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Abstract— Optimal charging problems for lithium-ion bat-
teries aim to minimize charge time while maximizing bat-
tery lifetime. Real-time optimal control problems are typically
solved with model predictive control (MPC) and empirical or
simplified physics-based models. This article presents a mixed
continuous-discrete (hybrid) approach to fast charging which
simultaneously solves the battery system of equations and the
embedded solution to the constraint-based control problem.
We introduce general operating modes which move beyond
conventional current/voltage/power simulations and allow bat-
tery models of any scale to simulate new charging modes such
as constant temperature, constant concentration, and constant
lithium plating overpotential. Example simulations with the new
operating modes are shown and solved on the order of 10 ms
using a rigorous porous electrode theory-based model with 351
equations. This approach enables nonlinear model predictive
control to be implementable in real-time while directly using
sophisticated physics-based battery models.

I. INTRODUCTION

Lithium-ion batteries have become ubiquitous in modern
technology including laptops, cell phones, and automobiles.
A common problem in the battery field is quickly charg-
ing batteries while maintaining safe operation and limiting
degradation. Slow charging times are a major barrier to
the widespread adoption of electric vehicles (EV). Fully
charging an EV battery pack can take several times longer
than refilling the gasoline in an internal combustion engine
vehicle. Advanced battery management systems (ABMS)
that provide safe, fast, and reliable charging are critical to
delivering the maximum efficiency from batteries.

Charging at high C-rates has inherent tradeoffs with bat-
tery lifetime. Aging is accelerated at elevated C-rates due
to higher temperatures, increased growth rate of the solid-
electrolyte interface (SEI) layer, increased lithium plating,
and higher mechanical stresses. Various optimal control
algorithms have been proposed to mitigate negative effects of
fast charging [1], [2], [3], [4], [5]. Real-time optimal charging
problems are typically solved via constrained model predic-
tive control (MPC) algorithms to minimize charging time
while remaining within the feasible operating region. Online
optimal control studies often use reformulated or reduced-
order models which are more computationally efficient at
the cost of greatly simplifying the physics.

This article proposes a mixed continuous-discrete (aka
hybrid) simulation approach to the optimal charging problem
for lithium-ion batteries, where “continuous” refers to the
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direct simulation of operating modes (e.g., constant current,
voltage, power) and “discrete” refers to the transition be-
tween operating modes. First, we introduce general operating
modes (GOMs) for battery simulations that extend their
abilities beyond the conventional constant/variable current,
voltage, and power operating modes. With this framework,
we can simulate operating modes such as constant/variable
temperature, lithium plating overpotential, mechanical stress,
and electrolyte- and solid-phase concentrations/potentials.
These simulations have a similar computational cost as a
constant current simulation. Any battery model can use this
framework by appending one algebraic equation to the mod-
eling system of equations and then solving the resulting set of
differential-algebraic equations (DAEs). Second, we propose
a strategy for simulating the hybrid solution in terms of
its initial conditions, constraint(s), and terminal objective(s)
that removes all additional degrees of freedom from the
problem when combined with the GOM. Lastly, we demon-
strate three examples that utilize the nominal solution for
constant lithium plating overpotential, constant temperature,
and constant electrolyte and solid surface concentrations.
All real-time fast charging problems are simulated with the
rigorous porous electrode theory-based model PETLION [6]
with 351 DAEs which are solved in about 10 ms.

II. BACKGROUND

A. Porous Electrode Theory (PET)

PET was developed by Newman and coworkers at the
University of California, Berkeley [7], [8], [9], [10]. Each
porous electrode has an electrically conductive solid phase
in close contact with a liquid electrolyte. Lithium ions are
dynamically transported between active particles in the elec-
trolyte described by Fickian diffusion and Ohmic conduction.
The two phases are coupled by interfacial electrochemical
kinetics, typically modeled in the literature by Butler-Volmer
kinetics but adaptable to Marcus theory. Solid-phase trans-
port is assumed to be Fickian. The PET model is com-
monly referred to as being “pseudo-two-dimensional (P2D),”
in which one dimension is the position between the two
metal contact points on the opposite sides of the electrode-
separator-electrode sandwich and the second dimension is
the distance from the center of a solid particle (Fig. 1).

