenues			
	Total (1)	Current (2)	Capital (3)	Reimbursements (4)	Total (5)	Taxes (6)	$\begin{array}{c} \text{Transfer} \\ (7) \end{array}$	Other (8)
Mean Competence Score \times Post	69.473 (77.337)	6.020 (15.768)	-7.829 (54.075)	67.392** (30.456)	29.394 (72.428)	-3.662 (10.986)	-6.985 (10.967)	22.594 (66.821)
Observations	515	515	515	515	515	515	515	515
Municipalities	68	68	68	68	68	68	68	68
R-squared	0.611	0.875	0.349	0.673	0.611	0.929	0.897	0.545
Mean Outcome Pre	1225	534.4	360.7	205.5	1218	356.6	205.1	643.7
Standardized Effect	56.24	4.874	-6.338	54.56	23.80	-2.964	-5.655	18.29

Notes: See Table 4 for table notes. The dependent variables are expressed in euros per capita and are winsorized at 1 %. Specification as in column (4) of Table 4.

	(1)	(2)
	Quality	Quality
	of Services	of Services
	(Low Social Capital)	(High Social Capital)
Mean Competence Score \times Post	1.053^{*}	0.155
	(0.526)	(0.335)
Observations	40	194
Observations	40	124
Municipalities	21	67
R-squared	0.852	0.787
Mean Outcome Pre	5.600	6.385
Standardized Effect	1.026	0.138
Sample	Low Social Capital	High Social Capital

Table A28: Social Capital as a measure of Institutions: Competence Score and Quality of Service Provision

Notes: The dependent variable is an index of service provision quality ranging from 1 to 10. All specifications include fixed effects for the municipality, the year since the mayor was elected, and the interview length interacted with the *post* indicator. *** significant at the 1 % level, ** significant at the 5 % level, * significant at the 10 % level.

Notes: The coefficient plot above represents the coefficient estimates γ_t from the difference-in-differences model in equation (4.3), for the sample of municipalities with Low Social Capital, multiplied by the standard deviation of the *Mean Competence Score*. Dotted lines plot the 95 percent confidence intervals.

Figure A5: Social Capital as a measure of Institutions: Competent Mayors Bridge the Service Provision Gap between High- and Low- Social Capital Municipalities

Notes: The binned scatter plots above displays the relationship between the competence score and the quality of service provision index in 2013, when the interviewed mayors were in office. I construct 5 equally sized bins of the competence scores given to each mayor and, for each bin, plot the value of the service provision index of the mayor's municipality. The horizontal red lines represent the mean service provision quality in the pre-election period, i.e in 2011, in High Social Capital municipalities (Panel A) and in Low Social Capital municipalities (Panel B).

Open Questions				
	Target Setti	ng		
 Target Inter-Connection Tests whether objectives are associated to practical and measurable targets and 	a) Could you describe the main objectives that set for your term in office and what are the practical targets associated to each of these main objectives?b) How are these targets cascaded down to individual members of the government and of the bureaucracy?			
how well they cascade down to each member of the government and bureaucracy Score: 1 2 3 4 5 .	Score 1: Objectives and targets are very loosely defined; They do not cascade down throughout the administration	Score 3: Objectives are defined and targets are defined but only for some objectives; They do cascade, but only to members of the government.	Score 5: Objectives have clearly defined associated targets; Cascade to individual members of government and bureaucracy and increase in specificity as they cascade	
2) Time Horizon of Targets Tests whether the administration has a rational approach to planning and setting	 a) What kind of time scale are you looking at with your targets? b) Which goals receive the most emphasis? c) Are the long-term and short-term goals set independently? 			
targets Score: 10 20 30 40 50	focus is on short-term targets	term goals for every area; as they are set independently, they are not necessarily linked to each other	translated into specific short-term targets so that short-term targets become a 'staircase' to reach long- term goals	
	Operations	;		
3) Efficiency of Procurement Tests knowledge of procurement and efforts to ensure law conformity and avoid cost duplication	 a) Could you talk me through the process of writing a call for tender in your administration? b) How early do you typically issue a call for tender? c) How standardized is this procedure across different areas of the administration? In particular, how standardized is the procedure to make sure that the call for tender is law-compliant? 			
Score: 1 2 3 4 5	Score 1: Mayor has vague understanding of the process.	Score 3: Mayor know the process well and call for tender are programmed in advance.	Score 5: Mayor knows the process very well; call for tender are programmed in advance; there are common official guidelines.	

