STROSACKER - FLOOD RECOVERY

PROJECT MANUAL

01/26/2022

OWNER

NORTHWOOD UNIVERSITY

4000 WHITING DRIVE
MIDLAND, MI 48640

PROJECT NUMBER

Architect’s Project No. 21-134.00
TABLE OF CONTENTS

DIVISION 00 — PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 1113 - ADVERTISEMENT FOR BIDS
- 00 2113 - INSTRUCTIONS TO BIDDERS
- 00 2600 - PROCUREMENT SUBSTITUTION PROCEDURES
- 00 4101 - BID FORM - GENERAL
- 00 4102 - BID FORM - MECHANICAL
- 00 4325 - SUBSTITUTION DURING PROCUREMENT REQUEST FORM
- 00 6323 - CADD FILE TRANSFER WAIVER
- 00 6324 - BIM TRANSFER WAIVER
- 00 6325 - SUBSTITUTION DURING CONSTRUCTION REQUEST FORM
- 00 7200 - GENERAL CONDITIONS
- 00 7300 - SUPPLEMENTARY CONDITIONS
- 00 7400 - FEDERAL CONTRACT PROVISIONS

DIVISION 01 — GENERAL REQUIREMENTS

- 01 1000 - SUMMARY
- 01 2500 - SUBSTITUTION PROCEDURES
- 01 2900 - PAYMENT PROCEDURES
- 01 3100 - PROJECT MANAGEMENT AND COORDINATION
- 01 3200 - CONSTRUCTION PROGRESS DOCUMENTATION
- 01 3300 - SUBMITTAL PROCEDURES
- 01 4000 - QUALITY REQUIREMENTS
- 01 5000 - TEMPORARY FACILITIES AND CONTROLS
- 01 6000 - PRODUCT REQUIREMENTS
- 01 7300 - EXECUTION
- 01 7700 - CLOSEOUT PROCEDURES
- 01 7839 - PROJECT RECORD DOCUMENTS
- 01 7900 - DEMONSTRATION AND TRAINING

DIVISION 06 — WOOD, PLASTICS, AND COMPOSITES

- 06 1000 - ROUGH CARPENTRY
- 06 4116 - PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

DIVISION 07 — THERMAL AND MOISTURE PROTECTION

- 07 2100 - THERMAL INSULATION
- 07 9200 - JOINT SEALANTS

DIVISION 08 — OPENINGS

- 08 1113 - HOLLOW METAL DOORS AND FRAMES
- 08 1116 - ALUMINUM DOORS AND FRAMES
- 08 1743 - FRP ALUMINUM HYBRID DOORS
<table>
<thead>
<tr>
<th>Division 08 — Access Doors and Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 3113 - Access Doors and Frames</td>
</tr>
<tr>
<td>08 4113 - Aluminum-Framed Entrances and Storefronts</td>
</tr>
<tr>
<td>08 7100 - Door Hardware</td>
</tr>
<tr>
<td>08 8000 - Glazing</td>
</tr>
<tr>
<td>08 8813 - Fire-Resistant Glazing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division 09 — Finishes</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 2216 - Non-Structural Metal Framing</td>
</tr>
<tr>
<td>09 2900 - Gypsum Board</td>
</tr>
<tr>
<td>09 5113 - Acoustical Panel Ceilings</td>
</tr>
<tr>
<td>09 6500 - Resilient Flooring</td>
</tr>
<tr>
<td>09 6513 - Resilient Base and Accessories</td>
</tr>
<tr>
<td>09 6813 - Tile Carpeting</td>
</tr>
<tr>
<td>09 9123 - Interior Painting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division 12 — Furnishings</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 3623.13 - Plastic-Laminate-Clad Countertops</td>
</tr>
<tr>
<td>12 3661 - Solid Surfacing Countertops</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division 22 — Plumbing</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 0500 - Common Work Results for Plumbing</td>
</tr>
<tr>
<td>22 0513 - Common Motor Requirements for Plumbing Equipment</td>
</tr>
<tr>
<td>22 0519 - Meters and Gages for Plumbing Piping</td>
</tr>
<tr>
<td>22 0523 - General Duty Valves for Plumbing Piping</td>
</tr>
<tr>
<td>22 0529 - Hangers and Supports for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>22 053 - Identification for Plumbing Piping and Equipment</td>
</tr>
<tr>
<td>22 0700 - Plumbing Insulation</td>
</tr>
<tr>
<td>22 0800 - Minimum Commissioning of Plumbing</td>
</tr>
<tr>
<td>22 1116 - Domestic Water Piping</td>
</tr>
<tr>
<td>22 1119 - Domestic Water Piping Specialties</td>
</tr>
<tr>
<td>22 1123 - Domestic Water Pumps</td>
</tr>
<tr>
<td>22 3300 - Electric Domestic Water Heaters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division 23 — Heating, Ventilating, and Air Conditioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 0500 - Common Work Results for HVAC</td>
</tr>
<tr>
<td>23 0513 - Common Motor Requirements for HVAC Equipment</td>
</tr>
<tr>
<td>23 0516 - Expansion Fittings and Loops for HVAC Piping</td>
</tr>
<tr>
<td>23 0519 - Meters and Gages for HVAC Piping</td>
</tr>
<tr>
<td>23 0523 - General Duty Valves for HVAC Piping</td>
</tr>
<tr>
<td>23 0529 - Hangers and Supports for HVAC Piping and Equipment</td>
</tr>
<tr>
<td>23 053 - Identification for HVAC Piping and Equipment</td>
</tr>
<tr>
<td>23 0593 - Testing, Adjusting, and Balancing for HVAC</td>
</tr>
<tr>
<td>23 0700 - HVAC Insulation</td>
</tr>
<tr>
<td>23 0800 - Commissioning of HVAC</td>
</tr>
</tbody>
</table>
23 0900 - INSTRUMENTATION AND CONTROL FOR HVAC
23 1123 - FACILITY NATURAL GAS PIPING
23 2113 - HYDRONIC PIPING
23 2123 - HYDRONIC PUMPS
23 2500 - HVAC WATER TREATMENT
23 3113 - METAL DUCTS
23 3300 - AIR DUCT ACCESSORIES
23 3600 - AIR TERMINAL UNITS
23 3713 - DIFFUSERS, REGISTERS, AND GRILLES
23 7313 - MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS
23 8216 - AIR COILS
23 8233 - CONVECTORS

DIVISION 26 — ELECTRICAL

26 0500 - COMMON WORK RESULTS FOR ELECTRICAL
26 0519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
26 0526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
26 0529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
26 0533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
26 0544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLELING
26 0553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS
26 0573 - SHORT-CIRCUIT STUDIES
26 0574 - OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY
26 0913 - ELECTRICAL ENERGY METERING
26 0923 - LIGHTING CONTROL DEVICES
26 2200 - LOW VOLTAGE TRANSFORMERS
26 2413 - SWITCHBOARDS
26 2416 - PANELBOARDS
26 2726 - WIRING DEVICES
26 5100 - INTERIOR LIGHTING

DIVISION 28 — ELECTRONIC SAFETY AND SECURITY

28 3100 - FIRE DETECTION AND ALARM
SECTION 00 1113 - ADVERTISEMENT FOR BIDS

1.1 FROM:

A. THE OWNER:

 Northwood University
 4000 Whiting Drive
 Midland, MI 48640

B. AND THE ARCHITECT:

 Tower Pinkster Titus Associates
 242 East Kalamazoo Avenue
 Suite 100 Kalamazoo, MI 49007-5828

1.2 TO: POTENTIAL BIDDERS

A. Bids will be accepted from bidders under seal to Owner for remodeling of a facility located Strosacker Library before 5:00 p.m. local time on February 25, 2022, for the following project:

1. Strosacker – Flood Recovery

B. Bids will be received electronically by the Architect (jrumohr@towerpinkster.com).

C. Project Description: The Work is for the restoration of the lower level of Strosacker Library that was damaged by flooding in May of 2020. The work includes finish restoration on the lower levels of the Library. In addition, there is mechanical and electrical work throughout the lower level, and HVAC controls replacement throughout the building.

D. Bidders will be required to provide Bid security in the form of a surety bond, certified check, or cashier's check in the amount of 5 percent of the bid amount. Performance and Payment bonds will be required.

E. There will be a pre-bid meeting beginning at 10:00 a.m. local time on February 8, 2022 at Strosacker Library. The purpose is to consider questions posed by bidders and to tour the site and existing facilities. This meeting is mandatory for all prime contract bidders. No bid will be considered from a bidder that does not have a representative at this meeting.

F. No bids may be withdrawn for a period of 30 days after submission.

G. The Owner reserves the right to accept or reject any or all bids, alternates, or proposals, and to accept those bids, alternates, or proposals that, in his judgement, serve his best interests.
SECTION 00 2113 - INSTRUCTIONS TO BIDDERS

FORM OF INSTRUCTIONS TO BIDDERS

See AIA Document A701 (1997 Edition), Instructions to Bidders, issued by the American Institute of Architects. It is an integral part of the Bidding Documents but is not bound in the Project Manual. Refer to this document for pertinent information. Failure to consult this document shall not relieve the Bidder of its obligations therein. Copies of this document may be viewed at the office of the Architect, and may be purchased at the following location:

AIA Michigan
553 East Jefferson Avenue
Detroit, MI 48226
(313) 965-4100

The instructions in this document amend or supplement the Instructions to Bidders and other provisions of the Bidding and Contract Documents. Where any Article of the Instructions to Bidders is modified, or any paragraph, sub-paragraph or clause thereof is modified or deleted by these supplements, the unaltered provisions of that article, paragraph, sub-paragraph, or clause shall remain in effect.

ARTICLE 1 – DEFINITIONS

Make the following revisions to paragraph 1.1:

1.1 In the first and second sentences, replace the phase "Bidding Requirements" with the phrase "Procurement Requirements." In the second sentence replace the words "and contract forms" with the word "forms." In the third sentence, after the words replace the words "Conditions of the Contract" with the words "contracting forms, Conditions of the Contract."

ARTICLE 2 – BIDDER’S REPRESENTATIONS

Add the following clause 2.1.3.1 to subparagraph 2.1.3:

.1 The Bidder has investigated all required fees, permits, and regulatory requirements of authorities having jurisdiction and has properly included in the submitted bid the cost of such fees, permits, and requirements not otherwise indicated as provided by Owner.

ARTICLE 3 – BIDDING DOCUMENTS

3.3 SUBSTITUTIONS

Add the following Sub-paragraph 3.3.5:

3.3.5 Voluntary alternates shall be presented on the Bidder’s letterhead, together with the amount to be deducted from, or added to, his proposal. The Owner may accept or reject such voluntary alternates based upon his best judgement of value.

ARTICLE 4 – BIDDING PROCEDURE

4.1 PREPARATION OF BIDS
Add the following clause 4.1.1.1 to subparagraph 4.1.1:

.1 Submit two fully executed copies of the bid, including all required attachments.

Add the following Subparagraph 4.1.8:

4.1.8 The Bid shall include unit prices when called for by the Procurement and Contracting Documents. Owner may elect to consider unit prices in the determination of award. Unit prices will be incorporated into the Contract.

4.2 BID SECURITY

Omit the last sentence of Subparagraph 4.2.1.

Add the following Subparagraph 4.2.4:

4.2.4 Bid security equal to 5 percent of the bid shall be provided in the form of a surety bond, certified check, or cashier's check made payable to the Owner.

4.4 MODIFICATION OR WITHDRAWAL OF BID

Add the following clauses to Subparagraph 4.4.2:

.1 Such modifications to or withdrawal of a bid may only be made by persons authorized to act on behalf of the Bidder. Authorized persons are those so identified in the Bidder's corporate bylaws, specifically empowered by the Bidder's charter or similar legally binding document acceptable to Owner, or by a power of attorney, signed and dated, describing the scope and limitations of the power of attorney. Make such documentation available to Owner at the time of seeking modifications or withdrawal of the Bid.

.2 Owner will consider modifications to a bid written on the sealed bid envelope by authorized persons when such modifications comply with the following: the modification is indicated by a percent or stated amount to be added to or deducted from the Bid; the amount of the Bid itself is not made known by the modification; a signature of the authorized person, along with the time and date of the modification, accompanies the modification. Completion of an unsealed bid form, awaiting final figures from the Bidder, does not require power of attorney due to the evidenced authorization of the Bidder implied by the circumstance of the completion and delivery of the Bid.

ARTICLE 5 – CONSIDERATION OF BIDS

Add the following subparagraph 5.2.1 to paragraph 5.1:

5.2.1 Owner reserves the right to reject a bid based on Owner's and Architect's evaluation of qualification information submitted following opening of bids. Owner's evaluation of the Bidder's qualifications will include: status of licensure and record of compliance with licensing requirements, record of quality of completed work, record of Project completion and ability to complete, record of financial management including financial resources available to complete Project and record of timely payment of obligations, record of Project site management including compliance with requirements of authorities having jurisdiction, record of and number of current claims and disputes and the status of their resolution, and qualifications of the Bidder's proposed Project staff and proposed subcontractors.
ARTICLE 6 – POST BID INFORMATION

6.2 OWNER’S FINANCIAL CAPABILITY

Omit Paragraph 6.2.

6.3 SUBMITTALS

Replace Subparagraph 6.3.1 with the following:

6.3.1 All bidders whose bid is under consideration shall submit, within 48 hours of bid opening, a Schedule of Values listing all subcontractors proposed for the Work and the following:

.1 A designation of the Work to be performed with the Bidder's own forces.
.2 Names of the manufacturers, products, and the suppliers of principal items or systems of materials and equipment proposed for the Work.

ARTICLE 7 – PERFORMANCE BOND AND PAYMENT BOND

7.1 BOND REQUIREMENTS

Add the following Subparagraph 7.1.4:

7.1.4 Performance and Payment Bonds in the amount of 100 percent of the Contract amount will be required.

Add the following Article 9 to the Instructions to Bidders:

ARTICLE 9 – ADDITIONAL ITEMS

9.1 EXECUTION OF THE CONTRACT

9.1.1 Subsequent to the Notice of Intent to Award, and within 10 days after the prescribed Form of Agreement is presented to the Awardee for signature, the Awardee shall execute and deliver the Agreement to Owner through Architect, in such number of counterparts as Owner may require.

9.1.2 Owner may deem as a default the failure of the Awardee to execute the Contract and to supply the required bonds when the Agreement is presented for signature within the period of time allowed.

9.1.3 Unless otherwise indicated in the Procurement and Contracting Documents or the executed Agreement, the date of commencement of the Work shall be the date of the executed Agreement.

9.2 PRE-BID MEETINGS

9.2.1 There will be a mandatory pre-bid meeting at 10:00 a.m. local time on February 8, 2022.
1.1 DEFINITIONS

A. Procurement Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Procurement and Contracting Documents, submitted prior to receipt of bids.

B. Substitution Requests: Requests for changes in products, materials, equipment, and methods of construction from those indicated in the Contract Documents, submitted following Contract award. See Section 01 2500 "Substitution Procedures" for conditions under which Substitution requests will be considered following Contract award.

1.2 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.3 PROCUREMENT SUBSTITUTIONS

A. Procurement Substitutions, General: By submitting a bid, the Bidder represents that its bid is based on materials and equipment described in the Procurement and Contracting Documents, including Addenda. Bidders are encouraged to request approval of qualifying substitute materials and equipment when the Specifications Sections list materials and equipment by product or manufacturer name.

B. Procurement Substitution Requests will be received and considered by Owner when the following conditions are satisfied, as determined by Architect; otherwise requests will be returned without action:

1. Extensive revisions to the Contract Documents are not required.
2. Proposed changes are in keeping with the general intent of the Contract Documents, including the level of quality of the Work represented by the requirements therein.
3. The request is fully documented and properly submitted.

1.4 SUBMITTALS

A. Procurement Substitution Request: Submit to Architect. Procurement Substitution Request must be made in writing in compliance with the following requirements:

1. Requests for substitution of materials and equipment will be considered if received no later than 10 days prior to date of bid opening.
 a. Identify the product or the fabrication or installation method to be replaced in each request. Include related Specifications Sections and drawing numbers.
 b. Provide complete documentation on both the product specified and the proposed substitute, including the following information as appropriate:
1) Point-by-point comparison of specified and proposed substitute product data, fabrication drawings, and installation procedures.

2) Copies of current, independent third-party test data of salient product or system characteristics.

3) Samples where applicable or when requested by Architect.

4) Detailed comparison of significant qualities of the proposed substitute with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.

5) Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.

6) Research reports, where applicable, evidencing compliance with building code in effect for Project, from ICC-ES.

7) Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, which will become necessary to accommodate the proposed substitute.

c. Provide certification by manufacturer that the substitute proposed is equal to or superior to that required by the Procurement and Contracting Documents, and that its in-place performance will be equal to or superior to the product or equipment specified in the application indicated.

d. Bidder, in submitting the Procurement Substitution Request, waives the right to additional payment or an extension of Contract Time because of the failure of the substitute to perform as represented in the Procurement Substitution Request.

B. Architect's Action:

1. Architect may request additional information or documentation necessary for evaluation of the Procurement Substitution Request. Architect will notify all bidders of acceptance of the proposed substitute by means of an Addendum to the Procurement and Contracting Documents.

C. Architect's approval of a substitute during bidding does not relieve Contractor of the responsibility to submit required shop drawings and to comply with all other requirements of the Contract Documents.

END OF DOCUMENT 00 2600
1.1 THE PROJECT AND THE PARTIES:

A. TO: Northwood University (the Owner)
 4000 Whiting Drive
 Midland, MI 48640

B. FOR: Strosacker - Flood Recovery

C. DATE: ________________________________ (Bidder to enter date)

D. SUBMITTED BY: (Bidder to enter name and address)
 Bidders Full Name ________________________________
 Address ________________________________
 City, State, and Zip ________________________________
 Phone Number ________________________________
 Fax Number ________________________________

1.2 OFFER

A. Having examined the Place of the Work and all matters referred to in the Instructions to Bidders and the Contract Documents prepared by Tower Pinkster Titus Associates for the above mentioned project, we, the undersigned, hereby offer to enter into a Contract to perform the Work for the Sum of:

 __ Dollars ($_______________)
 in lawful money of the United States of America.
 We have included the required security as required by the Instruction to Bidders.
 All applicable taxes are included in the Bid Sum.

1.3 ACCEPTANCE

A. This offer shall be open to acceptance and is irrevocable for thirty days from the bid closing date. If this bid is accepted by the Owner within the time period stated above, we will:

 1. Execute the Agreement within seven days of receipt of Notice of Award.
 2. Furnish the required bonds within seven days of receipt of Notice of Award.
 3. Commence work within seven days after written Notice to Proceed of this bid.

B. If this bid is accepted within the time stated, and we fail to commence the Work or we fail to provide the required Bond(s), the security deposit shall be forfeited as damages to the Owner by reason of our failure, limited in amount to the lesser of the face value of the security deposit or the difference between this bid and the bid upon which a Contract is signed.
C. In the event our bid is not accepted within the time stated above, the required security deposit shall be returned to the undersigned, in accordance with the provisions of the Instructions to Bidders; unless a mutually satisfactory arrangement is made for its retention and validity for an extended period of time.

1.4 CONTRACT TIME
A. If this Bid is accepted, we will:
 1. Complete the Work in ________________ calendar days from Notice to Proceed. (Bidder to enter number of days.)

1.5 ADDENDA
A. The following Addenda have been received. The modifications to the Bid Documents noted below have been considered and all costs are included in the Bid Sum.

B.

C.

D.

E.

1.6 SUBCONTRACTORS
A. We propose to employ the following Subcontractors for the Work:
 1. Mechanical Subcontractor: ______________________________
 2. Temperature Controls Subcontractor: ______________________________
 3. Electrical Subcontractor: ______________________________
 4. Subcontractor: ______________________________

1.7 BID FORM SUPPLEMENTS
A. We agree to submit the following Supplements to Bid Forms if requested by the Architect within 48 hours after submission of this bid for additional bid information:
 1. Schedule of Values: Include the names of all Subcontractors and the portions of the Work they will perform.

1.8 BID FORM SIGNATURE(S)
A. The Corporate Seal of

..

(Bidder - print the full name of your firm)
B. was hereunto affixed in the presence of:

..
(Authorized signing officer, Title)

C. (Seal)

..
(Authorized signing officer, Title)

D. IF THE BID IS A JOINT VENTURE OR PARTNERSHIP ADD ADDITIONAL FORMS OF EXECUTION
FOR EACH MEMBER OF THE JOINT VENTURE IN THE APPROPRIATE FORM OR FORMS AS
ABOVE.

END OF DOCUMENT 00 4100
SECTION 00 4325 - SUBSTITUTION DURING PROCUREMENT REQUEST FORM

1.1 INTRODUCTORY INFORMATION

A. Date: _________________________
B. Requesting substitution of ___
C. As specified in Section ___________________
D. Requested Substitute Product: ___

1.2 SUBMITTING PARTY’S STATEMENT

A. Circle “Y” for yes and “N” for no for each of the following statements and submit supporting data. Indicate impact for all statements below answered as no, with supporting data:

1. [Y] [N] Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner’s additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
2. [Y] [N] Requested substitution does not require extensive revisions to the Contract Documents.
3. [Y] [N] Requested substitution is consistent with the Contract Documents and will produce indicated results.
4. [Y] [N] Substitution request is fully documented and properly submitted in accordance with “Product Substitution” and “Submittals” Articles in Division 01 Section “Product Requirements.”
5. [Y] [N] Requested substitution will not adversely affect Contractor’s Construction Schedule.
6. [Y] [N] Requested substitution has received necessary approvals of authorities having jurisdiction.
7. [Y] [N] Requested substitution is compatible with other portions of the Work.
8. [Y] [N] Requested substitution has been coordinated with other portions of the Work.
9. [Y] [N] Requested substitution provides specified warranty.

B. I hereby certify that the above statements are true.

C. __

D. Submitter’s signature

END OF DOCUMENT 00 4325
SECTION 00 6323 - CADD FILE TRANSFER WAIVER

A. At your request, TowerPinkster will provide CADD files to your organization for your convenience and use in the preparation of shop drawings related to the above project, subject to the following terms and conditions:

1. Our electronic files are compatible with AutoCAD 2016 and newer software. We make no representation as to the compatibility of these files with your hardware or your software beyond the specified release of the referenced specifications.

2. Data contained on these electronic files are part of our instruments of service and shall not be used by you or anyone else receiving this data through or from you for any purpose other than as a convenience in the preparation of shop drawings for the referenced project. Any other use or reuse by you or by others will be at your sole risk and without liability or legal exposure to TowerPinkster. You agree to make no claim and hereby waive, to the fullest extent permitted by law, any claim or cause of action of any nature against us, our officers, directors, employees, agents or subconsultants that may arise out of or in connection with your use of the electronic files.

3. Furthermore, you shall, to the fullest extent permitted by law, indemnify and hold us harmless against all damages, liabilities or costs, including reasonable attorneys’ fees and defense costs, arising out of or resulting from your use of these electronic files.

4. These electronic files are not construction documents. Differences may exist between these electronic files and corresponding hard-copy construction documents. We make no representation regarding the accuracy or completeness of the electronic files you receive. In the event that a conflict arises between the hard-copy construction documents prepared by us and the electronic files, the hard-copy construction documents shall govern. You are responsible for determining if any conflict exists. By your use of these electronic files, you are not relieved of your duty to fully comply with the contract documents, including, and without limitation, the need to check, confirm and coordinate all dimensions and details, take field measurements, verify field conditions and coordinate your work with that of other contractors for the project.

5. Because information presented on the electronic files can be modified, unintentionally or otherwise, we reserve the right to remove all indicia of ownership and/or involvement from each electronic display.

B. We will furnish you with electronic files of the following drawing sheets:

C. __

D. AutoCad Version requested: __

E. Architect’s copyright protected CAD drawings are available strictly for the use of preparing shop drawings. Architect will email files upon receipt this form, fully executed.

F. Under no circumstances shall delivery of the electronic files for use by you be deemed a sale by us, and we make no warranties, either express or implied, or merchantability and fitness for any particular purpose. In no event shall we be liable for any loss or profit or any consequential damages as a result of your use or reuse of these electronic files.
1.2 REQUESTER’S STATEMENT

A. I have reviewed the terms of this request and am in agreement with the conditions stated.

B. __

C. Requester’s signature

END OF DOCUMENT 00 6325
SECTION 00 6324 - BIM TRANSFER WAIVER

INTENT

A. This document amends and supplements the Digital Data Licensing Agreement AIA C106 - 2013 for requests for BIM Model from the Architect. All provisions which are not so amended or supplemented remain in full force and effect.

B. At the request of the Contractor, subcontractor, lower-tier subcontractor, or material supplier, and receipt of signed copy of Digital Data Licensing Agreement AIA C106, the Architect will transmit or send BIM model(s) requested.

C. MODIFICATIONS TO AIA C106

D. ARTICLE 3 – LICENSE CONDITIONS

E. Add the following clauses after the first sentence in Article 3:

1. We make no representation as to the compatibility of these files with your hardware or your software beyond the specified release of the referenced specifications.

2. Data contained on these electronic files are part of our instruments of service and shall not be used by you or anyone else receiving this data through or from you for any purpose other than as a convenience in the support of construction coordination for the referenced project. Any other use or reuse by you or by others will be at your sole risk and without liability or legal exposure to Tower Pinkster Titus Associates. You agree to make no claim and hereby waive, to the fullest extent permitted by law, any claim or cause of action of any nature against us, our officers, directors, employees, agents or subconsultants that may arise out of or in connection with your use of the electronic files.

3. Furthermore, you shall, to the fullest extent permitted by law, indemnify and hold us harmless against all damages, liabilities or costs, including reasonable attorneys’ fees and defense costs, arising out of or resulting from your use of these electronic files.

4. These electronic files are not construction documents. Differences may exist between these electronic files and corresponding hard-copy construction documents. We make no representation regarding the accuracy or completeness of the electronic files you receive. In the event that a conflict arises between the hard-copy construction documents prepared by us and the electronic files, the hard-copy construction documents shall govern. You are responsible for determining if any conflict exists. By your use of these electronic files, you are not relieved of your duty to fully comply with the contract documents, including, and without limitation, the need to check, confirm and coordinate all dimensions and details, take field measurements, verify field conditions and coordinate your work with that of other contractors for the project.

5. Because information presented on the electronic files can be modified, unintentionally or otherwise, we reserve the right to remove all indicia of ownership and/or involvement from each electronic display.

END OF DOCUMENT 00 6324
SECTION 00 6325 - SUBSTITUTION DURING CONSTRUCTION REQUEST FORM

1.1 INTRODUCTORY INFORMATION

A. Date: _________________________

B. Requesting substitution of __

C. As specified in Section ____________________

D. Requested Substitute Product: __

1.2 SUBMITTING PARTY’S STATEMENT

A. Circle “Y” for yes and “N” for no for each of the following statements and submit supporting data. Indicate impact for all statements below answered as no, with supporting data:

1. [Y] [N] Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner’s additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.

2. [Y] [N] Requested substitution does not require extensive revisions to the Contract Documents.

3. [Y] [N] Requested substitution is consistent with the Contract Documents and will produce indicated results.

4. [Y] [N] Substitution request is fully documented and properly submitted in accordance with “Product Substitution” and “Submittals” Articles in Division 01 Section “Product Requirements.”

5. [Y] [N] Requested substitution will not adversely affect Contractor’s Construction Schedule.

6. [Y] [N] Requested substitution has received necessary approvals of authorities having jurisdiction.

7. [Y] [N] Requested substitution is compatible with other portions of the Work.

8. [Y] [N] Requested substitution has been coordinated with other portions of the Work.

9. [Y] [N] Requested substitution provides specified warranty.

B. I hereby certify that the above statements are true.

C. __

D. Submitter’s signature

1.3 CONTRACTOR’S STATEMENT

A. I have reviewed this substitution request and am in agreement with the information presented and statements made. This proposal is complete, and there will be no further charges to the Owner as a result of the acceptance of this substitution.

B. __

C. Contractor’s signature
SECTI0N 00 7200 - GENERAL CONDITIONS

1.1 FORM OF GENERAL CONDITIONS

B. Refer to this document for pertinent information. Failure to consult this document shall not relieve the contractor of his obligations therein. Copies of this document may be viewed at the office of the Architect, and may be purchased at the following location:

AIA Michigan
4219 Woodward Avenue
Detroit, MI 48201
(313) 965-4100

1.2 SUPPLEMENTARY CONDITIONS

A. Refer to Document 00 7300 for amendments to these General Conditions.

END OF DOCUMENT 00 7200
SECTION 00 7300 - SUPPLEMENTARY CONDITIONS

INTENT

These Supplementary Conditions amend and supplement the General Conditions defined in Document 00 7200 and other provisions of the Contract Documents as indicated below. All provisions which are not so amended or supplemented remain in full force and effect.

The terms used in these Supplementary Conditions which are defined in the General Conditions have the meanings assigned to them in the General Conditions.

MODIFICATIONS TO AIA A 201

ARTICLE 1 – GENERAL PROVISIONS

1.1 BASIC DEFINITIONS

Make the following changes to subparagraph 1.1.1:

1.1.1 In the first sentence, replace the phrase "Conditions of the Contract" with the phrase "Contracting Requirements."

Replaces paragraph 1.1.9 with the following:

1.1.9 The Project Manual is a volume assembled for the Work which may include Procurement Requirements, Contracting Requirements, and Specifications.

1.2 CORRELATION AND INTENT OF THE CONTRACT DOCUMENTS

Add the following clause to Subparagraph 1.2.1

1.2.1 Indicated results shall include those that can be reasonably inferred from the Contract Documents, whether expressly stated or not.

Add the following subparagraph to Paragraph 1.2:

1.2.4 In the case of an inconsistency between Drawings and Specifications, or within either Document not clarified by addendum, the better quality or greater quantity of Work shall be provided in accordance with the Architect's interpretation.

ARTICLE 3 – CONTRACTOR

3.4 LABOR AND MATERIALS

Add the following subparagraphs to Paragraph 3.4:

3.4.4 After the Contract has been executed, the Owner and the Architect will consider a formal request for the substitution of products in place of those specified only under the conditions set forth in the General Requirements of the Specifications (Division 01).
By making requests for substitutions based on Subparagraph 3.4.4 above, the Contractor:

.1 represents that the Contractor has personally investigated the proposed substitute product and determined that it is equal or superior in all respects to that specified;

.2 represents that the Contractor will provide the same warranty for the substitution that the Contractor would for that specified;

.3 certifies that the cost data presented is complete and includes all related costs under this Contract but excludes costs under separate Contracts, and excludes the Architect's redesign costs, and waives all claims for additional costs related to the substitution which subsequently become apparent; and

.4 will coordinate the installation of the accepted substitute, making such changes as may be required for the Work to be complete in all respects.