Many software implementations of PET have been devel-
oped [11], [12], [13], [14], [15]. This article uses PETLION
[6], which is an open-source high-performance computing
implementation of the PET model in Julia based on the finite
volume method. The finite volume method has (1) exact
handling of flux boundary conditions and total conservation
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of all conserved variables (e.g., Li atoms) throughout the
control volume, and (2) relatively simple implementation
compared to the finite element method, making the software
easier for users to modify.

Li+

e−e−

Sep.

Load

Negative electrode Positive electrode
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x Electrolyte

Fig. 1. Schematic of the PET model for an LiC6/LiCoO2 cell during
discharge (Sep. = separator).

B. Differential-Algebraic Equations (DAEs)
In many physical systems, some of the governing equa-

tions such as the conservation of charge are algebraic. The
overall battery model is a set of partial differential-algebraic
equations, which are converted into a system of DAEs by
the finite volume method.1 DAEs can be specified in fully
implicit form,

F (t, ẏ(t), y(t)) = 0, (1)
or in mass matrix form,

M(t)ẏ(t) = g(t, y(t)), (2)
where y is the vector of states, ẏ is the derivative of y
with respect to time t, F and g are vectors that describe
the physicochemical phenomena, and M is the mass matrix.
At a particular time instant t∗, the DAE solver calculates
the time derivative for the differential terms, ẏ(t∗), and the
state value for the algebraic terms, y(t∗). Systems of ordinary
differential equations (ODEs) may be rewritten as DAEs in
which the mass matrix M of the latter equation is non-
singular.

C. Dynamic Optimization
Srinivasan et al. [16] describes methods for solving finite-

time optimal control problems which allow for discrete
transitions in the control input trajectory. The optimal control
trajectory is parameterized as a combination of active path
constraints where the states exactly follow along the arc of
a specified bound, singular arcs for multi-input problems
where the sensitivity of the objective function is small [17],
switching times which denote the transition point between
intervals, and terminal objectives that end the simulation.
Analytical solutions to satisfy the path constraints and sin-
gular arcs were derived to solve single-input optimal control
problems. Replacing optimization with analytical solutions
that satisfy path constraints greatly reduces the computational
cost of solving the control problem, although deriving closed-
form analytical expressions can be tedious or impossible for
complex and/or nonlinear models.

1Such systems are also referred to as descriptor or singular systems in
the literature.

III. MATHEMATICAL REFORMULATION OF OPTIMAL
CHARGING PROTOCOLS

This section outlines the framework of the hybrid solution
for charging protocols of lithium-ion batteries. The frame-
work is applicable to any battery model (e.g., equivalent
circuit, single-particle, porous electrode theory).

A. General Operating Modes (GOMs)

Battery simulation tools conventionally offer current, volt-
age, and power operating modes. It is common to first
implement a battery model that accepts a parametric input
for the current and then to tweak the system of equations
to satisfy voltage and/or power operation. Redefining the
modelling equations to independently accommodate each
operating mode is time consuming, may not be possible for
implicit constraints, and fragments the model code.

The GOM is a simple method which greatly expands
the potential operating modes available during simulation,
permitting complex protocols such as constant tempera-
ture, constant lithium plating overpotential, and constant
electrolyte/solid concentration. The GOM treats current as
an algebraic state in the modelling equations instead of a
parameter, with I(t, y, ẏ) determined so as to satisfy the
constraint

f(t, y, ẏ) = 0, (3)

where f(t, y, ẏ) is any user-specified function that contains
a root at zero. There is an important distinction between
differential and algebraic states of the DAE. Algebraic states
(e.g., potentials and ionic fluxes) are determined by an
algebraic constraint

ξ(t, y, ẏ)− ξapp(t, y, ẏ) = 0, (4)
where ξ(t, y, ẏ) is a state and ξapp(t, y, ẏ) is the desired value
of ξ which may be constant or a function of the time and/or
states. In contrast, differential states (e.g., concentration
and temperature) are determined by a constraint on their
derivative,

∂ξ(t,y,ẏ)
∂t −∆tξapp(t, y, ẏ) = 0, (5)

where ∆tξapp(t, y, ẏ) is the desired rate of change of ξ.
Constraints on differential terms are slightly more restrictive
than constraints on algebraic terms: the initial value of
differential states is always fixed, but their rate of change as a
function of time may change freely. The distinction between
algebraic and differential terms is evident when fixing states
to a constant: algebraic states are fixed by setting ξapp of
(4) to the desired value, while differential states are fixed by
setting ∆tξapp of (5) to zero given that the initial value of
the differential state is already equal to the desired value.