	Monitoring			
4) Performance Tracking Tests whether municipality performance	a) What kind of main indicators do you use to track your performance in reaching your mandate objectives? What sources of information are used to inform this tracking?b) How frequently are these measured? Who gets to see this performance data?			
Score: 1 2 3 4 5	Score 1: Tracking does not happen	Score 3: Some performance indicators are tracked formally; Data is gathered for some objectives; tracking is overseen by the government leadership only.	Score 5: Performance is tracked systematically; data is measured and communicated, both formally and informally to a large number of members.	
5) Performance Review Tests whether performance is reviewed with appropriate frequency and follow-up	 a) How often do you review the performance of the municipality-formally or informally with staff (executives, legislators, bureaucrats)? b) Tell me about a recent meeting. c) Who is involved in these meetings? Who gets to see the results of this review? d) What sort of follow-up plan would you leave these meetings with? 			
Score: 1 2 3 4 5	Score 1: Performance is not reviewed or reviewed infrequently and in an unstructured way.	Score 3: Performance is reviewed periodically with successes and failures identified; results are only communicated to main government members; no clear follow up/ action plan is adopted	Score 5: Performance is continually reviewed, based on indicators; all aspects are followed up to ensure continuous improvement; results are communicated to both government and bureaucracy.	
	People Manager	nent		
6)Building a High-Performance Culture through Incentives and Appraisals	a) Do you have an appraisal sb) How can the members of y members?c) Are there any rewards for the	ystem? our staff evaluate their perform ne best performers across all st	nance against that of the other aff groups? How does it work?	
Tests systematic approach to identifying and rewarding good/bad performers Score: 1 2 3 4 5 .	Score 1: No appraisal system. Staff members cannot coompare their performance. No type of reward for top-performers	Score 3: There is an evaluation system which allows comparison and awards good performance but awards are never awarded or are not based on performance.	Score 5: Formal evaluation system with public evaluations rewarding individuals based on performance; rewards are awarded as a consequence of well-defined achievements	
7) Removing Poor Performers	 a) If you had a staff member would you do? Can you give m 	who was struggling or who coul le a recent example?	d not do his/ her job, what	
Score: 10 20 30 40 50 .0	Score 1: Poor performance is not addressed.	Score 3: Poor performance is addressed, but only with formal complaints that d not translate into action or with limited coaching methods.	Score 5: Repeated poor performance is frequently addressed, beginning with targeted interventions using a variety of methods (coaching; change of assignments)	

Gentile Sindaco,

siamo un team di ricerca che sta lavorando a uno studio accademico, supportato dall'Anci, sulle pratiche e stili amministrative nelle amministrazioni locali in Italia. Crediamo fermamente che gli amministratori giochino un ruolo di fondamentale importanza per il successo di un comune e per il benestare dei suoi cittadini. È proprio per questa convinzione che siamo interessati a comparare diverse pratiche e stili amministrativi in Italia e il suo contributo sarà prezioso. La invitiamo a partecipare attraverso una conversazione telefonica sulla sua esperienza nelle amministrazioni locali in Italia.

Benefici per lei includono:

- Una copia dei risultati della nostra ricerca accademica, prima che vengano resi pubblici.
- L'opportunità di contribuire a uno studio accademico che ha il potenziale di informare e suggerire *best practices* nelle amministrazioni locali.
- Altri sindaci hanno apprezzato la nostra intervista e l'hanno considerata un'ottima opportunità per discutere di e riflettere sul loro stile e pratiche amministrative in un ambiente confidenziale.

