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Abstract

Word vectorization is an emerging text-as-data method that shows great promise for au-

tomating the analysis of semantics – here, the cultural meanings of words – in large volumes of

text. Yet successes with this method have largely been confined to massive corpora where the

meanings of words are presumed to be fixed. In political science applications, however, many

corpora are comparatively small and many interesting questions hinge on the recognition that

meaning changes over time. Together, these two facts raise vexing methodological challenges.

Can word vectors trace the changing cultural meanings of words in typical small corpora use

cases? I test four time-sensitive implementations of word vectors (word2vec) against a gold

standard developed from a modest dataset of 161 years of newspaper coverage. I find that

one implementation method clearly outperforms the others in matching human assessments

of how public dialogues around equality in America have changed over time. In addition, I

suggest best practices for using word2vec to study small corpora for time series questions,

including bootstrap resampling of documents and pre-training of vectors. I close by showing

that word2vec allows granular analysis of the changing meaning of words, an advance over

other common text-as-data methods for semantic research questions.

1 Introduction

Language changes over time, reflecting shifts in politics, society, and culture. The word “apple”

used to refer just to a fruit but now also refers to a company; the word “gay” used to refer to

a mood or personality type but now almost solely refers to a sexual orientation. Similarly, the

meaning of words like “freedom” or “citizenship” have changed dramatically over time, reflecting

the political and cultural shifts in a given society (Foner 1998; Goldman and Perry 2002).1 The

diachronic study of language – the study of changes in language over time – tracks these cultural

Author’s note: Replication materials for this paper are available (Rodman 2019).
1Political scientists tend to be particularly interested in changes in the broad semantics of words which we might

describe as essentially contested and continually evolving, like freedom, citizenship, equality, peace, or rights (Gallie
2013), or nouns like those denoting party or ideology (i.e. Republican, Democrat, liberal, or conservative).
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shifts in a word’s meaning, encapsulating not merely the word’s dictionary definitions (which may

not shift) but also its central referents, contexts of use, associated sentiment, and typical users,

which together reflect political attitudes and culture (Hamilton, Leskovec and Jurafsky 2016a).

Studying changes in language over time, as a window into a specific political and cultural

context, rests on the assumption that words can have many layers of meaning. Producing a thick

understanding of this semantic architecture of words (de Bolla 2013) and languages has been a

central goal of 20th century linguistics theory and the computational linguistics methods that have

sought to implement those theories. While many computational methods have been produced to

map and measure semantics (e.g. latent semantic analysis and semantic folding, among others),

word vectorization methods (also called word embeddings) built on shallow neural networks have

recently emerged as exciting new front runners in this effort. Recently developed algorithms like

word2vec and others (Mikolov, Yih and Zweig 2013; Pennington, Socher and Manning 2014) have

made this word vector modeling much more computationally accessible to practitioners, expanding

efforts to apply word vectors to many text-based questions.

These word vectorization methods are unsupervised methods, in that they take no human inputs

aside from the corpus of texts and a few model hyperparameter settings. Relying on the semantic

information intrinsic to the collocation of words in the texts, these models produce low-dimensional

vectors that represent each word. These word vectors have been shown to encode a tremendous

wealth of semantic information. For instance, scholars have shown that we can use vector represen-

tations of words to accurately answer analogy questions like Man is to King as Woman is to

(Mikolov, Yih and Zweig 2013). By starting with the vector for the word “king”, subtracting the

vector for the word “man”, and adding the vector for the word “woman,” you end up positioned

in the model space closest to the vector for the word “queen.” The changing proximity of words

to one another in these model spaces has also shown a remarkable capacity to capture semantic

relationships and cultural-temporal shifts in the architecture of words (Mikolov, Sutskever, Chen,

Corrado and Dean 2013; Hamilton, Leskovec and Jurafsky 2016a). Recent work, for instance, has

used word vectors to track the changing cultural meanings and stereotypes associated with race,

ethnicity, and gender (Garg et al. 2018).

In this paper, I utilize a substantive example from my own work as a scholar of American

political thought to demonstrate both the utility and empirical validity of word vector models

for questions of semantic change over time. I argue that understanding contemporary American

political culture requires an understanding of how the architecture of the word “equality” has

changed over time. Rather than projecting contemporary meanings of the word backward onto

the past, this requires a genealogy of the semantics of American equality, excavating what equality

meant to the people who used it in any given historical epoch. As part of that analysis, I applied
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computational text-as-data methods to help me make sense of uses of equality in a sizeable corpus

of historical American newspapers. Because the goal was to track the semantics of a single word,

word vectors appeared promising as a method to study equality’s changing historical meanings;

indeed, as I show in section 7, there are questions of interest which would not be answerable with

other common approaches to studying text as data.

However, nearly all work on word vectors – most of which has been done by computer scientists

– trains the models that produce these vectors on extremely large corpora of texts, containing

billions of words.2 Much of this work also looks at only a single moment in time, attempting to

replicate the broad semantic structure of a language. By contrast, the data set of texts used in this

paper (n = 3, 105) contains a total of only 206,190 words, and I model change across the period

spanning 1855 to 2016 in a specific, relatively small subset of English language newspaper texts.

In general, political scientists will be interested in comparing the semantics of smaller collections

of texts (say, for instance, exploring the variation in press releases from different sets of elected

officials or showing how the language in governance documents related to climate change changes

over time).

Although computer scientists and computational linguists have developed several sophisticated

time-sensitive implementations of word vectorization (Kim et al. 2014; Kulkarni et al. 2015; Hamil-

ton, Leskovec and Jurafsky 2016b; Yao et al. 2018; Bamler and Mandt 2017), their efforts to date

have done little to help guide practitioners, for several reasons. First, existing studies on how to

use word vectors for diachronic analysis have been performed on extremely large corpora, often

far exceeding typical use cases for political scientists.3 While the literature offers some guidance

on using word vectors with smaller corpora more generally (Antoniak and Mimno 2018), there has

been no integration of these developments into diachronic questions, with the result that practi-

tioners cannot be sure whether any of the existing diachronic methods will produce valid results

when used on more modest corpora. Second, little explicit guidance is offered as to the appro-

priateness or details of a given time-sensitive implementation for given use cases. The challenges,

hurdles, and occasionally even implementation details of diachronic analyses using word vectors

have been left largely implicit in existing studies, leaving new users without the necessary intro-

ductory information to fully understand the method’s structure, reasonability, or utility for a given

task.4

2For instance, the landmark Mikolov, Yih and Zweig 2013 paper used a Google News corpus with six billion tokens
(roughly, words) and a vocabulary size of one million words. Several diachronic analyses (Hamilton, Leskovec and
Jurafsky 2016b; Kim et al. 2014) utilize the Google N-Gram data set, which is constructed from 6% of all books ever
published and contains 8.5∗1011 tokens. Hamilton et al.’s smallest corpus, a genre-balanced collection of literature,
contains 410 million tokens.

3Although no hard guidelines exist about how much text is needed to produce quality embeddings, the general
consensus is that more text is better. As I discuss throughout the paper, however, validating models and constructing
them with small corpus best practices is a more useful way of thinking about the small corpus problem than arbitrary
benchmarks for corpus size.

4Work on diachronic word vectors is fast moving and ongoing. The current frontier of work on time-sensitive word
vector models is dynamic embedding models like those produced by Yao et al. 2018 and Bamler and Mandt 2017, as
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After introducing first principles of word vectors, this study moves to fill those gaps by 1)

articulating both the promise and the challenges of diachronic word vectorization models, 2) de-

scribing four possible diachronic implementations of the method for political scientists with modest

programming skills in Python, and 3) offering an empirical assessment of the success of these time-

sensitive formulations of word vector models on a relatively small corpus. Though larger corpora

are generally preferred for word vector models, I suggest here that empirical validation of small

corpus model results should substitute general pessimism about the utility of small corpus vector

models. For my empirical assessment, I used human-coded documents and supervised topic mod-

eling on my newspaper corpus to produce a gold standard – known semantic relationships between

“equality” and other words like “race” and “gender” – and then tested four methods of time-sensitive

word vectorization to see which method reproduced the gold standard semantic relationships most

closely.5 My results are encouraging, suggesting that with attention to new methods like bootstrap

resampling of documents and pre-training of word vectors, even relatively small corpora can be

successfully modeled using word vectorization. By empirically validating best practices for political

science practitioners, I seek to encourage the use of word vectorization methods in political science,

which – despite showing great promise as a method for questions of interest to political scientists

– has lagged economics and other social sciences in uptake (Gurciullo and Mikhaylov 2017).6

I begin by discussing the utility of text-as-data methods – particularly word vectorization or

word embeddings – for typical theoretical questions of interest to political scientists (§2). I then turn

to the mechanics of word vectors, offering an introduction to distributional semantics, followed by

word vectorization theory, methods, and implementations in common programming languages (§3).