Not later than 30 days from the Contract Date, the Contractor shall provide a list showing the name of the manufacturer proposed to be used for each of the principle products called for in the Specifications, and where applicable, the name of the installing Subcontractor.

The Architect will promptly reply in writing to the Contractor stating whether the Owner or the Architect, after due investigation, has reasonable objection to any such proposal. If adequate data on any proposed manufacturer or installer is not available, the Architect may state that action will be deferred until the Contractor provides further data. Failure of the Owner or the Architect to reply promptly shall constitute notice of no reasonable objection. Failure to object to a manufacturer shall not constitute a waiver of any of the requirements of the Contract Documents. All products furnished by the listed manufacturer must conform to such requirements.

The Owner's cost for Architect's services, at Architect's normal billing rates, for review of substitution requests shall be deducted from the Contract Amount regardless of Architect's recommendation of acceptance or rejection of the substitution.

TAXES

The Owner is a nonprofit corporation and therefore is exempt from State Sales and Use Tax and Federal Excise Taxes. However, the Contractor is responsible for the payment of any tax obligation it may incur in connection with the Work of this Project.

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

The Architect's review of Contractor's submittals will be limited to examination of an initial submittal and one (1) resubmittal. The Owner is entitled to obtain reimbursement from the Contractor for amounts paid to the Architect for evaluation of additional resubmittals.

INDEMNIFICATION

In the first sentence, after the words "... or resulting from", insert the words "or in connection with". After the words "damage, loss or expense is", delete the phrase beginning with "attributable to . . ." and ending
with ". . . regardless of whether or not such claim, damage, loss or expense is". In the second sentence, after the words ". . . of indemnity", insert the words "or contribution".

Add the following subparagraphs to Paragraph 3.18:

3.18.3 "Claims, damages, losses and expenses" as these words are used in this agreement shall be construed to include, but not be limited to (1) injury or damage consequent upon the failure of or use or misuse by the Contractor, his subcontractors, agents, servants or employees, of any hoist, rigging, blocking, scaffolding, or any and all other kinds of items of equipment, whether or not the same be owned, furnished or loaned by the Owner; and (2) all attorney's fees and costs incurred in bringing an action to enforce the provisions of this indemnity or any other indemnity contained in the General Conditions, as modified by the Supplementary Conditions.

3.18.4: Only to the extent prohibited by law, the obligations of the Contractor under this agreement shall not extend to the liability of the Owner, Architect, their agents or employees, arising out of their negligence.

ARTICLE 4 – ARCHITECT

4.1 GENERAL

Add the following clause to subparagraph 4.1.1:

.1: The terms Architect and Architect/Engineer as defined here and used in the Contract Documents shall mean Tower Pinkster Titus Associates, Inc.

4.2 ADMINISTRATION OF THE CONTRACT

Add the following clause 4.2.2.1 to subparagraph 4.2.2:

.1 The Owner's cost for Architect's services, at Architect's normal billing rates, for amounts paid to the Architect for site visits made necessary by the fault of the Contractor or by defects and deficiencies in the Work.

Add the following clause 4.2.7.1 to subparagraph 4.2.7

.1 In no case will the Architect’s review period on any submittal be less than 14 days after receipt of the submittal from the Contractor.

Add the following clause 4.2.14.1 to subparagraph 4.2.14:

.1 The Owner’s cost for Architect's services, at Architect’s normal billing rates, in responding to requests of the Contractor shall be deducted from the Contract Amount if the intent of the documents is clear in the opinion of the Architect, or if the request for information contains a request for substitution.

ARTICLE 7 – CHANGES IN THE WORK

7.2 CHANGE ORDERS

Delete Subparagraph 7.2.2 and substitute the following:
7.2.2: Adjustments to the Contract Sum shall be based on the Contractor's direct cost plus overhead and profit.

7.2.3: Contractor's direct cost shall be determined in accordance with Subparagraph 7.3.6.

.1: All proposals, except those so minor that their propriety can be seen by inspection, shall be accompanied by a complete itemization of costs including labor, materials and Subcontracts. Where major cost items are Subcontracts, they shall be itemized also. In no case will a change involving more than $100.00 be approved without such itemization.

7.2.4: Combined overhead and profit included in the total cost to the Owner shall be based on the following schedule:

.1: For the Contractor, for Work performed by the Contractor's own forces, 15 percent of the cost.
.2: For the Contractor, for Work performed by the Contractor's Subcontractor, 5 percent of the amount due to the Subcontractor.
.3: For each Subcontractor or Sub-subcontractor involved, for Work performed by that Subcontractor or Sub-subcontractor's own forces, 15 percent of the cost.
.4: For each Subcontractor, for Work performed by the Subcontractor's Sub-subcontractor's, 5 percent of the amount due to the Sub subcontractor.

ARTICLE 9 – PAYMENTS AND COMPLETION

9.3 APPLICATIONS FOR PAYMENT

Add the following Clause 9.3.1.3 to Subparagraph 9.3.1 of 9.3:

.3 Until the Work is Substantially Complete, the Owner will pay 90 percent of the amount due the Contractor on account of progress payments.

ARTICLE 11 – INSURANCE AND BONDS

11.1 CONTRACTOR’S LIABILITY INSURANCE

Add the following Clauses 11.1.1.9 and 11.1.1.10 to 11.1.1:

.9 Liability Insurance shall include all major divisions of coverage and be on a comprehensive basis including:

A. Premises Operations (including X, C, and U coverages as applicable).
B. Independent Contractor Protective.
C. Products and Completed Operations.
D. Personal Injury.
E. Contractual, including specified provision for Contractor's obligation under Par. 3.18.
F. Owned, non-owned and hired motor vehicles.
G. Broad Form Property Damage including Completed Operations.

.10 If the General Liability coverages are provided by a Commercial General Liability Policy on a claims-made basis, the policy date or Retroactive Date shall predate the Contract; the termination date of the policy or applicable extended reporting period shall be no earlier than the termination date of coverage required to be maintained after final payment, certified in accordance with Subparagraph 9.10.2.
Add the following Clause 11.1.2.1 to 11.1.2:

.1 The insurance required by Subparagraph 11.1.1 shall be written for not less than the following, or greater if required by law:

A. Commercial General Liability (including Premises-Operations; Independent Contractor's Protective; Products and Completed Operations; Broad Form Property Damage):
 1) General Aggregate (Applied in total to this Project only) $2,000,000.00
 2) Bodily Injury:
 a. Each Occurrence $1,000,000.00
 3) Products and Completed Operation to be maintained for one Year after final payment, aggregate $2,000,000.00
 4) Personal Injury $1,000,000.00
 5) Fire Damage (Any one fire) $100,000.00
 6) Medical Expense (Any one person) $5,000.00
 7) Property Damage Liability Insurance shall provide X, C, and U coverage.
 8) Broad Form Property Damage Coverage shall include Completed Operations.

B. Business Auto Liability on Combined Single Limit or Occurrence Basis d (including owned, non-owned and hired vehicles):
 1) Combined Single Limit Basis $1,000,000.00

C. Umbrella Excess Liability:
 1) Each Occurrence $5,000,000.00
 2) Aggregate $5,000,000.00

D. Worker's Compensation:
 1) State Statutory
 2) Applicable Federal Statutory
 3) Employer Liability:
 a. Each Accident $500,000.00
 b. Disease - Policy Limit: $500,000.00
 c. Disease - Each Employee: $500,000.00

11.3 PROPERTY INSURANCE

Delete Clause 11.3.1.4 and substitute the following:

.4 The Contractor shall provide insurance coverage for portions of the Work stored off the site or in transit, after written approval of the Owner, at the value established in the approval when such portions of the Work are included in an Application for Payment under Subparagraph 9.3.2.

11.3.1 ADDITIONAL INSURED PROVISION
A. Northwood University, its elected or appointed officers, officials, employees and volunteers are
included as insured with regard to damages and defense in claims arising from:

1. Activities performed by or on behalf of the Name Insured
2. Products and completed operations of the Named Insured
3. Premises owned, leased or used by the Name Insured
4. The ownership, operation, maintenance, use, loading or unloading of any vehicle owned, leased, hired or borrow by the Name Insured.

11.4 PERFORMANCE BOND AND PAYMENT BOND

Add the following Subparagraph 11.4.3:

11.4.3: The bond value requirements are as follows:

.1 Provide a 100 percent Performance Bond on AIA A312.
.2 Provide a 100 percent Payment Bond on AIA A312.
.3 Deliver bonds within 3 days after execution of the Contract.

Add the following Article 16:

ARTICLE 16 – EQUAL OPPORTUNITY

16.1 CONTRACTOR'S EMPLOYMENT POLICY

16.1.1 The Contractor shall maintain policies of employment as follows:

.1 The Contractor and its sub-contractors shall not discriminate against any employee or applicant for employment with respect to hire, tenure, terms, conditions or privileges or employment, or any matter directly or indirectly related to employment, because of race, color, religion, sex, national origin, or age. Breach of this covenant will be regarded as a material breach of the Contract.

.2 The Contractor and all Subcontractors shall in all solicitations or advertisements for employees placed by them or on their behalf, state that all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, or age.

END OF DOCUMENT 00 7300
FEDERAL CONTRACT PROVISIONS

COMPLIANCE WITH FEDERAL LAW, REGULATIONS, AND EXECUTIVE ORDERS:
Recommended Provision
This is an acknowledgement that FEMA financial assistance will be used to fund all or a portion of the contract. The contractor will comply with all applicable Federal law, regulations, executive orders, FEMA policies, procedures, and directives.

NO OBLIGATION BY FEDERAL GOVERNMENT: Recommended Provision
The Federal Government is not a party to this contract and is not subject to any obligations or liabilities to the non-Federal entity, contractor, or any other party pertaining to any matter resulting from the contract.

PROGRAM FRAUD AND FALSE OR FRAUDULENT STATEMENTS OR RELATED ACTS:
Recommended Provision
The Contractor acknowledges that 31 U.S.C. Chap. 38 (Administrative Remedies for False Claims and Statements) applies to the Contractor’s actions pertaining to this contract.

DHS SEAL, LOGO, AND FLAGS: Recommended Provision
The contractor shall not use the DHS seal(s), logos, crests, or reproductions of flags or likenesses of DHS agency officials without specific FEMA preapproval.

ACCESS TO RECORDS: Recommended Provision
The following access to records requirements apply to this contract:

1. The Contractor agrees to provide Northwood University, the FEMA Administrator, the Comptroller General of the United States, or any of their authorized representatives access to any books, documents, papers, and records of the Contractor which are directly pertinent to this contract for the purposes of making audits, examinations, excerpts, and transcriptions.

2. The Contractor agrees to permit any of the foregoing parties to reproduce by any means whatsoever or to copy excerpts and transcriptions as reasonably needed.

3. The Contractor agrees to provide the FEMA Administrator or his authorized representatives access to construction or other work sites pertaining to the work being completed under the contract.

4. In compliance with the Disaster Recovery Act of 2018, the (write in name of the nonfederal entity) and the Contractor acknowledge and agree that no language in this contract is intended to prohibit audits or internal reviews by the FEMA Administrator or the Comptroller General of the United States.

Small and Minority Businesses, Women’s Business Enterprises, and Labor Surplus Area Firms
Owner encourages participation from small, minority-owned, women-owned, and labor surplus area business. Incorporation of these types of firms into the project team is encouraged. Additionally, prime contracts are required, if subcontracts are to be let, to take the following affirmative steps 1 through 5 of this section.
PART 1 - Placing qualified small and minority businesses and women's business enterprises on solicitation lists;

PART 2 - Assuring that small and minority businesses, and women's business enterprises are solicited whenever they are potential sources;

PART 3 - Dividing total requirements, when economically feasible, into smaller tasks or quantities to permit maximum participation by small and minority businesses, and women's business enterprises;

PART 4 - Establishing delivery schedules, where the requirement permits, which encourage participation by small and minority businesses, and women's business enterprises;

PART 5 - Using the services and assistance, as appropriate, of such organizations as the Small Business Administration and the Minority Business Development Agency of the Department of Commerce.

Anti-Kickback Clause
The Contractor hereby agrees to adhere to the mandate dictated by the Copeland "Anti-Kickback" Act which provides that each Contractor or subgrantee shall be prohibited from inducing, by any means, any person employed in the completion of work, to give up any part of the compensation to which he is otherwise entitled.

REMEDIES: Applies to all FEMA grant and cooperative agreement programs.
Contracts for more than the simplified acquisition threshold, currently set at $250,000, must address administrative, contractual, or legal remedies in instances where contractors violate or breach contract terms, and provide for such sanctions and penalties as appropriate. See 2 C.F.R. Part 200, Appendix II, A.

TERMINATION FOR CAUSE AND CONVENIENCE: Applies to all FEMA grant and cooperative agreement programs.
All contracts exceeding $10,000 must address termination for cause and for convenience by the non-Federal entity, including how it will be affected and the basis for settlement. See 2 C.F.R. Part 200, Appendix II, B.

EQUAL EMPLOYMENT OPPORTUNITY: This requirement applies to all FEMA grant and cooperative agreement programs and exact language below is required.
During the performance of this contract, the contractor agrees as follows:

(1) The contractor will not discriminate against any employee or applicant for employment because of race, color, religion, sex, sexual orientation, gender identity, or national origin. The contractor will take affirmative action to ensure that applicants are employed, and that employees are treated during
employment without regard to their race, color, religion, sex, sexual orientation, gender identity, or national origin. Such action shall include, but not be limited to the following: Employment, upgrading, demotion, or transfer; recruitment or recruitment advertising; layoff or termination; rates of pay or other forms of compensation; and selection for training, including apprenticeship. The contractor agrees to post in conspicuous places, available to employees and applicants for employment, notices to be provided setting forth the provisions of this nondiscrimination clause.

(2) The contractor will, in all solicitations or advertisements for employees placed by or on behalf of the contractor, state that all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, or national origin.

(3) The contractor will not discharge or in any other manner discriminate against any employee or applicant for employment because such employee or applicant has inquired about, discussed, or disclosed the compensation of the employee or applicant or another employee or applicant. This provision shall not apply to instances in which an employee who has access to the compensation information of other employees or applicants as a part of such employee's essential job functions discloses the compensation of such other employees or applicants to individuals who do not otherwise have access to such information, unless such disclosure is in response to a formal complaint or charge, in furtherance of an investigation, proceeding, hearing, or action, including an investigation conducted by the employer, or is consistent with the contractor's legal duty to furnish information.

(4) The contractor will send to each labor union or representative of workers with which he has a collective bargaining agreement or other contract or understanding, a notice to be provided advising the said labor union or workers' representatives of the contractor's commitments under this section, and shall post copies of the notice in conspicuous places available to employees and applicants for employment.

(5) The contractor will comply with all provisions of Executive Order 11246 of September 24, 1965, and of the rules, regulations, and relevant orders of the Secretary of Labor.

(6) The contractor will furnish all information and reports required by Executive Order 11246 of September 24, 1965, and by rules, regulations, and orders of the Secretary of Labor, or pursuant thereto, and will permit access to his books, records, and accounts by the administering agency and the Secretary of Labor for purposes of investigation to ascertain compliance with such rules, regulations, and orders.

(7) In the event of the contractor's noncompliance with the nondiscrimination clauses of this contract or with any of the said rules, regulations, or orders, this contract may be canceled, terminated, or suspended in whole or in part and the contractor may be declared ineligible for further Government contracts or federally assisted construction contracts in accordance with procedures authorized in Executive Order 11246 of September 24, 1965, and such other sanctions may be imposed and remedies invoked as provided in Executive Order 11246 of September 24, 1965, or by rule, regulation, or order of the Secretary of Labor, or as otherwise provided by law.

(8) The contractor will include the portion of the sentence immediately preceding paragraph (1) and the provisions of paragraphs (1) through (8) in every subcontract or purchase order unless exempted by rules, regulations, or orders of the Secretary of Labor issued pursuant to section 204 of Executive Order 11246 of September 24, 1965, so that such provisions will be binding upon each subcontractor or vendor. The contractor will take such action with respect to any subcontract or purchase order as the administering agency may direct as a means of enforcing such provisions, including sanctions for noncompliance:

Provided, however, that in the event a contractor becomes involved in, or is threatened with, litigation with a subcontractor or vendor as a result of such direction by the administering agency, the contractor may request the United States to enter into such litigation to protect the interests of the United States. The applicant further agrees that it will be bound by the above equal opportunity clause with respect to its own
employment practices when it participates in federally assisted construction work: *Provided*, that if the applicant so participating is a State, Territorial, or local government, the above equal opportunity clause is not applicable to any agency, instrumentality or subdivision of such government which does not participate in work on or under the contract.

The applicant agrees that it will assist and cooperate actively with the administering agency and the Secretary of Labor in obtaining the compliance of contractors and subcontractors with the equal opportunity clause and the rules, regulations, and relevant orders of the Secretary of Labor, that it will furnish the administering agency and the Secretary of Labor such information as they may require for the supervision of such compliance, and that it will otherwise assist the administering agency in the discharge of the agency’s primary responsibility for securing compliance.

The applicant further agrees that it will refrain from entering into any contract or contract modification subject to Executive Order 11246 of September 24, 1965, with a contractor debarred from, or who has not demonstrated eligibility for, Government contracts and federally assisted construction contracts pursuant to the Executive Order and will carry out such sanctions and penalties for violation of the equal opportunity clause as may be imposed upon contractors and subcontractors by the administering agency or the Secretary of Labor pursuant to Part II, Subpart D of the Executive Order. In addition, the applicant agrees that if it fails or refuses to comply with these undertakings, the administering agency may take any or all of the following actions: Cancel, terminate, or suspend in whole or in part this grant (contract, loan, insurance, guarantee); refrain from extending any further assistance to the applicant under the program with respect to which the failure or refund occurred until satisfactory assurance of future compliance has been received from such applicant; and refer the case to the Department of Justice for appropriate legal proceedings.

DEBARMENT AND SUSPENSION: This requirement applies to all FEMA grant and cooperative agreement programs.

Suspension and Debarment

Non-Federal entities and contractors are subject to the debarment and suspension regulations implementing Executive Order 12549, Debarment and Suspension (1986) and Executive Order 12689, Debarment and Suspension (1989) at 2 C.F.R. Part 180 and the Department of Homeland Security’s regulations at 2 C.F.R. Part 3000 (Non-procurement Debarment and Suspension). These regulations restrict awards, subawards, and contracts with certain parties that are debarred, suspended, or otherwise excluded from or ineligible for participation in Federal assistance programs and activities. See 2 C.F.R. Part 200, Appendix II, ¶ H; and 2 C.F.R. § 200.213. A contract award must not be made to parties listed in the SAM Exclusions. SAM Exclusions is the list maintained by the General Services Administration that contains the names of parties debarred, suspended, or otherwise excluded by agencies, as well as parties declared ineligible under statutory or regulatory authority other than Executive Order 12549. SAM exclusions can be accessed at www.sam.gov. See 2 C.F.R. § 180.530.

In general, an “excluded” party cannot receive a Federal grant award or a contract within the meaning of a “covered transaction,” to include subawards and subcontracts. This includes parties that receive Federal funding indirectly, such as contractors to recipients and subrecipients.

1. This contract is a covered transaction for purposes of 2 C.F.R. pt. 180 and 2 C.F.R. pt. 3000. As such, the contractor is required to verify that none of the contractor’s principals (defined at 2 C.F.R. § 180.995) or its affiliates (defined at 2 C.F.R. § 180.905) are excluded (defined at 2 C.F.R. § 180.940) or disqualified (defined at 2 C.F.R. § 180.935).
2. The contractor must comply with 2 C.F.R. pt. 180, subpart C and 2 C.F.R. pt. 3000, subpart C, and must include a requirement to comply with these regulations in any lower tier covered transaction it enters into.

3. This certification is a material representation of fact relied upon by Northwood University. If it is later determined that the contractor did not comply with 2 C.F.R. pt. 180, subpart C and 2 C.F.R. pt. 3000, subpart C, in addition to remedies available to Northwood University, the Federal Government may pursue available remedies, including but not limited to suspension and/or debarment.

4. The bidder or proposer agrees to comply with the requirements of 2 C.F.R. pt. 180, subpart C and 2 C.F.R. pt. 3000, subpart C while this offer is valid and throughout the period of any contract that may arise from this offer. The bidder or proposer further agrees to include a provision requiring such compliance in its lower tier covered transactions.

PROCUREMENT OF RECOVERED MATERIALS: This requirement applies to all contracts awarded by a non-federal entity under FEMA grant and cooperative agreement programs.

Requirements: The requirements of Section 6002 include procuring only items designated in guidelines of the EPA at 40 C.F.R. Part 247 that contain the highest percentage of recovered materials practicable, consistent with maintaining a satisfactory level of competition, where the purchase price of the item exceeds $10,000 or the value of the quantity acquired by the preceding fiscal year exceeded $10,000; procuring solid waste management services in a manner that maximizes energy and resource recovery; and establishing an affirmative procurement program for procurement of recovered materials identified in the EPA guidelines.

1. In the performance of this contract, the Contractor shall make maximum use of products containing recovered materials that are EPA-designated items unless the product cannot be acquired—
 a. Competitively within a timeframe providing for compliance with the contract performance schedule;
 b. Meeting contract performance requirements; or
 c. At a reasonable price.

2. Information about this requirement, along with the list of EPA-designated items, is available at EPA’s Comprehensive Procurement Guidelines web site, https://www.epa.gov/smm/comprehensive-procurement-guideline-cpg-program.

3. The Contractor also agrees to comply with all other applicable requirements of Section 6002 of the Solid Waste Disposal Act.”

CLEAN AIR ACT AND THE FEDERAL WATER POLLUTION CONTROL ACT: This requirement applies to contracts awarded by a non-Federal entity of amounts exceeding $150,000 under a federal grant.

Clean Air Act

1. The contractor agrees to comply with all applicable standards, orders or regulations issued pursuant to the Clean Air Act, as amended, 42 U.S.C. § 7401 et seq.

2. The contractor agrees to report each violation to the Northwood University and understands and agrees that the Northwood University will, in turn, report each violation as required to assure notification to the
Federal Emergency Management Agency, and the appropriate Environmental Protection Agency Regional Office.

3. The contractor agrees to include these requirements in each subcontract exceeding $150,000 financed in whole or in part with Federal assistance provided by FEMA.

Federal Water Pollution Control Act

1. The contractor agrees to comply with all applicable standards, orders, or regulations issued pursuant to the Federal Water Pollution Control Act, as amended, 33 U.S.C. 1251 et seq.

2. The contractor agrees to report each violation to the Northwood University and understands and agrees that the Northwood University will, in turn, report each violation as required to assure notification to the Federal Emergency Management Agency, and the appropriate Environmental Protection Agency Regional Office.

3. The contractor agrees to include these requirements in each subcontract exceeding $150,000 financed in whole or in part with Federal assistance provided by FEMA.

BYRD ANTI-LOBBYING AMENDMENT: This requirement applies to all FEMA grant and cooperative agreement programs. Contractors that apply or bid for a contract of $100,000 or more under a federal grant must file the required certification. See 2 C.F.R. Part 200, Appendix II, I; 31 U.S.C. § 1352; and 44 C.F.R. Part 18

Byrd Anti-Lobbying Amendment, 31 U.S.C. § 1352 (as amended) Contractors who apply or bid for an award of $100,000 or more shall file the required certification. Each tier certifies to the tier above that it will not and has not used Federal appropriated funds to pay any person or organization for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, officer or employee of Congress, or an employee of a Member of Congress in connection with obtaining any Federal contract, grant, or any other award covered by 31 U.S.C. § 1352. Each tier shall also disclose any lobbying with non-Federal funds that takes place in connection with obtaining any Federal award. Such disclosures are forwarded from tier-to-tier up to the recipient who in turn will forward the certification(s) to the awarding agency.

Required Certification: If applicable, contractors must sign and submit to the non-Federal entity the following certification.
Certification for Contracts, Grants, Loans, and Cooperative Agreements

The undersigned certifies, to the best of his or her knowledge and belief, that:

1. No Federal appropriated funds have been paid or will be paid, by or on behalf of the undersigned, to any person for influencing or attempting to influence an officer or employee of an agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with the awarding of any Federal contract, the making of any Federal grant, the making of any Federal loan, the entering into of any cooperative agreement, and the extension, continuation, renewal, amendment, or modification of any Federal contract, grant, loan, or cooperative agreement.

2. If any funds other than Federal appropriated funds have been paid or will be paid to any person for influencing or attempting to influence an officer or employee of any agency, a Member of Congress, an officer or employee of Congress, or an employee of a Member of Congress in connection with this Federal contract, grant, loan, or cooperative agreement, the undersigned shall complete and submit Standard Form-LLL, “Disclosure Form to Report Lobbying,” in accordance with its instructions.

3. The undersigned shall require that the language of this certification be included in the award documents for all subawards at all tiers (including subcontracts, subgrants, and contracts under grants, loans, and cooperative agreements) and that all subrecipients shall certify and disclose accordingly. This certification is a material representation of fact upon which reliance was placed when this transaction was made or entered into. Submission of this certification is a prerequisite for making or entering into this transaction imposed by section 1352, title 31, U.S. Code. Any person who fails to file the required certification shall be subject to a civil penalty of not less than $10,000 and not more than $100,000 for each such failure. The Contractor, _______________________, certifies or affirms the truthfulness and accuracy of each statement of its certification and disclosure, if any. In addition, the Contractor understands and agrees that the provisions of 31 U.S.C. Chap. 38, Administrative Remedies for False Claims and Statements, apply to this certification and disclosure, if any.

__
Signature of Contractor’s Authorized Official

__
Name and Title of Contractor’s Authorized Official

Date
FOR CONSTRUCTION CONTRACTS:

CONTRACT WORK HOURS AND SAFETY STANDARDS ACT: This requirement applies to all FEMA contracts awarded by the non-federal entity exceeding $100,000 under grant and cooperative agreement programs that involve the employment of mechanics or laborers. It is applicable to construction work. These requirements do not apply to the purchase of supplies or materials or articles ordinarily available on the open market, or contracts for transportation or transmission of intelligence.

Compliance with the Contract Work Hours and Safety Standards Act.

(1) **Overtime requirements.** No contractor or subcontractor contracting for any part of the contract work which may require or involve the employment of laborers or mechanics shall require or permit any such laborer or mechanic in any workweek in which he or she is employed on such work to work in excess of forty hours in such workweek unless such laborer or mechanic receives compensation at a rate not less than one and one-half times the basic rate of pay for all hours worked in excess of forty hours in such workweek.

(2) **Violation; liability for unpaid wages; liquidated damages.** In the event of any violation of the clause set forth in paragraph (b)(1) of this section the contractor and any subcontractor responsible therefor shall be liable for the unpaid wages. In addition, such contractor and subcontractor shall be liable to the United States (in the case of work done under contract for the District of Columbia or a territory, to such District or to such territory), for liquidated damages. Such liquidated damages shall be computed with respect to each individual laborer or mechanic, including watchmen and guards, employed in violation of the clause set forth in paragraph (b)(1) of this section, in the sum of $26 for each calendar day on which such individual was required or permitted to work in excess of the standard workweek of forty hours without payment of the overtime wages required by the clause set forth in paragraph (b)(1) of this section.

(3) **Withholding for unpaid wages and liquidated damages.** The Northwood University shall upon its own action or upon written request of an authorized representative of the Department of Labor withhold or cause to be withheld, from any moneys payable on account of work performed by the contractor or subcontractor under any such contract or any other Federal contract with the same prime contractor, or any other federally-assisted contract subject to the Contract Work Hours and Safety Standards Act, which is held by the same prime contractor, such sums as may be determined to be necessary to satisfy any liabilities of such contractor or subcontractor for unpaid wages and liquidated damages as provided in the clause set forth in paragraph (b)(2) of this section.

(4) **Subcontracts.** The contractor or subcontractor shall insert in any subcontracts the clauses set forth in paragraph (b)(1) through (4) of this section and also a clause requiring the subcontractors to include these clauses in any lower tier subcontracts. The prime contractor shall be responsible for compliance by any subcontractor or lower tier subcontractor with the clauses set forth in paragraphs (b)(1) through (4) of this section.
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Project information.
2. Work covered by Contract Documents.
3. Access to site and Construction Phasing
4. Coordination with occupants.
5. Work restrictions.

1.2 PROJECT INFORMATION

A. Project Identification: Strosacker – Flood Recovery

1. Project Location:
 Strosacker Library – 4000 Whiting Drive, Midland, MI 48640

B. Owner:
 Northwood University
 4000 Whiting Drive
 Midland, MI 48640

1. Owner's Representative:
 Steve Smith – Physical Plant Director – Northwood University

C. Architect / Engineer:
 Jonathan Rumohr, Manager of Mechanical Engineering
 Tower Pinkster Titus Associates, Inc.
 242 E. Kalamazoo Avenue, Suite 100
 Kalamazoo, MI 49007

1.3 WORK COVERED BY CONTRACT DOCUMENTS

A. The Work of Project is defined by the Contract Documents and consists of the following:

1. The Work is for the restoration of the lower level Strosacker Library that was damaged by flooding in May of 2020. The work includes finish restoration on the lower level of the Library, as well as the associated mechanical and electrical work. In addition, the HVAC controls throughout the building is being replaced.
B. Type of Contract.

1. Project will be constructed under a general contract issued by Northwood University.

1.4 ACCESS TO SITE

A. General: Contractor shall have limited use of Project site for construction operations as indicated on Drawings by the Contract limits and as indicated by requirements of this Section.

B. Use of Site: Limit use of Project site to work in areas indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated.

1. Driveways, Walkways and Entrances: Keep driveways loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials.
 a. Schedule deliveries to minimize use of driveways and entrances by construction operations.
 b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site.

1.5 COORDINATION WITH OCCUPANTS

A. Full Owner Occupancy: Owner will occupy site and existing building(s) during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage of property. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits unless otherwise indicated.

1. Maintain access to existing walkways, corridors, and other occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and approval of authorities having jurisdiction.

2. Notify Owner not less than 72 hours in advance of activities that will affect Owner's operations.

1.6 WORK RESTRICTIONS

A. Contractor may begin work on-site March 14, 2022. The work must be completed before November 9, 2022.

B. Work Restrictions, General: Comply with restrictions on construction operations.

1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

C. On-Site Work Hours: To maintain construction schedule, extended working hours is expected. Working hours of 7:00 a.m. to 5:00 p.m., Monday through Friday, work on Saturdays and Sundays shall be coordinated with the Owner/Architect.

D. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
1. Notify Owner not less than two days in advance of proposed utility interruptions.
2. Obtain Owner’s written permission before proceeding with utility interruptions.