For example, the expression for a constant current (CC)
simulation is

I(t, y, ẏ)− Iapp = 0, (6)
for an applied current Iapp. Constant power (CP) is similarly
defined as

I(t, y, ẏ)×V (t, y, ẏ)− Papp = 0. (7)
where Papp is the applied power defined by Ohm’s law and
the voltage V (t, y, ẏ) is the difference between the solid
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potentials at the electrode-current collector interfaces,
V (t, y, ẏ) := Φs(t, y, ẏ)|x=L − Φs(t, y, ẏ)|x=0 . (8)

In the simple CC and CP examples above, I(t, y, ẏ) can
be solved for analytically and inserted into the modelling
equations, but this is not a requirement under the GOM.
Consider the constant voltage (CV) operating mode for a
particular applied voltage Vapp,

V (t, y, ẏ)− Vapp = 0. (9)
In this scenario, I(t, y, ẏ) cannot be solved for analytically
but the algebraic constraint for I(t, y, ṫ) will still be satisfied
by the DAE solver. Further examples for operating modes are
presented in Section IV.

B. Hybrid Solution Strategy
Charging Li-ion batteries in a minimum amount of time

while remaining within constraints is a common problem
in the literature. Constraints (often based on heuristics) are
chosen to ensure safe operation and to minimize degradation.

This article proposes an approach for determining fast
charging protocols that follows a similar methodology to
Srinivasan et al. [16] which is detailed in Section II-C. In
contrast to the analytical solutions for the path constraints
from Srinivasan et al. [16], instead we handle the path
constraints numerically. The key insight is that, with the
GOM, the charging trajectories do not need to be derived
analytically since a relationship with current can be stated
and solved numerically within the DAE solver (e.g., (9)). The
flowchart in Fig. 2 describes the hybrid solution for charging
protocols. The first input to the system is always the same:
maximize the current to charge as fast as possible. During
runtime, if the model encounters a constraint different from
the active path constraint, then the active constraint switches
to match the new constraint. Otherwise, the simulation ends
once a terminal objective is met. This hybrid procedure finds
the fast charging protocol deterministically defined by its
initial conditions, constraint(s), and terminal objective(s).

Meet new

constraint


or objective?

Begin charging 
simulation at Imax

Set initial conditions (e.g. , , ), 

constraints (e.g. , , , ), 


& terminal objectives (e.g. , )

SOC(t0) T0 Tamb
Imax Vmax Tmax ηp,min

tf SOC(tf)

End simulation

Transition operating 
mode to follow path 

constraint

objective

constraint

Fig. 2. Flowchart for the mixed continuous-discrete (hybrid) solution to
charging protocols.

Several articles on optimal and/or fast charging are con-
sistent with the above framework either explicitly or as a

result of a control algorithm – the most well-known example
is the constant current-constant voltage (CC-CV) charging
protocol. Recent work by Park et al. applied Pontryagin’s
Minimum Principle to analytically derive optimal charging
trajectories which were found to follow the same hybrid
framework described above [18]. Kolluri et al. [1] use
nonlinear model predictive control (NMPC) to fast charge
a cell while avoiding large currents, voltages, and negative
lithium plating overpotentials in the anode. The resulting
profile resembles a constant current-constant lithium plating
overpotential-constant voltage (CC-CPo-CV) charging pro-
tocol. Zou et al. [2] performed model predictive control
(MPC) with a reduced-order model to fast charge a cell
while abiding by constraints on current, temperature, and
electrolyte/solid surface concentrations. With large penalties
for any constraint violation, the optimal charging protocol
follows a constant current-constant electrolyte concentration-
constant temperature-constant solid surface concentration
(CC-CCe-CT-CCss) profile. Pozzi et al. [3] employed NMPC
and sensitivity-based MPC on a linearized model to fast
charge a battery pack with a CC-CT-CV protocol. Perez
et al. [4] followed a similar framework to Fig. 2 using a
single-particle model with electrolyte and thermal dynamics.
Constraints on current, temperature, and concentrations result
in CC-CCss and CC-CCe-CCss protocols for various maxi-
mum current values. Experimental results show an optimal
charging protocol reduces degradation over many cycles in
comparison to CC-CV and an electro-thermal-aging model-
based charging protocol. Mohtat et al. [5] also followed a
similar framework using a tuned Proportional-Integral (PI)
controller to establish a CC-CV-CPo-Cσ-CT protocol, where
Cσ is constant mechanical stress. Gains of the PI controller
must be retuned to account for different set points (some
of which are not experimentally observable, such as plating
overpotential and mechanical stress) or model parameters.