I then describe the challenges such methods present to analysts interested in studying semantic

changes over time (§4). Using a dataset of newspaper articles which has been previously topic

coded and modeled using supervised topic modeling (§5), I propose and empirically test four

solutions to the challenges of temporal analysis using word vectors and I report the results. I find

that there are certain best practices for using word vectorization methods to answer questions

about changes in word meaning over time, including bootstrap resampling of documents, selective

language stabilization, and chronological training (§6). Finally, I show the utility of this validated

word vectorization model for political scientists by demonstrating its ability to answer questions

about the changing meaning of words over time that other common text-as-data methods are

well as models that use convolutional neural networks (Kim 2014; Zhang and Wallace 2015). While showing much
promise, they are not tested in this paper because their computational demands, the opacity of the details of their
implementation, and their complexity make them currently inaccessible to typical political science users. This is
likely to change quickly, however, and those interested in word vector models should keep their eye on developments
in dynamic embeddings.

5Supervised topic modeling, as I describe at length in section 5, takes an input of human-coded documents (a
training set) which the computer then uses to learn the topics and then apply those learned topics to the rest of the
corpus of documents.

6Notable exceptions that draw on political examples or seek to contribute to ongoing substantive debates in the
political science literature include Iyyer et al. 2014, Nay 2017, Gurciullo and Mikhaylov 2017, and Rudkowsky et al.
2018. To my knowledge, however, no studies have yet been published in political science journals.

4



unable to answer (§7).

2 Studying Words

Political scientists interested in theory have begun to recognize the utility of computational text-

as-data methods, particularly for questions that involve large scale text analyses or comparisons

across divergent cultural contexts. For instance, in their recent work topic modeling medieval

political theory texts that offer advice to princes and sultans in the Islamic and Christian worlds,

Blaydes, Grimmer, and McQueen (2018) have shown how text-as-data methods can augment and

strengthen historical analyses of theoretical concepts. Political theory has also benefited from text-

as-data work that helped to establish the authorship of disputed Federalist Papers (Mosteller and

Wallace 1964/2008) as well as attributing certain anonymous works to Thomas Hobbes (Reynolds

and Saxonhouse 1995). Related disciplines like history, classics, law, and literary studies have

found text-as-data approaches to be similarly helpful as a means of tracing topics and themes

(Rhody 2012; Mimno 2012; Jockers 2013).

Such work, however, only begins to demonstrate the potential utility of text-as-data methods

for political theorists and those engaged in conceptual research. New methods of computationally

analyzing large collections of text using word vectors can go beyond topics or authorship, directly

revealing the changing meanings of individual words and concepts across time. Concepts like rights,

equality, peace, and democracy are both important to understand on their own, and also function

as key variables in many scholarly hypotheses. Word vector methods that track the changing

meaning of such concepts will have broad utility for political scientists.

Consider, for instance, the idea of equality in America. The meaning of equality in America

has been central to our political culture; as Alexis de Tocqueville put it in Democracy in America,

“the gradual development of the principle of Equality” underlies all other political dynamics and

forces in the United States. Yet our contemporary vantage point tends to flatten our view of

the past, making it hard to read the potentially alien meanings of equality in, say, the Founding

era or the Reconstruction era on their own terms. In the current moment, we tend to strongly

associate the idea of equality with progressive struggles for justice on behalf of marginalized groups.

Computational methods allow us to step outside of our moment, enabling us to understand the

meanings of concepts in the divergent cultural contexts of the past. Our position in the present

moment, for instance, makes it surprising to learn that the most vocal advocate of equality in the

era between the first and second world wars was Germany’s Adolf Hitler. Hardly viewed by history

as a model egalitarian, Hitler was nevertheless extremely fond of invoking equality in his speeches

and quotes to the press, arguing in January of 1937 that Germany had finally won the “battle
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for equality” with other European powers that he had spent years urging as Germany’s national

mission. The use of equality language among nations, in matters of norms, peace, standing, and

war, also dominates American discourse on equality in the interwar period. In the same period,

equality discourse around women and African Americans is comparatively rare, complicating the

historical story about the close association of equality with marginalized identities like race or

gender. As I show in §7, word vectors can also help complicate our view of equality in the present.

Word vectors are a relatively recent methodological innovation that allows us to unearth and

track such unexpected shifts in a word’s meaning. These new computational methods can po-

tentially allow analysts to excavate the historical layers of the concept, offering a time-sensitive

genealogy of its meaning to supplement their own subject area expertise.

3 What are Word Vectors?

Basic computational linguistics can provide interesting information about a word in a given set of

documents (known as a corpus). We can, for instance, count the number of times that a given

word is used in each document or the percentage of documents containing the word in any given

year. In an archive of newspaper articles, we can see where the word appears (the headline, the

abstract, the first paragraph, etc.). To understand what the word means when it is used, however,

requires not merely counting the uses of the word but somehow quantifying the meaning of the

word (Kulkarni et al. 2015). Word vectors attempt to do this. In this section, I offer an intuitive,

minimally mathematical discussion of the general theory and mechanics of word vectorization.

Once we have a sense of how such models work, we can then turn our attention to the acute

dilemmas they present for temporal questions and then to implementations for small data sets

that provide possible solutions.

3.1 Distributional Semantics

Word vectorization methods are an implementation of a much older linguistic theory known as

the distributional hypothesis. Simply put, the distributional hypothesis argues that the meaning

of a word can be extracted by looking, over many texts, at the words that occur around it. As

linguist J. R. Firth emphatically put it, “You shall know a word by the company it keeps!” (Firth,

1957, 11). The distributional hypothesis argues that, independent of any other context or even

grammatical order, a systematic collection of word collocations can allows us to make semantic

‘sense’ out of words. In other words, linguists have argued that the words that appear near one

another contain a surprising amount of information about the meaning of a given word and that a

“difference of meaning correlates with difference of distribution” of these collocations (Harris, 1954,
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156). Words that appear in similar contexts of nearby words have similar meanings.

The power of the distributional hypothesis lies in its generalizability. It can be applied to

any language, or even to individual corpora within a given language; it requires no prior input of

dictionaries or grammatical structures. It deduces – and here we should probably say ‘we deduce,’

since there is evidence that this is how humans learn language – the meanings of words based on

considering the collocations of all words that occur in a given corpus of texts. The distributional

hypothesis is the backbone assumption that drives word vectorization models (Turney and Pantel

2010).

3.2 Turning Words Into Vectors

How might we approximate the distributional semantics model of human language acquisition to

teach it to a computer? We might begin by looking at simple word co-occurrence, a very basic way

of expressing the understanding that words that occur in similar context have similar meanings.

To look at the co-occurrence of words in a given text, we could take every possible pair of words

in a text, and then calculate the conditional probability P (a|b) of word a occurring within, say,

five words of word b in the text. Since different words have different independent probabilities of

occurring, though – some words are more common than others – we want to calculate what is called

the point-wise mutual information (PMI) of the pair: in essence, how much more are we seeing a

given pair of words occurring together than we would expect to at random, given the independent

probability of seeing each word. PMI values can be positive or negative, but PMI(a, b) = 0 when

words a and b are independent, i.e. when the presence of one word has no impact on the likelihood

of seeing the other. The calculation of the PMI of a given pair of words is then approximated using

linear algebra:

PMI(a, b) =
#»

A · #»

B

where the model makes the assumption that PMI can be approximated as a single (scalar) product

of two equivalent-length vectors, A and B.

But what are these new vectors that represent each word? Thinking about words a and b as

vectors allows us to conceptualize something important. If we are interested in meaning, we are

probably more interested in synonyms than in mere collocation: that is, we want to know which

words appear in similar contexts, and such words are thus not likely to appear together. Hence,

we are interested in words a and b that occur with the same frequency relative to all other words

w. The mere co-occurrence of a and b is far less useful than the comparison of both a and b’s

co-occurrence with w. In other words, we are more interested in comparing the meaning of the

two words, a meaning that we can deduce from the context in which each word appears. In broad
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conceptual strokes, in a case where words a and b are functionally equivalent – exact synonyms

or antonyms, for instance, always used in the same contexts – their vectors will contain the same

values along all dimensions, yielding the highest possible PMI value. Words a and b that are

unrelated to each other – whose contexts of appearance in the text are fully independent from one

another – will have orthogonal vectors, whose product will yield a PMI of 0. Words a and b that

are inversely related – less likely than chance to appear in the similar contexts – will yield negative

PMIs.