E. Nonsmoking Building: Smoking is not permitted within the building or within 25 feet (8 m) of entrances, operable windows, or outdoor-air intakes.

F. Controlled Substances: Use of tobacco products and other controlled substances on Project site is not permitted.

1.7 CRIMINAL BACKGROUND CHECKS

A. All employees of the Contractor, that will be performing any work at any Owner facility, shall have a criminal background check maintained on file by the Contractor. The background check shall include Misdemeanor, Felony and Sex Offender checks. Checks may be performed by a private company or government agency and at the Contractor’s expense. Results of background checks shall be maintained by the Contractor. Names of the employees, who have had checks performed, shall be submitted to the Construction Manager, or Owner if requested.

1.8 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:

1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:

1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
2. Abbreviations: Materials and products are identified by abbreviations published as part of the U.S. National CAD Standard and scheduled on Drawings.

END OF SECTION 01 1000
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for substitutions.

B. Related Requirements:

1. Division 01 Section "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.
2. Divisions 02 through 33 Sections for specific requirements and limitations for substitutions.

1.2 DEFINITIONS

A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 a. Unavailability due to failure to procure products in a timely manner does not constitute substitution for cause and will be considered as substitutions for convenience.

2. Substitutions for Convenience: Changes proposed by Contractor or Owner that are not required in order to meet other Project requirements but may offer advantage to Contractor or Owner.

1.3 ACTION SUBMITTALS

A. Substitution Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 a. Statement indicating why specified product or fabrication, or installation cannot be provided, if applicable.
 b. Coordination information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate installers, that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes such as performance, weight, size, durability, visual effect,
sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
e. Samples, where applicable or requested.
f. Certificates and qualification data, where applicable or requested.
g. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
h. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
j. Detailed comparison of Contractor's construction schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
k. Cost information, including a proposal of change, if any, in the Contract Sum.
l. Contractor's certification that proposed substitution complies with requirements in the Contract Documents except as indicated in substitution request, is compatible with related materials, and is appropriate for applications indicated.
m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

PART 2 - PRODUCTS

2.1 SUBSTITUTIONS

A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 15 days prior to time required for preparation and review of related submittals.
1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:

 a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 b. Requested substitution provides sustainable design characteristics that specified product provided.
 c. Requested substitution will not adversely affect Contractor's construction schedule.
 d. Requested substitution has received necessary approvals of authorities having jurisdiction.
 e. Requested substitution is compatible with other portions of the Work.
 f. Requested substitution has been coordinated with other portions of the Work.
 g. Requested substitution provides specified warranty.
 h. If requested substitution involves more than one installer, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

B. Substitutions for Convenience: Architect will consider requests for substitution if received within 20 days after the Notice of Award.

1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied:

 a. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.
 b. Requested substitution does not require extensive revisions to the Contract Documents.
 c. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 d. Requested substitution provides sustainable design characteristics that specified product provided.
 e. Requested substitution will not adversely affect Contractor's construction schedule.
 f. Requested substitution has received necessary approvals of authorities having jurisdiction.
 g. Requested substitution is compatible with other portions of the Work.
 h. Requested substitution has been coordinated with other portions of the Work.
 i. Requested substitution provides specified warranty.
 j. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

2. The Owner's cost for Architect's services, at Architect's normal billing rates, for review of substitution request shall be deducted from the Contract Amount regardless of Architect's recommendation of acceptance or rejection of the proposed substitution.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 2500
PART 1 - GENERAL

1.1 SUMMARY

A. This Section specifies administrative and procedural requirements necessary to prepare and process Applications for Payment.

B. Related Sections include the following:

1. Division 01 Section "Construction Progress Documentation" for administrative requirements governing preparation and submittal of Contractor's Construction Schedule and Submittals Schedule.

1.2 SCHEDULE OF VALUES

A. Coordination: Coordinate preparation of the Schedule of Values with preparation of Contractor's Construction Schedule.

1. Correlate line items in the Schedule of Values with other required administrative forms and schedules, including Application for Payment forms with Continuation Sheets Submittals Schedule and Contractor's Construction Schedule.
2. Submit the Schedule of Values to Architect through Construction Manager at earliest possible date but no later than seven days before the date scheduled for submittal of initial Applications for Payment.
3. Subschedules: Where the Work is separated into phases requiring separately phased payments, provide subschedules showing values correlated with each phase of payment.

B. Format and Content: Use the Project Manual table of contents as a guide to establish line items for the Schedule of Values. Provide at least one-line item for each Specification Section.

1. Identification: Include the following Project identification on the Schedule of Values:
 a. Project name and location.
 b. Name of Architect.
 c. Architect's project number.
 d. Contractor's name and address.
 e. Date of submittal.
2. Submit draft of AIA Document G703 Continuation Sheets.
3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Coordinate with the Project Manual table of contents. Provide several line items for principal subcontract amounts, where appropriate.
4. Round amounts to nearest whole dollar; total shall equal the Contract Sum.
5. Provide a separate line item in the Schedule of Values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
6. Provide separate line items in the Schedule of Values for initial cost of materials, for each subsequent stage of completion, and for total installed value of that part of the Work.

7. Allowances: Provide a separate line item in the Schedule of Values for each allowance. Show line-item value of unit-cost allowances, as a product of the unit cost, multiplied by measured quantity. Use information indicated in the Contract Documents to determine quantities.

8. Each item in the Schedule of Values and Applications for Payment shall be complete. Include total cost and proportionate share of general overhead and profit for each item.
 a. Temporary facilities and other major cost items that are not direct cost of actual work-in-place may be shown either as separate line items in the Schedule of Values or distributed as general overhead expense, at Contractor's option.

9. Schedule Updating: Update and resubmit the Schedule of Values before the next Applications for Payment when Change Orders or Construction Change Directives result in a change in the Contract Sum.

1.3 APPLICATIONS FOR PAYMENT

A. Each Application for Payment shall be consistent with previous applications and payments as certified by Architect and Construction Manager and paid for by Owner.
 1. Initial Application for Payment, Application for Payment at time of Substantial Completion, and final Application for Payment involve additional requirements.

B. Payment Application Times: Progress payments shall be submitted to Construction Manager by the twenty-fifth of the month. The period covered by each Application for Payment is one month, ending on the last day of the month. Applications received by the Construction Manager after the twenty-fifth of the month will be held until the following month.
 1. Within 10 days of the end of the month, the Construction Manager will submit approved applications to the Architect for review and certification.
 2. Within 10 days of receipt from the Construction Manager, the Architect will review applications, certify as appropriate, and submit to the Owner for payment.

D. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Construction Manager will return incomplete applications without action.
 1. Entries shall match data on the Schedule of Values and Contractor's Construction Schedule. Use updated schedules if revisions were made.
 2. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

E. Transmittal: Submit 1 signed and notarized original copy of each Application for Payment to Construction Manger by a method ensuring receipt. Provide waivers of lien and similar attachments if required.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
1. Transmit each copy with a transmittal form listing attachments and recording appropriate information about application.

F. Waivers of Mechanic's Lien: With each Application for Payment, submit waivers of mechanic's lien from every entity who is lawfully entitled to file a mechanic's lien arising out of the Contract and related to the Work covered by the payment.

1. Submit partial waivers on each item for amount requested in previous application, after deduction for retainage, on each item.
2. When an application shows completion of an item, submit final or full waivers.
3. Owner reserves the right to designate which entities involved in the Work must submit waivers.
4. Waiver Forms: Submit waivers of lien on forms, executed in a manner acceptable to Owner.

G. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:

1. List of subcontractors.
2. Schedule of Values.
3. Contractor's Construction Schedule (preliminary if not final).
4. Schedule of unit prices.
5. Submittals Schedule (preliminary if not final).
6. List of Contractor's staff assignments.
7. List of Contractor's principal consultants.
10. Initial progress report.
12. Certificates of insurance and insurance policies.

H. Application for Payment at Substantial Completion: After issuing the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.

1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
2. This application shall reflect Certificates of Partial Substantial Completion issued previously for Owner occupancy of designated portions of the Work.

I. Final Payment Application: Submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited to, the following:

1. Evidence of completion of Project closeout requirements.
2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
3. Updated final statement, accounting for final changes to the Contract Sum.
4. AIA Document G706, "Contractor's Affidavit of Payment of Debts and Claims."
6. AIA Document G707, "Consent of Surety to Final Payment."
7. Evidence that claims have been settled.
8. Final meter readings for utilities, a measured record of stored fuel, and similar data as of date of Substantial Completion or when Owner took possession of and assumed responsibility for corresponding elements of the Work.

10. Certification, signed by Contractor, stating that no asbestos containing materials were used in the construction of this project.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 2900
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:

1. General coordination procedures.
2. Requests for Information (RFIs).
3. Project meetings.

B. Related Requirements:

1. Division 01 Section "Construction Progress Documentation" for preparing and submitting Contractor's construction schedule.
2. Division 01 Section "Execution" for procedures for coordinating general installation and field-engineering services, including establishment of benchmarks and control points.
3. Division 01 Section "Closeout Procedures" for coordinating closeout of the Contract.

1.2 DEFINITIONS

A. RFI: Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.3 INFORMATIONAL SUBMITTALS

A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:

1. Name, address, and telephone number of entities performing subcontract or supplying products.
2. Number and title of related Specification Section(s) covered by subcontract.
3. Drawing number and detail references, as appropriate, covered by subcontract.

1.4 GENERAL COORDINATION PROCEDURES

A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations, included in different Sections, that depend on each other for proper installation, connection, and operation.

1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
3. Make adequate provisions to accommodate items scheduled for later installation.

B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.

1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.

C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:

1. Preparation of Contractor's construction schedule.
2. Preparation of the schedule of values.
3. Installation and removal of temporary facilities and controls.
4. Delivery and processing of submittals.
5. Progress meetings.
6. Preinstallation conferences.
7. Project closeout activities.

1.5 REQUESTS FOR INFORMATION (RFIs)

A. General: Immediately on discovery of the need for additional information or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.

1. Architect will return RFIs submitted to Architect by other entities controlled by Contractor with no response.
2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.
3. Owner's cost for Architect's services, at Architect's normal billing rate, in responding to requests for information from the Contractor, will be deducted from the Contract Amount if the intent of the documents is clear in the opinion of the Architect.

B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:

1. Project name.
2. Project number.
3. Date.
4. Name of Contractor.
5. Name of Architect.
6. RFI number, numbered sequentially.
7. RFI subject.
8. Specification Section number and title and related paragraphs, as appropriate.
9. Drawing number and detail references, as appropriate.
10. Field dimensions and conditions, as appropriate.
11. Contractor's suggested resolution. If Contractor's solution(s) impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
12. Contractor's signature.
13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.

C. RFI Forms: AIA Document G716 or software-generated form with substantially the same content if acceptable to Architect.

D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.

1. The following RFIs will be returned without action:
 a. Requests for approval of submittals.
 b. Requests for approval of substitutions.
 c. Requests for approval of Contractor's means and methods, or other similar items not in the Architect's control.
 d. Requests for coordination information already indicated in the Contract Documents.
 e. Requests for adjustments in the Contract Time or the Contract Sum.
 f. Requests for interpretation of Architect's actions on submittals.
 g. Incomplete RFIs or inaccurately prepared RFIs.

2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt of additional information.

3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Division 01 Section "Contract Modification Procedures."
 a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect and Construction Manager in writing within 10 days of receipt of the RFI response.

E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Use software log with not less than the following:

 1. Project name.
 2. Name and address of Contractor.
 3. Name and address of Architect.
 4. RFI number including RFIs that were dropped and not submitted.
 5. RFI description.
 6. Date the RFI was submitted.
 7. Date Architect's response was received.

F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

 1. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.
 2. Identification of related Field Order, Work Change Directive, and Proposal Request, as appropriate.
1.6 PROJECT MEETINGS

A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.

1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times.
2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.

B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.

1. Attendees: Authorized representatives of Owner Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
2. Agenda: Discuss items of significance that could affect progress, including the following:
 a. Tentative construction schedule.
 b. Phasing.
 c. Critical work sequencing and long-lead items.
 d. Designation of key personnel and their duties.
 e. Procedures for processing field decisions and Change Orders.
 f. Procedures for RFI s.
 g. Procedures for testing and inspecting.
 h. Procedures for processing Applications for Payment.
 i. Distribution of the Contract Documents.
 j. Submittal procedures.
 k. Preparation of record documents.
 l. Use of the premises.
 m. Work restrictions.
 n. Working hours.
 o. Owner's occupancy requirements.
 p. Responsibility for temporary facilities and controls.
 q. Procedures for moisture and mold control.
 r. Procedures for disruptions and shutdowns.
 s. Construction waste management and recycling.
 t. Parking availability.
 u. Office, work, and storage areas.
 v. Equipment deliveries and priorities.
 w. First aid.
 x. Security.
 y. Progress cleaning.
3. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.

C. Preinstallation Conferences: Conduct a preinstallation conference at Project site before each construction activity that requires coordination with other construction.
1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect of scheduled meeting dates.

2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:

 b. Options.
 c. Related RFIs.
 d. Related Change Orders.
 e. Purchases.
 f. Deliveries.
 g. Submittals.
 h. Review of mockups.
 i. Possible conflicts.
 j. Compatibility problems.
 k. Time schedules.
 l. Weather limitations.
 m. Manufacturer’s written instructions.
 n. Warranty requirements.
 o. Compatibility of materials.
 p. Acceptability of substrates.
 q. Temporary facilities and controls.
 r. Space and access limitations.
 s. Regulations of authorities having jurisdiction.
 t. Testing and inspecting requirements.
 u. Installation procedures.
 v. Coordination with other work.
 w. Required performance results.
 x. Protection of adjacent work.
 y. Protection of construction and personnel.

3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.

4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.

5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.

D. Progress Meetings: Conduct progress meetings at biweekly intervals.

1. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

2. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.

1) Review schedule for next period.

b. Review present and future needs of each entity present, including the following:

1) Interface requirements.
2) Sequence of operations.
3) Status of submittals.
4) Deliveries.
5) Off-site fabrication.
6) Access.
7) Site utilization.
8) Temporary facilities and controls.
9) Progress cleaning.
10) Quality and work standards.
11) Status of correction of deficient items.
12) Field observations.
13) Status of RFIs.
14) Status of proposal requests.
15) Pending changes.
16) Status of Change Orders.
17) Pending claims and disputes.
18) Documentation of information for payment requests.

3. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.

a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 3100
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 1. Contractor’s construction schedule.
 2. Construction schedule updating reports.
 3. Weekly construction reports.
 4. Site condition reports.

B. Related Requirements:
 1. Division 01 Section "Submittal Procedures" for submitting schedules and reports.
 2. Division 01 Section "Quality Requirements" for submitting a schedule of tests and inspections.

1.2 DEFINITIONS

A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction project. Activities included in a construction schedule consume time and resources.
 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 2. Predecessor Activity: An activity that precedes another activity in the network.
 3. Successor Activity: An activity that follows another activity in the network.

1.3 INFORMATIONAL SUBMITTALS

A. Format for Submittals: Submit required submittals in the following format:
 1. PDF electronic file.

B. Contractor’s Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.

C. Construction Schedule Updating Reports: Submit with Applications for Payment.

D. Daily Construction Reports: Submit at monthly intervals.

E. Site Condition Reports: Submit at time of discovery of differing conditions.

F. Special Reports: Submit at time of unusual event.
1.4 COORDINATION

A. Coordinate preparation and processing of schedules and reports with performance of construction activities and with scheduling and reporting of separate contractors.

B. Coordinate Contractor's construction schedule with the schedule of values, submittal schedule, progress reports, payment requests, and other required schedules and reports.

 1. Secure time commitments for performing critical elements of the Work from entities involved.
 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

PART 2 - PRODUCTS

2.1 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

A. Time Frame: Extend schedule from date established for the Notice of Award to date of final completion.

 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.

B. Activities: Treat each story or separate area as a separate numbered activity for each main element of the Work. Comply with the following:

 1. Activity Duration: Define activities so no activity is longer than 10 Insert number days, unless specifically allowed by Architect.
 2. Procurement Activities: Include procurement process activities for the following long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 3. Submittal Review Time: Include review and resubmittal times indicated in Division 01 Section "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's construction schedule with submittal schedule.
 4. Substantial Completion: Indicate completion in advance of date established for Substantial Completion and allow time for Architect's administrative procedures necessary for certification of Substantial Completion.
 5. Punch List and Final Completion: Include not more than 30 days for completion of punch list items and final completion.

C. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule and show how the sequence of the Work is affected.

 1. Work Restrictions: Show the effect of the following items on the schedule:

 a. Coordination with existing construction.
 b. Limitations of continued occupancies.
 c. Uninterruptible services.
 d. Partial occupancy before Substantial Completion.
 e. Use of premises restrictions.
2. Work Stages: Indicate important stages of construction for each major portion of the Work.

D. Milestones: Include milestones indicated in the Contract Documents in schedule, including, but not limited to, the Notice to Proceed, Substantial Completion, and final completion.

E. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:

1. Unresolved issues.
2. Unanswered Requests for Information.
3. Rejected or unreturned submittals.
4. Notations on returned submittals.

F. Recovery Schedule: When periodic update indicates the Work is 14 or more calendar days behind the current approved schedule, submit a separate recovery schedule indicating means by which Contractor intends to regain compliance with the schedule.

2.2 CONTRACTOR'S CONSTRUCTION SCHEDULE (GANTT CHART)

A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal, Gantt-chart-type, Contractor's construction schedule within 15 days of date established for the Notice of Award.

B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line.

1. For construction activities that require three months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar.

2.3 REPORTS

A. Weekly Construction Reports: Prepare a weekly construction report recording the following information concerning events at Project site:

1. List of subcontractors at Project site.
2. List of separate contractors at Project site.
3. Approximate count of personnel at Project site.
4. Equipment at Project site.
5. Material deliveries.
6. High and low temperatures and general weather conditions, including presence of rain or snow.
7. Accidents.
8. Meetings and significant decisions.
9. Unusual events.
10. Stoppages, delays, shortages, and losses.
11. Meter readings and similar recordings.
13. Orders and requests of authorities having jurisdiction.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
14. Change Orders received and implemented.
15. Construction Change Directives received and implemented.
16. Services connected and disconnected.
17. Equipment or system tests and startups.
18. Partial completions and occupancies.
19. Substantial Completions authorized.

B. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.

2.4 SPECIAL REPORTS

A. General: Submit special reports directly to Owner within one day(s) of an occurrence. Distribute copies of report to parties affected by the occurrence.

B. Reporting Unusual Events: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, response by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable.

PART 3 - EXECUTION

3.1 CONTRACTOR'S CONSTRUCTION SCHEDULE

A. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.

1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
3. As the Work progresses, indicate final completion percentage for each activity.

B. Distribution: Distribute copies of approved schedule to Architect, Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.

1. Post copies in Project meeting rooms and temporary field offices.
2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

END OF SECTION 01 3200
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for the submittal schedule and administrative and procedural requirements for submitting Shop Drawings, Product Data, Samples, and other submittals.

B. Related Requirements:

1. Division 01 Section "Payment Procedures" for submitting Applications for Payment and the schedule of values.
2. Division 01 Section "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
3. Division 01 Section "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.2 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action.

B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements.

1.3 ACTION SUBMITTALS

A. Submittal Schedule: Submit a schedule of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.

1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
2. Initial Submittal: Submit concurrently with startup construction schedule. Include submittals required during the first 60 days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.
3. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.
a. Submit revised submittal schedule to reflect changes in current status and timing for submittals.

4. Format: Arrange the following information in a tabular format:
 a. Scheduled date for first submittal.
 b. Specification Section number and title.
 c. Submittal category: Action; informational.
 d. Name of subcontractor.
 e. Description of the Work covered.
 f. Scheduled date for Architect's final release or approval.
 g. Scheduled date of fabrication.
 h. Scheduled dates for purchasing.
 i. Scheduled dates for installation.
 j. Activity or event number.

1.4 SUBMITTAL ADMINISTRATIVE REQUIREMENTS

A. Architect's Digital Data Files: Electronic copies of digital data files of the Contract Drawings will be provided by Architect for Contractor's use in preparing submittals.
 1. Architect's copyright protected CAD drawings are available strictly for the use of preparing shop drawings, in AutoCAD version 2009 format.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 1. Completeness: Submittal packages that do not contain all required submittals, with the exception of verification samples when selection samples are also required, will be returned without the Architect taking action.
 2. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 3. Coordinate transmittal of different types of submittals for related parts of the Work so processing will not be delayed because of need to review submittals concurrently for coordination.
 a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.
 1. Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
 3. Resubmittal Review: Allow 15 days for review of each resubmittal.
4. Consultant Review: Where review of submittals by Architect's consultants, Owner, or other parties is necessary, allow 21 days for initial review of each submittal.

D. Electronic Submittals: Identify and incorporate information in each electronic submittal file as follows:

1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
2. Name file with submittal number or other unique identifier, including revision identifier.
 a. File name shall use project identifier and Specification Section number followed by a decimal point and then a sequential number (e.g., LNHS-061000.01). Resubmittals shall include an alphabetic suffix after another decimal point (e.g., LNHS-061000.01.A).
3. Provide means for insertion to permanently record Contractor's review and approval markings and action taken by Architect.
4. Transmittal Form for Electronic Submittals: Use electronic form acceptable to Owner, containing the following information:
 a. Project name.
 b. Date.
 c. Name and address of Architect.
 d. Name of Contractor.
 e. Name of firm or entity that prepared submittal.
 f. Names of subcontractor, manufacturer, and supplier.
 g. Category and type of submittal.
 h. Submittal purpose and description.
 i. Specification Section number and title.
 j. Specification paragraph number or drawing designation and generic name for each of multiple items.
 k. Drawing number and detail references, as appropriate.
 l. Location(s) where product is to be installed, as appropriate.
 m. Related physical samples submitted directly.
 n. Indication of full or partial submittal.
 o. Transmittal number.
 p. Submittal and transmittal distribution record.
 q. Other necessary identification.
 r. Remarks.
5. Metadata: Include the following information as keywords in the electronic submittal file metadata:
 a. Project name.
 b. Number and title of appropriate Specification Section.
 c. Manufacturer name.
 d. Product name.

E. Options: Identify options requiring selection by Architect.

F. Deviations: Identify deviations from the Contract Documents on submittals.

G. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
1. Note date and content of previous submittal.
2. Note date and content of revision in label or title block and clearly indicate extent of revision.
3. Resubmit submittals until they are marked with approval notation from Architect’s action stamp.

H. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

I. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect’s action stamp.

PART 2 - PRODUCTS

2.1 SUBMITTAL PROCEDURES

A. General Submittal Procedure Requirements:

1. Submit electronic submittals via email as PDF electronic files.

2. Action Submittals: Submit number of paper copies of each submittal as required for construction, coordination with other portions of the Work, and retained by Architect. Architect will retain two copies.
 a. Architect will retain and additional copy where review by Architect’s consultant is required.

3. Informational Submittals: Submit two paper copies of each submittal unless otherwise indicated. Architect will not return copies.

4. Certificates and Certifications Submittals: Provide a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity.
 a. Provide a digital signature with digital certificate on electronically-submitted certificates and certifications where indicated.
 b. Provide a notarized statement on original paper copy certificates and certifications where indicated.

B. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard published data are not suitable for use, submit as Shop Drawings, not as Product Data.
2. Mark each copy of each submittal to show which products and options are applicable.
3. Include the following information, as applicable:
 a. Manufacturer’s catalog cuts.
 b. Manufacturer’s product specifications.
 c. Standard color charts.
d. Statement of compliance with specified referenced standards.
e. Testing by recognized testing agency.
f. Application of testing agency labels and seals.
g. Notation of coordination requirements.
h. Availability and delivery time information.

4. For equipment, include the following in addition to the above, as applicable:
 a. Wiring diagrams showing factory-installed wiring.
 b. Printed performance curves.
 c. Operational range diagrams.
 d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.

5. Submit Product Data before or concurrent with Samples.
6. Submit Product Data in the following format:
 a. PDF electronic file.

C. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data, unless submittal based on Architect's digital data drawing files is otherwise permitted.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 a. Identification of products.
 b. Schedules.
 c. Compliance with specified standards.
 d. Notation of coordination requirements.
 e. Notation of dimensions established by field measurement.
 f. Relationship and attachment to adjoining construction clearly indicated.
 g. Seal and signature of professional engineer if specified.

2. Sheet Size: Except for templates, patterns, and similar full-size drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches (215 by 280 mm), but no larger than 30 by 42 inches (750 by 1067 mm).

3. Submit Shop Drawings in the following format:
 a. PDF electronic file.

D. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other elements and for a comparison of these characteristics between submittal and actual component as delivered and installed.

1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
2. Identification: Attach label on unexposed side of Samples that includes the following:
 a. Generic description of Sample.
 b. Product name and name of manufacturer.
c. Sample source.

d. Number and title of applicable Specification Section.

3. For projects where electronic submittals are required, provide corresponding electronic submittal of Sample transmittal, digital image file illustrating Sample characteristics, and identification information for record.

4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.

 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.

 b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

5. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.

 a. Number of Samples: Submit two full sets of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Architect will return submittal with options selected.

6. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.

 a. Number of Samples: Submit three sets of Samples. Architect will retain two Sample sets; remainder will be returned.

 1) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit sets of paired units that show approximate limits of variations.

E. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:

 1. Submit product schedule in the following format:

 a. PDF electronic file.

F. Coordination Drawings Submittals: Comply with requirements specified in Division 01 Section "Project Management and Coordination."

G. Contractor's Construction Schedule: Comply with requirements specified in Division 01 Section "Construction Progress Documentation."
H. Application for Payment and Schedule of Values: Comply with requirements specified in Division 01 Section "Payment Procedures."

I. Test and Inspection Reports and Schedule of Tests and Inspections Submittals: Comply with requirements specified in Division 01 Section "Quality Requirements."

J. Closeout Submittals and Maintenance Material Submittals: Comply with requirements specified in Division 01 Section "Closeout Procedures."

K. Maintenance Data: Comply with requirements specified in Division 01 Section "Operation and Maintenance Data."

L. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.

M. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.

N. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

O. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.

P. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

Q. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.

R. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.

S. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

T. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project.

U. Schedule of Tests and Inspections: Comply with requirements specified in Division 01 Section "Quality Requirements."

V. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
W. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.

X. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.

Y. Design Data: Prepare and submit written and graphic information, including, but not limited to, performance and design criteria, list of applicable codes and regulations, and calculations. Include list of assumptions and other performance and design criteria and a summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Include page numbers.

2.2 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF electronic file and three paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

PART 3 - EXECUTION

3.1 CONTRACTOR'S REVIEW

A. Action and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.

B. Project Closeout and Maintenance Material Submittals: See requirements in Division 01 Section "Closeout Procedures."

C. Approval Stamp: Stamp each submittal with a uniform, approval stamp. Include Project name and location, submittal number, Specification Section title and number, name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
3.2 ARCHITECT’S ACTION

A. General: Architect will not review submittals that do not bear Contractor's approval stamp and will return them without action.

B. Action Submittals: Architect will review each submittal, make marks to indicate corrections or revisions required, and return it. Architect will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action, as follows:

1. Reviewed: No corrections, no marks. Submittal complies with the design intent of the Contract Documents.
2. Furnish as Corrected: Minor corrections; all items can be fabricated or furnished without further correction; checking is complete, and all corrections are obvious without ambiguity.
3. Revise and Resubmit: Minor corrections; noted items must not be furnished or fabricated without further corrections; checking is not complete; details of items noted are to be clarified before resubmitting; items not noted to be corrected can be fabricated or furnished under this stamp.
4. Rejected: Submittal is not in compliance with the design intent of the Contract Documents. Provide new submittal that complies with Contract Documents. Any delay resulting from the submission of items not complying with the Contract Documents is solely the responsibility of the Contractor, which will bear all associated costs.

C. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.

D. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

E. Submittals not required by the Contract Documents may not be reviewed and may be discarded.

END OF SECTION 01 3300
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspecting services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.

1. Specified tests, inspections, and related actions do not limit Contractor's other quality-assurance and -control procedures that facilitate compliance with the Contract Document requirements.

2. Requirements for Contractor to provide quality-assurance and -control services required by Architect, Owner, or authorities having jurisdiction are not limited by provisions of this Section.

C. Related Requirements:

1. Divisions 02 through 33 Sections for specific test and inspection requirements.

1.2 DEFINITIONS

A. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

B. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Services do not include contract enforcement activities performed by Architect.

C. Mockups: Full-size physical assemblies that are constructed on-site. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and, where indicated, qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.

1. Laboratory Mockups: Full-size physical assemblies constructed at testing facility to verify performance characteristics.

D. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.

E. Product Testing: Tests and inspections that are performed by an NRTL, an NVLAP, or a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
F. Source Quality-Control Testing: Tests and inspections that are performed at the source, e.g., plant, mill, factory, or shop.

G. Field Quality-Control Testing: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.

I. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, and similar operations.

1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

J. Experienced: When used with an entity or individual, “experienced” means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

1.3 CONFLICTING REQUIREMENTS

A. Referenced Standards: If compliance with two or more standards is specified and the standards establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for a decision before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.4 INFORMATIONAL SUBMITTALS

A. Contractor’s Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility sent to authorities having jurisdiction before starting work on the following systems:

1. Main wind-force-resisting system or a wind-resisting component listed in the wind-force-resisting system quality-assurance plan prepared by Architect.

B. Testing Agency Qualifications: For testing agencies specified in “Quality Assurance” Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
1.5 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:

1. Date of issue.
2. Project title and number.
3. Name, address, and telephone number of testing agency.
4. Dates and locations of samples and tests or inspections.
5. Names of individuals making tests and inspections.
6. Description of the Work and test and inspection method.
8. Complete test or inspection data.
9. Test and inspection results and an interpretation of test results.
10. Record of temperature and weather conditions at time of sample taking and testing and inspecting.
11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
12. Name and signature of laboratory inspector.
13. Recommendations on retesting and reinspection.

B. Manufacturer's Field Reports: Prepare written information documenting tests and inspections specified in other Sections. Include the following:

1. Name, address, and telephone number of representatives making report.
2. Statement on condition of substrates and their acceptability for installation of product.
3. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
4. Results of operational and other tests and a statement of whether observed performance complies with requirements.
5. Other required items indicated in individual Specification Sections.

C. Permits, Licenses, and Certificates: For Owner's records, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents, established for compliance with standards and regulations bearing on performance of the Work.

1.6 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
D. Installer Qualifications: A firm or individual experienced in installing, erecting, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.

1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspecting indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

1. NRTL: A nationally recognized testing laboratory according to 29 CFR 1910.7.
2. NVLAP: A testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program.