La nostra conversazione toccherà 4 macro tematiche relative alle pratiche amministrative: targets, monitoraggio della performance, gestione delle operazioni e gestione del personale. Inoltre le faremo delle brevi domande sul suo carattere. La conversazione sarà di 25 minuti. Non è prevista una ricompensa e né il sindaco né il comune incorreranno in alcuna spesa relativa alla partecipazione al progetto. Infine, tutte le sue risposte saranno confidenziali per garantire l'assenza di alcun rischio legato alla sua partecipazione a questo studio accademico. Né la sua identità né quella del suo comune potranno essere menzionate nel nostro studio accademico. Saremo felici di rispondere a ogni sua domanda in ogni momento. Ovviamente, lei ha il diritto di cancellare il nostro appuntamento telefonico e la sua partecipazione al nostro studio in qualunque momento.

La contatteremo telefonicamente ma qualora fosse più conveniente per lei saremmo felici le lei volesse contattarci via mail oppure telefonicamente per fissare un appuntamento telefonico o anche per porci qualsiasi domanda sul progetto.

La ringraziamo ancora per la sua disponibilità.

English Translation: Dear Mayor, we are a research team working on an academic research project on the different managerial practices and styles employed in local governments across Italy. We believe that mayors play a fundamental role for the success of their city and the well-being of its citizens. It is based on this conviction that we are interested in understanding the different practices and managerial styles employed across the country, and your input would be extremely valuable in making this project successful. We invite you to take part in our study through a brief and confidential phone conversation revolving around your experience as mayor. Potential benefits to you include: a copy of the results of our academic research prior to their publication; an opportunity to contribute to an academic study with the potential to identify best practices across city governments; other mayors have enjoyed our phone conversation and have considered it a great opportunity to discuss and reflect upon their managerial practices in a confidential environment. The phone conversation will touch upon four macro areas related to your government practices: targets, performance monitoring, operations and people management. We will also pose a few questions on your background. The conversation is expected to last 25 minutes. No compensation will be provided and neither the mayor nor the city will incur any expense as a result of the study. The conversation will be confidential to guarantee that no risk will be associated to your participation to this academic study. Your identity and the name of the city will be kept confidential and not mentioned by name in the study. We will be delighted to answer any questions you might have at any time. You have the right to cancel your participation and the phone conversation at any time. We will be in touch by phone in the coming days. Should it be more convenient for you to contact us directly, we will be grateful to receive an email or a phone call. Thank you for your consideration.).

Supplemental Material (not copyedited or formatted) for: Maria Carreri. 2021. "Can Good Politicians Compensate for Bad Institutions? Evidence from an Original Survey of Italian Mayors." The Journal of Politics 83(4). DOI: https://doi.org/10.1086/715062.

Roma, 12 Maggio 2016

All'attenzione del Sindaco.

Oggetto: Lettera di supporto al progetto di ricerca sulle pratiche e gli stili amministrativi nelle amministrazioni locali in Italia della New York University.

Gentile Sindaco,

in qualità di Capo Ufficio Studi dell'Anci confermo il valore della ricerca della New York University diretta da Maria Carreri e sottoscrivo il supporto dell'Anci a questo progetto. Lo studio della New York University (che trova descritto nell'allegato) parte dalla convinzione che gli amministratori giochino un ruolo di fondamentale importanza per il successo di un comune e per il benessere dei suoi cittadini. Per questo motivo, il progetto di ricerca intende comprendere e comparare le diverse pratiche amministrative presenti oggi nelle amministrazioni locali in Italia.

La invito a contribuire a questo studio accademico rendendosi disponibile a partecipare ad una conversazione telefonica, della durata media di 25 minuti, sulla sua esperienza nelle amministrazioni locali.

Cordiali saluti,

Paolo Testa apo Ufficio Studi Anci

English Translation: Rome, May 16th 2106. To the attention of the mayor. Subject: endorsement letter for the academic research project on managerial practices and styles across Italian local governments by New York University. Dear mayor, as Director of Research at Anci, I certify the value of the research conducted by Maria Carreri at New York University and I confirm Anci's endorsement. The study by New York University, whose description is attached, starts from the belief that local governments play a fundamental role for the success of their communities and the wellbeing of their citizens. For this reason, the academic study intends to learn about and compare the different managerial practices and styles that are today present across Italian local governments. I encourage you to take part to this academic study by making yourself available for a 25-minutes phone conversation on your experience in local governments.