But what, exactly, are these vectors of values? If each word is represented as a vector of values

of equivalent dimensionality n, there is an n-dimensional reference vector which we can imagine

as being a vector of points upon which each word is scored or compared. Let’s imagine we want

to compare words a and b. We could, for instance, imagine a vector for word a that has as many

dimensions as there are unique words w in the text, and scores the co-occurrence (how often they

appear together within a fixed window around each word) of word a with each other word w in

the text. The reference vector, then, would be a vector of w -dimensionality of all unique context

words w. We would then produce another vector (again with w -dimensionality) of co-occurrences

of all context words w with a second word b. We would then be able to compare
#»

B to
#»

A by taking

their scalar product, which would give a single number that we might term a similarity score.

One thing that we might notice, however, is that every context word w is not equally useful in

helping us to distinguish the difference or similarity of words a and b. Some words will be louder

or brighter sources of information; many words mean similar things and can be clustered together

without a loss of information. In other words, rather than a w -dimensional reference vector, we

can actually describe word a (and every other word in the text) with a much, much smaller n-

dimensional reference vector against which a is scored. The scores of word a against each element

of the reference vector, when all taken together, comes to represent the abstract meaning of a.

One could think about the reduction from w to n dimensions as a reduction from the vocabulary

of all words in the text to a much smaller vocabulary of concepts: for example, from rating the

dog-ness, fox-ness, squirrel-ness, etc. of a word to merely its animal-ness. (Though this example

might aid our conceptualization of dimension reduction, it is important to note here that word

vector dimensions don’t actually refer to anything directly like concrete concepts.) These values

of the vector of a given word, taken together, provide its semantic address in a given corpora’s

universe.

3.3 Algorithms and Implementations

Reducing the w -dimensional vector to smaller n-dimensionality is a form of unsupervised learning;

in other words, it does not require a human to specify a set of concepts against which words are
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scored. Like unsupervised topic modeling, it takes a user-specified value of n (between 100 and

500 dimensions is common) and generates n points against which each word is scored. There

are several popular methods by which this functional compression to lower dimensionality takes

place, some of which also modify some of the details of the preliminary steps conceptually outlined

above. In general, contemporary methods of word vectorization rely on a neural network approach

to translate a large, sparse matrix of values into a dense, low-dimensional vector space via a hidden

layer of weights.

The details of neural networks and the algorithms that train them are beyond the scope of this

paper; for our purposes, we can imagine a neural network as an extremely complex function that

takes a huge number of inputs (a corpus of words and each of their surrounding window of context

words) and produces a huge number of outputs (vectors of n-dimensionality for each word).7 The

word vectors produced by the model are actually one of the hidden layers of weights in the neural

network; the actual final outputs of the neural network are predictions about words that co-occur.

The most popular implementation of word vectors, word2vec, structures this network in two

different ways. In the case of the skip-gram with negative sampling (SGNS) algorithm that this

paper utilizes, the model trains itself on the corpus by working to improve the accuracy of its

predictions of words it knows co-occur in the corpus and minimize the likelihood of “negative

samples” of words it knows don’t co-occur (Mikolov, Yih and Zweig 2013). The model seeks to

give each word in the corpus values (weights) along each dimension of the n-dimensional vector

that minimizes the cost function: i.e. that reduces the number of incorrect predictions about word

co-occurrence. The weights of the model are typically initialized randomly, and then the model

works to tweak the weights and biases at every term in the function until it reaches a local maxima

in the likelihood of predicting a set of context words given a single input. This training of the

network is done through stochastic gradient descent and backpropagation. The final weights of

the model correspond to the values of the word vector for each word.8 By contrast, the continuous

bag-of-words (CBOW) word2vec architecture essentially inverts the SGNS model: it trains a

neural network to optimize its prediction of words given the context around them, rather than

trying to predict the context given a single word. As the developers of these models put it, “the

CBOW architecture predicts the current word based on the context, and the skip-gram predicts

surrounding words given the current word” (Mikolov, Chen, Corrado and Dean, 2013, 5). SGNS

tends to run more slowly, but to be better for infrequent words and for semantic tasks, which
7For the modeling specifications and computational details behind the word2vec implementation used in this

paper, see Mikolov et al.’s original papers (Mikolov, Yih and Zweig 2013, Mikolov, Chen, Corrado and Dean 2013,
and Mikolov, Sutskever, Chen, Corrado and Dean 2013) as well as several useful explanatory notes elaborating on
word2vec (Goldberg and Levy 2014, Rong 2014). Excellent general online introductions to neural networks include
the four video series produced by Grant Sanderson (www.3blue1brown.com) as well as the eBook introduction to
the topic at http://neuralnetworksanddeeplearning.com/

8For a more detailed discussion of the SGNS algorithm, see Goldberg and Levy 2014.
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makes it the architecture of choice for smaller corpora (Mikolov, Chen, Corrado and Dean 2013).

Using either the CBOW or SGNS architecture, the neural network is trained on a given corpus

of interest, producing a vector of weights associated with each word in the context of that cor-

pus. Several straightforward implementations of these methods exist in both the R and Python

programming languages. In R, the package wordVectors builds on word2vec, while in Python,

the gensim package will allow you to build SGNS or CBOW models with greater freedom to set

the hyperparameters and structure the analysis; the gensim implementation is recommended for

temporal analyses and is used here.

3.4 Training & Corpus Size

Using these implementations, one can either run analyses on existing, trained word vectors or one

can train new word vectors on a given corpus of interest.9 While most existing trained word2vec

embeddings were generated from large corpora with millions or billions of tokens, there is no

hard minimum requirement on the volume of texts required to train word vectors.10 Though the

conventional wisdom is that larger corpora will train higher quality vectors, several promising lines

of research are opening doors to smaller corpora.

First, small corpora word vector analyses can benefit from the use of transfer learning, also

known as pre-training or fine-tuning, where the model has non-random initializations. Most promi-

nent in computer vision studies that attempt to train image classifiers, transfer learning has shown

that gains in performance and efficiency are possible when a machine learning model is initialized

with weights from a previous model, rather than starting the learning process from scratch (Pan

and Yang 2010). Translating this insight to word vector models, one might use vectors from an

entire corpus to initialize the first slice in a diachronic analysis, as I discuss in the next section, or

one might use a small corpus of interest to fine-tune vectors trained on an entirely different, more

universal corpus (Howard and Ruder 2018).

Another development in small corpora word vector analysis relies on statistical insights around

bootstrapping. One concern about small corpora is that the vectors they produce are highly sen-

sitive to single documents, corpus size, and document length, generating divergent model outputs

based on small changes to these corpus characteristics (Antoniak and Mimno 2018). Antoniak

and Mimno have shown, however, that averaging over the model outputs from multiple bootstrap
9The public release of word2vec contains pre-trained vectors, as well as links to a number of other pre-trained

vectors (https://code.google.com/archive/p/word2vec/). Several diachronic studies have also publicly released their
trained vectors, including Hamilton, Leskovec and Jurafsky 2016b.

10While the quality of embeddings, in general, will increase as corpus size increases, high quality word vectors have
been generated from modest corpora. The demo_words/text8 corpus released with word2vec, for instance, is used
to introduce users to the utility of word vectors and contains only about 250,000 unique words. Even toy examples
of training word2vec on a handful of sentences have been shown to retrieve semantically revealing embeddings. In
other words, both the quality and quantity of the corpus matter, and as with all unsupervised techniques, validation
is more important that arbitrary benchmarks for corpus size.
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samples of documents can produce stable, reliable results from small corpora.

3.5 Uses for Word Vectors

Once a corpus has been vectorized, each word essentially has an address or assigned location in

n-dimensional space. Just as (x, y) coordinates allow us to locate a position in two-dimensional

space and can be added or subtracted to move around the grid, word vectors locate words in a

semantic space of n-dimensions, and can be added or subtracted to move around the space. Hence,

the analogy king is to man as woman is to what? is a logical expression, but embedding these

words in vector space makes it an algebraic expression, not just a logical one. As noted at the

outset of this paper, by starting with the vector for ‘king,’ subtracting the vector for ‘man,’ and

adding the vector for ‘woman,’ the word located closest to the position you end up is ‘queen.’ Word

vectorization models trained on large corpora have performed astonishingly well on these kinds of

language analogy tasks. They are very good at identifying the fourth word in an analogy, or at

identifying the word in a cluster of four that is least like the others.

Word vectors can also be directly compared to one another to produce a similarity score between

words. The most common method of doing this is by cosine similarity, where cos(θ) = A·B
‖A‖‖B‖ gives

the cosine similarity, ranging between -1 and 1, of two vectors A and B, drawn from the origin.

The semantic similarity between two words is approximated by their cosine similarity, with values

closer to 1 indicating greater similarity (Turney and Pantel 2010; Antoniak and Mimno 2018).