The above MPC approaches apply a standard numerical
optimizer as the “outer loop” of the optimal control problem
and a standard DAE solver as the “inner loop” which is
iterated upon to minimize a constrained objective. In compar-
ison to MPC, our approach removes the outer optimization
loop by embedding the proposed solution of the optimal
control problem inside the inner loop of the DAE using
the GOM. The advantages of the proposed approach are
especially significant when the fast charging problem will be
solved a large number of times, namely, in NMPC. Replacing
numerical optimization calculations as used in traditional
optimal control algorithms with hybrid simulation makes
NMPC much more computationally feasible for real-time
control applications.

IV. EXAMPLES

This section presents the hybrid solutions for several
examples using the framework described in Section III. The
charging protocols are determined on-the-fly as a result of
the specified initial conditions, constraint(s), and terminal
objective(s). Changing these specifications may result in a
different charging protocol.
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Fig. 3. Fast charging results comparing a constant current-constant lithium
plating overpotential-constant voltage (CC-CPo-CV) and a CC-CV protocol.
The horizontal lines are the constraints and the vertical lines denote the
discrete switching times between operating modes for CC-CPo-CV.

This article uses the PETLION software package [6] in
Julia for simulating the charging protocols. The PETLION
package on GitHub has been updated to include all operating
modes described in the following sections. Examples are
provided online to show how a user can define new operating
modes by specifying f(t, y, ẏ) in (3).

In all examples, the model has 10 discretizations in the
cathode, separator, anode, current collectors, and in each
solid particle for a total of 351 DAEs. Since Julia is a JIT-
compiled language, the first evaluation of the model is slow.
Reported evaluation times are after the first run. All tests are
performed on a 2019 MacBook Pro 2.4 GHz 8-Core Intel i9
computer with 32 GB of RAM.

A. Constant Lithium Plating Overpotential

In addition to lithium-ion intercalation reactions, various
side reactions occur in the cell which may cause the battery
to degrade during charge. Anodic side reactions which lead
to lithium plating have been shown when to occur when
the lithium plating overpotential becomes negative [19]. The
lithium plating overpotential is defined as

ηp(x, t) := Φs(x, t)− Φe(x, t), (10)
where the equilibrium potential of the side reaction is usually
assumed to be 0V. During fast charging, the anodic lithium
plating overpotential is minimized at the separator-anode

interface (x = Ln). The same methodology for CV (8) can
be applied to similarly maintain a constant lithium plating
overpotential (CPo),

ηp(Ln, t)− ηp,app = 0, (11)
where ηp,app is the desired plating overpotential at the
interface.

Fast charging protocol.—Consider a fast charging protocol
with constraints to reduce degradation from lithium plating:
T (x, t0) = 30◦C, V (t) ≤ 4.1V, I(t) ≤ 4C, ηp(Ln, t) ≥
0V, and the state of charge (SOC) at the initial and final
times are SOC(t0) = 0% and SOC(tf ) = 60% respectively.

Following the framework of Section III-B, the result-
ing constant current-constant lithium plating overpotential-
constant voltage (CC-CPo-CV) charge consists of three con-
tinuous intervals with two discrete transitions:

1) The initial input is CC operating mode (6) at 4C to
charge the cell as quickly as possible.