H. Manufacturer's Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

1.7 QUALITY CONTROL

A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.

1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspecting they are engaged to perform.
2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor, and the Contract Sum will be adjusted by Change Order.

B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities required to verify that the Work complies with requirements, whether specified or not.

1. Where services are indicated as Contractor's responsibility, engage a qualified testing agency to perform these quality-control services.

a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.

b. Testing shall not be performed by the installer, or a subcontractor to the installer.
2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspecting will be performed.
3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
4. Testing and inspecting requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

C. Manufacturer's Field Services: Where indicated, engage a manufacturer's representative to observe and inspect the Work. Manufacturer's representative's services include examination of substrates and conditions, verification of materials, inspection of completed portions of the Work, and submittal of written reports.

D. Retesting/Reinspection: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspection, for construction that replaced Work that failed to comply with the Contract Documents.

 1. Notify Architect and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 2. Determine the location from which test samples will be taken and in which in-situ tests are conducted.
 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 6. Do not perform any duties of Contractor.

F. Associated Services: Cooperate with agencies performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 1. Access to the Work.
 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 3. Adequate quantities of representative samples of materials that require testing and inspecting. Assist agency in obtaining samples.
 4. Facilities for storage and field curing of test samples.
 5. Delivery of samples to testing agencies.
 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 7. Security and protection for samples and for testing and inspecting equipment at Project site.

G. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and -control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting.
 1. Schedule times for tests, inspections, obtaining samples, and similar activities.
1.8 SPECIAL TESTS AND INSPECTIONS

A. Special Tests and Inspections: Conducted by a qualified testing agency or special inspector as required by authorities having jurisdiction, as indicated in individual Specification Sections, and as follows:

1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviews the completeness and adequacy of those procedures to perform the Work.
2. Notifying Architect and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect with copy to Contractor and to authorities having jurisdiction.
4. Submitting a final report of special tests and inspections at Substantial Completion, which includes a list of unresolved deficiencies.
5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
6. Retesting and reinspecting corrected work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:

1. Date test or inspection was conducted.
2. Description of the Work tested or inspected.
3. Date test or inspection results were transmitted to Architect.
4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's reference during normal working hours.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspecting, sample taking, and similar services, repair damaged construction and restore substrates and finishes.

1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Division 01 Section "Execution."

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.
END OF SECTION 01 4000
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

B. Related Requirements:

1. Division 01 Section "Summary" for work restrictions and limitations on utility interruptions.

1.2 USE CHARGES

A. General: Installation and removal of and use charges for temporary facilities shall be included in the Contract Sum unless otherwise indicated. Allow other entities to use temporary services and facilities without cost, including, but not limited to, Architect, testing agencies, and authorities having jurisdiction.

B. Water and Sewer Service from Existing System: Water from Owner's existing water system is available for use without metering and without payment of use charges. Provide connections and extensions of services as required for construction operations.

C. Electric Power Service from Existing System: Electric power from Owner's existing system is available for use without metering and without payment of use charges where capacity and appropriate voltage are available without disruption to Owner’s use. Provide connections and extensions of services as required for construction operations.

1.3 INFORMATIONAL SUBMITTALS

A. Erosion- and Sedimentation-Control Plan: Show compliance with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.

B. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire prevention program.

C. Dust- and HVAC-Control Plan: Submit coordination drawing and narrative that indicates the dust- and HVAC-control measures proposed for use, proposed locations, and proposed time frame for their operation. Identify further options if proposed measures are later determined to be inadequate. Include the following:

1. Locations of dust-control partitions at each phase of work.
2. HVAC system isolation schematic drawing.
3. Location of proposed air-filtration system discharge.
5. Other dust-control measures.
1.4 QUALITY ASSURANCE

A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.

B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

1.5 PROJECT CONDITIONS

A. Temporary Use of Permanent Facilities: Engage Installer of each permanent service to assume responsibility for operation, maintenance, and protection of each permanent service during its use as a construction facility before Owner's acceptance, regardless of previously assigned responsibilities.

PART 2 - PRODUCTS

2.1 TEMPORARY FACILITIES

A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.

B. Common-Use Field Office: Of sufficient size to accommodate needs of Owner, Architect, and construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly.

2.2 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.

1. Locate facilities to limit site disturbance as specified in Division 01 Section "Summary."

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.2 TEMPORARY UTILITY INSTALLATION

A. General: Install temporary service or connect to existing service.
1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.

B. Water Service: Connect to Owner's existing water service facilities. Clean and maintain water service facilities in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.

C. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.

1. Toilets: Use of Owner's existing toilet facilities will be permitted, as long as facilities are cleaned and maintained in a condition acceptable to Owner. At Substantial Completion, restore these facilities to condition existing before initial use.

D. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.

E. Electric Power Service: Connect to Owner's existing electric power service. Maintain equipment in a condition acceptable to Owner.

F. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.

1. Install and operate temporary lighting that fulfills security and protection requirements without operating entire system.

G. Telephone Service: Provide superintendent with cellular telephone.

3.3 SUPPORT FACILITIES INSTALLATION

A. General: Comply with the following:

1. Maintain support facilities until Architect schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

B. Traffic Controls: Comply with requirements of authorities having jurisdiction.

1. Protect existing site improvements to remain including curbs, pavement, and utilities.
2. Maintain access for fire-fighting equipment and access to fire hydrants.

C. Parking: Use designated areas of Owner's existing parking areas for construction personnel.

D. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.

1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties or endanger permanent Work or temporary facilities.
2. Remove snow and ice as required to minimize accumulations.
E. Project Signs: Provide Project signs as indicated. Unauthorized signs are not permitted.
 1. Identification Signs: Provide Project identification signs as indicated on Drawings.
 2. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 a. Provide temporary, directional signs for construction personnel and visitors.
 3. Maintain and touchup signs so they are legible at all times.

F. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with progress cleaning requirements in Division 01 Section "Execution."

3.4 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.

B. Environmental Protection: Provide protection, operate temporary facilities, and conduct construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.

C. Stormwater Control: Comply with requirements of authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.

D. Tree and Plant Protection: Install temporary fencing located as indicated or outside the drip line of trees to protect vegetation from damage from construction operations. Protect tree root systems from damage, flooding, and erosion.

E. Site Enclosure Fence: Before demolition operations begin, furnish and install site enclosure fence in a manner that will prevent people and animals from easily entering site except by entrance gates.
 1. Extent of Fence: As required to enclose entire Project site or portion determined sufficient to accommodate construction operations.
 2. Maintain security by limiting number of keys and restricting distribution to authorized personnel. Furnish one set of keys to Owner.

F. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

G. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.

H. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire prevention program.
 1. Prohibit smoking in construction areas.
2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.

3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

3.5 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.

B. Maintenance: Maintain facilities in good operating condition until removal.

1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.

1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.

2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Division 01 Section "Closeout Procedures."

END OF SECTION 01 5000
SECTION 01 6000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; product substitutions; and comparable products.

B. Related Sections include the following:

1. Division 01 Section "Closeout Procedures" for submitting warranties for Contract closeout.
2. Divisions 02 through 49 Sections for specific requirements for warranties on products and installations specified to be warranted.

1.2 DEFINITIONS

A. Products: Items purchased for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature, that is current as of date of the Contract Documents.
2. New Products: Items that have not previously been incorporated into another project or facility, except that products consisting of recycled-content materials are allowed, unless explicitly stated otherwise. Products salvaged or recycled from other projects are not considered new products.
3. Comparable Product: Product that is demonstrated and approved through submittal process, or where indicated as a product substitution, to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.

C. Basis-of-Design Product Specification: Where a specific manufacturer's product is named and accompanied by the words "basis of design," including make or model number or other designation, to establish the significant qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics for purposes of evaluating comparable products of other named manufacturers.

1.3 SUBMITTALS

A. Substitution Requests: Submit four copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
1. Substitution during Construction Request Form: Use facsimile of Document 00 6325 - Substitution during Construction Request Form.

2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 a. Statement indicating why specified material or product cannot be provided.
 b. Coordination information, including a list of changes or modifications needed to other parts of the Work and to construction performed by Owner and separate contractors, that will be necessary to accommodate proposed substitution.
 c. Detailed comparison of significant qualities of proposed substitution with those of the Work specified. Significant qualities may include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.
 d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
 e. Samples, where applicable or requested.
 f. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners.
 g. Material test reports from a qualified testing agency indicating and interpreting test results for compliance with requirements indicated.
 h. Research/evaluation reports evidencing compliance with building code in effect for Project, from a model code organization acceptable to authorities having jurisdiction.
 i. Detailed comparison of Contractor's Construction Schedule using proposed substitution with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating lack of availability or delays in delivery.
 j. Cost information, including a proposal of change, if any, in the Contract Sum.
 k. Contractor's certification that proposed substitution complies with requirements in the Contract Documents and is appropriate for applications indicated.
 l. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.

3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within 7 days of receipt of a request for substitution. Architect will notify Contractor through Construction Manager of acceptance or rejection of proposed substitution within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later.
 a. Form of Acceptance: Change Order.
 b. Use product specified if Architect cannot make a decision on use of a proposed substitution within time allocated.

4. The Owner's cost for Architect's services, at Architect's normal billing rates, for review of substitution requests may be deducted from the submitting Contractor's Contract Amount regardless of Architect's recommendation of acceptance or rejection of the substitution.

B. Comparable Product Requests: Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
1. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within one week of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or 7 days of receipt of additional information or documentation, whichever is later.

 a. Form of Approval: As specified in Division 01 Section "Submittal Procedures."
 b. Use product specified if Architect cannot make a decision on use of a comparable product request within time allocated.

C. Basis-of-Design Product Specification Submittal: Comply with requirements in Division 01 Section "Submittal Procedures." Show compliance with requirements.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, product selected shall be compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft. Comply with manufacturer's written instructions.

B. Delivery and Handling:

 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 4. Inspect products on delivery to ensure compliance with the Contract Documents and to ensure that products are undamaged and properly protected.

C. Storage:

 1. Store products to allow for inspection and measurement of quantity or counting of units.
 2. Store materials in a manner that will not endanger Project structure.
 3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
 4. Store cementitious products and materials on elevated platforms.
 5. Store foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 6. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 7. Protect stored products from damage and liquids from freezing.
1.6 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

1. Manufacturer's Warranty: Preprinted written warranty published by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.

2. Special Warranty: Written warranty required by or incorporated into the Contract Documents, either to extend time limit provided by manufacturer's warranty or to provide more rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution. Submit a draft for approval before final execution.

1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.

2. Specified Form: When specified forms are included with the Specifications, prepare a written document using appropriate form properly executed.

3. Refer to Divisions 02 through 49 Sections for specific content requirements and particular requirements for submitting special warranties.

C. Submittal Time: Comply with requirements in Division 01 Section "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, that are undamaged and, unless otherwise indicated, that are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.

2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.

3. Owner reserves the right to limit selection to products with warranties not in conflict with requirements of the Contract Documents.

4. Where products are accompanied by the term "as selected," Architect will make selection.

5. Where products are accompanied by the term "match sample," sample to be matched is Architect's.

7. General: All materials and products shall be free from asbestos.

B. Product Selection Procedures:

1. Product: Where Specifications name a single product and manufacturer, provide the named product that complies with requirements.
2. Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements.

3. Products: Where Specifications include a list of names of both products and manufacturers, provide one of the products listed that complies with requirements.

4. Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements.

5. Available Products: Where Specifications include a list of names of both products and manufacturers, provide one of the products listed, or an unnamed product, that complies with requirements. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product.

6. Available Manufacturers: Where Specifications include a list of manufacturers, provide a product by one of the manufacturers listed, or an unnamed manufacturer, that complies with requirements. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product.

7. Product Options: Where Specifications indicate that sizes, profiles, and dimensional requirements on Drawings are based on a specific product or system, provide the specified product or system. Comply with provisions in Part 2 "Product Substitutions" Article for consideration of an unnamed product or system.

8. Basis-of-Design Product: Where Specifications name a product and include a list of manufacturers, provide the specified product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with provisions in Part 2 "Comparable Products" Article for consideration of an unnamed product by the other named manufacturers.

 a. If no product available within specified category matches and complies with other specified requirements, comply with provisions in Part 2 "Product Substitutions" Article for proposal of product.

10. Visual Selection Specification: Where Specifications include the phrase "as selected from manufacturer's colors, patterns, textures" or a similar phrase, select a product that complies with other specified requirements.

 a. Standard Range: Where Specifications include the phrase "standard range of colors, patterns, textures" or similar phrase, Architect will select color, pattern, density, or texture from manufacturer's product line that does not include premium items.

 b. Full Range: Where Specifications include the phrase "full range of colors, patterns, textures" or similar phrase, Architect will select color, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 PRODUCT SUBSTITUTIONS

A. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
1. Requested substitution offers Owner a substantial advantage in cost, time, energy conservation, or other considerations, after deducting additional responsibilities Owner must assume. Owner's additional responsibilities may include compensation to Architect for redesign and evaluation services, increased cost of other construction by Owner, and similar considerations.

2. Requested substitution does not require extensive revisions to the Contract Documents.

3. Requested substitution is consistent with the Contract Documents and will produce indicated results.

4. Substitution request is fully documented and properly submitted.

5. Requested substitution will not adversely affect Contractor's Construction Schedule.

6. Requested substitution has received necessary approvals of authorities having jurisdiction.

7. Requested substitution is compatible with other portions of the Work.

8. Requested substitution has been coordinated with other portions of the Work.

9. Requested substitution provides specified warranty.

2.3 COMPARABLE PRODUCTS

A. Conditions: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:

1. Evidence that the proposed product does not require extensive revisions to the Contract Documents, that it is consistent with the Contract Documents and will produce the indicated results, and that it is compatible with other portions of the Work.

2. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant qualities include attributes such as performance, weight, size, durability, visual effect, and specific features and requirements indicated.

3. Evidence that proposed product provides specified warranty.

4. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.

5. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION 01 6000
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Field engineering and surveying.
3. Installation of the Work.
4. Cutting and patching.
5. Progress cleaning.
6. Starting and adjusting.
7. Protection of installed construction.

B. Related Requirements:

1. Division 01 Section "Summary" for limits on use of Project site.
2. Division 01 Section "Closeout Procedures" for submitting final property survey with Project Record Documents, recording of Owner-accepted deviations from indicated lines and levels, and final cleaning.

1.2 INFORMATIONAL SUBMITTALS

A. Certificates: Submit certificate signed by land surveyor certifying that location and elevation of improvements comply with requirements.

B. Landfill Receipts: Submit copy of receipts issued by a landfill facility, licensed to accept hazardous materials, for hazardous waste disposal.

1.3 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.

B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

1. Structural Elements: When cutting and patching structural elements, notify Architect of locations and details of cutting and await directions from Architect before proceeding. Shore, brace, and support structural element during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety.
PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Architect for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, mechanical and electrical systems, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services, and other utilities.

2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.

2. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.
C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to local utility that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Architect according to requirements in Division 01 Section "Project Management and Coordination."

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Architect promptly.

B. General: Engage a land surveyor to lay out the Work using accepted surveying practices.

1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
2. Establish limits on use of Project site.
3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
4. Inform installers of lines and levels to which they must comply.
5. Check the location, level and plumb, of every major element as the Work progresses.

 a. Include footings, foundations, anchor bolts, and similar items.

6. Notify Architect when deviations from required lines and levels exceed allowable tolerances.
7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.

D. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each
survey party member, and types of instruments and tapes used. Make the log available for reference by Architect.

3.4 FIELD ENGINEERING

A. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.

B. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.

1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.

3.5 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.

1. Make vertical work plumb and make horizontal work level.
2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Do not use tools or equipment that produce harmful noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.

1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Architect.
2. Allow for building movement, including thermal expansion and contraction.
3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Hazardous Materials: Use products, cleaners, and installation materials that are not considered hazardous.

3.6 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching of the material being cut and patched. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Avoid interference with use of adjoining areas or interruption of free passage to adjoining areas.

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to minimize interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.
2. Concrete: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.
3. Excavating and Backfilling: Comply with requirements in applicable Division 31 Sections where required by cutting and patching operations.
4. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.
5. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.
2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.
 a. Clean piping, conduit, and similar features before applying paint or other finishing materials.
 b. Restore damaged pipe covering to its original condition.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

 2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F (27 deg C).
 3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

 1. Remove liquid spills promptly.
 2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.
G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.

H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to assure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 STARTING AND ADJUSTING

A. Coordinate startup and adjusting of equipment and operating components with requirements in Division 01 Section "General Commissioning Requirements."

B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Manufacturer's Field Service: Comply with qualification requirements in Division 01 Section "Quality Requirements."

3.9 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION 01 7300
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:

1. Substantial Completion procedures.
2. Final completion procedures.
3. Warranties.
4. Final cleaning.
5. Repair of the Work.

B. Related Requirements:

1. Division 01 Section "Operation and Maintenance Data" for operation and maintenance manual requirements.
2. Division 01 Section "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.
3. Division 01 Section "Demonstration and Training" for requirements for instructing Owner's personnel.
4. Divisions 02 through 33 Sections for specific closeout and special cleaning requirements for the Work in those Sections.

1.2 ACTION SUBMITTALS

A. Product Data: For cleaning agents.

B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.

C. Certified List of Incomplete Items: Final submittal at Final Completion.

1.3 CLOSEOUT SUBMITTALS

A. Certificates of Release: From authorities having jurisdiction.

B. Certificate of Insurance: For continuing coverage.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
1.5 SUBSTANTIAL COMPLETION PROCEDURES

A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.

B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, final completion construction photographic documentation, damage or settlement surveys, property surveys, and similar final record information.
3. Submit closeout submittals specified in individual Divisions 02 through 33 Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
4. Submit maintenance material submittals specified in individual Divisions 02 through 33 Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number where applicable.
 a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Architect's signature for receipt of submittals.
5. Submit test/adjust/balance records.
6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Advise Owner of pending insurance changeover requirements.
2. Complete startup and testing of systems and equipment.
3. Perform preventive maintenance on equipment used prior to Substantial Completion.
4. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Division 01 Section "Demonstration and Training."
5. Advise Owner of changeover in heat and other utilities.
6. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
7. Complete final cleaning requirements, including touchup painting.
8. Touch up and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of...
items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.
2. Results of completed inspection will form the basis of requirements for final completion.

1.6 FINAL COMPLETION PROCEDURES

A. Preliminary Procedures: Before requesting final inspection for determining final completion, complete the following:

1. Submit a final Application for Payment according to Division 01 Section "Payment Procedures."
2. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.

B. Inspection: Submit a written request for final inspection to determine acceptance. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1. Reinspection: Request reinspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.7 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction. Use CSI Form 14.1A.

1. Organize list of spaces in sequential order.
2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
3. Submit list of incomplete items in the following format:
 a. PDF electronic file. Architect will return annotated copy.

1.8 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where commencement of warranties other than date of Substantial Completion is indicated, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Organize warranty documents into an orderly sequence based on the table of contents of the Project Manual.
1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch (215-by-280-mm) paper.

2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.

3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 c. Rake grounds that are neither planted nor paved to a smooth, even-textured surface.
 d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 e. Remove snow and ice to provide safe access to building.
 f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 h. Remove labels that are not permanent.
 i. Wipe surfaces of mechanical and electrical equipment and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.
j. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.

k. Leave Project clean and ready for occupancy.

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.

B. Repair or remove and replace defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specify condition.

1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.

2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.

 a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.

3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.

END OF SECTION 01 7700
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for project record documents, including the following:

1. Record Drawings.
2. Record Specifications.
3. Record Product Data.
4. Miscellaneous record submittals.

B. Related Requirements:

1. Divisions 02 through 33 Sections for specific requirements for project record documents of the Work in those Sections.

1.2 CLOSEOUT SUBMITTALS

A. Record Drawings: Comply with the following:

1. Number of Copies: Submit one set of marked-up record prints.

B. Record Specifications: Submit annotated PDF electronic files of Project's Specifications, including addenda and contract modifications.

C. Record Product Data: Submit annotated PDF electronic files and directories of each submittal.

D. Miscellaneous Record Submittals: See other Specification Sections for miscellaneous record-keeping requirements and submittals in connection with various construction activities. Submit annotated PDF electronic files and directories of each submittal.

PART 2 - PRODUCTS

2.1 RECORD DRAWINGS

A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised Drawings as modifications are issued.

1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.

b. Record data as soon as possible after obtaining it.

c. Record and check the markup before enclosing concealed installations.

2. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

3. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.

4. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.

B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:

1. Format: Annotated PDF electronic file with comment function enabled.

2. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.

3. Refer instances of uncertainty to Architect for resolution.

C. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.

1. Record Prints: Organize record prints and newly prepared record Drawings into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.

2. Format: Annotated PDF electronic file with comment function enabled.

3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.

4. Identification: As follows:

 a. Project name.
 b. Date.
 c. Designation "PROJECT RECORD DRAWINGS."
 d. Name of Architect.
 e. Name of Contractor.

2.2 RECORD SPECIFICATIONS

A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.

2. Mark copy with the proprietary name and model number of products, materials, and equipment furnished, including substitutions and product options selected.
3. Record the name of manufacturer, supplier, Installer, and other information necessary to provide a record of selections made.

4. Note related Change Orders, record Product Data, and record Drawings where applicable.

B. Format: Submit record Specifications as annotated PDF electronic file.

2.3 RECORD PRODUCT DATA

A. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.

1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
3. Note related Change Orders, record Specifications, and record Drawings where applicable.

B. Format: Submit record Product Data as annotated PDF electronic file.

2.4 MISCELLANEOUS RECORD SUBMITTALS

A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.

B. Format: Submit miscellaneous record submittals as PDF electronic file.

PART 3 - EXECUTION

3.1 RECORDING AND MAINTENANCE

A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.

B. Maintenance of Record Documents and Samples: Store record documents and Samples in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

END OF SECTION 01 7839
PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes administrative and procedural requirements for instructing Owner’s personnel, including the following:
 1. Demonstration of operation of systems, subsystems, and equipment.
 2. Training in operation and maintenance of systems, subsystems, and equipment.

B. Related Sections include the following:
 1. Division 01 Section "Project Management and Coordination" for requirements for preinstruction conferences.
 2. Divisions 02 through 49 Sections for specific requirements for demonstration and training for products in those Sections.

1.2 QUALITY ASSURANCE
A. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

B. Instructor Qualifications: A factory-authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.

1.3 COORDINATION
A. Coordinate instruction schedule with Owner’s operations. Adjust schedule as required to minimize disrupting Owner’s operations.

B. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 INSTRUCTION PROGRAM
A. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections.
B. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participant is expected to master. For each module, include instruction for the following:

1. Basis of System Design, Operational Requirements, and Criteria: Include system and equipment descriptions, operating standards, regulatory requirements, equipment function, operating characteristics, limiting conditions, and performance curves.
2. Documentation: Review emergency, operations, and maintenance manuals; Project Record Documents; identification systems; warranties and bonds; and maintenance service agreements.
3. Emergencies: Include instructions on stopping; shutdown instructions; operating instructions for conditions outside normal operating limits; instructions on meaning of warnings, trouble indications, and error messages; and required sequences for electric or electronic systems.
4. Operations: Include startup, break-in, control, and safety procedures; stopping and normal shutdown instructions; routine, normal, seasonal, and weekend operating instructions; operating procedures for emergencies and equipment failure; and required sequences for electric or electronic systems.
5. Adjustments: Include alignments and checking, noise, vibration, economy, and efficiency adjustments.
6. Troubleshooting: Include diagnostic instructions and test and inspection procedures.
7. Maintenance: Include inspection procedures, types of cleaning agents, methods of cleaning, procedures for preventive and routine maintenance, and instruction on use of special tools.
8. Repairs: Include diagnosis, repair, and disassembly instructions; instructions for identifying parts; and review of spare parts needed for operation and maintenance.

PART 3 - EXECUTION

3.1 INSTRUCTION

A. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Owner for number of participants, instruction times, and location.

B. Engage qualified instructors to instruct Owner's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.

C. Scheduling: Provide instruction at mutually agreed on times. For equipment that requires seasonal operation, provide similar instruction at start of each season.

 1. Schedule training with Owner, through Construction Manager, with at least seven days' advance notice.

D. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of a performance-based test.

END OF SECTION 01 7900
SECTION 06 1000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Wood blocking and nailers.
 2. Plywood backing panels.

B. Related Requirements:
 1. Section 06 1600 "Sheathing" for sheathing.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D 5664.

1.3 INFORMATIONAL SUBMITTALS
A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.

B. Evaluation Reports: For the following, from ICC-ES:
 1. Wood-preservative-treated wood.
 2. Fire-retardant-treated wood.
 3. All anchors and fasteners.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Stack wood products flat with spacers beneath and between each bundle to provide air circulation. Protect wood products from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.
PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.

1. Factory mark each piece of lumber with grade stamp of grading agency.
2. Dress lumber, S4S, unless otherwise indicated.

B. Maximum Moisture Content of Lumber: 19 percent unless otherwise indicated.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.

1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.

B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.

C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.

D. Application: Treat items indicated on Drawings, and the following:

1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
2. Wood blocking, furring, and similar concealed members in contact with masonry or concrete.

2.3 FIRE-RETARDANT-TREATED MATERIALS

A. General: Where fire-retardant-treated materials are indicated, materials shall comply with requirements in this article, that are acceptable to authorities having jurisdiction, and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.

B. Fire-Retardant-Treated Lumber and Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E 84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.

1. Treatment shall not promote corrosion of metal fasteners.
2. Exterior Type: Treated materials shall comply with requirements specified above for fire-retardant-treated lumber and plywood by pressure process after being subjected to accelerated weathering according to ASTM D 2898. Use for exterior locations and where indicated.

3. Interior Type A: Treated materials shall have a moisture content of 28 percent or less when tested according to ASTM D 3201 at 92 percent relative humidity. Use where exterior type is not indicated.

C. Kiln-dry lumber after treatment to maximum moisture content of 19 percent. Kiln-dry plywood after treatment to maximum moisture content of 15 percent.

D. Identify fire-retardant-treated wood with appropriate classification marking of qualified testing agency.

E. Application: Treat items indicated on Drawings, and Plywood backing panels.

2.4 MISCELLANEOUS LUMBER

A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including blocking and nailers.

B. Dimension Lumber Items: Standard, Stud, or No. 3 grade lumber of any species.

C. Concealed Boards: 19 percent maximum moisture content and any of the following species and grades:

 1. Mixed southern pine or southern pine; No. 3 grade; SPIB.
 2. Eastern softwoods; No. 3 Common grade; NeLMA.
 3. Northern species; No. 3 Common grade; NLGA.
 4. Western woods; Standard or No. 3 Common grade; WCLIB or WWPA.

D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.

E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exposure 1, C-D Plugged, fire-retardant treated, in thickness indicated or, if not indicated, not less than 3/4-inch (19-mm) nominal thickness.

2.6 FASTENERS

A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners with hot-dip zinc coating complying with ASTM A 153/A 153M.

B. Nails, Brads, and Staples: ASTM F 1667.
C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

D. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01 or ICC-ES AC58 as appropriate for the substrate.

1. Material for Interior Applications: Carbon-steel components, zinc plated to comply with ASTM B 633, Class Fe/Zn 5.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

A. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate nailers, blocking and similar supports to comply with requirements for attaching other construction.

B. Install plywood backing panels by fastening to masonry; coordinate locations with utilities requiring backing panels. Install fire-retardant-treated plywood backing panels with classification marking of testing agency exposed to view.

C. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.

D. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.

E. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.

F. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:

2. ICC-ES evaluation report for fastener.

3.2 PROTECTION

A. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet enough that moisture content exceeds that specified, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Plastic-laminate-faced architectural cabinets.

B. Related Requirements:
 1. Section 06 1000 "Rough Carpentry" for wood furring, blocking, shims, and hanging strips required for installing cabinets that are concealed within other construction before cabinet installation.
 2. Section 12 3623.13 "Plastic-Laminate-Clad Countertops."

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include data for fire-retardant treatment from chemical-treatment manufacturer and certification by treating plant that treated materials comply with requirements.

B. Shop Drawings: For plastic-laminate-faced architectural cabinets.
 1. Include plans, elevations, sections, and attachment details.

C. Samples for Verification: For the following:
 1. Plastic Laminates: [8 by 10 inches (200 by 250 mm)] for each type, color, pattern, and surface finish required.

1.3 INFORMATIONAL SUBMITTALS
A. Qualification Data: For fabricator.

B. Research reports.

1.4 QUALITY ASSURANCE
A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not deliver cabinets until painting and similar finish operations that might damage architectural cabinets have been completed in installation areas. Store cabinets in installation areas or in areas where environmental conditions comply with requirements specified in "Field Conditions" Article.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install cabinets until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels planned for building occupants during the remainder of the construction period.

B. Field Measurements: Where cabinets are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

1. Locate concealed framing, blocking, and reinforcements that support cabinets by field measurements before being enclosed/concealed by construction, and indicate measurements on Shop Drawings.

C. Established Dimensions: Where cabinets are indicated to fit to other construction, establish dimensions for areas where cabinets are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS

A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades of cabinets indicated for construction, finishes, installation, and other requirements.

B. Grade: Custom.

C. Type of Construction: Frameless.

D. Door and Drawer-Front Style: Flush overlay.

E. High-Pressure Decorative Laminate: NEMA LD 3, grades as indicated or if not indicated, as required by quality standard.

F. Laminate Cladding for Exposed Surfaces:

1. Horizontal Surfaces: Grade HGS.
2. Vertical Surfaces: Grade VGS.
3. Door and Drawer Edges: PVC edge banding, 0.12 inch (3 mm) thick.
4. Other Edges: Grade VGS.
5. Pattern Direction: Vertically for drawer fronts, doors, and fixed panels.

G. Materials for Semiexposed Surfaces:
1. Surfaces Other Than Drawer Bodies: Thermally fused laminate panels.
 a. Edges of Thermally Fused Laminate Panel Shelves: PVC or polyester edge banding.
 b. For semiexposed backs of panels with exposed plastic-laminate surfaces, provide surface of high-pressure decorative laminate, NEMA LD 3, Grade CLS.

2. Drawer Sides and Backs: Thermoset decorative panels with PVC or polyester edge banding.
3. Drawer Bottoms: Thermally fused laminate panels.

H. Concealed Backs of Panels with Exposed Plastic-Laminate Surfaces: High-pressure decorative laminate, NEMA LD 3, Grade BKL.

I. Drawer Construction: Fabricate with exposed fronts fastened to subfront with mounting screws from interior of body.
 1. Join subfronts, backs, and sides with glued dovetail joints.

J. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 1. Plastic Laminate: As indicated by laminate manufacturer’s designations on Drawings.
 2. PVC Edgebanding: As indicated by edgebanding manufacturer’s designations on Drawings.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.
 1. Wood Moisture Content: 5 to 10 percent.

B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of architectural cabinet and quality grade specified unless otherwise indicated.
 1. Medium-Density Fiberboard (MDF): ANSI A208.2, Grade 130.
 3. Thermally Fused Laminate (TFL) Panels: Particleboard or MDF finished with thermally fused, melamine-impregnated decorative paper and complying with requirements of NEMA LD 3, Grade VGL, for Test Methods 3.3, 3.4, 3.6, 3.8, and 3.10.

2.3 CABINET HARDWARE AND ACCESSORIES

A. General: Provide cabinet hardware and accessory materials associated with architectural cabinets.

B. Butt Hinges: 2-3/4-inch (70-mm), five-knuckle steel hinges made from 0.095-inch- (2.4-mm-) thick metal, and as follows:
 1. Semi concealed Hinges for Overlay Doors: ANSI/BHMA A156.9, B01521.

C. Pulls: As indicated on Drawings Catches: Magnetic catches, ANSI/BHMA A156.9, B03141.
D. Shelf Rests: ANSI/BHMA A156.9, B04013; metal, two-pin type with shelf hold-down clip.

E. Drawer Slides: ANSI/BHMA A156.9.
 1. Standard Duty (Grade 1 and Grade 2): Side mounted.
 a. Type: Partial extension.
 b. Material: Zinc-plated steel with polymer rollers.
 2. Heavy-Duty (Grade 1HD-100 and Grade 1HD-200): Side mounted; full-extension type; zinc-plated-steel, ball-bearing slides.
 3. General purpose drawers more than 3 inches (75 mm) high, but not more than 6 inches (150 mm) high and not more than 24 inches (600 mm) wide, provide Grade 1HD-100.

F. Door and Drawer Locks: Provide on Boardroom Casework doors and drawers.
 1. Door Locks: BHMA A156.11, E07121.
 2. Drawer Locks: BHMA A156.11, E07041.
 3. Key all doors and drawers within a room alike.

G. Door and Drawer Silencers: ANSI/BHMA A156.16, L03011.

H. Exposed Hardware Finishes: For exposed hardware, provide finish that complies with BHMA A156.18 for ANSI/BHMA finish number indicated.

I. For concealed hardware, provide manufacturer's standard finish that complies with product class requirements in ANSI/BHMA A156.9.

2.4 MISCELLANEOUS MATERIALS

A. Anchors: Select material, type, size, and finish required for each substrate for secure anchorage. Provide metal expansion sleeves or expansion bolts for post-installed anchors. Use nonferrous-metal or hot-dip galvanized anchors and inserts at inside face of exterior walls and at floors.

B. Adhesive for Bonding Plastic Laminate: Contact cement.
 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.

2.5 FABRICATION

A. Complete fabrication, including assembly and hardware application, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

B. Shop-cut openings to maximum extent possible to receive hardware, appliances, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Before installation, condition cabinets to humidity conditions in installation areas for not less than 72 hours.

B. Grade: Install cabinets to comply with quality standard grade of item to be installed.

C. Anchor cabinets to anchors or blocking built in or directly attached to substrates. Secure with wafer-head cabinet installation screws.

D. Install cabinets level, plumb, and true in line to a tolerance of 1/8 inch in 96 inches (3 mm in 2400 mm) using concealed shims.

1. Scribe and cut cabinets to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.
2. Install cabinets without distortion so doors and drawers fit openings and are accurately aligned. Adjust hardware to center doors and drawers in openings and to provide unencumbered operation. Complete installation of hardware and accessory items as indicated.
3. Fasten wall cabinets through back, near top and bottom, and at ends not more than 16 inches (400 mm) o.c. with fasteners appropriate for substrate.

END OF SECTION 06 4116
SECTION 08 1113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes hollow-metal work.

B. Related Requirements:

1. Section 08 7100 "Door Hardware" for door hardware for hollow-metal doors.

1.2 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HIMMA 803 or SDI A250.8.

1.3 COORDINATION

A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Include elevations, door edge details, frame profiles, metal thicknesses, preparations for hardware, and other details.

C. Schedule: Prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.

1. Provide additional protection to prevent damage to factory-finished units.

B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Amweld International, LLC.
2. Ceco Door Products; an Assa Abloy Group company.
3. Curries Company; an Assa Abloy Group company.
4. Fleming-Baron Door Products.
5. Steelcraft; an Ingersoll-Rand company.

B. Source Limitations: Obtain hollow-metal work from single source from single manufacturer.

2.2 REGULATORY REQUIREMENTS

A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.

1. Smoke- and Draft-Control Assemblies: Provide an assembly with gaskets listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

B. Fire-Rated, Borrowed-Light Assemblies: Complying with NFPA 80 and listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing according to NFPA 257 or UL 9.

2.3 INTERIOR DOORS AND FRAMES

A. Heavy-Duty Doors and Frames: SDI A250.8, Level 2.

1. Physical Performance: Level B according to SDI A250.4.
2. Doors:
 a. Type: As indicated in the Door and Frame Schedule.
 b. Thickness: 1-3/4 inches (44.5 mm).
 c. Face: Uncoated, cold-rolled steel sheet, minimum thickness of 0.042 inch (1.0 mm).
 d. Edge Construction: Model 1, Full Flush.
 e. Core: Manufacturer's standard kraft-paper honeycomb, polystyrene, polyurethane, polyisocyanurate, mineral-board, or vertical steel-stiffener core at manufacturer's discretion.

3. Frames:
 a. Materials: Uncoated, steel sheet, minimum thickness of 0.053 inch (1.3 mm).
 b. Construction: Face welded.

2.4 FRAME ANCHORS

A. Jamb Anchors:

1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch (1.0 mm) thick, with corrugated or perforated straps not less than 2 inches (51 mm) wide by 10 inches (254 mm) long; or wire anchors not less than 0.177 inch (4.5 mm) thick.

2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick.

3. Postinstalled Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch- (9.5-mm-) diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.

B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm), and as follows:

1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.

2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at finish floor surface.

2.5 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.

C. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.

1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.

D. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

E. Power-Actuated Fasteners in Concrete: From corrosion-resistant materials.

F. Grout: ASTM C 476, except with a maximum slump of 4 inches (102 mm), as measured according to ASTM C 143/C 143M.

G. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing).

H. Glazing: Section 08 8000 "Glazing."

I. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil (0.4-mm) dry film thickness per coat.
2.6 FABRICATION

A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.

B. Hollow-Metal Doors:

1. Steel-Stiffened Door Cores: Provide minimum thickness 0.026 inch (0.66 mm), steel vertical stiffeners of same material as face sheets extending full-door height, with vertical webs spaced not more than 6 inches (152 mm) apart. Spot weld to face sheets no more than 5 inches (127 mm) o.c. Fill spaces between stiffeners with glass- or mineral-fiber insulation.
2. Fire Door Cores: As required to provide fire-protection ratings indicated.
3. Vertical Edges for Single-Acting Doors: Bevel edges 1/8 inch in 2 inches (3.2 mm in 51 mm).
4. Top Edge Closures: Close top edges of doors with inverted closures of same material as face sheets.
5. Bottom Edge Closures: Close bottom edges of doors with end closures or channels of same material as face sheets.
6. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated.

C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

1. Sidelight and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
5. Jamb Anchors: Provide number and spacing of anchors as follows:
 a. Masonry Type: Locate anchors not more than 16 inches (406 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c., to match coursing, and as follows:
 1) Two anchors per jamb up to 60 inches (1524 mm) high.
 2) Three anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
 3) Four anchors per jamb from 90 to 120 inches (2286 to 3048 mm) high.
 4) Four anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 120 inches (3048 mm) high.
 b. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c. and as follows:
 1) Three anchors per jamb up to 60 inches (1524 mm) high.
 2) Four anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
 3) Five anchors per jamb from 90 to 96 inches (2286 to 2438 mm) high.
 4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 96 inches (2438 mm) high.
 c. Postinstalled Expansion Type: Locate anchors not more than 6 inches (152 mm) from top and bottom of frame. Space anchors not more than 26 inches (660 mm) o.c.
6. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.

D. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.

 1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
 2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

E. Stops and Moldings: Provide stops and moldings around glazed lites and louvers where indicated. Form corners of stops and moldings with butted or mitered hairline joints.

 1. Single Glazed Lites: Provide fixed stops and moldings welded on secure side of hollow-metal work.
 2. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.
 3. Provide loose stops and moldings on inside of hollow-metal work.
 4. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.

2.7 STEEL FINISHES

 A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.

2.8 ACCESSORIES

 A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.

 B. Grout Guards: Formed from same material as frames, not less than 0.016 inch (0.4 mm) thick.

PART 3 - EXECUTION

3.1 INSTALLATION

 A. Preparation: Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.

 1. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.
B. Installation, General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.

C. Hollow-Metal Frames: Install hollow-metal frames of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.

1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 a. At fire-rated openings, install frames according to NFPA 80.
 b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 c. Install frames with removable stops located on secure side of opening.
 d. Install door silencers in frames before grouting.
 e. Remove temporary braces necessary for installation only after frames have been properly set and secured.
 f. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
 g. Field apply bituminous coating to backs of frames that will be filled with grout containing antifreezing agents.

2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with postinstalled expansion anchors.
 a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.

4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.

5. Concrete Walls: Solidly fill space between frames and concrete with mineral-fiber insulation.

6. In-Place Concrete or Masonry Construction: Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

7. In-Place Metal or Wood-Stud Partitions: Secure frames in place with postinstalled expansion anchors through floor anchors at each jamb. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.

8. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.

D. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.

1. Non-Fire-Rated Steel Doors:
a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
b. Between Edges of Pairs of Doors: 1/8 inch (3.2 mm) to 1/4 inch (6.3 mm) plus or minus 1/32 inch (0.8 mm).
c. At Bottom of Door: 5/8 inch (15.8 mm) plus or minus 1/32 inch (0.8 mm).
d. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).

2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
3. Smoke-Control Doors: Install doors and gaskets according to NFPA 105.

E. Glazing: Comply with installation requirements in Section 08 8000 "Glazing" and with hollow-metal manufacturer's written instructions.
 1. Secure stops with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches (230 mm) o.c. and not more than 2 inches (51 mm) o.c. from each corner.

3.2 ADJUSTING AND CLEANING

A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.

B. Remove grout and other bonding material from hollow-metal work immediately after installation.

C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

END OF SECTION 08 1113
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes sliding and swinging aluminum-framed glass doors for exterior locations.

B. Related Sections:
 1. Section 08 4113 "Aluminum-Framed Entrances and Storefronts" for coordinating finish among aluminum fenestration units on the building exterior.
 2. Section 08 5113 "Aluminum Windows" for related aluminum-framed transom and sidelite windows and mullions and for coordinating finish among aluminum fenestration units on the building exterior.
 3. Section 08 7100 "Door Hardware" for hardware not specified in this Section.

1.2 PERFORMANCE REQUIREMENTS

A. General: Provide aluminum-framed glass doors capable of complying with performance requirements indicated, based on testing manufacturer's sliding doors that are representative of those specified, and that are of minimum test size required by AAMA/WDMA/CSA 101/I.S.2/A440.

1. Size required by AAMA/WDMA/CSA 101/I.S.2/A440 for [gateway performance] [optional performance grade] [gateway performance for both gateway performance and optional performance grade].

2. Size indicated [on Drawings] [in a schedule].

3. <Insert size>.

B. Structural Performance: Provide aluminum-framed glass doors capable of withstanding the effects of the following loads, based on testing units representative of those indicated for Project that pass AAMA/WDMA/CSA 101/I.S.2/A440, Uniform Load Structural Test:

1. Design Wind Loads: Determine design wind loads under conditions indicated according to [ASCE/SEI 7] <Insert requirement>.
 a. Basic Wind Speed: [85 mph (38 m/s)] [90 mph (40 m/s)] <Insert value>.
 b. Importance Factor: <Insert factor>.
 c. Exposure Category: [B] [C] [D].
 d. <Insert factor>.

2. Deflection Limits: Design glass framing system to limit lateral deflections of glass edges to less than 1/175 of glass-edge length or 3/4 inch (19 mm), whichever is less, at design pressure based on testing performed according to AAMA/WDMA/CSA 101/I.S.2/A440, Uniform Load Deflection Test, or structural computations.

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For aluminum-framed glass doors. Include plans, elevations, sections, details, hardware, attachments to other work, and operational clearances.

C. Samples for Initial Selection: For each type of aluminum-framed glass door indicated.

1. Include similar Samples of hardware and accessories involving color selection.

D. Samples for Verification: For aluminum-framed glass doors and components required, prepared on Samples of size indicated below:

1. Main Framing Member: 12-inch- (300-mm-) long section with weather stripping, glazing bead and factory-applied color finish.
2. Hardware: Full-size units with factory-applied finish.
3. <Insert component>: <Insert description>.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified [Installer] [manufacturer] [professional engineer] [and] [testing agency].

B. Product test reports.

C. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Installer: A qualified installer, approved by manufacturer to install manufacturer's products.

B. Source Limitations: Obtain aluminum-framed glass doors from single source from single manufacturer.

C. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of aluminum-framed glass doors. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction. Performance characteristics are indicated by criteria subject to verification by one or more methods including preconstruction testing, field testing, and in-service performance.

1. Provide [AAMA][WDMA]-certified, aluminum-framed glass doors with an attached label.

E. Safety Glass: Category II materials complying with testing requirements in 16 CFR 1201.

F. Glazing Publications: Comply with published recommendations of glass manufacturers and with GANA's "Glazing Manual" unless more stringent requirements are indicated.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of aluminum-framed glass doors that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Failure to meet performance requirements.
 b. Structural failures including excessive deflection.
 c. Water leakage or air infiltration.
 d. Faulty operation of movable sash and hardware.
 e. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 f. Deterioration of insulating glass [and laminated glass] as defined in Section 08 8000 "Glazing."
 g. <Insert failure modes>.

2. Warranty Period:
 a. Sliding Door: [Three] [Five] <Insert number> years from date of Substantial Completion.
 b. Glazing: [10] [20] <Insert number> years from date of Substantial Completion.
 c. Metal Finish: [Five] [10] [15] <Insert number> years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, [provide products by one of the following] [available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following]:

B. Basis-of-Design Product: Subject to compliance with requirements, provide [the product indicated on Drawings] <Insert manufacturer's name; product name or designation> or a comparable product by one of the following:

1. Arcadia Architectural Products, Inc.
2. EFCO Corporation.
3. Fleetwood Aluminum Products, Inc.
2.2 MATERIALS

A. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
 2. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221 (ASTM B 221M).

B. Fasteners: Provide fasteners of aluminum, nonmagnetic stainless steel, or other materials warranted by manufacturer to be noncorrosive for SC 3 severe service conditions and compatible with members, trim, hardware, anchors, and other components of sliding aluminum-framed glass doors. Comply with AAMA/WDMA/CSA 101/I.S.2/A440.
 1. Exposed Fasteners: Unless unavoidable for applying hardware, do not use exposed fasteners. For application of hardware, use fasteners that match finish of member or hardware being fastened, as appropriate.

C. Anchors, Clips, and Accessories: Provide anchors, clips, and accessories of aluminum, nonmagnetic stainless steel, or zinc-coated steel or iron for sliding aluminum-framed glass doors, complying with ASTM B 456 or ASTM B 633 for SC 3 severe service conditions; provide sufficient strength to withstand design pressure indicated.

D. Reinforcing Members: Provide aluminum, nonmagnetic stainless steel, or nickel/chrome-plated steel reinforcing members that are noncorrosive for SC 3 severe service conditions and that comply with AAMA/WDMA/CSA 101/I.S.2/A440; provide sufficient strength to withstand design pressure indicated.

E. Compression-Type Weather Stripping: Provide compressible weather stripping designed for permanently resilient sealing under bumper or wiper action, and completely concealed when sliding aluminum-framed glass door is closed.

 1. Weather Seals: Provide weather stripping with integral barrier fin or fins of semirigid, polypropylene sheet or polypropylene-coated material. Comply with AAMA 702.
G. Sealant: For sealants required within fabricated sliding doors, provide sliding aluminum-framed glass door manufacturer's standard, permanently elastic, nonshrinking, and nonmigrating type recommended by sealant manufacturer for joint size and movement.

2.3 SLIDING DOORS

A. Sliding Door (<Insert Drawing Designation>): Aluminum sliding door and frame assembly as follows:

1. AAMA/WDMA/CSA Performance Requirements: Comply with AAMA/WDMA/CSA 101/1.S.2/A440 unless more stringent performance requirements are indicated.
 c. Performance Class and Grade: C[30] [35] [40] <Insert grade>.
 d. Performance Class and Grade: HC[40] [45] [50] <Insert grade>.
 e. Performance Class and Grade: AW[40] [45] [50] <Insert grade>.
 f. Performance Class and Grade: As indicated.
 g. Performance Class: [R] [LC] [C] [HC] [AW].

2. Condensation Resistance: Provide sliding aluminum-framed glass doors with a minimum [CRF when tested according to AAMA 1503] [CR determined according to NFRC 500] for frame of [45] [52] <Insert value>.

3. Thermal Transmittance: Provide sliding aluminum-framed glass doors with a maximum whole fenestration product U-factor indicated, when tested according to ASTM E 1423 [determined according to AAMA 1503] [determined according to NFRC 100].
 a. U-Factor: [0.35 Btu/sq. ft. x h x deg F (2.0 W/sq. m x K)] [0.40 Btu/sq. ft. x h x deg F (2.3 W/sq. m x K)] [0.65 Btu/sq. ft. x h x deg F (3.7 W/sq. m x K)] <Insert value appropriate to system of measure>.

4. Solar Heat-Gain Coefficient (SHGC): Provide sliding aluminum-framed glass doors with a whole-fenestration product SHGC maximum of [0.40] [0.55] <Insert value>, determined according to NFRC 200.

5. Acoustical Performance: Provide sliding aluminum-framed glass doors with an [STC] [OITC] rating of [29] [34] <Insert value> when tested according to and determined by [ASTM E 90 and ASTM E 413] [ASTM E 1425 and ASTM E 1332], respectively.

6. Air Leakage Resistance: Maximum rate not more than indicated when tested according to AAMA/WDMA/CSA 101/1.S.2/A440, Air Leakage Resistance Test.
 a. Maximum Rate: 0.3 cfm/sq. ft. (1.5 L/s x sq. m) of area at an inward test pressure of 1.6 lbf/sq. ft. (75 Pa).
 b. Maximum Rate: 0.3 cfm/sq. ft. (1.5 L/s x sq. m) of area at an inward test pressure of 6.2 lbf/sq. ft. (300 Pa).
 c. Maximum Rate: <Insert rate and test pressure>.

7. Water Penetration Resistance: No water leakage as defined in the AAMA/WDMA/CSA referenced test methods at a water test pressure equaling that indicated, when tested according to AAMA/WDMA/CSA 101/1.S.2/A440, Water Penetration Resistance Test.
 a. Test Pressure: 15 percent of positive design pressure, but not less than 2.9 lbf/sq. ft. (140 Pa) or more than 12 lbf/sq. ft. (580 Pa).
 b. Test Pressure: 20 percent of positive design pressure, but not more than 12 lbf/sq. ft. (580 Pa).
2.4 SWINGING DOORS

A. Swinging Door (<Insert Drawing Designation>): Aluminum swinging door and frame assembly as follows:

1. AAMA/WDMA/CSA Performance Requirements: Comply with AAMA/WDMA/CSA 101/I.S.2/A440 [unless more stringent performance requirements are indicated].
 c. Performance Class and Grade: C[30] [35] [40] <Insert grade>.
 d. Performance Class and Grade: HC[40] [45] [50] <Insert grade>.
 e. Performance Class and Grade: AW[40] [45] [50] <Insert grade>.
 f. Performance Class and Grade: As indicated.
 g. Performance Class: [R] [LC] [C] [HC] [AW].

2. Condensation Resistance: Provide swinging aluminum-framed glass doors with a minimum [CRF when tested according to AAMA 1503] [CR determined according to NFRC 500] for frame of [45] [52] <Insert value>.

3. Thermal Transmittance: Provide swinging aluminum-framed glass doors with a maximum whole fenestration product U-factor indicated, when [tested according to AAMA 1503] [determined according to ASTM E 1423] [determined according to NFRC 100].
 a. U-Factor: 0.35 Btu/sq. ft. x h x deg F (2.0 W/sq. m x K) [0.40 Btu/sq. ft. x h x deg F (2.3 W/sq. m x K)] [0.65 Btu/sq. ft. x h x deg F (3.7 W/sq. m x K)] <Insert value appropriate to system of measure>.

4. Solar Heat-Gain Coefficient (SHGC): Provide swinging aluminum-framed glass doors with a whole-fenestration product SHGC maximum of [0.40] [0.55] <Insert value>, determined according to NFRC 200.

5. Acoustical Performance: Provide swinging aluminum-framed glass doors with an [STC] [OITC] rating of [29] [34] <Insert value> when tested according to and determined by [ASTM E 90 and ASTM E 413] [ASTM E 1425 and ASTM E 1332], respectively.

6. Air Leakage Resistance: Maximum rate not more than indicated when tested according to AAMA/WDMA/CSA 101/I.S.2/A440. Air Leakage Resistance Test.
 a. Maximum Rate: 0.3 cfm/sq. ft. (1.5 L/s x sq. m) of area at an inward test pressure of 1.6 lbf/sq. ft. (75 Pa).
 b. Maximum Rate: 0.3 cfm/sq. ft. (1.5 L/s x sq. m) of area at an inward test pressure of 6.2 lbf/sq. ft. (300 Pa).
 c. Maximum Rate: <Insert rate and test pressure>.
7. Water Penetration Resistance: No water leakage as defined in the AAMA/WDMA/CSA referenced test methods at a water test pressure equaling that indicated, when tested according to AAMA/WDMA/CSA 101/I.S.2/A440, Water Penetration Resistance Test.
 a. Test Pressure: 15 percent of positive design pressure, but not less than 2.9 lbf/sq. ft. (140 Pa) or more than 12 lbf/sq. ft. (580 Pa).
 b. Test Pressure: 20 percent of positive design pressure, but not more than 12 lbf/sq. ft. (580 Pa).
 c. Test Pressure: <insert percent and pressure>.

2.5 GLAZING

A. Glass and Glazing System: Comply with Section 08 8000 "Glazing" for safety glass, insulating-glass units, laminated glass, and glazing requirements applicable to glazed sliding aluminum-framed glass doors.

B. Glass <insert drawing designation>: Comply with Section 08 8000 "Glazing" for requirements applicable to safety glazing, insulating-glass units, and laminated glass units.

1. Clear, insulating-glass units.
2. Clear, insulating-glass units, with low-E coating pyrolytic on second surface or sputtered on second or third surface.
3. Clear, insulating-glass units, argon gas filled, with low-E coating pyrolytic on second surface or sputtered on second or third surface.
4. Clear, insulating-glass units; outer lite consisting of laminated glass unit with PVB interlayer for windborne-debris resistance.
5. Clear, insulating-glass units, with low-E coating pyrolytic on second surface or sputtered on second or third surface; outer lite consisting of laminated glass unit with PVB interlayer for windborne-debris resistance.
6. Monolithic laminated glass unit, with PVB interlayer, complying with windborne-debris resistance.
7. <Insert glass type, description, and performance requirements>.

C. Glazing System: [Manufacturer's standard factory-glazing system that produces weathertight seal.] [Manufacturer's standard factory-glazing system that produces weathertight seal and complies with requirements for windborne-debris resistance.] [Manufacturer's standard factory-glazing system as indicated in Section 08 8000 "Glazing."] <Insert glazing requirements.>

2.6 HARDWARE

A. General: Provide manufacturer's standard hardware, fabricated from a corrosion-resistant material compatible with aluminum complying with AAMA 907 and designed to smoothly operate, tightly close, and securely lock sliding aluminum-framed glass doors. Do not use aluminum in frictional contact with other metals. Where exposed, provide [solid bronze] [extruded, cast, or wrought aluminum] [die-cast zinc with special coating finish] [or] [nonmagnetic stainless steel].
1. Hardware Finish: [Manufacturer's standard] [Match aluminum appearance] <Insert finish>.

B. Sliding Door Hardware:

1. Roller Assemblies: Provide movable panels with adjustable-height roller assemblies, complying with AAMA 906, consisting of self-lubricating, dual tandem [nylon] [steel] [stainless-steel] [manufacturer's standard nylon or steel] ball-bearing rollers; with two roller assemblies per panel.
2. Threshold and Sill Cap/Track: Provide extruded-aluminum threshold and track of thickness, dimensions, and profile indicated; designed to comply with performance requirements indicated [and to drain to the exterior]; with manufacturer's standard finish.
 a. Low-Profile Floor Track: ADA-ABA compliant.

4. Lock: Install manufacturer's keyed cylinder lock and [multipoint] locking device on each movable panel, lockable from the inside [only] [and outside]. Adjust locking device to allow unobstructed movement of the panel across adjacent panel in the direction indicated.
 a. Keying System: [All cylinders keyed alike] [Keyed to match other building entrances] <Insert instructions>.

C. Swing Door Hardware:

1. Hinges: Manufacturer's standard adjustable hinge finished to match door exterior. Provide three per door.
2. Threshold: Provide extruded-aluminum threshold of thickness, dimensions, and profile indicated; designed to comply with performance requirements indicated [and to drain to the exterior]; with manufacturer's standard finish.
 a. Low-Profile Floor Track: ADA-ABA compliant.

3. Lock: Install manufacturer's keyed cylinder lock and [multipoint] locking device on each operable panel, lockable from the inside [only] [and outside].
 a. Keying System: [All cylinders keyed alike] [Keyed to match other building entrances] <Insert instructions>.

2.7 INSECT SCREENS

A. General: Locate screens on the [inside] [outside] of sliding doors and provide for each operable door panel. Comply with SMA 1201.

B. Insect Screen Frames: Manufacturer's standard [extruded-aluminum] [or] [formed-tubular-aluminum] members.

1. Finish: [Anodized aluminum] [Baked-on organic coating] in manufacturer's standard color.
2. Finish: [Anodized aluminum] [Baked-on organic coating] in color selected by Architect from manufacturer's full range.
3. Finish: Manufacturer's standard.

C. Glass-Fiber Mesh Fabric: ASTM D 3656, [18-by-14 or 18-by-16] [20-by-20 or 20-by-30] count per sq. in. (645-sq, mm) mesh of PVC-coated, glass-fiber threads; woven and fused to form a fabric mesh resistant to corrosion, shrinkage, stretch, impact damage, and weather deterioration.
1. Mesh Color: [Charcoal gray] [Silver gray] <Insert color>.

D. Aluminum Wire Fabric: 18-by-16 count per sq. in. (645-sq. mm) mesh of 0.011-inch- (0.28-mm-) diameter, coated aluminum wire.

1. Wire-Fabric Finish: [Natural bright] [Charcoal gray] [Black].

2.8 FABRICATION

A. Fabricate sliding aluminum-framed glass doors that are reglazable without dismantling panel framing.

B. Thermally Improved Construction: Fabricate sliding aluminum-framed glass doors with an integral, concealed, low-conductance thermal barrier; locate between exterior materials and door members exposed on interior side, and in a manner that eliminates direct metal-to-metal contact.

1. Provide thermal-break construction that has been in use for not less than three years and has been tested to demonstrate resistance to thermal conductance and condensation and to show adequate strength and security of glass retention.
2. Provide thermal barriers tested according to AAMA 505; determine the allowable design shear flow per the appendix in AAMA 505.
3. Provide hardware with low conductivity, or provide nonmetallic material for hardware bridging thermal breaks at frame.

C. Weather Stripping: Provide operable panels with a double row of sliding weather stripping in horizontal rails and [single]- [or] [double]-row weather stripping in meeting or jamb stiles. Provide compression-type weather stripping at the perimeter of each movable panel where sliding-type weather stripping is not appropriate.

1. Provide weather stripping locked into extruded grooves in door panels or frames.

D. Weep Holes: Provide weep holes and internal drainage passages to conduct infiltrating water to exterior.

E. Factory-Glazed Fabrication: Glaze sliding aluminum-framed glass doors in the factory where practical and possible for applications indicated. Comply with requirements in Section 08 8000 "Glazing" and with AAMA/WDMA/CSA 101/I.S.2/A440.

F. Glazing Stops: Provide snap-on glazing stops coordinated with Section 08 8000 "Glazing" and with glazing system indicated. Provide glazing stops to match panel frames.

2.9 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, [AA-M12C22A41, Class I, 0.018 mm] [AA-M12C22A31, Class II, 0.010 mm] or thicker.

B. Color Anodic Finish: AAMA 611, [AA-M12C22A42/A44, Class I, 0.018 mm] [AA-M12C22A32/A34, Class II, 0.010 mm] or thicker.

1. Color: [Light bronze] [Medium bronze] [Dark bronze] [Black] <Insert color>.
2. Color: [Match Architect's sample] [As selected by Architect from full range of industry colors and color densities].
C. Baked-Enamel or Powder-Coat Finish: AAMA 2603 except with a minimum dry film thickness of 1.5 mils (0.04 mm). Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

1. Color and Gloss: [As indicated by manufacturer's designations] [Match Architect's sample] [As selected by Architect from manufacturer's full range] <Insert color and gloss>.

D. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with [AAMA 2604] [AAMA 2605] and containing not less than [50] [70] percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

1. Color and Gloss: [As indicated by manufacturer's designations] [Match Architect's sample] [As selected by Architect from manufacturer's full range] <Insert color and gloss>.

E. High-Performance Organic Finish: [Three] [Four]-coat fluoropolymer finish complying with AAMA 2605 and containing not less than [50] [70] percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

1. Color and Gloss: [As indicated by manufacturer's designations] [Match Architect's sample] [As selected by Architect from manufacturer's full range] <Insert color and gloss>.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with Drawings, Shop Drawings, and manufacturer's written instructions for installing doors, hardware, accessories, and other components.

B. Install sliding aluminum-framed glass doors level, plumb, square, true to line, without distortion, warp or rack of frames and panels, or impeding thermal movement, anchored securely in place to structural support, and in proper relation to wall flashing, vapor retarders, air barriers, water/weather barriers, and other adjacent construction.

C. Set sill members in bed of sealant or with gaskets, as indicated, to provide weathertight construction.

D. Install sliding aluminum-framed glass doors and components to drain condensation, water penetrating joints, and moisture migrating within doors to the exterior.

E. Separate aluminum and other corroding surfaces from sources of corrosion or electrolytic action at points of contact with other materials according to ASTM E 2112, Section 5.12 "Dissimilar Materials."