Another way of thinking about this is that we can semantically map a given word, like “equality,”

by looking at its cosine similarity scores with other words (e.g. “race” or “gender”). The changing

proximity of two words will reflect shifts in the cultural meaning of a given word: for instance,

the proximity of “woman” and “homemaker” over time will reveal important semantic information

about the cultural meaning of the word “woman.” Similarly, when people think about equality

in any given era, how close is gender or race in their thoughts? Or what about the proximity of

equality to words like liberty or dignity? Cosine similarity scores (either for pairs of words, or lists

of closest words like in Hamilton, Leskovec and Jurafsky 2016b) can allow analysts to track these

changing semantic relationships, which in turn reflect a picture of the thick, cultural meaning of

equality as it changes over time.

4 The Problem of Time

The word vectors produced from a corpus express the language regularities and semantic relation-

ships in a given corpus. Another way to say this is that the corpus is “the central object of study”

for word vector methods and the goal is to understand and explore the distinct semantic universe
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of the corpus and, by extension, the world that produced the corpus (Antoniak and Mimno, 2018,

107). For example, analyses on distinct corpora of texts can reveal what we might term ideo-

logical biases in each corpus. One word2vec analysis of articles from left-leaning, centrist, and

right-leaning news sites done by ProPublica found that there were marked differences in the words

with the closest cosine similarity scores to “Clinton” or “abortion” in each corpus of news articles

(Larson, Angwin and Parris 2016). Other word vectorization analyses have revealed that corpora

reproduce gendered or racial biases and stereotypes (Bolukbasi et al. 2016; Caliskan, Bryson and

Narayanan 2017; Garg et al. 2018).

Word vectorization allows us to map the semantic universe of a given corpus, and then to

compare universes to each other in order to track semantic differences. These universes might be

different subsets of the world at the given moment in time – like the example of different sets

of media with certain ideological orientations – or they might be the same subset of the world

at different moments in time. For instance, we can imagine that a sample of articles taken from

the New York Times in 1870 will represent a distinct semantic universe from a sample of Times

articles taken in 1970. This section explores the challenges associated with using word2vec to

produce valid results for this type of chronological comparison.11

4.1 Challenges for Diachronic Analysis

As with all methods for computationally analyzing text as data, word2vec users need to be aware

of how pre-processing and hyperparameter settings can influence the outcomes of their models.12

Word vectorization analyses conducted over time, however, face three additional validity challenges

which have been either generally under-appreciated in previous studies or have not been addressed

with an eye to valid semantic analyses in small-scale corpora. All of three of these problems emerge

from the norm of slicing a single corpus into time intervals in order to model each semantic universe

separately, producing word vector relationships for each universe, and then tracing the changes in

those semantic relationships across time.13

11Although testing possible solutions is beyond the scope of this paper, many of the challenges discussed in this
section also appear to apply to out of corpus cross-comparisons in a single time period, particularly concerns about
spatial non-comparability and language stabilization.

12For analysts who want to use word2vec to confidently assert something about the semantic universe represented
by a single given corpus, several types of unique stability challenges exist. First, the embedding algorithms are
sensitive to even seemingly minor variations in the size of the corpus and its component documents, the presence
or absence of single documents, and the random seeds; previous studies have found that such challenges can be
addressed by averaging the results over multiple bootstrapped samples of the corpus and supplying confidence
intervals around values of interest like cosine similarities between words (Antoniak and Mimno 2018). (There
are other ways of approaching the problem of statistical significance for model outputs (see Han et al. 2018) but
bootstrapping provides programmatic simplicity and reproducability with small data sets.) Second, results shift with
variations in the user-specified hyperparameters of the selected algorithm, like the dimensionality of the vectors,
smoothing, context-windows, and sample sizes, suggesting that analysts should select and tune their algorithms by
testing for successful task performance (Levy, Goldberg and Dagan 2015).

13As noted already, the vanguard of word vectorization is in dynamic models which do not appear to require such
slicing. Several very recent computer science conference papers (Bamler and Mandt 2017; Yao et al. 2018) show
promise on this front, but such implementations are not tested here. See fn. 4, above.
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Arbitrary Cut-Points

First, slicing a corpus into time eras introduces arbitrary cut-points between eras. The selection

of these cut-points – both their location and number – can have an effect on the embeddings

produced and thus on the similarity scores. While the size of the eras will be determined to some

extent by the research question and by the size and scope of corpus, selecting different era sizes

has known effects on trends and the smallest feasible era size should be utilized to avoid losing

trend information (Box-Steffensmeier et al. 2014). In addition, semantic shifts can be produced

quickly by dramatic single day historical events like September 11, 2001 or October 29, 1929, or

by less visible but still rapid processes of cultural and linguistic change. Cutting a corpus on one

side or another of such events affects model results. While some of these shifts are known and

can be accounted for, others are discovered by the model itself and so cannot be accounted for in

advance. Thus, any given cut-point introduces unknown and arbitrary effects into the trends the

model produces.

Language Instability

The second problem that analysts of semantic changes over time face is issues of homonymy,

polysemy, and instability in corpus vocabulary (Huang et al. 2012). The same concept is often

referred to using different words over time, limiting the ability to use cosine similarity between a

given pair of words over time as synonyms shift in and out of fashion. For example, if we want

to track the relationship between equality discourse and black Americans, we will need to choose

a term consistent in meaning over time and distinguishable from other meanings of the term.

Our challenge becomes clear when when we recognize that today “African American” is used to

describe Americans of African descent, but this term only came into use in the last three or four

decades; prior popular terms used in print for the same set of people have included “Negro,” “Black,”

“Colored,” and (if you go back far enough) “Freedman” (plus all respective pluralizations). The

polysemous character of the word “black” – both a race referent and a general color – increases the

difficulty. The underlying concept “Black American” may exist across time, but both its cultural

meaning and the specific word used for the concept will have shifted.14 To produce valid measures

of its relationship with equality across time, then, one has to account for language instabilities like

these.
14In a minority of cases, the word itself may not continue to exist across time, even though an underlying concept

does endure. The African American example illustrates this disjoint between the concept of a “black race” and the
dramatically changing words used across time to signify that concept. At the same time that the synonyms are
shifting, however, the cultural meaning of the underlying concept is also shifting – and it is this later shift that
the word vector analyst seeks to track. In other words, to attempt to stabilize a concept down from a collection of
synonyms to a single word is necessary in some cases to allow us to study the concept at all. When I use “concepts”
subsequently in this paper, it is this idea to which I am referring.
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Spatial Non-Comparability

Finally, word vectorization models suffer from a particular and (at least among non-computer

science practitioners) under-appreciated challenge of what I will term spatial non-comparability.

Recall that our model produces word vectors with length n, where each element can be understood

as a coordinate that locates or embeds a given word in n-dimensional space. Words located closer

to one another in this space are more similar in meaning; cosine similarity between two vectors

gives a kind of proximity score. The overall space is defined by a set of n basis vectors, which

allows the analyst to orient themselves within the space and meaningfully compare vectors and

distances. The simplest example of this is in the familiar graph of 2-space, where the axes x and

y serve as reference vectors that allow us to plot and compare other vectors of given magnitudes

and directions.

A temporal analysis wants to compare cosine similarities (the closeness of vectors) from across

different models. But word embeddings produced by stochastic processes like SGNS from different

time slices will embed words in non-aligned spaces defined by different basis vectors. This precludes

direct comparison of cosine similarity across distinct corpora (Hamilton, Leskovec and Jurafsky

2016b). In fact, it even complicates our ability to compare different modeling runs on the same

corpus, where nearest neighbors might remain the same but coordinates might shift (Kulkarni et al.

2015). This all makes sense, actually, since the basis of any diachronic semantic analysis is the

recognition that the meaning of a word changes over time; correspondingly, we would expect the

meanings of most words (and even the list of words) in a given space to shift, and it would be

reasonable to expect a corresponding shift in the structure of the space itself.

An example might help to clarify this point. Imagine a graph that plotted per capita consump-

tion of fresh fruit each year in the United States over time. Such a graph would allow confident

discussions in trends in fruit consumption over time. Now imagine that instead of each point

representing the annual per capita consumption of all fruit, each point represented the annual per

capita consumption of some specific fruit, where the specific fruit used changed each year. One

year, we would plot the per capita consumption of bananas, the next year mangoes, the following

year apples. Such a graph would be in some unknown way related to overall fruit consumption

trends, but would much more prominently be related to the idiosyncrasies of the consumption

of a given individual fruit in a given year. Without a way to convert individual fruit consump-

tion to a common, comparable baseline, it would be challenging to speak confidently about fruit

consumption trends from this graph. While the analogy to spatial non-comparability is inexact,

this example gives some sense of the alignment problem faced by trying to compare values with

different baselines.15

15Another example that might clarify the alignment problem is its similarity to the problem faced in a factor
analysis run on similar but non-identical datasets, where analyses might produce similar factors but mapped in a
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4.2 Analyzing Vectors Across Time

While the first two of these problems are common to all efforts to analyze semantic shifts over time,

addressing them within the context of word vectorization presents particular challenges. The third

problem is unique to word2vec. There are many possible ways to implement time-sensitive word

vectorization that attempt to address these issues; I describe four in the subsection that follows.