2) The input switches to CPo operating mode (11) when
the lithium plating overpotential reaches 0V to avoid
degradative side reactions.

3) The input switches to CV operating mode (9) when
the voltage reaches 4.1V until the SOC hits its target
of 60%.

Fig. 3 presents a comparison between the CC-CPo-CV
protocol and a traditional CC-CV protocol which does not
abide by the constraint on ηp. At t = 325 s, the simulation
enters CPo operating mode and ηp is held exactly at ηp,app =
0V. In comparison to CC-CV, the CC-CPo-CV protocol has
a lower current and voltage during CPo to prevent the cell
from charging too quickly and incurring degradation and
subsequently, the SOC(t) is slightly lower. After entering
CV mode, the current is slightly higher than the CC-CV
current for the same time point. The CC-CV and CC-CPo-
CV protocols charge the cell to 60% SOC in 604.6 and
609.8 s respectively, which is a minor difference in charge
time considering the significant advantage of avoiding the
lithium plating side reactions with the CPo operating mode.
An additional NMPC experiment subject to the constraints
was evaluated as a comparison to the CC-CV and CC-CPo-
CV methods. The NMPC method used sequential quadratic
programming (SQP) to minimize charge time with constant
current segments of sample time ∆t = 1 s. The NMPC
results are visually identical to the CC-CPo-CV method.
The simulation times for CC-CV and CC-CPo-CV are 8.4
and 14.7 ms respectively with PETLION. The 6.3 ms time
increase in the CC-CPo-CV method is attributed to the CPo
step which makes the problem more stiff.

B. Constant Temperature

Degradation mechanisms in Li-ion batteries [20] are
highly sensitive to temperature, so avoiding extreme high
and low temperatures is key to a long-lasting battery.

In a thermal model with lumped temperature-dependence
across the cell, the residual for the temperature derivative

dT
dt −∆tTapp = 0 (12)
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Fig. 4. Fast charging results for a constant current-constant temperature-
constant voltage (CC-CT-CV) protocol.

will ensure that the temperature is held constant throughout
the simulation when the applied rate of change for temper-
ature, ∆tTapp, is set equal to zero. P2D models with 1D
temperature-dependence often have negligible temperature
variation in the cell [21] justifying a spatially averaged
temperature,

T (t) := 1
L

! L

0
T (x, t) dx, (13)

to similar effect.

Fast charging protocol.—The objective is to charge a cell to
an SOC of 80% in the minimum amount of time under the
following constraints: SOC(t0) = 20%, SOC(tf ) = 80%,
T (x, t0) = 30◦C, T (t) ≤ 40◦C, V (t) ≤ 4.1V, I(t) ≤ 2.5C,
and the ambient temperature is 300K.

The resulting fast charging protocol for this problem
(shown in Fig. 4) consist of three intervals:

1) The initial input is CC operating mode (6) at the upper
bound, 2.5C, to charge the cell as quickly as possible.

2) The input switches to CT operating mode (12) when
the cell temperatures reaches 40◦C.

3) The input switches to CV operating mode (9) when
the voltage reaches 4.1V until the SOC hits its target
of 80%.

The CC-CT-CV protocol charges the cell from 20–80%
SOC in 1,009.8 s. At the transition between CC to CT
operating modes, the current falls from 2.5C to 1.75C to
avoid crossing the temperature threshold before rising to
2C at 580 s. The high nonlinearity of (12) and the dramatic
change in current significantly increases the stiffness of the
system of DAEs, but the solver is able to efficiently handle
these changes using an adaptive time stepping algorithm.

A major benefit of the hybrid method compared to tradi-
tional NMPC is its runtime and accuracy; with the rigorous
PETLION model using 351 DAEs, the total evaluation time
for CC-CT-CV was 10.4 ms.