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Tests and Inspections:
1. Testing Methodology: Testing of sliding aluminum-framed glass doors for air penetration resistance and water resistance will be performed according to AAMA 502, [Test Method A] [Test Method B], by applying same test pressures required to determine compliance with AAMA/WDMA/CSA 101/I.S.2/A440.

2. Testing Extent: [Three] [Three mockup] <Insert number or description> sliding aluminum-framed glass doors as selected by Architect and a qualified independent testing and inspecting agency. Sliding doors shall be tested immediately after installation.

 C. Sliding aluminum-framed glass door will be considered defective if it does not pass tests and inspections.

 D. Prepare test and inspection reports according to AAMA 502. Testing agency will interpret test results and state in each report whether tested work complies with or deviates from requirements.

3.3 ADJUSTING, CLEANING, AND PROTECTION

 A. Lubricate hardware and moving parts.

 B. Adjust operating panels and screens to provide a tight fit at contact points and weather stripping for smooth operation, without binding, and a weather tight closure.

 C. Adjust hardware for proper alignment, smooth operation, and proper latching without unnecessary force or excessive clearance.

 D. Clean aluminum surfaces immediately after installing sliding doors. Comply with manufacturer’s written recommendations for final cleaning and maintenance. Avoid damaging protective coatings and finishes. Remove nonpermanent labels, and clean surfaces.

 E. Clean glass immediately after installing sliding aluminum-framed glass doors. Comply with manufacturer’s written recommendations for final cleaning and maintenance. Remove nonpermanent labels and clean surfaces.

 F. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.

 G. Protect sliding door surfaces from contact with contaminating substances resulting from construction operations. During construction, monitor sliding door surfaces adjacent to and below exterior concrete and masonry surfaces for presence of dirt, scum, alkaline deposits, stains, or other contaminants. If contaminating substances do contact sliding door surfaces, remove contaminants immediately according to manufacturer’s written instructions.

 H. Refinish or replace sliding aluminum-framed glass doors with damaged finishes.

 I. Replace damaged components.

END OF SECTION 08 1116
SECTION 08 17 43
FRP/ Aluminum Hybrid Doors

PART 1 GENERAL

1.01 SECTION INCLUDES

A. SL-20 Sandstone Texture FRP/ Aluminum Hybrid Door.
B. SL-20 Sandstone Texture FRP/ Aluminum Hybrid Door installed in Aluminum Framing.
C. SL-20 Sandstone Texture FRP/ Aluminum Hybrid Door installed in Thermally Broken Aluminum Framing.
D. SL-20 Sandstone Texture FRP/ Aluminum Hybrid Door installed in Retrofit Aluminum Framing.

1.02 RELATED SECTIONS

A. Section 08 01 17 – Operation and Maintenance of Integrated Door Opening Assemblies.
B. Section 08 06 71 – Door Hardware Schedule.
C. Section 08 06 80 – Glazing Schedule.
D. Section 08 10 00 – Doors and Frames.
E. Section 08 12 16 – Aluminum Frames.
F. Section 08 42 13 – Aluminum-Framed Entrances.
G. Section 08 91 26 – Door Louvers.
H. Section 08 91 26 – Door Louvers.

1.03 REFERENCES

P. ASTM-D6670 – Standard Practice for Full-Scale Chamber Determination of Volatile Organic Emissions from Indoor Materials/ Products.

T. NFRC 100 – Procedure for Determining Fenestration Products U-Factors.

U. NFRC 400 – Procedure for Determining Fenestration Products Air Leakage.

V. TAS 201 – Impact Test Procedures.

X. TAS 203 – Criteria for Testing Products Subject to Cyclic Wind Pressure Loading.

1.04 SUBMITTALS

A. Must comply with Section 01 33 00 – Submittal Procedures.

B. Action Submittals/ Informational Submittals.
 1. Product Data.
 a. Submit manufacturer’s product data sheets, catalog pages illustrating the products, description of materials, components, fabrication, finishes, installation instructions, and applicable test reports.
 2. Shop Drawings.
 a. Submit manufacturer’s shop drawings, including elevations, sections, and details indicating dimensions, tolerances, materials, fabrication, doors, panels, framing, hardware schedule, and finish.
 3. Samples.
 a. Submit manufacturer’s door sample composed of door face sheet, core, framing and finish.
 b. Submit manufacturer’s sample of standard colors for door face and frame.
 4. Testing and Evaluation Reports.
 a. Submit testing reports and evaluations provided by manufacturer conducted by and accredited independent testing agency certifying doors and frames comply with specified performance requirements listed in Section 2.04.
 5. Manufacturer Reports.
 a. Manufacturer’s Project References.
 1. Submit list of successfully completed projects including project name, location, name of architect, type, and quantity of doors manufactured.

C. Closeout Submittals.
 a. Submit manufacturer’s maintenance and cleaning instructions for doors and frames, including maintenance and operating instructions for hardware.
 2. Warranty Documentation.
 a. Submit manufacturer’s standard warranty.

1.05 QUALITY ASSURANCE

A. Manufacturer’s Qualifications.
 1. Continuously engaged in manufacturing of doors of similar type to that specified, with a minimum of 25 years concurrent successful experience.
 2. Door and frame components must be fabricated by same manufacturer.
 3. Evidence of a documented complaint resolution quality management system.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Delivery.
 1. Deliver materials to site in manufacturer’s original, unopened, containers and packaging.
 2. Labels clearly identifying opening, door mark, and manufacturer.

B. Storage.
 1. Store materials in a clean, dry area, indoors in accordance with manufacturer’s instructions.

C. Handling.
 1. Protect materials and finish from damage during handling and installation.
1.07 WARRANTY

A. Warrant doors, frames, and factory installed hardware against failure in materials and workmanship, including excessive deflection, faulty operation, defects in hardware installation, and deterioration of finish or construction in excess of normal weathering.

B. Standard Period.
 1. Ten years starting on date of shipment.

C. Limited lifetime
 1. Covers failure of corner joinery, core deterioration, and delamination or bubbling of door skin and corrosion of all-fiberglass products while the door is in its specified application in its original installation.

D. Finish
 1. Kynar painted aluminum: 10 years.
 2. Painted SL-17, SL-18, SL-19, SL-20 face sheets: 5 years.
 3. Painted AF-100, AF-200, AF-150 frames, AF-250 frames: 3 years.
 4. Painted FR doors: 3 years.
 5. Stained SL-18 and SL-9 face sheets: 5 years.
 6. Anodized, aluminum: 10 years.
 7. Thresholds do not have a finish warranty.

PART 2 PRODUCTS

2.01 FRP/ALUMINUM HYBRID DOORS

A. Manufacturer.
 1. Special-Lite, Inc.
 a. PO Box 6, Decatur, Michigan 49045.
 b. Toll Free (800) 821-6531, Phone (269) 423-7068, Fax (800) 423-7610.
 d. E-Mail info@special-lite.com.

2.02 DESCRIPTION

A. Model.
 1. SL-20 Sandstone Texture FRP/Aluminum Hybrid Door.

B. Door Opening Size.
 1. Click or tap here to enter text.

C. Construction.
 1. Door Thickness.
 a. 1-3/4”.
 2. Stiles & Rails.
 a. Aluminum extrusions made from 6063 aluminum alloys with a minimum temper of T5.
 b. Minimum 2-5/16” deep one-piece extrusion with have integral reglets to accept face sheet on both interior and exterior side of door which secure face sheet into place and permit flush appearance.
 c. Screw or snap in place applied caps are not acceptable.
 d. Top rails must have integral legs for interlocking continuous extruded aluminum flush cap.
 e. Bottom rails must have integral legs for interlocking continuous weather bar with single nylon brush weather stripping or manually adjustable SL-301 door bottom with two nylon brush weather stripping.
 f. Meeting stiles to include integral pocket to accept pile brush weather seal.
 3. Corners.
 a. Mitered.
 b. Secured with 3/8” diameter full-width steel tie rod through extruded splines top and bottom which are integral to standard tubular shaped rails.
 c. 1-1/4” x 1-1/4” x 3/16” 6061 aluminum angle reinforcement at corner to give strong, flat surface for
locking hex nut to bear on.

d. Weld, glue, or other methods of corner joinery are not acceptable.

4. Core.
 b. Laid in foam cores are not acceptable.
 c. Foam Plastic Insulated Doors: IBC 2603.4.
 1. Foam plastic shall be separated from the interior of a building by an approved thermal barrier.
 2. Approved thermal barrier must meet the acceptance criteria of the Temperature Transmission Fire Test and Integrity Fire Test as stated in NFPA 275.
 3. IBC 2603.4.1.7 foam plastic insulation, having a flame spread index less than 75 and a smoke developed index of not more than 450 shall be permitted as a door core when the face is metal minimum 0.032” aluminum or 0.016” steel.
 4. Standard door assembly can be tested to show it meets these requirements without the use of thermal barrier. If no independent testing conducted all doors with foam plastic core must have a thermal barrier.

5. Face Sheet.
 a. Exterior
 1. 0.120” thick, Sandstone texture, through color FRP sheet.
 2. Optional painted finish consult manufacturer.
 3. Class C standard.
 b. Interior
 1. 0.120” thick, Sandstone texture, through color FRP sheet.
 2. Optional painted finish consult manufacturer.
 3. Class C standard optional Class A available consult manufacturer.
 c. Attachment of face sheet.
 1. Extruded stiles and rails to have integral reglets to accept face sheet on both interior and exterior side of door which secure face sheet into place and permit flush appearance.
 2. Use of glue to bond face sheet to core or extrusions is not acceptable.

6. Cutouts.
 a. Manufacture doors with cutouts for required vision lites, louvers, and panels.

7. Hardware.
 a. Pre-machine doors in accordance with templates from specified hardware manufacturers.
 b. Surface mounted closures will be reinforced for but not prepped or installed at factory.
 c. Factory install door hardware.

8. Reinforcements.
 a. Aluminum extrusions made from 6061 or 6063 aluminum alloys.
 b. Sheet and plate to conform to ASTM-B209.
 c. Alloy and temper to be selected by manufacturer for strength, corrosion resistance, and application of required finish, and control of color.
 d. Bars and tubes to meet ASTM-B221.

D. Sustainability Characteristics.
 1. LEED Declaration.
 a. Entrance Products contribute to point calculations for the following credits:
 1. MR Credit 4.1 Recycled Content 10% (post-consumer = ½ pre-consumer) 1 point.
 2. MR Credit 4.2 Recycled Content 20% (post-consumer = ½ pre-consumer) 1 point.
 b. All aluminum extrusions are produced using prime-equivalent billet produced from 100% reprocessed 6063-T6 alloy recovered from industrial processes. The USGBC classifies these extrusions as pre-consumer recycled material.
 c. Manufacturing facility located within 500 miles of major components and materials, including aluminum extrusions.
 d. The point of recovery and smelting of pre-consumer recycled material within 500 miles of the
manufacturing facility.

2.03 FRAMING

A. Framing

1. Aluminum Tube Framing with Applied Stops.
 a. Model.
 1. Choose an item.
 b. Materials.
 1. See 2.05.A.
 c. Perimeter Frame Members.
 1. Box type with 4 enclosed sides.
 2. Factory fabricated.
 3. Open-back framing is not acceptable.
 d. Applied Door Stops.
 1. 5/8” x 1-1/4” or 5/8” x 1-3/4”, 0.125” wall thickness, with screws and weather-stripping.
 2. Provide solid ½” aluminum bar behind door stop for closer shoe attachment.
 3. Pressure gasketing for weathering seal.
 4. Counterpunch fastener holes in door stop to preserve full-metal thickness under fastener head.
 e. Caulking.
 1. Caulk joints before assembling frame members.
 f. Frame Member to Member Connections.
 1. Secure joints with fasteners.
 2. Provide hairline butt joint appearance.
 g. Hardware
 1. Pre-machine and reinforce frame members for hardware in accordance with manufacturer's standards and door hardware schedule.
 2. Surface mounted closures will be reinforced for but not prepped or installed at factory.
 3. Factory install door hardware.
 h. Anchors:
 1. Anchors appropriate for wall conditions to anchor framing to wall materials.
 2. Door Jamb and Header Mounting Holes: Maximum of 24-inch centers.
 3. Secure head and sill members of transom, side lites, and similar conditions.

2. Thermally Broken Aluminum Framing.
 a. Model.
 1. Choose an item.
 b. Materials.
 1. See 2.05.A.
 c. Perimeter Frame Members.
 1. Storefront frame with thermally broken pocket filler.
 2. Factory fabricated.
 3. Open-back framing is not acceptable.
 d. Thermal Strut.
 1. Fiber reinforced plastic, no other materials will be accepted.
 e. Applied Door Stops.
 1. 5/8” x 1-1/4” or 5/8” x 1-3/4”, 0.125” wall thickness, with screws and weather-stripping.
 2. Provide solid ½” aluminum bar behind door stop for closer shoe attachment.
 3. Pressure gasketing for weathering seal.
 4. Counterpunch fastener holes in door stop to preserve full-metal thickness under fastener head.
 5. Minimum ½” aluminum bar reinforcement under doorstop for required hardware attachments, aluminum to meet ASTM-B221.
 f. Caulking.
 1. Caulk joints before assembling frame members.
g. Frame Member to Member Connections.
 1. Secure joints with fasteners.
 2. Provide hairline butt joint appearance.
 3. Shear block construction only, no screw spline allowed.

h. Hardware
 1. Pre-machine and reinforce frame members for hardware in accordance with manufacturer’s standards and door hardware schedule.
 2. Surface mounted closures will be reinforced for but not prepped or installed at factory.
 3. Factory install door hardware.

i. Anchors:
 1. Anchors appropriate for wall conditions to anchor framing to wall materials.
 2. Door Jamb and Header Mounting Holes: Maximum of 24-inch centers.
 3. Secure head and sill members of transom, side lites, and similar conditions.

3. Retrofit Framing.
 a. Model.
 1. Choose an item.
 b. Materials.
 1. See 2.05.A.
 c. Insert frame as indicated on the Drawings, using integral stop fitted with weather-stripping.
 d. Corner joints of miter design, secure with furnished aluminum clips, and screw into place.
 e. Hardware.
 1. Pre-machine and reinforce insert frame members for hardware in accordance with manufacturer's standards and hardware schedule.
 2. Surface mounted closures will be reinforced for but not prepped or installed at factory.
 3. Factory install hardware.
 f. Anchors.
 1. Anchors of suitable type to fasten insert framing to existing frame materials.
 2. Minimum of 5 anchors on jambs up to 7'-4" height, 3 anchors on headers, and 1 additional anchor for each additional foot of frame.

 a. Model.
 1. SL-70
 b. Materials.
 1. See 2.05.A.
 2. Size as indicated on drawings.

5. AF-150.
 a. Jamb Depth.
 1. Choose an item.
 b. Materials.
 1. See 2.05.A.
 c. Perimeter Frame Members.
 1. ¼" thick pultruded fiberglass open throat with return.
 2. Factory fabricated.
 3. 2” or 4” face available for frame headers.
 d. Transoms and Sidelites.
 1. Same as perimeter frame members.
 2. Removable stop for ¼”, 5/8" or 1” glass or panels.
 e. Integral Door Stops.
 1. 5/8” x 2-1/4”.
 f. Frame Assembly.
 1. Standard knock down.
2. Optional chemically welded consult factory for details.

g. Frame Member to Member Connections.
 1. Corners mitered with 4” x 4” x 3/8” pultruded FRP angle reinforcement with interlocking pultruded FRP brackets.
 2. All member to member connections knocked down at factory unless chemically welded at factory requested.
 3. Provide hairline butt joint appearance.

h. Reinforcements.
 a. ¼” thick pultruded FRP chemically welded to frame at all hinge, strike, and closer locations.
 2. Optional
 a. Aluminum, contact factory for details.

i. Hardware
 1. Pre-machine and reinforce frame members for hardware in accordance with manufacturer's standards and door hardware schedule.
 2. Surface mounted closures will be reinforced for but not prepped or installed at factory.

j. Anchors:
 1. Masonry.
 a. Existing concrete or block punch and dimple.
 b. Sill anchor.
 c. Concealed existing masonry anchor.
 d. Fiberglass masonry t anchor.
 2. Drywall.
 a. Standard jamb anchor tuck.
 b. KD wrap.
 c. Optional punch and dimple tuck with either metal or wood studs.

6. **AF-250.**
 a. Jamb Depth.
 1. 5-3/4”.
 b. Materials.
 1. See 2.05.A.
 c. Perimeter Frame Members.
 1. 3/16” thick pultruded fiberglass open throat with return.
 2. Factory fabricated.
 3. 2” or 4” face available for frame headers.
 d. Integral Door Stops.
 1. 5/8” x 2-1/4”.
 e. Frame Assembly.
 1. Standard knock down.
 2. Optional chemically welded consult factory for details.
 f. Frame Member to Member Connections.
 1. Corners mitered with 2” x 2” x 1/4” pultruded FRP angle reinforcement with interlocking pultruded FRP brackets.
 2. All member to member connections knocked down at factory unless chemically welded at factory requested.
 3. Provide hairline butt joint appearance.
 g. Reinforcements.
 1. ¼” thick pultruded FRP chemically welded to frame at all hinge, strike, and closer locations.
 h. Hardware
 1. Pre-machine and reinforce frame members for hardware in accordance with manufacturer's
2. Surface mounted closures will be reinforced for but not prepped or installed at factory.
 i. Anchors:
 1. Masonry.
 a. Existing concrete or block punch and dimple.
 b. Sill anchor.
 c. Concealed existing masonry anchor.
 d. Fiberglass masonry t anchor.
 2. Drywall.
 a. Punch and dimple for metal or wood studs.

2.04 PERFORMANCE

A. Face Sheet.
 1. Standard Interior and Exterior Class C 0.120” thick, Sandstone texture, through color FRP sheet.
 b. Flexural Modulus, ASTM-D790: 0.7 x 10⁶ psi.
 c. Tensile Strength, ASTM-D638: 18 x 10³ psi.
 d. Tensile Modulus, ASTM-D638: 1.0 x 10⁶ psi.
 e. Barcol Hardness, ASTM-D2583: 40.
 h. Water Absorption, ASTM-D570: 0.16%/24hrs at 77°F.
 i. Surface Burning, ASTM-E84: Flame Spread ≤ 200, Smoke Developed ≤ 450.
 j. Chemical Resistance.
 1. Excellent Rating.
 a. Acetic Acid, Concentrated.
 b. Acetic Acid, 5%.
 c. Bleach Solution.
 d. Detergent Solution.
 e. Distilled Water.
 f. Ethyl Acetate.
 g. Formaldehyde.
 h. Heptane.
 i. Hydrochloric Acid, 10%.
 j. Hydrogen Peroxide, 3%.
 k. Isooctane.
 l. Lactic Acid, 10%.
 k. USDA/FSIS Requirements.
 1. FRP face sheet with surfaseal is a finished outer surface material that is rigid; durable; non-toxic; non-corrosive; moisture resistant; a light, solid color such as white; easily inspected; smooth or an easily cleaned texture.
 2. FRP face sheet with surfaseal does not contain any known carcinogen, mutagen, or teratogen classified as hazardous substances; heavy metals or toxic substances; antimicrobials; pesticides or substances with pesticidal characteristics.
 2. Optional Interior Face Only Class A 0.120” thick, Sandstone texture, through color FRP sheet.
 b. Flexural Modulus, ASTM-D790: 0.4 x 10⁶ psi.
 c. Tensile Strength, ASTM-D638: 7 x 10³ psi.
 d. Tensile Modulus, ASTM-D638: 0.8 x 10⁶ psi.
 e. Barcol Hardness, ASTM-D2583: 45.
g. Water Absorption, ASTM-D570: 0.16%/24hrs at 77°F.
h. Surface Burning, ASTM-E84: Flame Spread ≤ 25, Smoke Developed ≤ 450.
i. Taber Abrasion Resistance, Taber Test: 0.036% Max Wt. Loss, cs-17 wheels, 1000g. Wt., 25 cycles.

B. Door Core.
 1. Density, ASTM-D1622: ≤ 5.0 pcf.
 2. Compressive Properties, ASTM-D1621: Compressive Strength ≥ 60 psi, Compressive Modulus ≥ 1948 psi.
 3. Tensile and Tensile Adhesion Properties, ASTM-D1623: Tensile Adhesion, 3” x 3” FRP Facers ≥ 53 psi, Tensile Adhesion, 1” x 1” Foam ≥ 104 psi.
 4. Thermal and Humid Aging, ASTM-D2126: Volume Change at 158 °F, 100% humidity, 14 days ≤ 13%.
 5. Thermal Conductivity, ASTM-C518, Thermal Resistance ≥ 0.10 m²K/W.

C. Door Panel.
 1. Indoor Air Quality, ASTM-D5116, ASTM-D6607: GreenGuard, GreenGuard Gold.

D. Door and Aluminum Tube Frame Assembly.
 a. Single or Pair of Doors, 6’4” x 7’2” overall size, single point latching.
 1. ± 90 psf design pressure, pass.

E. Door and Thermally Broken Aluminum Frame Assembly.
 1. Thermal Transmittance, NFRC 100.
 a. Opaque Swinging Door (< than 50% glass)
 1. U-Factor = 0.33 Btu/hr·ft²·°F.
 b. Commercially Glazed Swinging Entrance Door (> than 50% glass)
 1. U-Factor = 0.62 Btu/hr·ft²·°F.
 a. Opaque Swinging Door (< than 50% glass)
 1. 0.02 cfm/sqft @ 1.57 psf.
 2. 0.02 cfm/sqft @ 6.24 psf.
 b. Commercially Glazed Swinging Entrance Door (> than 50% glass)
 1. 0.22 cfm/sqft @ 1.57 psf.
 2. 0.42 cfm/sqft @ 6.24 psf.

F. Door and AF-150 Frame Assembly.
 1. Thermal Transmittance, NFRC 100.
 a. Opaque Swinging Door (< than 50% glass)
 1. U-Factor = 0.33 Btu/hr·ft²·°F.
 b. Commercially Glazed Swinging Entrance Door (> than 50% glass)
 1. U-Factor = 0.58 Btu/hr·ft²·°F.
 a. Opaque Swinging Door (< than 50% glass)
 1. 0.11 cfm/sqft @ 1.57 psf.
 2. 0.07 cfm/sqft @ 6.24 psf.
 b. Commercially Glazed Swinging Entrance Door (> than 50% glass)
 1. 0.03 cfm/sqft @ 1.57 psf.
 2. 0.04 cfm/sqft @ 6.24 psf.

G. AF-150 Framing.
 1. Tensile Strength, ASTM-D638: 15,900 psi.
 2. Tensile Modulus of Elasticity, ASTM-D638: 1.58 x 10⁶ psi.
 5. Flexural Strength, ASTM-D790: 39.3 x 10³ psi.
9. Specific Gravity, ASTM-D792: 1.45 @ 23 °C.
10. Density, ASTM-D792: 1445.6 kg.m⁻³ @ 23 °C.
11. Coefficient of Linear Expansion, ASTM-D696: 1.26 x 10⁻⁵ in/in/°F.
14. Percent Fiberglass: 60%.

2.05 MATERIALS
A. Aluminum Members.
 1. Aluminum extrusions made 6061 or 6063 aluminum alloys.
 2. Sheet and plate to conform to ASTM-B209.
 3. Alloy and temper to be selected by manufacturer for strength, corrosion resistance, and application of required finish, and control of color.
B. Fiberglass
 1. See 2.02.C.5.
C. Fasteners
 1. All exposed fasteners will have a finish to match material being fastened.
 2. 410 stainless steel or other non-corrosive metal.
 3. Must be compatible with items being fastened.

2.06 FABRICATION
A. Factory Assembly
 1. Door and frame components from the same manufacturer.
 2. Required size for door and frame units, shall be as indicated on the drawings.
 3. Complete cutting, fitting, forming, drilling, and grinding of metal before assembly.
 4. All cut edges to be free of burs.
 5. Welding of doors or frames is not acceptable.
 6. Maintain continuity of line and accurate relation of planes and angles.
 7. Secure attachments and support at mechanical joints with hairline fit at contact surfaces.
B. Shop Fabrication
 1. All shop fabrication to be completed in accordance with manufactures process work instructions.
 2. Quality control to be performed before leaving each department.

2.07 FINISHES
A. Door.
 1. Aluminum.
 a. Mill.
 1. AA-M10C22A21-Flash.
 b. Anodizing.
 1. Class 1 Anodizing, minimum 0.7 mils thick.
 a. Color.
 1. Choose an item
 c. Paint.
 1. Aluminum.
 a. KYNAR®.
 1. Topcoat.
 a. 70% KYNAR® or HYLAR® 5000 Coating, meets or exceeds all AAMA 2605 specifications, 2.5 to 4.0 wet mils, 1.00 to 1.20 dry mils.
 2. Color.
 a. Consult manufacturer.
d. Powder Coat.
 1. Special-Lite’s® Wood Expressions™.
 a. **Color.**
 1. Choose an item.
 b. Durability against humidity, warping and cracking.
 c. Resists fading from UV rays.
 d. Natural, high-definition grains with the look and feel of real wood.
 e. Durable powder coat protects against scratching.

2. FRP Face Sheets
 a. Through color.
 1. **Color.**
 a. Choose an item.
 b. Painted.
 1. **Color.**
 a. Choose an item
 2. Custom colors available consult manufacturer.

B. Frame
 1. Aluminum.
 a. Mill.
 1. AA-M10C22A21-Flash.
 b. Anodizing.
 1. Class 1 Anodizing, minimum 0.7 mils thick.
 a. **Color.**
 1. Choose an item.
 c. Paint.
 1. Aluminum.
 a. KYNAR®.
 1. Topcoat.
 a. 70% KYNAR® or HYLAR® 5000 Coating, meets or exceeds all AAMA 2605 specifications, 2.5 to 4.0 wet mils, 1.00 to 1.20 dry mils.
 2. **Color.**
 a. Consult manufacturer.
 d. Powder Coat.
 1. Special-Lite’s® Wood Expressions™.
 a. **Color.**
 1. Choose an item.
 b. Durability against humidity, warping and cracking.
 c. Resists fading from UV rays.
 d. Natural, high-definition grains with the look and feel of real wood.
 e. Durable powder coat protects against scratching.

 2. Fiberglass.
 a. Two-part aliphatic polyurethane paint.
 1. **Color.**
 a. Choose an item.
 2. Custom colors available consult manufacturer.
 3. Unique, high-solids, high-build, multifunctional coating.
 4. Low VOC, high-gloss, self-priming coating.
 5. Impact Resistance, ASTM-D2794: 140 in-lbs (direct), 50 in-lbs (reverse) @ 5 mils thickness.
 6. Taber Abrasion, 1 kg load, 1000 cycles, CS-17 wheel: 60.2 mg.
 7. Graffiti cleaning with Amerase with gloss retention: 100 cycles.
 a. Excellent.
 1. Acidic.
 2. Alkaline.
 4. Seawater.
 5. Fresh Water.

2.08 ACCESSORIES

A. Vision Lites.
 1. Factory Glazing.
 a. Model.
 1. Choose an item.
 b. Glazing Thickness.
 1. Choose an item.
 c. Rectangular Lites.
 a. Size, as indicated on drawings.
 2. Rectangular Vision Lite Accessories.
 1. SL-SG349.
 a. Frame perimeter is 1” x 1” x 1/8” steel angle.
 b. Grate material is 14-gauge steel sheet perforated with ¼” diameter round holes.
 b. Vandal Screen.
 1. SL-SG350.
 a. Frame perimeter is aluminum.
 b. Screen material is 16-gauge stainless steel sheet perforated with ¼” diameter round holes.
 c. Louvers.
 1. Size, as indicated on drawings.
 2. Factory installed.
 3. 1” thick Y-Type fixed blade, 12” minimum from the bottom of the door.
 4. Exterior side of louvers shall be free of fasteners.
 5. Optional insect screen.
 d. Finish.
 1. Color.
 3. Other Shapes.
 a. Attach drawing for vision lite shape.

B. BF-350 Bi-Fold Door Lite Kit.
 1. Kitchen and Boiler room out swing doors where screen doors are not a practical place.
 a. Completely Factory installed in the FRP Doors.
 b. The bi-fold unit, when closed, locks securely in place with surface bolts. When open, it shutters in the open position and latches securely to the door stiles to avoid interference with normal traffic.
 c. Fabricated with 1 ¾” FRP Panels (Poured-in Place Urethane Foam Core and .120 FRP Sheets), ½” x 1 ¼”, 1” x 2” Aluminum Angles, 1” x 3/4” T Aluminum Bar and Stainless-Steel Insect Screen.
 e. Color to match door face sheet.

C. Hardware.
 1. Pre-machine doors in accordance with templates from specified hardware manufactures and hardware schedule.
2. Factory install hardware.
3. Hardware Schedule.
 a. Choose an item.
 1. Hinges.
 a. Choose an item. Click or tap here to enter text.
 2. Locking Hardware.
 a. Click or tap here to enter text.
 3. Flush/ Surface Bolts.
 a. Click or tap here to enter text.
 4. Door Pulls.
 a. Choose an item.
 5. Push Bars,
 a. Choose an item.
 a. Click or tap here to enter text.
 7. Concealed adjustable bottom brush.
 a. SL-301.
 1. Not for use with CVR type hardware.
 8. Concealed adjustable meeting stile astragal.
 a. Adjustable astragal by Special-Lite.
 a. Model.
 1. Choose an item.
 10. Thresholds.
 a. Aluminum threshold by Special-Lite.

D. Architectural Panels.
1. FRP Panels.
 a. SL-30.
 1. Size, as indicated on drawings.
 2. Thickness.
 a. Choose an item.
 3. Face Sheet.
 a. Material.
 1. Standard exterior and interior face, Class C 0.120” thick, Sandstone texture, through color FRP sheet.
 2. Optional interior face only, Class A 0.120” thick, Sandstone texture, through color FRP sheet.
 b. Color.
 a. Face Sheet.
 1. See 2.04.A.
 b. 1” Thick Panel.
 1. Polyurethane foam core.
 2. Impervious to water.
 3. Thermal Performance, AAMA 1503-98.
 a. U-Factor = 0.23 Btu/hr∙ft²∙°F.
 b. CRFP = 81.
 c. 1-3/4” Thick Panel.
 1. Wood or aluminum frame perimeter.
 2. Poured-in-place Polyurethane Foam Core.
 3. Thermal Performance, AAMA 1503-98.
PART 3 EXECUTION

3.01 EXAMINATION
 A. Examine areas to receive doors.
 B. Notify architect of conditions that would adversely affect installation or subsequent use.
 C. Do no proceed with installation until unsatisfactory conditions are corrected.