I then implement tests of each using a small, relatively sparse dataset typical of corpora used by

social scientists and scholars in the humanities. Rather than work out a theoretical solution to

these problems, I create a set of gold standard semantic tests, and empirically determine which

implementation allows word2vec to overcome these challenges and excavate known trends in the

corpus.

The simplest method of conducting an analysis over time using word2vec is to cut the corpus

into chronological time slices (days, months, years, etc.) and separately model each slice. We will

call this a naive time series model. This method produces a set of word vectors for each interval

of time, from which cosine similarity scores between pairs of words can be computed. Bootstrap

re-sampling of the data and repeated modeling of each slice allows for the generation of standard

errors and confidence intervals around such scores; these scores can then be compared across the

slices to measure semantic changes across time. The cosine similarities for terms of interest can be

compared (e.g. comparing the cosine similarity score of “race” and “equality”) at slices t and t+ 1

to ascertain, with some level of confidence, if the meaning of the word of interest (here, “equality”)

is moving. The naive time series assumes that there are no problems of spatial non-comparability

across time slices and does not account for the effect of arbitrary cut points; it serves as a functional

baseline or null result.

The overlapping time series model attempts to smooth out differences across time slices by

cutting some of the edge texts from slice t into the corpus at slice t+1, and so on. Otherwise, the

same methods are applied and the same results are generated as from the naive time series. This

method decreases the chance of spurious results as a consequence of arbitrary cut-points between

time slices, but does not directly address problems of spatial non-comparability across slices.

Rather than initialize the word2vecmodel for each time slice with random weights, the chrono-

logically trained model utilizes the word vectors from t − 1 to initialize the model for slice t

(Kim et al. 2014). This method assumes, essentially, that word meanings and relationships in slice

t begin semantically where t − 1 ended. The first time slice, t1, is initialized with the vectors

from the full corpus. This method utilizes the leverage offered by pre-trained vectors and provides

some semantic linkages across slices, but does not directly address spatial non-comparability. The

training on t and production of results then proceeds as in the naive time analysis.

different order.
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Finally, the aligned time series method generates vectors for each slice as in naive time

analysis, but then seeks to address the spatial non-comparability of slices in a post-modeling

alignment phase (Kulkarni et al. 2015; Hamilton, Leskovec and Jurafsky 2016b). One approach

to this task is an orthogonal Procrustes matrix alignment. The alignment process requires that

the analyst choose one anchor slice in the corpus, to which all other slices are aligned.16 At the

alignment phase, vocabulary is necessarily limited to words present in all time slices, limiting the

information available in any single slice and potentially limiting the utility of this method for

corpora which extend over long periods of time or where vocabularies change dramatically.17 This

type of alignment model has been used with some success to align embeddings across languages,

on very large corpora.18

The gap between the tests previously done on some of these methods (produced in compu-

tational linguistics or computer science, with extremely large data sets) and typical use cases for

social scientists and humanists is profound. For example, the aligned time series analysis performed

by Hamilton et al. (2016b) utilized several data sets, including the Google N-Gram data set, which

is constructed from 6% of all books ever published and contains 8.5 ∗ 1011 tokens (roughly, words).

Their smallest corpus, a genre-balanced collection of literature, contains 410 million tokens. While

some social scientists and humanists employ comparatively large data sets, time analysis word

vectorization methods that will be broadly useful to practitioners must apply effectively to sub-

stantially smaller corpora. Existing diachronic analysis papers provide little guidance on this front.

Diachronic word vector methods will only be useful insofar as practitioners with smaller corpora

can feel confident that the models are retrieving valid semantic information about trends in the

corpus. In the next sections, I test the relative efficacy of these four models on just such a seman-

tic task: recovering known semantic relationships in a previously coded, relatively small corpus. I

compare the performance of these four models against one another on the same corpus and same

task, generating empirically validated methodological recommendations for practitioners.
16Yao et al. 2018 test various alignment methods. They test both an orthogonal transformation (solved with

an n-dimensional Procrustes alignment) as well as the linear transformation used by Kulkarni et al. 2015, which
involves aligning locally by solving an n-dimensional least squares problem of k nearest neighbor words. In their
tests, they find that Procrustes “performs well, as it also applies alignment between adjacent time slices for all words.
However, [linear transformation] does not perform as well as others, suggesting that aligning locally (only a few
words) is not sufficient for high alignment quality” (Yao et al., 2018, 7). For these reasons, Procrustes was chosen
as the alignment method in this project.

17This model requires that the same set of vocabulary be present in each slice, to allow alignment of the matrices.
For very large corpora, this is a merely footnote to the model, but in small corpora – because of the possible variation
in vocabularies – this is potentially a severe restriction to analysis.

18See, for instance, Facebook Research’s MUSE (Multilingual Unsupervised or Supervised word Embeddings)
Project at https://github.com/facebookresearch/MUSE.
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5 Data and Methodology

This project seeks to validate best practices for using word2vec on diachronic questions with

smaller corpora. In this section, I begin by discussing the challenges of validating diachronic word

vector models, describing typical validation methods and justifying my choice of gold standard

semantic test. I then describe my corpus of texts and how I modeled them using human coding and

supervised topic modeling to produce the gold standard description of the semantic relationships

in the corpus. I follow this with the details and implementation of each word vectorization method.

I end this section by spending some time describing the assumptions and pre-processing choices

that allow me, in this specific case, to use supervised topic model results to empirically validate

unsupervised word vector models. The results of the tests of each word vector model against the

gold standard, and the general findings, are described in Section 6.

5.1 Problems of Validation

Word embedding models are typically assessed on language tasks that mirror how well the model

“understands” the underlying language structure of the corpus. Computational linguists have relied

on sets of grammatical, knowledge-based, and semantic analogy tasks, (Mikolov, Yih and Zweig

2013; Pennington, Socher and Manning 2014; Levy, Goldberg and Dagan 2015) as well as word

similarity tasks (Hamilton, Leskovec and Jurafsky 2016b; Bruni et al. 2012; Levy, Goldberg and

Dagan 2015). In these assessments, differently specified models are scored and compared based on

how accurately they are able to answer questions like:

• Athens is to Greece as Rome is to ?

• Mexico is to peso as USA is to ?

• Dad is to mom as father is to ?

• Running is to ran as knowing is to ?

The answers to these questions are produced using vector arithmetic and cosine similarity scores,

where the model answers with the word closest to the position in space produced through vector

addition and subtraction of the preceding three elements. Such tasks assess how well the model

can grasp the language structure of the corpus and answer questions with known answers; models

assessed in this way are typically trained on exceptionally large corpora.

Similarly, some large scale diachronic models have been assessed with analogy tasks that rely

on extrinsic knowledge that changes in each time slice: for instance, the ability of the model to

correctly associate the last names of all United States presidents with their terms or South African

political leaders and their parties (Yao et al. 2018; Arnold et al. 2018). Other diachronic studies,
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however, have lacked an extrinsic method of evaluation (Kim et al. 2014) or have relied on human-

created semantic tasks intrinsic to the substantive questions of interest (Hamilton, Leskovec and

Jurafsky 2016b; Kulkarni et al. 2015; Yao et al. 2018).19 Similarly, as I describe below, this paper

departs from validation tasks like analogies and word similarities. Instead, I construct a gold

standard semantic task specific to the substantive research question in order to validate the word

vector models.20 In general, the diachronic literature agrees that assessing the fit of the models

comes down to how well the models discover known semantic relationships between words; in other

words, “a good embedding provides vector representations of words such that the relationship

between two vectors mirrors the linguistic relationship between the two words” and the best way

to assess whether this has occurred is research question dependent (Schnabel et al., 2015, 298).