C. Constant Concentration
Constraints on the solid active material and electrolyte

protect from lithium depletion and oversaturation. The op-
erating modes for constant electrolyte concentration (CCe)
and constant solid surface concentration (CCss) are

∂ce,i(x,t)
∂t

"""
x=x∗

−∆tce,i,app = 0, (14)

∂c∗s,i(x,t)

∂t

"""
x=x∗

−∆tc
∗
s,i,app = 0, (15)
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Fig. 5. Fast charging results that produce a constant current-constant
electrolyte concentration-constant solid surface concentration (CC-CCe-
CCss) charging protocol.

respectively, where the subscript i refers to the section of
the battery and ∆tce,i,app and ∆tc

∗
s,i,app are the desired rate

of change for electrolyte and solid surface concentrations
respectively. Equations (14) and (15) must be evaluated at a
particular position of the cell x∗ as concentrations have large
spatial variation. Upon reaching a maximum concentration
constraint, the value of x∗ for CCe and CCss operating
modes are
x∗ = argmax

x
ce,i(x, t) & x∗ = argmax

x
c∗s,i(x, t), (16)

respectively (and likewise with argminx for minimum con-
straints). These equations are general, but x∗ is predictable
for fast charging simulations: starting from rest, concen-
trations of the solid particle surface and electrolyte mono-
tonically increase with x from the anode to the cathode.
Constant concentrations at x∗ are maintained by setting
∆tce,i,app = 0 or ∆tc

∗
s,i,app = 0. The same approach works

to maintain maximum or minimum temperatures in the cell
with significant temperature gradients.

Fast charging protocol.—The objective is to charge a cell to
an SOC of 80% in the minimum amount of time under the
constraints: SOC(t0) = 20%, SOC(tf ) = 80%, ce(x, t) ≥
0.2 kmol/m3, V (t) ≤ 4.1V, I(t) ≤ 4C, and the anodic solid
particle surface concentration normalized by the maximum
solid concentration c∗s,n(x, t)/c

max
s,n ≤ 0.85510.

The results (Fig. 5) follow three discrete segments:
1) The initial input is CC operating mode (6) at the upper

bound, 4C, to charge the cell as quickly as possible.
2) The input switches to CCe operating mode (14)
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when the minimum electrolyte concentration reaches
0.2 kmol/m3.

3) The input switches to CCss operating mode (15) when
the normalized solid particle surface concentration in
the anode reaches a maximum of 0.85510 until the
terminating upon reaching the terminal SOC of 80%.

The first transition (CC-CCe) occurs due to lithium deple-
tion at the anode-current collector interface. At this transi-
tion, the current and voltage quickly drop to prevent ce(0, t)
dropping below 0.2 kmol/m3 before rising back up, similar to
the the CC-CT transition in Example IV-B. The effects of the
transition are visible in the electrolyte concentration where its
spatial gradients immediately shift to ensure (14) is satisfied
at the anode-current collector interface. A similar shift is
seen in the solid surface concentration at the CCe-CCss
transition to satisfy (15) at the separator-anode interface. The
second transition sees a drop in current and voltage, but the
subsequent rise in current is much less pronounced both its
speed and magnitude. With PETLION, the total evaluation
time for the CC-CCe-CCss solution is 9.1 ms.

V. SUMMARY

This article presents a mixed continuous-discrete (aka
hybrid) simulation approach for the constraint-based opti-
mal charging problem for lithium-ion batteries. The GOM
framework moves beyond conventional current, voltage, and
power simulations to allow for new computationally efficient
operating modes which are simple to add to any existing
battery model. A solution to the optimal control problem
is embedded inside a DAE solver which directly handles
variable time steps and stiffness in contrast to MPC which
optimizes an objective function on top of an ODE/DAE
solver. We present a flowchart for the hybrid solution which
uses new operating modes to solve the optimal control
problem dependent only on specified constraints, initial
condition(s), and terminal objective(s). Examples for new
operating modes are provided, including constant lithium
plating overpotentials, constant temperature, and constant
concentrations in the electrolyte and solid particles.

In future work, we plan to extend the deterministic ap-
proach in this article to include uncertainty quantification.
Properties of lithium-ion batteries can differ significantly
from cell to cell (even with tight manufacturing specifica-
tions) and change over time due to degradation from cycling
and/or calendar aging. Measurable states such as current,
voltage, and temperature can be controlled even with some
model mismatch due to incorrect parameters or inaccurate
physics, but controlling experimentally unobservable states
(such as lithium plating overpotential or concentrations)
brings greater uncertainty which must be evaluated before
experimental implementation.
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