3.02 PREPARATION
 A. Ensure openings to receive frames are plumb, level, square, and in tolerance.

3.03 ERECTION
 A. Install doors in accordance with manufacturer’s instructions.
 B. Install doors plumb, level, square, true to line, and without warp or rack.
 C. Anchor frames securely in place.
 D. Separate aluminum from other metal surfaces with bituminous coatings or other means approved by architect.
 E. Set thresholds in bed of mastic and back seal.
 F. Install exterior doors to be weathertight in closed position.
 G. Repair minor damages to finish in accordance with manufacturer’s instructions and as approved by architect.
 H. Remove and replace damaged components that cannot be successfully repaired as determined by architect.

3.04 FIELD QUALITY CONTROL
 A. Manufacture’s Field Services.
 1. Manufacturer’s representative shall provide technical assistance and guidance for installation of doors.

3.05 ADJUSTING
 A. Adjust doors, hinges, and locksets for smooth operation without binding.

3.06 CLEANING
 A. Clean doors promptly after installation in accordance with manufacturer’s instructions.
 B. Do not use harsh cleaning materials or methods that would damage finish.

3.07 PROTECTION
 A. Protect installed doors to ensure that, except for normal weathering, doors will be without damage or deterioration at time of substantial completion.

END OF SECTION
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes access doors and frames for walls and ceilings.

B. Related Requirements:

1. Section 07 7200 "Roof Accessories" for roof hatches.
2. Section 08 3113.53 "Security Access Doors and Frames" for access doors and frames for security applications.
3. Section 08 3483 "Floor Doors" for doors installed in floors.
4. Section 23 3300 "Air Duct Accessories" for heating and air-conditioning duct access doors.

1.2 ALLOWANCES

A. Access doors and frames are part of an access door and frame allowance.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For each type of access door and frame and for each finish specified.

C. Product Schedule: For access doors and frames.

D. Product Schedule: For access doors and frames. [Use same designations indicated on Drawings.]

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing and inspecting agency.

1. Fire-Rated Door Inspector: Submit documentation of compliance with NFPA 80, section 5.2.3.1.
2. Submit copy of DHI Fire and Egress Door Assembly Inspector (FDAI) certificate.

1.5 CLOSEOUT SUBMITTALS

A. Record Documents: For fire-rated doors, list of applicable room name and number in which access door is located.
1.6 QUALITY ASSURANCE

A. Fire-Rated Door Inspector Qualifications: Inspector for field quality control inspections of fire-rated door assemblies shall meet the qualifications set forth in NFPA 80, section 5.2.3.1 and the following:

1. Door and Hardware Institute Fire and Egress Door Assembly Inspector (FDAI) certification.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Access Doors and Frames: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency, for fire-protection and temperature-rise limit ratings indicated, according to NFPA 252 or UL 10B.

2.2 ACCESS DOORS AND FRAMES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acudor Products, Inc.
2. Babcock-Davis.
3. Cendrex Inc.
5. JL Industries, Inc.; a division of the Activar Construction Products Group.
7. Lane-Aire Manufacturing Corp.
8. Larsens Manufacturing Company.
10. Metropolitan Door Industries Corp.
11. MIFAB, Inc.
12. Milcor; Commercial Products Group of Hart & Cooley, Inc.

B. Flush Access Doors with Exposed Flanges <Insert drawing designation>:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Description: Face of door flush with frame, with exposed flange and concealed hinge.
3. Optional Features: [Gasketing] [Double-leaf doors] [Piano hinges] [Louvers] [Masonry anchors] [Removable doors] <Insert feature>.
4. Locations: Walls of [concrete] [and] [masonry] construction.
5. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
6. Door Size: <Insert door size>.
7. Uncoated Steel Sheet for Door: Nominal 0.060 inch (1.52 mm), 16 gage, factory primed.
8. Uncoated Steel Sheet for Door: [Nominal 0.060 inch (1.52 mm), 16 gage] <Insert thickness>, factory [primed] [finished].
9. Metallic-Coated Steel Sheet for Door: [Nominal 0.064 inch (1.63 mm), 16 gage] <Insert thickness>, factory [primed] [finished].
10. Stainless-Steel Sheet for Door: [Nominal 0.062 inch (1.59 mm), 16 gage] <Insert thickness>, No. 4 finish.
11. Frame Material: Same material, thickness, and finish as door.
12. Frame Material: [Same material, thickness, and finish as door] <Insert material, thickness, and finish>.
13. Latch and Lock: [Cam latch, screwdriver operated] [Cam latch, key operated] [Cam latch, hex-head wrench operated] [Cam latch, spanner-head wrench operated] [Latch bolt, knurled-knob operated] [Latch bolt, key operated] [Prepared for mortise cylinder] [As indicated on Drawings] [As indicated in schedule] <Insert operator> [with interior release].

C. Flush Access Doors with Concealed Flanges <Insert drawing designation>:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Face of door flush with frame; with concealed flange for [gypsum board] [plaster] installation and concealed hinge.
 3. Optional Features: [Gasketing] [Double-leaf doors] [Piano hinges] [Louvers] [Masonry anchors] [Removable doors] <Insert feature>.
 4. Locations: [Wall] [Ceiling] [Wall and ceiling].
 5. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
 6. Door Size: <Insert door size>.
 7. Uncoated Steel Sheet for Door: Nominal 0.060 inch (1.52 mm), 16 gage, factory primed.
 8. Uncoated Steel Sheet for Door: [Nominal 0.060 inch (1.52 mm), 16 gage] <Insert thickness>, factory primed [finished].
 9. Metallic-Coated Steel Sheet for Door: [Nominal 0.064 inch (1.63 mm), 16 gage] <Insert thickness>, factory primed [finished].
10. Stainless-Steel Sheet for Door: [Nominal 0.062 inch (1.59 mm), 16 gage] <Insert thickness>, No. 4 finish.
11. Frame Material: Same material and thickness as door.
12. Frame Material: [Same material and thickness as door] <Insert material, thickness, and finish>.
13. Latch and Lock: [Cam latch, screwdriver operated] [Cam latch, key operated] [Cam latch, hex-head wrench operated] [Cam latch, spanner-head wrench operated] [Latch bolt, knurled-knob operated] [Latch bolt, key operated] [Prepared for mortise cylinder] [As indicated on Drawings] [As indicated in schedule] <Insert operator> [with interior release].

D. Recessed Access Doors with Exposed Flanges <Insert drawing designation>:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description: Door face recessed [1/2 inch (13 mm)] [5/8 inch (16 mm)] [1 inch (25 mm)] for [gypsum board] [plaster] [acoustical tile] <Insert material> infill, with exposed flange and concealed hinge.
 3. Optional Features: [Gasketing] [Double-leaf doors] [Piano hinges] [Louvers] [Masonry anchors] [Removable doors] <Insert feature>.
 4. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
 5. Door Size: <Insert door size>.
 6. Uncoated Steel Sheet for Door: Nominal 0.060 inch (1.52 mm), 16 gage <Insert thickness>, factory primed [finished].
 7. Metallic-Coated Steel Sheet for Door: Nominal 0.064 inch (1.63 mm), 16 gage <Insert thickness>, factory primed [finished].
8. Stainless-Steel Sheet for Door: [Nominal 0.062 inch (1.59 mm), 16 gage] <Insert thickness>, No. 4 finish.
9. Frame Material: [Same material and thickness as door] <Insert material, thickness, and finish>.
10. Latch and Lock: [Cam latch, screwdriver operated] [Cam latch, key operated] [Cam latch, hex-head wrench operated] [Cam latch, pinned-hex-head wrench operated] [Cam latch, spanner-head wrench operated] [Latch bolt, knurled-knob operated] [Latch bolt, key operated] [Prepared for mortise cylinder] [As indicated on Drawings] [As indicated in schedule] <Insert operator>[with interior release].

E. Recessed Access Doors with Concealed Flanges <Insert drawing designation>:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Description: Door face recessed [1/2 inch (13 mm)] [5/8 inch (16 mm)] [1 inch (25 mm)] for [gypsum board] [plaster] [acoustical tile] <Insert material> infill; with concealed flange for [gypsum board] [plaster] [no bead for acoustical tile] installation and concealed hinge.
3. Optional Features: [Gasketing] [Double-leaf doors] [Piano hinges] [Louvers] [Masonry anchors] [Removable doors] <Insert feature>.
4. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
5. Door Size: <Insert door size>.
6. Uncoated Steel Sheet for Door: [Nominal 0.060 inch (1.52 mm), 16 gage] <Insert thickness>, factory [primed] [finished].
7. Metallic-Coated Steel Sheet for Door: [Nominal 0.064 inch (1.63 mm), 16 gage] <Insert thickness>, factory [primed] [finished].
8. Stainless-Steel Sheet for Door: [Nominal 0.062 inch (1.59 mm), 16 gage] <Insert thickness>, [No. 4] [No. 2b] finish.
9. Latch and Lock: [Cam latch, screwdriver operated] [Cam latch, key operated] [Cam latch, hex-head wrench operated] [Cam latch, pinned-hex-head wrench operated] [Cam latch, spanner-head wrench operated] [Latch bolt, knurled-knob operated] [Latch bolt, key operated] [Prepared for mortise cylinder] [As indicated on Drawings] [As indicated in schedule] <Insert operator>[with interior release].

F. Aluminum Flush Access Doors <Insert drawing designation>:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Description: Face of door flush with frame, with exposed flange and concealed hinge.
3. Optional Features: [Gasketing] [Double-leaf doors] [Piano hinges] [Louvers] [Masonry anchors] [Removable doors] <Insert feature>.
4. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
5. Door Size: <Insert door size>.
6. Aluminum Sheet for Door: [Nominal 0.045 inch (1.15 mm)] <Insert thickness>, with [mill] [manufacturer's standard baked-enameled or powder-coat] finish.
7. Frame Material: [Same material, thickness, and finish as door] <Insert material, thickness, and finish>.
8. Latch and Lock: [Cam latch, screwdriver operated] [Cam latch, key operated] [Cam latch, hex-head wrench operated] [Cam latch, pinned-hex-head wrench operated] [Cam latch, spanner-head wrench operated] [Latch bolt, knurled-knob operated] [Latch bolt, key operated] [Prepared for mortise cylinder] [As indicated on Drawings] [As indicated in schedule] <Insert operator>[with interior release].

G. Lightweight Flush Access Doors <Insert drawing designation>:
1. **Description:** Face of door flush with exposed flange, with exposed piano hinge; frameless for surface installation.

2. **Optional Features:** [Gasketing] [Double-leaf doors] [Piano hinges] [Louvers] [Masonry anchors] [Removable doors] <Insert feature>.

3. **Locations:** [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.

4. **Door Size:** <Insert door size>.

5. **Uncoated Steel Sheet for Door:** [Nominal 0.018 inch (0.46 mm), 26 gage] <Insert thickness>, factory [primed] [finished].

6. **Metallic-Coated Steel Sheet for Door:** [Nominal 0.022 inch (0.56 mm), 26 gage] <Insert thickness>, factory [primed] [finished].

7. **Frame Material:** [Aluminum, nominal 0.045 inch (1.15 mm), mill finish] <Insert material, thickness, and finish>.

8. **Latch and Lock:** [Cam latch, screwdriver operated] [Cam latch, key operated] [Cam latch, hex-head wrench operated] [Cam latch, pinned-hex-head wrench operated] [Cam latch, spanner-head wrench operated] [Latch bolt, knurled-knob operated] [Latch bolt, key operated] [Prepared for mortise cylinder] [As indicated on Drawings] [As indicated in schedule] <Insert operator>[; with interior release].

H. Exterior Flush Access Doors

1. **Description:** Weatherproof assembly, with face of door fit flush with frame and with exposed frame. Include extruded door gaskets and minimum 2-inch-thick (50-mm-thick) fiberglass insulation.

2. **Optional Features:** [Piano hinges] [Removable doors] <Insert feature>.

3. **Locations:** [Wall] <Insert location or substrate>.

4. **Door Size:** <Insert door size>.

5. **Metallic-Coated Steel Sheet for Door:** [Nominal 0.064 inch (1.63 mm), 16 gage] <Insert thickness>, factory [primed] [finished].

6. **Aluminum Sheet for Door:** [Nominal 0.045 inch (1.15 mm)] <Insert thickness>, with [mill] [manufacturer's standard baked-enamel or powder-coat] finish.

7. **Stainless-Steel Sheet for Door:** [Nominal 0.062 inch (1.59 mm), 16 gage] <Insert thickness>, [No. 4] [No. 2b] finish.

8. **Frame Material:** [Same material, thickness, and finish as door] <Insert material, thickness, and finish>.

9. **Latch and Lock:** Cam latch operated by handle, [without lock] [with keyed lock in handle] [with separate mortise lock] [with preparation for mortise lock] [as indicated on Drawings] [as indicated in schedule] <Insert operator>[; with interior release].

2.3 FIRE-RATED ACCESS DOORS AND FRAMES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acudor Products, Inc.
2. Babcock-Davis.
3. Cendrex Inc.
5. JL Industries, Inc.; a division of the Activar Construction Products Group.
7. Lane-Aire Manufacturing Corp.
B. Fire-Rated, Flush Access Doors with Exposed Flanges <Insert drawing designation>:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Description: Door face flush with frame, \([\text{with a core of mineral-fiber insulation enclosed in sheet metal}] \text{[uninsulated]}\); with exposed flange, self-closing door, and concealed hinge.
3. Optional Features: \{Upward-opening doors for ceilings\} \{Gasketing\} \{Double-leaf doors\} \{Piano hinges\} \{Masonry anchors\} <Insert feature>.
4. Locations: Wall.
5. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
6. Door Size: <Insert door size>.
7. Fire-Resistance Rating: Not less than adjacent construction.
8. Fire-Resistance Rating: Not less than \([\text{that indicated}] \text{[that of adjacent construction]}\) \{45 minutes\} \{1 hour\} \{1-1/2 hours\} \{2 hours\} \{3 hours\} <Insert requirement>.
9. Temperature-Rise Rating: \([450 \text{ deg F} (250 \text{ deg C})]\) \([250 \text{ deg F} (139 \text{ deg C})]\) at the end of 30 minutes.
10. Uncoated Steel Sheet for Door: \{Nominal 0.036 inch \(0.91 \text{ mm}\), 20 gage\} <Insert thickness>, factory \{primed\} \{finished\}.
11. Metallic-Coated Steel Sheet for Door: \{Nominal 0.040 inch \(1.02 \text{ mm}\), 20 gage\} <Insert thickness>, factory \{primed\} \{finished\}.
12. Stainless-Steel Sheet for Door: \{Nominal 0.038 inch \(0.95 \text{ mm}\), 20 gage\} <Insert thickness>, No. 4 finish.
13. Frame Material: \{Same material, thickness, and finish as door\} <Insert material, thickness, and finish>.
14. Latch and Lock: Self-latching door hardware, \{operated by knurled-knob\} \{operated by key\} \{prepared for mortise cylinder\} \{as indicated on Drawings\} \{as indicated in schedule\} <Insert operator>\{with interior release\>.

C. Fire-Rated, Flush Access Doors with Concealed Flanges <Insert drawing designation>:

1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
2. Description: Door face flush with frame, \([\text{with a core of mineral-fiber insulation enclosed in sheet metal}] \text{[uninsulated]}\); with concealed flange for \{gypsum board\} \{plaster\} installation, self-closing door, and concealed hinge.
3. Optional Features: \{Upward-opening doors for ceilings\} \{Gasketing\} \{Double-leaf doors\} \{Piano hinges\} \{Masonry anchors\} <Insert feature>.
4. Locations: Wall.
5. Locations: [Wall] [Ceiling] [Wall and ceiling] <Insert location or substrate>.
6. Door Size: <Insert door size>.
7. Fire-Resistance Rating: Not less than adjacent construction.
8. Fire-Resistance Rating: Not less than \([\text{that indicated}] \text{[that of adjacent construction]}\) \{45 minutes\} \{1 hour\} \{1-1/2 hours\} \{2 hours\} \{3 hours\} <Insert requirement>.
9. Temperature-Rise Rating: \([450 \text{ deg F} (250 \text{ deg C})]\) \([250 \text{ deg F} (139 \text{ deg C})]\) at the end of 30 minutes.
10. Uncoated Steel Sheet for Door: Nominal 0.036 inch (0.91 mm), 20 gage, factory.
11. Uncoated Steel Sheet for Door: [Nominal 0.036 inch (0.91 mm), 20 gage] <Insert thickness>, factory [primed] [finished].
12. Metallic-Coated Steel Sheet for Door: [Nominal 0.040 inch (1.02 mm), 20 gage] <Insert thickness>, factory [primed] [finished].
13. Stainless-Steel Sheet for Door: [Nominal 0.038 inch (0.95 mm), 20 gage] <Insert thickness>, No. 4 finish.
14. Frame Material: Same material, thickness, and finish as door.
15. Frame Material: [Same material, thickness, and finish as door] <Insert material, thickness, and finish>.
16. Latch and Lock: Self-closing, self-latching door hardware, [operated by knurled-knob] [operated by key] [prepared for mortise cylinder] [as indicated on Drawings] [as indicated in schedule] <Insert operator>, with interior release.

2.4 MATERIALS

A. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
B. Steel Sheet: Uncoated or electrolytic zinc coated, ASTM A 879/A 879M, with cold-rolled steel sheet substrate complying with ASTM A 1008/A 1008M, Commercial Steel (CS), exposed.
C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B; with minimum G60 (Z180) or A60 (ZF180) metallic coating.
D. Stainless Steel Plate, Sheet, and Strip: ASTM A240/A240M or ASTM A666, [Type 304] [Type 316]. Remove tool and die marks and stretch lines, or blend into finish.
E. Stainless Steel Flat Bars: ASTM A666, [Type 304] [Type 316]. Remove tool and die marks and stretch lines, or blend into finish.
F. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063.
G. Aluminum Sheet: ASTM B 209 (ASTM B 209M), alloy and temper recommended by aluminum producer and finisher for type of use and finish indicated.
H. Frame Anchors: Same material as door face.
I. Inserts, Bolts, and Anchor Fasteners: Hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.

2.5 FABRICATION

A. Metal Surfaces: For metal surfaces exposed to view in the completed Work, provide materials with smooth, flat surfaces without blemishes. Do not use materials with exposed pitting, seam marks, roller marks, rolled trade names, or roughness.
B. Doors and Frames: Grind exposed welds smooth and flush with adjacent surfaces. Furnish mounting holes, attachment devices and fasteners of type required to secure access doors to types of supports indicated.
1. For concealed flanges with drywall bead, provide edge trim for gypsum panels securely attached to perimeter of frames.
2. For concealed flanges with plaster bead for full-bed plaster applications, provide zinc-coated expanded-metal lath and exposed casing bead welded to perimeter of frames.

C. Recessed Access Doors: Form face of panel to provide recess for application of applied finish. Reinforce panel as required to prevent buckling. Provide access sleeves for each latch operator and install in holes cut through finish.

1. For recessed doors with plaster infill, provide self-furring expanded-metal lath attached to door panel.

D. Latch and Lock Hardware:

1. Quantity: Furnish number of latches and locks required to hold doors tightly closed.
2. Keys: Furnish two keys per lock and key all locks alike.
3. Mortise Cylinder Preparation: Where indicated, prepare door panel to accept cylinder specified in [Section 08 7100 "Door Hardware."] [Section 08 7111 "Door Hardware (Descriptive Specification)."]

E. Aluminum: After fabrication, apply manufacturer's standard protective coating on aluminum that will come in contact with concrete.

2.6 FINISHES

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

D. Painted Finishes: Comply with coating manufacturer's written instructions for cleaning, conversion coating, and applying and baking finish.

1. Factory Primed: Apply manufacturer's standard, lead- and chromate-free, universal primer immediately after surface preparation and pretreatment.
2. Factory Finished: Apply manufacturer's standard baked-enamel or powder-coat finish immediately after cleaning and pretreating, with minimum dry-film thickness of 1 mil (0.025 mm) for topcoat.
 a. Color: [As indicated by manufacturer's designations] [Match Architect's sample] [As selected by Architect from full range of industry colors] <Insert color>.

E. Stainless-Steel Finishes:

1. Surface Preparation: Remove tool and die marks and stretch lines, or blend into finish.
2. Polished Finish: No. 4 finish. Grind and polish surfaces to produce uniform finish, free of cross scratches.
 a. Run grain of directional finishes with long dimension of each piece.
b. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.

3. Bright, Cold-Rolled, Unpolished Finish: No. 2B.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with manufacturer's written instructions for installing access doors and frames.

3.2 FIELD QUALITY CONTROL

A. Inspection Agency: Engage a qualified inspector to perform inspections and to furnish reports to Architect.

B. Inspections:
 1. Fire-Rated Door Inspections: Inspect each fire-rated access door in accordance with NFPA 80, section 5.2.

C. Repair or remove and replace installations where inspections indicate that they do not comply with specified requirements.

D. Reinspect repaired or replaced installations to determine if replaced or repaired door assembly installations comply with specified requirements.

E. Prepare and submit separate inspection report for each fire-rated access door indicating compliance with each item listed in [NFPA 80] [and] [NFPA 101].

3.3 ADJUSTING

A. Adjust doors and hardware, after installation, for proper operation.

END OF SECTION 08 3113
SECTION 08 4113 - ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Aluminum-framed storefront systems.
 2. Aluminum-framed entrance door systems.

B. Related Requirements:
 1. Section 08 4126 "All-Glass Entrances and Storefronts" for systems without aluminum support framing.
 2. Section 08 1216 "Aluminum Frames" for interior aluminum framing.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:
 1. <Double click to insert sustainable design text for sealants.>
 2. <Double click to insert sustainable design text for recycled content.>
 3. <Double click to insert sustainable design text for regional materials.>
 4. <Double click to insert sustainable design text for environmental product declarations.>

C. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
 2. Include point-to-point wiring diagrams.

D. Samples for Initial Selection: For units with factory-applied color finishes.

E. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.

F. Delegated-Design Submittal: For aluminum-framed entrances and storefronts including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Energy Performance Certificates: NFRC-certified energy performance values from manufacturer.

C. Sample warranties.
1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

B. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.

1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

C. Structural-Sealant Glazing: Comply with ASTM C 1401 for design and installation of storefront systems that include structural glazing.

1.6 WARRANTY

A. Special Warranty: [Manufacturer] [Installer] agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures, including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.

2. Warranty Period: Two years from date of Substantial Completion.

B. Special Finish Warranty, Factory-Applied Finishes: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Warranty Period: [Five] [10] [20] <Insert number> years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations for Aluminum-Framed Systems: Obtain from single source from single manufacturer.
1. Obtain aluminum doors and frames through a single source. Verify that doors and frames will operate and seal properly with specified hardware.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:
 a. Thermal stresses transferring to building structure.
 b. Glass breakage.
 c. Noise or vibration created by wind and thermal and structural movements.
 d. Loosening or weakening of fasteners, attachments, and other components.
 e. Failure of operating units.

C. Structural Loads:

1. Wind Loads: As indicated on Drawings.
2. Other Design Loads: [As indicated on Drawings] <Insert loads>.

D. Deflection of Framing Members Supporting Glass: At design wind load, as follows:

1. Deflection Normal to Wall Plane: Limited to 1/175 of clear span for spans of up to 13 feet 6 inches (4.1 m) and to 1/240 of clear span plus 1/4 inch (6.35 mm) for spans greater than 13 feet 6 inches (4.1 m).

2. Deflection Parallel to Glazing Plane: Limited to amount not exceeding that which reduces glazing bite to less than 75 percent of design dimension and that which reduces edge clearance between framing members and glazing or other fixed components to less than 1/8 inch (3.2 mm).
 a. Operable Units: Provide a minimum 1/16-inch (1.6-mm) clearance between framing members and operable units.

3. Cantilever Deflection: Limited to 2l/175 at unsupported cantilevers.

E. Structural: Test according to ASTM E 330/E 330M as follows:

1. When tested at positive and negative wind-load design pressures, storefront assemblies, including entrance doors, do not evidence deflection exceeding specified limits.

2. When tested at 150 percent of positive and negative wind-load design pressures, storefront assemblies, including entrance doors and anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.

3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Water Penetration under Static Pressure: Test according to ASTM E 331 as follows:
1. No evidence of water penetration through fixed glazing and framing areas, including entrance doors, when tested according to a minimum static-air-pressure differential of 20 percent of positive wind-load design pressure, but not less than [6.24 lbf/sq. ft. (300 Pa)] [10 lbf/sq. ft. (480 Pa)] [15 lbf/sq. ft. (720 Pa)] <Insert value>.

G. Energy Performance: Certified and labeled by manufacturer for energy performance as follows:

1. Thermal Transmittance (U-factor):
 a. Fixed Glazing and Framing Areas: U-factor for the system of not more than [0.41 Btu/sq. ft. x h x deg F (2.33 W/sq. m x K)] [0.45 Btu/sq. ft. x h x deg F (2.55 W/sq. m x K)] [0.57 Btu/sq. ft. x h x deg F (3.23 W/sq. m x K)] [0.69 Btu/sq. ft. x h x deg F (3.92 W/sq. m x K)] <Insert value> as determined according to NFRC 100.

2. Solar Heat Gain Coefficient (SHGC): Fixed glazing and framing areas as a system shall have SHGC of no greater than [0.26] [0.35] [0.40] [0.45] <Insert value> as determined according to NFRC 200.

3. Air Leakage:
 a. Fixed Glazing and Framing Areas: Air leakage for the system of not more than 0.06 cfm/sq. ft. (0.30 L/s per sq. m) at a static-air-pressure differential of 6.24 lbf/sq. ft. (300 Pa) when tested according to ASTM E283.
 b. Entrance Doors: Air leakage of not more than 1.0 cfm/sq. ft. (5.08 L/s per sq. m) at a static-air-pressure differential of 1.57 lbf/sq. ft. (75 Pa).

4. Condensation Resistance Factor (CRF):
 a. Fixed Glazing and Framing Areas: CRF for the system of not less than [35] [55] [70] <Insert value> as determined according to AAMA 1503.

H. Thermal Movements: Allow for thermal movements resulting from ambient and surface temperature changes.

1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

I. Structural-Sealant Joints:

1. Designed to carry gravity loads of glazing.

J. Structural Sealant: ASTM C 1184. Capable of withstanding tensile and shear stresses imposed by structural-sealant-glazed, aluminum-framed entrances and storefronts without failing adhesively or cohesively. When tested for preconstruction adhesion and compatibility, cohesive failure of sealant shall occur before adhesive failure.

1. Adhesive failure occurs when sealant pulls away from substrate cleanly, leaving no sealant material behind.
2. Cohesive failure occurs when sealant breaks or tears within itself but does not separate from each substrate, because sealant-to-substrate bond strength exceeds sealant's internal strength.

2.3 STOREFRONT SYSTEMS

A. <Double click here to find, evaluate, and insert list of manufacturers and products.>
B. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

2. Frame Profile: [1-3/4 inches (44 mm)] [1-3/4 to 2 inches (44 to 52 mm)] [2 inches (52 mm)] wide by [4-1/2 inches (114 mm)] [5 inches (127 mm)] [6 to 6-1/2 inches (152 to 165 mm)] deep.
3. Exterior Framing Construction: [Thermally broken] [Thermally improved] [Nonthermal] <Insert description>.
5. Glazing System: [Retained mechanically with gaskets on four sides] [Retained mechanically with gaskets on two sides and structural sealant on two sides].
7. Finish: [Clear anodic finish] [Color anodic finish] [Baked-enamel or powder-coat finish] [High-performance organic finish] [Superior-performance organic finish].
8. Fabrication Method: Field-fabricated stick system.
9. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.
10. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

D. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.4 ENTRANCE DOOR SYSTEMS

A. Stile-and-Rail Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing or automatic operation.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cross Aluminum Products, Inc.
 b. EFCO Corporation.
 c. Oldcastle Building Envelope.
 d. Tubelite Inc.
 e. United States Aluminum.
 f. YKK AP America Inc.

2. Door Construction: [1-3/4-inch (44.5-mm) overall thickness, with minimum 0.125-inch- (3.2-mm-)] [2-inch (50.8-mm) overall thickness, with minimum 0.188-inch- (4.8-mm-)] [2- to 2-1/4-inch (50.8- to 57.2-mm) overall thickness, with minimum 0.125-inch- (3.2-mm-)] [1-3/4- to 2-3/8-inch (44.5- to 60.0-mm) overall thickness, with minimum 0.125-inch- (3.2-mm-)] thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 a. Thermal Construction: [High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior] <Insert description>.
 b. Thermal Transmittance (U-factor): Not more than 0.65 Btu/sq. ft. x h x deg F (3.69 W/sq. m x K) as determined according to NFRC 102.
 c. Condensation Resistance: Condensation rating of not less than 46 as determined according to AAMA 1503.
3. Door Design: [As indicated] [Narrow stile; 2-1/8-inch (54-mm) nominal width] [Medium stile; 3-1/2-inch (88.9-mm) nominal width] [Wide stile; 5-inch (127-mm) nominal width] <Insert description>.

4. Glazing Stops and Gaskets: [Beveled] [Square] <Insert description>, snap-on, extruded-aluminum stops and preformed gaskets.
 a. Provide nonremovable glazing stops on outside of door.

B. Plank-Type Flush Doors: Vertical interlocking, thermally-broken, aluminum tubes filled with manufacturer’s board insulation, 1-3/4-by 4 by 0.125 inches-(44.5 by 102 by 3-mm-) with 3/16-inch (4.7-mm)-thick hinge and latch edges, fastened by a minimum of three 3/8-inch-(9.5-mm-) diameter continuous bolts and locking nuts. Provide tubes with vertical fluted texture and standard snap-on extruded aluminum glazing stops and preformed gaskets.
 1. Product: Cross Aluminum Products; ThermaPlank FL-400T Series.
 2. Thermal Transmittance (U-factor): Unglazed door areas shall have U-factor of not more than 0.34 Btu/sq. ft. x h x deg F (1.93 W/sq. m x K) as determined according to NFRC 102.
 3. Condensation Resistance: Unglazed door areas shall have a condensation resistance rating of no less than 75 as determined according to AAMA 1503.
 4. Surface Texture: [Ribbed] [Smooth].

C. Plank-Type Flush Doors: Vertical interlocking aluminum tubes[filled with manufacturer's board insulation], 1-3/4-by 4 by 0.10 inches-(44.5 by 102 by 2.5-mm-) with 3/16-inch (4.7-mm)-thick hinge and latch edges, fastened by a minimum of three 3/8-inch-(9.5-mm-) diameter continuous bolts and locking nuts. Provide tubes with vertical fluted texture and standard snap-on extruded aluminum glazing stops and preformed gaskets.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CMI Architectural Products, Inc.
 b. Cross Aluminum Products.
 c. Special-Lite, Incorporated.
 2. Surface Texture: [Ribbed] [Smooth].