5.2 Data

For this project, I constructed a corpus of newspaper articles (n = 3, 105) from the New York

Times (NYT), Reuters, and the Associated Press, accessed via the NYT Articles API.21 All articles

from 1855 to 2016 with the word “equality” in the headline were downloaded. Headline restricted

articles were chosen in order to construct a corpus of articles centrally, rather than incidentally

or tangentially, concerned with equality. The headlines, first paragraphs, and abstracts from

each article were used for analysis.22 The corpus was divided into seven 25-year time slices; the

proportion of articles in each time slice that are centrally about equality ranges between .6 and 3.4

articles per 10,000.23 Due to both this varying newsworthiness of equality and the general increase

in the volume of news articles produced in later slices, there is significant variation in document

counts across slices. In chronological order by slice, there are 80, 102, 496, 1137, 660, 259, and 371

documents, respectively.
19Existing diachronic studies may employ this tactic for several reasons. In the case where learning the set of

meanings in a given, smaller slice of the corpus is the task of the model, grammatical or knowledge based validation
tasks are less useful because it would be unclear to the analyst whether lower success rates on analogy tasks are
the result of model problems or (potentially interesting) semantic differences in a given slice or corpus of texts.
The analyst has no reason to expect certain analogies, grammars, or word similarities to remain equally salient or
discoverable over time: as the meaning of words and emphasis in language changes, so too would performance on a
static set of language tasks. Moreover, a given time slice may contain little overlap between, for instance, discussions
of presidents and – as is the case in this paper – discussions of equality. This is a semantic feature of the corpus,
not a modeling bug. It follows from this that there is little reason to believe that model success with knowledge or
grammatical analogies corresponds to model success tracing diachronic semantic relationships. The human-created
semantic tasks that this paper and others rely on, then, appear to be a better fit for the specific validation challenges
of diachronic word vector models.

20This method of validation was first suggested to me by Yao et al. 2018, who quantitatively assess their model
outputs by comparing them to ground truth semantic topic codes, which are assigned by the New York Times
newsroom to the newspaper articles in their corpus. Though the pre-existing topics assigned by the Times did
not fit this project’s research question, it did suggest the possibility of constructing a question-specific topical gold
standard against which word vector models could be validated.

21For replication data and code, see Rodman 2019.
22The New York Times API does not allow users to download the full text of articles; abstracts or first paragraphs

were not available for all articles. After concatenating all available text data for each article – the headlines, abstracts,
and first paragraphs – the average length of an individual document in the corpus is 66 words. This is the same
number of words as the text in this footnote.

23There were only 12 years in the last time slice (2005-2016, inclusive).
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5.3 Producing the Gold Standard

To produce the gold standard against which the word vector models were validated, I first created

a codebook for my newspaper corpus based on spot reading and computational exploration. The

topics in the codebook emerged organically from an exploration of the corpus (Saldana 2009).24

These topics were intended to capture who, in a given article, is seeking, achieving, needing, or

being denied equality – in other words, which group was associated with the equality discussed in a

given article. This codebook was refined iteratively and finalized during several preliminary rounds

of trial coding with two undergraduate coders. The final codebook contained fifteen mutually

exclusive and exhaustive topic codes, including a “misc.” topic.25

Next, using this codebook, the coders each coded the same simple random sample of 400 articles

from the corpus, with an overall inter-coder agreement of 89%. After every 100 articles, coding

disagreements were referred to me and resolved in conference with the coders; I also spot checked

their coding on articles where they were in agreement. This coded collection of 400 articles served

as the training set for the supervised topic model.

This training set was then used to run a supervised topic model on the full corpus of all

articles using the R package ReadMe, which utilizes a training set of documents hand-coded with

exhaustive and mutually exclusive topics to compute the proportion of documents in each topic

in a second test set (Hopkins and King 2010). Following Hopkins and King’s implementation of a

proportions-over-time analysis, I split the test set into 25-year eras and used the full training set to

model each era separately.26 Bootstrapping (n = 300) was used on each era to produce means for

the document proportions in each topic. The shift in the proportion of documents in each of the

ReadMe model’s topics matches known historical shifts in the use of equality language – we see, for

instance, a large spike in gender articles in the suffrage era of 1905-1930; a similar spike is present

in both international relations and German focused articles in the era leading up to and including

World War II – which provides overall inductive validity for the model.
24In addition to spot reading, I performed exploratory unsupervised topic modeling on the corpus. Such methods

have been shown to effectively parse topics in newspaper corpora (Newman and Block 2006; Yang, Torget and
Mihalcea 2011). The purpose of this preliminary modeling was to give me a sense of what topics might exist in
the corpus. I used this to guide my construction of an initial codebook. Each era was fitted with a latent Dirichlet
allocation (LDA) model with the VEM algorithm, which assumes that each article is a mix of topics (Blei, Ng and
Jordan 2003). Topic models were fitted separately to each era with various user-specified values of k (the number of
topics), and then I substantively evaluated the resulting topic lists for semantic validity by looking for distinctiveness
between topics and internal consistency within topics (see Quinn et al. 2010). Prior to topic modeling, capitalization,
punctuation, symbols, spaces, and stopwords were removed using the R package quanteda. This package was also
used to stem the unigrams – reducing word-list complexity by aggregating families of words – using the Porter
stemming algorithm. I utilized a bag-of-words approach to these elements, which is standard in computational
text analysis, breaking each text down into unigrams without reference to word order (Jurafsky and Martin 2009;
Hopkins and King 2010; Grimmer and Stewart 2013). Topics were modeled using the R package topicmodels.
Because the unsupervised modeling was intended to be exploratory and suggestive rather than dispositive, I did not
address issues of topic instability (Wilkerson and Casas 2017).

25The final codebook topics were gender, international relations, Germany, LGBT, general race/ethnicity, African
Americans, students, U.S. government and political parties, workers, companies, religious adherents/institutions,
intersectional, Jewish, everyone/abstract equality, and other/miscellaneous.

26For the earliest era (1855-1880) the gold standard is manual coding of the 80 documents , due to ReadMemodeling
instabilities.
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Finally, I selected five of the fifteen topics, where the topic could be easily approximated by a

single word (see section 5.5 below for more detail on this choice).27 As Figure 1 demonstrates, the

trends in proportions over time in these five topics match historical expectations. These trends in

the corpus – the shift in document proportions in these topics over time – are the semantic gold

standard against which the four word vector models, described next, will be assessed.
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Figure 1: Proportion of documents by topic and era in the gold standard model. (Proportions do
not sum to 1 in each era because only five of fifteen topics are plotted.)

5.4 Word Vectorization Modeling

I then produced four diachronic implementations of word2vec models. All four of the word vector-

ization models utilized word2vec’s SGNS algorithm as implemented in the Python library gensim

(Rehurek and Sojka 2010; Mikolov, Yih and Zweig 2013). Except where noted in the implemen-

tation of a specific temporal method below, all models follow hyperparameter recommendations

from previous literature or gensim defaults (Levy, Goldberg and Dagan 2015).28 All words were

converted to lower case and punctuation was removed; the corpus was not stemmed, nor were stop

words removed. Each of the seven eras of the corpus was modeled separately.

Two important modeling choices were made, which are recommended for small corpora and

diachronic studies. First, each era was modeled repeatedly with bootstrapped samples of the
27The remaining eleven topics either could not be approximated with a single word, or their proportions were so

small as to make tracking trends over time difficult.
28These include: the length of the generated vectors is 100, 200 iterations are made over the corpus, the size of

the window of text around each word is 10, and the word frequency threshold is 1. The learning rate is set to 0.025
at the start and linearly decreased to 0.0001.
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documents to produce sample means of, and confidence intervals around, model outputs of interest

(Antoniak and Mimno 2018). For each bootstrapped sample, n documents were randomly sampled

with replacement from the corpus, where n is equal to the number of documents in the era being

modeled. As Antoniak and Mimno describe, averaging across many bootstrapped models stabilizes

the model outputs (like, in this case, cosine similarity scores) for small corpora, making the analysis

less vulnerable to single documents, and allows the computation of confidence intervals around

model outputs.

Second, language stabilization and selective stemming was done manually on the corpus prior

to modeling to enable tracking of the five test words associated with the five gold standard topics

outlined above. This was done to correct for plurals and for the fact that over time synonymous

words are used with different frequencies and politically correct language shifts (see Table 1).29

For instance, the phrase “equality of the races” was quite typical in articles up until the 1955 era;

from that point, such language drops out entirely and is replaced by “racial equality.” In such a

case, we need some way to understand “racial” and “races” as equivalent.

Table 1: Corpus Language Stabilization and Selective Stemming

Topic Collapsed Word Constituent Words

Gender “gender”
Gender(s), Woman, Woman’s, Women,

Women’s, Female, Suffragette(s),
Sexes, Sex*

Int’l. Relations “treaty” Treaty, Treaties, Pact(s)
Germany “german” German(s), Germany
Race “race” Race, Races, Racial

African American “african_american”
Freedman, Freedmen, Blacks,

African American(s), Mulatto(es),
Negro, Negroes, Colored

To implement each of the four temporal word2vec models, the texts for each of the seven

time slices were divided into sentences, each of which was then divided into lists of individual

words, using the Python package nltk. In the naive time model, each corpus of documents was

resampled and modeled until the bootstrapped mean around the cosine similarity scores for the

five test words stabilized (n = 100). In the overlapping time model, the text list T for each era e

was sorted chronologically. The first and last 10% of each Tei were duplicated. These duplicate

lists were then appended to the adjacent corpora ei−1 and ei+1, respectively. Each era’s Tnew

was then bootstrapped as per the naive time model. In the chronologically trained model, the

model for T1 was initialized using the word vectors from a model of the entire corpus. The word

vectors from model T1, when trained, were then used to initialize T2, and so on through all time

slices. Each slice was bootstrapped as per the naive time model. In the aligned model, each corpus
29I generated these lists of constitutive terms via a close reading of the corpus and consultation of the Oxford

English Dictionary of Synonyms and Antonyms.
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slice was modeled separately and the resulting vectors were L2-normalized. The vector spaces in

adjacent slices, beginning with e1 and e2, were then aligned in sequence by cutting the vocabulary

to common words and then using Procrustes matrix alignment (Heuser 2016; Hamilton, Leskovec

and Jurafsky 2016b). This process was repeated for each bootstrapped sample of each slice; cosine

similarity scores were retrieved from slices post-alignment.

5.5 Modeling Assumptions and Data and Pre-processing Choices

Before moving to the findings, it is important to emphasize the limited scope of the validation

method of this project. For this project, I produced a unique corpus with specific texts, which

allowed me to use the results of a supervised topic model to validate the four word vector models.

This was only possible because of the specifics of my corpus and pre-processing steps, and was

only desirable because it allowed me to empirically validate general best practices for small corpus

diachronic word vector modeling.

It is important to be clear, however: in general, word vector models and topic models are

not equivalent. Topic models assign topics to texts, either user-generated topics (supervised topic

models) or computer-generated topics (unsupervised topic models). Topics are typically complex

ideas expressed through word clouds or collections of key words. Such topic models can be used,

as in this project, to track how prominent certain topics are over time by looking at the changing

proportion of texts assigned to a topic. ReadMe, the method I employ here to assign a topic to

each text, does precisely this, taking as inputs a set of human-coded texts assigned to mutually

exclusive topics and a set of uncoded texts and producing as output the proportion of all texts in

each topic. Word vectorization models, on the other hand, produce a high-dimensional space and

embed all the words present in the corpus of texts in that space. These word vector models are

unsupervised. Words which are closer to one another in the space are closer in meaning; they have

greater semantic proximity. In other words, topic models traffic in the topic(s) of each text, while

word vectors traffic in the semantic relationships between individual words in the overall corpus of

texts.

To use a supervised topic model to validate my word vector models, I made two important

data and pre-processing choices and three key modeling assumptions. The first data choice I made

was to limit my corpus to those articles with the word “equality” in the headline. This choice was

made because articles with equality in the headline (rather than, say, in a body paragraph) are

likely to be centrally, rather than tangentially, concerned with the idea of equality. In other words,

I assume that all of the articles in my corpus can be assigned to the topic “equality,” in addition

to the secondary topic they are assigned by ReadMe. The first key assumption, then, is that each

article has two topics: “equality” and a secondary topic assigned by ReadMe from a codebook of
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mutually exclusive options.

The proportion of texts in each of these secondary topics, therefore, corresponds to the centrality

of the relationship between that topic and equality in the corpus. If, for instance, only one percent

of all the equality articles are about race, it is clear that – at least in this corpus – the equality

and race topics are not commonly co-occurring or closely related. If, on the other hand, 65% of

the equality articles are about gender, it is clear that the gender and equality topics are frequently

co-occurring and closely related: i.e. that there is a closer semantic relationship between the gender

and equality topics than between the race and equality topics in this given corpus. The second

key assumption, therefore, is that the proportion of texts in each topic tracks the strength of the

semantic relationship in the corpus between equality and that topic.

I then selected five topics, from the codebook used to code the ReadMe training texts, which

could be closely represented by a single word. Recall that topics in topic models are typically

expressed using word clouds or lists of keywords. Here, I made my second important data choice,

choosing topics (gender, race, African American, Germany, and international relations) which I

could represent relatively well with a single word. This required pre-processing the texts fed into

the word vector models, performing some language stabilization and selective stemming. After

that pre-processing, the third key assumption was made: that the semantic relationship between

these individual words (“gender,” “race,” “african_american,” “german,” and “treaty”) and the word

“equality” would mirror the semantic relationship between each of the five topics (gender, race,

African American, Germany, and international relations) and the equality topic. In other words,

in a highly successful word vector model, the z-score normalized cosine similarity between equality

and each of these five words would precisely mirror the z-score normalized document proportions

of the corresponding topic from the gold standard supervised topic model.

6 Results

Once I produced the four word2vec implementations, I then turned to validation. The models

were assessed based how well they replicated the ReadMe gold standard of document proportions

across five topics: gender, international relations, Germany, race, and African American. The gold

standard model produced document proportions across these five topics as depicted in Figure 1 on

page 20. The four word vectorization models produced cosine similarity scores for “equality” and

the word associated with each topic, as described in Table 1 on page 21. The cosine similarities of

those “equality”-word pairs, one score for each era, are shown in the model-by-model plots of word

vector outputs in Figure 2.
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Figure 2: Four Diachronic word2vec Model Implementations

6.1 Model Performance

The gold standard was used to assess which of the four word2vec models most closely replicated

the known corpus trends. After z-score normalizing the gold standard document proportions and

the four word2vec model outputs, I calculated three fit measures: the sum of the point-by-point

deviances between the gold standard and each word2vec model, the sum of the point-by-point

squared deviances, and the correlations between the gold standard and each of the word2vec

models (see Table 2 for a summary of how well each word2vec model performed on these three

metrics).30

The normalized outputs offer the same conclusion regardless of the fit measure chosen. Across

all three metrics, the chronologically trained model outperformed the other three implementations,

more closely positively correlating to the baseline trends and producing the lowest summed point-
30Existing studies do little to guide choices for fit measures. Hamilton, Leskovec and Jurafsky 2016b, for instance,

assess their models using a (for our purposes insufficiently granular) directionality measure: does the model detect
the right direction of semantic movement in a small set of known examples (e.g. does the word “gay” move away
from the word “happy” and toward the word “homosexual” across the last century)? Yao et al. 2018 – who also
use a topical gold standard to validate vector models, similar to this paper – use spherical k-means to cluster their
word embeddings. Words “exceptionally numerous” in each New York Times assigned topic are taken as ground
truth. Then, word co-presence in clusters are then compared to word co-presence in ground truth topics, and the
overall accuracy of the model assessed using Fβ (the β-weighted harmonic mean of the precision and recall). Such
a fit measure, however, requires lists of words most numerous in each topic. ReadMe supplies only the proportions
of documents in each topic, not labels on specific documents, which precludes the use of a fit measure of accuracy
in binary classification.
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Table 2: word2vec Models Compared to Gold Standard Model

Deviance Squared Deviance Correlation

Naive Time Model 26.612 25.589 0.554
Overlapping Model 25.163 25.601 0.563
Chronologically Trained Model 22.689 21.860 0.611
Aligned Model 25.385 25.775 0.514

by-point deviance and squared deviance from the baseline values. The other three implementations

not only failed to as closely reproduce the baseline data, but a one-way ANOVA provides no

evidence that the naive, overlapping, and aligned models are statistically distinct from one another

(F (2, 102) = 1.169; p = 0.314).

The chronologically trained model starts with vectors from the whole corpus, and then is

iteratively retrained at each time slice using the vectors from the previous slice. Rather than

starting the model with random weights and biases as in the other three models, the chronologically

trained model starts with more information in each training cycle. This information appears to

allow the model to reproduce the overall structure of semantic shifts in the corpus with higher

fidelity, mirroring successes seen with pre-training or transfer learning in other domains of machine

learning (Pan and Yang 2010; You et al. 2015). Although this implementation does not directly

align the slices to address problems of spatial non-comparability, it appears to functionally stabilize

the basis vectors across time slices to some extent.

While the chronologically trained model provides the overall best word2vec implementation

to track semantic shifts, model performance across certain eras and on certain topics provides

additional guidance about the limits of word vectorization methods. As described above, the NYT

equality corpus is not large by machine learning standards, and time slices at the beginning and

the end of the corpus are particularly sparse. Much of the deviation from the gold standard in

the chronological model is centered in those eras; for instance, the 1855 (n = 80) and 2005 eras

underestimate African American, while gender is overestimated in both eras.

The chronological model also displays limitations on the general international relations topic,

roughly reproducing the trend line but not the magnitude of change in that topic (see Figure

3). This is likely an artifact of the limitations of the validation test itself. While other topics

are more closely replicated by a single word (“German,” “race,” etc.), the international relations

topic is more of a cluster of concepts, where the test word chosen (“treaty”) is likely to capture

the rough directionality and shape but not the full magnitude of equality’s changing closeness to

international relations. As one would expect, this limitation in the ability to reproduce magnitude

is most pronounced during the extreme spike in equality rhetoric in international relations in the

lead up to, and aftermath of, World War II.
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Figure 3: Chronologically Trained word2vec Model Compared to Gold Standard

6.2 Recommendations and Best Practices

For practitioners in the social sciences and humanities, word vectors can offer illumination into

large corpora, helping to track semantic changes over time. Like all methods, word vectorization is

not a substitute for expert knowledge of a substantive topical area; it will complement a thorough

exploration of the corpus via spot reading, subject matter familiarity with the context of produc-

tion, and other computational methods of exploration, like word counts and looking at keywords

in context. In other words, as with all unsupervised computational approaches to text as data,

external validation of model results is crucial (Grimmer and Stewart 2013).

Backed by this knowledge, word vectorization models can be implemented in ways that increase

confidence in the robustness and stability of their results. Bootstrapping as implemented in this
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paper is strongly recommended to generate stable cosine similarities and confidence intervals.

While this can be computationally intensive, experiments in the literature (Antoniak and Mimno

2018) and in the course of this project show that cosine similarities stabilize at between n = 25

and n = 50 bootstrapped samples; sparse corpora or time slices would benefit from doubling that

number. Based on the outcomes of the tests on this particular project’s corpus, analysts should

seek time slices with as many texts as possible; depending on document length and how closely each

text relates to the words under consideration in the analysis, this analysis suggests that between

100 and 500 documents is a reasonable minimum per slice.

As I have shown, for this data, modeling time slices using a chronologically trained approach

best replicates the underlying semantic relationships in the corpus over time. While the gen-

eralizability of these results on a variety of data sets was not tested, the literature on transfer

learning gives a theoretical basis from which to assume that word2vec implementations relying on

pre-trained vectors (in this case, pre-trained on the full corpus) will do a better job of modeling

semantics in small corpora in general.

Finally, word vector approaches are most effective for studying a single word, rather than

analyzing more diffuse notions that might be captured by a topic or word cloud. In other words

– as I emphasize in the next section – word vectorization is not a replacement for topic modeling.

Once the analyst has identified words of interest, language stabilization needs to take place on the

corpus prior to processing. Again, subject matter knowledge and spot reading in the corpus is

an important guide to this process. For some words, stemming is all that is required; for others,

as in the African American concept in this project, complex political and social processes have

dramatically shifted synonyms over time, resulting in the need for more involved pre-processing

stabilization steps.

7 Diachronic Analysis in the Field: “Social Equality”

As I have described, the corpus used to test these model implementations was constructed specif-

ically to facilitate comparability between supervised topic model outputs and word vectorization

outputs. In this analysis, the corpus was limited to a subset of articles which were explicitly about

equality, the analysis was locked into certain topics to compare to equality once the ReadMe code-

book was finalized, and coders had to be trained and paid to produce gold-standard documents

with which to train the ReadMe model. These steps were necessary to empirically validate which

diachronic implementation performed best on semantic tasks, but do not reflect how analysts will

typically use or validate word vector models ‘in the field.’

In other words, far fewer limits exist on most word2vec analyses. While relatively robust to
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scarcity, generally word vector analyses benefit from training on as many corpus documents in

each era as are available. Additional word-word pairs can be added to the analysis with relative

ease, compared to the expense and inconvenience of manual recoding to add new word-topic pairs

to a ReadMe model, allowing word2vec to be used as an exploratory method. In addition – and

most important in terms of its methodological utility – there is far greater nuance available in

the word-word analysis of semantics that word2vec can perform than was clear in the word-topic

analysis of this project’s validation test. This is because the number of discernible document

topics is extremely limited compared to the number of possible word-word pairs of interest. Many

single word-word pairs cannot be replicated by a corresponding word-topic pair, yet may be highly

semantically revealing. It is in the ability to analyze these word-word pairs that word vector

methods demonstrate their unique utility for political scientists over other existing text-as-data

methods.

To demonstrate both the additive flexibility of the model and the semantic utility of word-word

pairs over word-topic pairs, I used the trained chronological model outlined above to analyze a new

word-word pair: “social” and “equality.” Social equality is a complex, often euphemistic term of

art used by American leaders after the Civil War; the words are often but not always used next to

each other. Booker T. Washington, for instance, in his famous “Atlanta Compromise Speech” on

race relations in the South, described how “in all things that are purely social we can be as separate

as the fingers” while also explicitly referencing social equality in his assertion that “the agitation

of questions of social equality is the extremest folly” (Washington 1895/1974). Because it is often

used indirectly, vaguely, or obliquely, is a common word in other contexts, and when conceptually

paired with equality references a wide range of substantive topics, tracking the relationship of

social to equality over time is not tractable with either a topic model or word count approach.

Word vectorization, however, is admirably suited to the task of tracking the prominence of this

“social” meaning of “equality”. The proximity of “social” and “equality” in vector space directly

reflects their semantic proximity in a given time slice in a given corpus. Figure 4 plots the cosine

similarities of this pair over time.

The close proximity of social to equality – as high as gender and race in the first two eras –

trails off as we approach the Civil Rights era. Scholars know social equality was a euphemistic

stand in for fears of miscegenation and aversion to black-white intimacies of all types. Given this,

the declining proximity of social to equality in the lead up to the Civil Rights movement and legal

victories like Loving v. Virginia (1967), which struck down state laws banning interracial marriage,

tracks expectations. That the decline of social equality began before the Civil Rights era might

spark considerations about the importance of diminishing such social stigma as a precursor to

changes in laws and institutions.
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Figure 4: “Equality” - “Social” Cosine Similarity (with 95% confidence interval)

Figure 4 also revealed an unexpected feature of the corpus – the re-emergence of “social” as an

important facet of equality’s meaning in the most recent eras. Here the results sparked additional

close reading of the corpus to determine what this re-emergence might signify. Is it a return to

certain kinds of euphemistic racial stigmatization? Or is this a new valence of social equality that

has emerged?

Close reading of the corpus in later eras suggests that the conjoint meaning of social and

equality has expanded from a racial euphemism to also capture economic relationships. Phrases

like “economic equality,” “social issues,” and “social justice” are used together, and social dimensions

of equality are mentioned in articles about access to elite institutions like private golf clubs and

Ivy League universities. At the same time, “social” has taken on a new negative valence, with some

articles decrying an emphasis on social justice or social equality, where the “social” modifier – like

in the Reconstruction era – serves as a euphemistic stand in for some vague, undeclared racial and

economic agenda to which the writer is opposed.

8 Conclusion

By close reading, a political theorist can produce an admirable semantic analysis of how the

meaning of rights discourse shifts between John Locke’s Second Treatise of Government (with a

mere 28 mentions of rights) and The Federalist Papers (with a still-manageable 152 mentions).

While such an analysis is interesting in itself, and well within the capabilities of a single reader,

we can easily imagine interesting cases which would exceed those capabilities. Computational

methods can expand the universe of texts we can consider, and such methods have, among many

other successes, already facilitated broader inquires into the meaning and development of words
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like rights (see de Bolla 2013). Here, I have shown how word2vec can reveal the changing meaning

of a single word like “equality” in a modest corpus of newspaper articles. In addition to tracking

general trends in the meaning of equality as it relates to gender, race, and international relations,

my analysis also highlights the granularity that is possible with word vector models: with my

chronologically trained model, I show that the prominence of the idea of “social equality” inversely

tracks racial progress, demonstrating unexpected commonalities between the post-Reconstruction

era and the contemporary moment.

Word vectorization is a particularly promising computational method that has the ability to

track the evolution of single words like rights or equality over time by tracking the cosine simi-

larities of pairs of words. While computational linguists have shown how word vectorization of

single corpora can produce impressive results on word analogy and synonym tasks, this project

has highlighted the utility of word vector methods for more complex semantic tasks over time

periods in which the cultural meanings of words evolve. By attention to details of implementation

(bootstrapping, language stabilization, and chronological training), analysts can confidently dis-

cover semantic trends in corpora, a development which should be broadly interesting to scholars

studying the evolution and history of ideas and concepts, and their relationship to politics, society,

economics, and culture. Whether as an exploratory tool, as a means of validating close-reading

insights from a small corpus on a much larger corpus of texts, or as a mechanism of producing

free-standing analyses of vast corpora, word vectorization methods offer political scientists a useful

strategy for treating texts as data to reveal changes in the meanings of concepts and ideas over

time.
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