D. [Fiberglass Reinforced Polyester Doors (FRP)] [Aluminum Skin Doors (ALSN)]: [Fiberglass reinforced polyester] [Aluminum] skins rabbeted into extruded aluminum frames with a poured-in-place insulation core as follows:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Capitol Aluminum and Glass.
 b. Cline Aluminum Doors Inc.
 c. CMI Architectural Products, Inc.
 d. Commercial Door Systems.
 e. Special-Lite, Incorporated.
 f. United States Aluminum.
 2. Frames: Extruded 6063-T5 aluminum alloy rails and stiles, 1-3/4 inches(44 mm) deep and minimum 2-5/16 inches(59 mm) wide, with [0.10-inch(2.5-mm)] [0.125-inch(3-mm)] thick walls. Construct with mitered corners and provide joinery of 3/8-inch(9.5-mm) diameter full width tie rods through extruded splines top and bottom. Reinforce to accept hardware as specified. Provide hex type aircraft nuts for joinery without welds, glues or other methods for securing internal door extrusions. Furnish integral reglets to accept face sheet to permit a flush appearance. Rail caps or
other face sheet capture methods are not acceptable. Extrude top and bottom rail legs for interlocking continuous rail rigidity weather bar. Lock face sheet material in place with extruded interlocking edges to be flush with aluminum rails and stiles.

3. Aluminum Facing Sheets: [0.040-inch (1.0-mm)] [0.062-inch (1.6-mm)]-thick aluminum sheet with [smooth] [fluted] surface [and manufacturer’s backing sheet].

4. FRP Facing Sheets: 0.120-inch (3-mm) thick fiberglass reinforced polyester. Provide [white] [light gray] [red] [blue] [green] [beige] [dark gray] [dark bronze] [black] <insert color> color[as selected from manufacturer’s full range] [as indicated].

5. Core of Door Assembly: Minimum 5 lb/cu. ft. (80 kgs/cu. m) density poured-in-place polyurethane free of CFC. Minimum “R” value of 11, [Ballistic rating is as indicated]. Meeting stiles on pairs of doors and bottom weather bars with nylon brush weatherstripping.

6. Manufacture doors with cutouts for vision lites, louvers or panels as indicated. Factory furnish and install all glass, louvers and panels prior to shipment.

7. Pre-machine doors in accordance with templates from the specified hardware manufacturers and approved hardware schedule.

2.5 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 08 7100 "Door Hardware."

B. Stripes: Provide strike with black-plastic dust box for each latch or lock bolt; fabricated for aluminum framing.

C. Weather Stripping: Manufacturer’s standard replaceable components.

1. Compression Type: Made of ASTM D 2000 molded neoprene or ASTM D 2287 molded PVC.
2. Sliding Type: AAMA 701/702, made of wool, polypropylene, or nylon woven pile with nylon-fabric or aluminum-strip backing.

D. Weather Sweeps: Manufacturer's standard exterior-door bottom sweep with concealed fasteners on mounting strip.

E. Thresholds: BHMA A156.21 raised thresholds beveled with a slope of not more than 1:2, with maximum height of 1/2 inch (12.7 mm).

2.6 GLAZING

A. Glazing: Comply with Section 08 8000 "Glazing."

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

C. Glazing Sealants: As recommended by manufacturer.

1. <Double click to insert sustainable design text for sealants.>
2. <Double click to insert sustainable design text for sealants.>
D. Structural Glazing Sealants: ASTM C 1184 chemically curing silicone formulation that is compatible with system components with which it comes in contact; specifically formulated and tested for use as structural sealant and approved by structural-sealant manufacturer for use in storefront system indicated.

1. Color: [Black] [Gray] [As selected by Architect from manufacturer's full range of colors] <Insert color>.

E. Weatherseal Sealants: ASTM C 920 for Type S; Grade NS; Class 25; Uses NT, G, A, and O; chemically curing silicone formulation that is compatible with structural sealant and other system components with which it comes in contact; recommended by structural-sealant, weatherseal-sealant, and structural-sealant-glazed storefront manufacturers for this use.

2.7 MATERIALS

A. Sheet and Plate: ASTM B 209 (ASTM B 209M).

B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221 (ASTM B 221M).

C. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.

D. Structural Profiles: ASTM B 308/B 308M.

E. Steel Reinforcement:

1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.
2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.
3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 1011M.
4. Primer: Manufacturer’s standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

F. <Double click to insert sustainable design text for recycled content.>

G. <Double click to insert sustainable design text for recycled content of aluminum.>

H. <Double click to insert sustainable design text for regional materials.>

2.8 ACCESSORIES

A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.

1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
2. Reinforce members as required to receive fastener threads.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
B. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30-mil (0.762-mm) thickness per coat.

2.9 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:

1. Profiles that are sharp, straight, and free of defects or deformations.
2. Accurately fitted joints with ends coped or mitered.
3. Physical and thermal isolation of glazing from framing members.
4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
5. Provisions for field replacement of glazing from exterior.
6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Structural-Sealant-Glazed Framing Members: Include accommodations for using temporary support device to retain glazing in place while structural sealant cures.

F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.

1. Door Stops: Screw-applied or snap-in box type with minimum 3/4-inch (19-mm) depth.
2. At interior and exterior doors, provide compression weather stripping at fixed stops.

G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.

1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
2. At exterior doors, provide weather sweeps applied to door bottoms.

H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.

I. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.10 ALUMINUM FINISHES

A. Clear Anodic Finish: AAMA 611, AA-M12C22A31, Class II, 0.010 mm or thicker.

B. Color Anodic Finish: AAMA 611, AA-M12C22A42/A44, Class I, 0.018 mm or thicker.
1. Color: [Light bronze] [Medium bronze] [Dark bronze] [Champagne] [Black] <Insert color>.
2. Color: [Match Architect’s sample] [As selected by Architect from full range of industry colors and color densities].

C. High-Performance Organic Finish, Two-Coat PVDF: Fluoropolymer finish complying with [AAMA 2604] [AAMA 2605] and containing not less than [50] [70] percent PVDF resin by weight in color coat.

1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions for seacoast and severe environments.
2. Color and Gloss: [As indicated by manufacturer’s designations] [Match Architect’s sample] [As selected by Architect from manufacturer’s full range] <Insert color and gloss>.

D. Superior-Performance Organic Finish, Three-Coat PVDF: Fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat.

1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions for seacoast and severe environments.
2. Color and Gloss: [As indicated by manufacturer’s designations] [Match Architect’s sample] [As selected by Architect from manufacturer’s full range] <Insert color and gloss>.

E. Superior-Performance Organic Finish, Four-Coat PVDF: Fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat.

1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions for seacoast and severe environments.
2. Color and Gloss: [As indicated by manufacturer’s designations] [Match Architect’s sample] [As selected by Architect from manufacturer’s full range] <Insert color and gloss>.

1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions.
2. Color and Gloss: [As indicated by manufacturer’s designations] [Match Architect’s sample] [As selected by Architect from manufacturer’s full range] <Insert color and gloss>.

1. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers’ written instructions for seacoast and severe environments.
2. Color and Gloss: [As indicated by manufacturer’s designations] [Match Architect’s sample] [As selected by Architect from manufacturer’s full range] <Insert color and gloss>.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:
1. Comply with manufacturer's written instructions.
2. Do not install damaged components.
3. Fit joints to produce hairline joints free of burrs and distortion.
4. Rigidly secure nonmovement joints.
5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
6. Seal perimeter and other joints watertight unless otherwise indicated.

B. Metal Protection:

1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.

C. Set continuous sill members and flashing in full sealant bed, as specified in Section 07 9200 "Joint Sealants," to produce weathertight installation.

D. Install components plumb and true in alignment with established lines and grades.

E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.

F. Install glazing as specified in Section 08 8000 "Glazing."

G. Install weatherseal sealant according to Section 07 9200 "Joint Sealants" and according to sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind sealant as recommended by sealant manufacturer.

H. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.

1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.
2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers’ written instructions using concealed fasteners to greatest extent possible.

I. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:

1. Plumb: 1/8 inch in 10 feet (3.2 mm in 3 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
2. Level: 1/8 inch in 20 feet (3.2 mm in 6 m); 1/4 inch in 40 feet (6.35 mm in 12.2 m).
3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch (12.7 mm) wide, limit offset from true alignment to 1/16 inch (1.6 mm).
 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch (12.7 to 25.4 mm) wide, limit offset from true alignment to 1/8 inch (3.2 mm).
 c. Where surfaces are separated by reveal or protruding element of 1 inch (25.4 mm) wide or more, limit offset from true alignment to 1/4 inch (6 mm).
4. Location: Limit variation from plane to 1/8 inch in 12 feet (3.2 mm in 3.6 m); 1/2 inch (12.7 mm) over total length.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Field Quality-Control Testing: Perform the following test on [representative areas of aluminum-framed entrances and storefronts] [mockups] <Insert requirements>.

1. Water-Spray Test: Before installation of interior finishes has begun, areas designated by Architect shall be tested according to AAMA 501.2 and shall not evidence water penetration.
 a. Perform a minimum of [two] [three] <Insert number> tests in areas as directed by Architect.

C. Structural-Sealant Adhesion: Test structural sealant according to recommendations in ASTM C 1401, Destructive Test Method A, "Hand Pull Tab (Destructive)," Appendix X2.

1. Test a minimum of [two] [four] [six] <Insert number> areas on each building facade.
2. Repair installation areas damaged by testing.

D. Aluminum-framed entrances and storefronts will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 08 4113
SECTION 087100 – DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes commercial door hardware for the following:
 1. Swinging doors.
 2. Other doors to the extent indicated.

B. Door hardware includes, but is not necessarily limited to, the following:
 1. Mechanical door hardware.
 2. Electromechanical door hardware.
 3. Automatic operators.
 4. Cylinders specified for doors in other sections.

C. Related Sections:
 1. Division 08 Section “Door Hardware Schedule”.
 2. Division 08 Section “Hollow Metal Doors and Frames”.
 3. Division 08 Section “Flush Wood Doors”.
 4. Division 08 Section “Automatic Door Operators”.
 5. Division 08 Section “Access Control Hardware”.

D. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.
 6. NFPA 105 - Installation of Smoke Door Assemblies.
 7. UL/ULC and CSA C22.2 – Standards for Automatic Door Operators Used on Fire and Smoke Barrier Doors and Systems of Doors.

E. Standards: All hardware specified herein shall comply with the following industry standards:
 1. ANSI/BHMA Certified Product Standards - A156 Series
 2. UL10C – Positive Pressure Fire Tests of Door Assemblies
1.3 SUBMITTALS

A. Product Data: Manufacturer's product data sheets including installation details, material descriptions, dimensions of individual components and profiles, operational descriptions and finishes.

B. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

 1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."

 2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.

 3. Content: Include the following information:

 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
 c. Fastenings and other pertinent information.
 d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 e. Explanation of abbreviations, symbols, and codes contained in schedule.
 f. Mounting locations for door hardware.
 g. Door and frame sizes and materials.
 h. Warranty information for each product.

 4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

C. Shop Drawings: Details of electrified access control hardware indicating the following:

 1. Wiring Diagrams: Upon receipt of approved schedules, submit detailed system wiring diagrams for power, signaling, monitoring, communication, and control of the access control system electrified hardware. Differentiate between manufacturer-installed and field-installed wiring. Include the following:

 a. Elevation diagram of each unique access controlled opening showing location and interconnection of major system components with respect to their placement in the respective door openings.
 b. Complete (risers, point-to-point) access control system block wiring diagrams.
 c. Wiring instructions for each electronic component scheduled herein.

 2. Electrical Coordination: Coordinate with related sections the voltages and wiring details required at
electrically controlled and operated hardware openings.

D. Proof of Certification: Provide copy of manufacturer(s) official certification or accreditation document indicating proof of status as a qualified installer of Windstorm assemblies.

E. Keying Schedule: After a keying meeting with the owner has taken place prepare a separate keying schedule detailing final instructions. Submit the keying schedule in electronic format. Include keying system explanation, door numbers, key set symbols, hardware set numbers and special instructions. Owner must approve submitted keying schedule prior to the ordering of permanent cylinders/cores.

F. Informational Submittals:

1. Product Test Reports: Indicating compliance with cycle testing requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified independent testing agency.

G. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: Engage qualified manufacturers with a minimum 5 years of documented experience in producing hardware and equipment similar to that indicated for this Project and that have a proven record of successful in-service performance.

B. Installer Qualifications: A minimum 3 years documented experience installing both standard and electrified door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

C. Door Hardware Supplier Qualifications: Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.

D. Source Limitations: Obtain each type and variety of door hardware specified in this section from a single source unless otherwise indicated.

1. Electrified modifications or enhancements made to a source manufacturer's product line by a secondary or third party source will not be accepted.

2. Provide electromechanical door hardware from the same manufacturer as mechanical door hardware, unless otherwise indicated.

E. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.

F. Keying Conference: Conduct conference to comply with requirements in Division 01 Section "Project
Meetings." Keying conference to incorporate the following criteria into the final keying schedule document:

1. Function of building, purpose of each area and degree of security required.
2. Plans for existing and future key system expansion.
3. Requirements for key control storage and software.
4. Installation of permanent keys, cylinder cores and software.
5. Address and requirements for delivery of keys.

G. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.

1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
3. Review sequence of operation narratives for each unique access controlled opening.
4. Review and finalize construction schedule and verify availability of materials.
5. Review the required inspecting, testing, commissioning, and demonstration procedures

H. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.

B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.

C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference".

1.6 COORDINATION

A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.
B. Door Hardware and Electrical Connections: Coordinate the layout and installation of scheduled electrified door hardware and related access control equipment with required connections to source power junction boxes, low voltage power supplies, detection and monitoring hardware, and fire and detection alarm systems.

C. Door and Frame Preparation: Doors and corresponding frames are to be prepared, reinforced and pre-wired (if applicable) to receive the installation of the specified electrified, monitoring, signaling and access control system hardware without additional in-field modifications.

1.7 WARRANTY

A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:

1. Structural failures including excessive deflection, cracking, or breakage.
2. Faulty operation of the hardware.
3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
4. Electrical component defects and failures within the systems operation.

C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.

D. Special Warranty Periods:

1. Ten years for mortise locks and latches.
2. Five years for exit hardware.
3. Twenty five years for manual surface door closer bodies.
4. Two years for electromechanical door hardware.

1.8 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.

PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. General: Provide door hardware for each door to comply with requirements in Door Hardware Sets and each referenced section that products are to be supplied under.
B. Designations: Requirements for quantity, item, size, finish or color, grade, function, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Sets at the end of Part 3. Products are identified by using door hardware designations, as follows:

C. Named Manufacturer’s Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing requirements. Manufacturers’ names are abbreviated in the Door Hardware Schedule.

D. Substitutions: Requests for substitution and product approval for inclusive mechanical and electromechanical door hardware in compliance with the specifications must be submitted in writing and in accordance with the procedures and time frames outlined in Division 01, Substitution Procedures. Approval of requests is at the discretion of the architect, owner, and their designated consultants.

2.2 HANGING DEVICES

A. Hinges: ANSI/BHMA A156.1 certified butt hinges with number of hinge knuckles as specified in the Door Hardware Sets.

1. Quantity: Provide the following hinge quantity, unless otherwise indicated:

 a. Two Hinges: For doors with heights up to 60 inches.
 b. Three Hinges: For doors with heights 61 to 90 inches.
 c. Four Hinges: For doors with heights 91 to 120 inches.
 d. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.

2. Hinge Size: Provide the following, unless otherwise indicated, with hinge widths sized for door thickness and clearances required:

 a. Widths up to 3’0”: 4-1/2” standard or heavy weight as specified.
 b. Sizes from 3’1” to 4’0”: 5” standard or heavy weight as specified.

3. Hinge Weight and Base Material: Unless otherwise indicated, provide the following:

 a. Exterior Doors: Heavy weight, non-ferrous, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate standard weight.
 b. Interior Doors: Standard weight, steel, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate heavy weight.

4. Hinge Options: Comply with the following where indicated in the Hardware Sets or on Drawings:

 a. Non-removable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for the all out-swinging lockable doors.

5. Acceptable Manufacturers:

 a. Bommer Industries (BO).
 b. Hager Companies (HA).
 c. McKinney Products (MK).
B. Continuous Geared Hinges: ANSI/BHMA A156.26 Grade 1-600 certified continuous geared hinge. with minimum 0.120-inch thick extruded 6060 T6 aluminum alloy hinge leaves and a minimum overall width of 4 inches. Hinges are non-handed, reversible and fabricated to template screw locations. Factory trim hinges to suit door height and prepare for electrical cut-outs.

1. Acceptable Manufacturers:
 a. Pemko Manufacturing (PE).
 b. Hagar (HA)
 c. Stanley (ST)

2.3 DOOR OPERATING TRIM

A. Flush Bolts and Surface Bolts: ANSI/BHMA A156.3 and A156.16, Grade 1, certified.

1. Manual flush bolts to be furnished with top rod of sufficient length to allow bolt location approximately six feet from the floor.
2. Furnish dust proof strikes for bottom bolts.
3. Surface bolts to be minimum 8” in length and U.L. listed for labeled fire doors and U.L. listed for windstorm components where applicable.
4. Provide related accessories (mounting brackets, strikes, coordinators, etc.) as required for appropriate installation and operation.

5. Acceptable Manufacturers:
 a. Rockwood Manufacturing (RO).
 b. Trimco (TC).

B. Door Push Plates and Pulls: ANS/BHMA A156.6 certified door pushes and pulls of type and design specified in the Hardware Sets. Coordinate and provide proper width and height as required where conflicting hardware dictates.

1. Offset Pull Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door and offset of 90 degrees unless otherwise indicated.
2. Fasteners: Provide manufacturer's designated fastener type as indicated in Hardware Sets.

3. Acceptable Manufacturers:
 a. Rockwood Manufacturing (RO).
 b. Trimco (TC).

2.4 CYLINDERS AND KEYING

A. General: Cylinder manufacturer to have minimum (10) years experience designing secured master key systems and have on record a published security keying system policy.

B. Source Limitations: Obtain each type of keyed cylinder and keys from the same source manufacturer as locksets and exit devices, unless otherwise indicated.

C. Cylinders: Original manufacturer cylinders complying with the following:

1. Mortise Type: Threaded cylinders with rings and cams to suit hardware application.
2. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
3. Bored-Lock Type: Cylinders with tailpieces to suit locks.
4. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.

D. Permanent Cores: Manufacturer's standard; finish face to match lockset; complying with the following:
 1. Interchangeable Cores: Core insert, removable by use of a special key; usable with other manufacturers' cylinders.

E. Keying System: Each type of lock and cylinders to be keyed to Owner's existing key system.
 1. Conduct specified "Keying Conference" to define and document keying system instructions and requirements.
 2. Furnish factory cut, nickel-silver large bow permanently inscribed with a visual key control number as directed by Owner.
 3. Existing System: Key locks to Owner's existing system.

F. Key Quantity: Provide the following minimum number of keys:
 1. Change Keys per Cylinder: Two (2)
 2. Master Keys (per Master Key Level/Group): Five (5).

G. Construction Keying: Provide construction master keyed cylinders.

2.5 MECHANICAL LOCKS AND LATCHING DEVICES

A. Mortise Locksets, Grade 1 (Heavy Duty): ANSI/BHMA A156.13, Series 1000, Operational Grade 1 certified. Locksets are to be manufactured with a corrosion resistant steel case and be field-reversible for handing without disassembly of the lock body.
 1. Acceptable Manufacturers:
 a. Corbin Russwin Hardware (RU) – ML2000 Series
 b. Sargent Manufacturing (SA) – 8200 Series
 c. Schlage (SC) – L9000 Series

2.6 LOCK AND LATCH STRIKES

A. Strikes: Provide manufacturer's standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:
 1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
 2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
 3. Aluminum-Frame Strike Box: Provide manufacturer's special strike box fabricated for aluminum
framing.

4. Double-lipped strikes: For locks at double acting doors. Furnish with retractable stop for rescue hardware applications.

B. Standards: Comply with the following:

2. Strikes for Bored Locks and Latches: BHMA A156.2.
3. Strikes for Auxiliary Deadlocks: BHMA A156.5.
4. Dustproof Strikes: BHMA A156.16.

2.7 CONVENTIONAL EXIT DEVICES

A. General Requirements: All exit devices specified herein shall meet or exceed the following criteria:

1. At doors not requiring a fire rating, provide devices complying with NFPA 101 and listed and labeled for "Panic Hardware" according to UL305. Provide proper fasteners as required by manufacturer including sex nuts and bolts at openings specified in the Hardware Sets.

2. Where exit devices are required on fire rated doors, provide devices complying with NFPA 80 and with UL labeling indicating "Fire Exit Hardware". Provide devices with the proper fasteners for installation as tested and listed by UL. Consult manufacturer's catalog and template book for specific requirements.

3. Except on fire rated doors, provide exit devices with hex key dogging device to hold the pushbar and latch in a retracted position. Provide optional keyed cylinder dogging on devices where specified in Hardware Sets.

4. Devices must fit flat against the door face with no gap that permits unauthorized dogging of the push bar. The addition of filler strips is required in any case where the door light extends behind the device as in a full glass configuration.

5. Electromechanical Options: Subject to same compliance standards and requirements as mechanical exit devices, electrified devices to be of type and design as specified in hardware sets. Include any specific controllers when conventional power supplies are not sufficient to provide the proper inrush current.

 a. Lock Trim Design: As indicated in Hardware Sets, provide finishes and designs to match that of the specified locksets.

 b. Where function of exit device requires a cylinder, provide a cylinder (Rim or Mortise) as specified in Hardware Sets.

7. Vertical Rod Exit Devices: Where surface or concealed vertical rod exit devices are used at interior openings, provide as less bottom rod (LBR) unless otherwise indicated. Provide dust proof strikes where thermal pins are required to project into the floor.
8. Narrow Stile Applications: At doors constructed with narrow stiles, or as specified in Hardware Sets, provide devices designed for maximum 2” wide stiles.

10. Rail Sizing: Provide exit device rails factory sized for proper door width application.

11. Through Bolt Installation: For exit devices and trim as indicated in Door Hardware Sets.

B. Conventional Push Rail Exit Devices (Heavy Duty): ANSI/BHMA A156.3, Grade 1 certified panic and fire exit hardware devices furnished in the functions specified in the Hardware Sets. Exit device latch to be stainless steel, pullman type, with deadlock feature.

1. Acceptable Manufacturers:
 a. Corbin Russwin Hardware (RU) - ED4000 / ED5000 Series.
 b. Sargent Manufacturing (SA) - 80 Series.
 c. Von Duprin (VD) – 98/99XP Series.

C. Tube Steel Removable Mullions: ANSI/BHMA A156.3 removable steel mullions with malleable-iron top and bottom retainers and a primed paint finish.

1. Provide keyed removable feature where specified in the Hardware Sets.

2. Provide stabilizers and mounting brackets as required.

3. Provide electrical quick connection wiring options as specified in the hardware sets.

4. Acceptable Manufacturers:
 a. Corbin Russwin Hardware (RU) - 700/900 Series.
 b. Sargent Manufacturing (SA) - 980S Series.
 c. Von Duprin (VD).

2.8 DOOR CLOSERS

A. All door closers specified herein shall meet or exceed the following criteria:

1. General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.

2. Standards: Closers to comply with UL-10C for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.

3. Cycle Testing: Provide closers which have surpassed 15 million cycles in a test witnessed and verified by UL.

4. Size of Units: Comply with manufacturer’s written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units...
complying with ANSI ICC/A117.1.

5. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware Sets.

6. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics.

7. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates, and through-bolt and security type fasteners as required for proper installation.

B. Door Closers, Surface Mounted (Large Body Cast Iron): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one piece cast iron body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control.

1. Acceptable Manufacturers:
 a. Corbin Russwin Hardware (RU) - DC8000 Series.
 b. LCN Closers (LC) - 4040XP Series.
 c. Norton Door Controls (NO) – 9500 Series.
 d. Sargent Manufacturing (SA) - 281 Series.

2.9 ARCHITECTURAL TRIM

A. Door Protective Trim

1. General: Door protective trim units to be of type and design as specified below or in the Hardware Sets.

2. Size: Fabricate protection plates (kick, armor, or mop) not more than 2" less than door width (LDW) on stop side of single doors and 1" LDW on stop side of pairs of doors, and not more than 1" less than door width on pull side. Coordinate and provide proper width and height as required where conflicting hardware dictates. Height to be as specified in the Hardware Sets.

3. Protection Plates: ANSI/BHMA A156.6 certified protection plates (kick, armor, or mop), fabricated from the following:
 a. Stainless Steel: 300 grade, 050-inch thick.

4. Options and fasteners: Provide manufacturer's designated fastener type as specified in the Hardware Sets. Provide countersunk screw holes.

5. Acceptable Manufacturers:
 a. Rockwood Manufacturing (RO).
 b. Trimco (TC).
2.10 DOOR STOPS AND HOLDERS

A. General: Door stops and holders to be of type and design as specified below or in the Hardware Sets.

B. Door Stops and Bumpers: ANSI/BHMA A156.16, Grade 1 certified door stops and wall bumpers. Provide wall bumpers, either convex or concave types with anchorage as indicated, unless floor or other types of door stops are specified in Hardware Sets. Do not mount floor stops where they will impede traffic. Where floor or wall bumpers are not appropriate, provide overhead type stops and holders.

1. Acceptable Manufacturers:
 a. Rockwood Manufacturing (RO).
 b. Trimco (TC).

C. Overhead Door Stops and Holders: ANSI/BHMA A156.6, Grade 1 certified overhead stops and holders to be surface or concealed types as indicated in Hardware Sets. Track, slide, arm and jamb bracket to be constructed of extruded bronze and shock absorber spring of heavy tempered steel. Provide non-handed design with mounting brackets as required for proper operation and function.

1. Acceptable Manufacturers:
 a. Rixson Door Controls (RF).

2.11 ARCHITECTURAL SEALS

A. General: Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.

B. Smoke Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke control ratings indicated, based on testing according to UL 1784.

1. Provide smoke labeled perimeter gasketing at all smoke labeled openings.

C. Fire Labeled Gasketing: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL-10C.

1. Provide intumescent seals as indicated to meet UL10C Standard for Positive Pressure Fire Tests of Door Assemblies, and UBC 7-2, Fire Tests of Door Assemblies.

D. Sound-Rated Gasketing: Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated.

E. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

F. Acceptable Manufacturers:
 1. National Guard Products (NG).
2. Pemko Manufacturing (PE).

2.12 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.

2.13 FINISHES

A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.

B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware.

C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.2 PREPARATION

A. Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.

3.3 INSTALLATION

A. Install each item of mechanical and electromechanical hardware and access control equipment to comply with manufacturer's written instructions and according to specifications.

1. Installers are to be trained and certified by the manufacturer on the proper installation and adjustment of fire, life safety, and security products including: hanging devices; locking devices;
closing devices; and seals.

B. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:

2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
3. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."
4. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.

C. Retrofitting: Install door hardware to comply with manufacturer's published templates and written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

E. Storage: Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.

3.6 CLEANING AND PROTECTION

A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

B. Clean adjacent surfaces soiled by door hardware installation.
C. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

3.7 DEMONSTRATION

A. Instruct Owner's maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

3.8 DOOR HARDWARE SETS

A. The hardware sets represent the design intent and direction of the owner and architect. They are a guideline only and should not be considered a detailed hardware schedule. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.

B. Manufacturer's Abbreviations:

1. MK - McKinney
2. PE - Pemko
3. RO - Rockwood
4. SA - Sargent
5. SC - Schlage

Hardware Schedule

Set: 1.0

Doors: 115A, 103B,

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>Finish</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge (heavy weight)</td>
<td>T4A3786</td>
<td>US26D</td>
<td>MK</td>
</tr>
<tr>
<td>Removable Mullion</td>
<td>12-L980S</td>
<td></td>
<td>SA</td>
</tr>
<tr>
<td>Exit Device</td>
<td>12-LC-8813 ETL</td>
<td>US32D</td>
<td>SA</td>
</tr>
<tr>
<td>Mort. Cylinder</td>
<td>30-138</td>
<td>626</td>
<td>SC</td>
</tr>
<tr>
<td>Rim Cylinder</td>
<td>20-057</td>
<td>626</td>
<td>SC</td>
</tr>
<tr>
<td>Closer</td>
<td>281 CPS</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>K1050 10" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>S88D</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>Meeting Edge Seal</td>
<td>S772C</td>
<td></td>
<td>PE</td>
</tr>
</tbody>
</table>

Notes:
Classroom function trim on both exit devices. Levers locked/unlocked with key.
Field verify existing hinge prep/size.
Set: 2.0
Doors: 101B, 103A, 116A, 117A, 118

6 Hinge (heavy weight) T4A3786 US26D MK
1 Exit Device 12-LC-8813 ETL US32D SA
1 Rim Cylinder 20-057 626 SC
1 Closer 281 P10 EN SA
1 Kick Plate K1050 10" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Smoke Seal S88D PE

Notes:
Classroom function trim. Lever locked/unlocked with key.
Field verify existing hinge prep/size.

Set: 2.1
Doors: 104, 122

6 Hinge (heavy weight) T4A3786 US26D MK
1 Exit Device 12-LC-8813 ETL US32D SA
1 Rim Cylinder 20-057 626 SC
1 Closer 281 CPS EN SA
1 Kick Plate K1050 10" x 2" LDW 4BE CSK US32D RO
1 Smoke Seal S88D PE

Notes:
Classroom function trim. Lever locked/unlocked with key.
Field verify existing hinge prep/size.

Set: 3.0
Doors: 107, 109

3 Hinge (heavy weight) T4A3786 US26D MK
1 Passage Set 8215 LNL US26D SA
1 Door Closer 281 LNL EN SA
1 Kick Plate K1050 10" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO

Notes:
Field verify existing hinge prep/size.

Set: 4.0
Doors: 120B

3 Hinge (heavy weight) T4A3786 US26D MK
1 Exit Device 12-LC-8804 ETL US32D SA
1 Rim Cylinder 20-057 626 SC
1 Closer 281 P10 EN SA
1 Kick Plate K1050 10" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Smoke Seal S88D PE

Notes:
Storeroom function trim. Latch retracted with key.
Field verify existing hinge prep/size.

Set: 4.1

Doors: 120A

3 Hinge (heavy weight) T4A3786 US26D MK
1 Storeroom Lock LC-8204 LNL US26D SA
1 Mort. Cylinder 30-138 626 SC
1 Closer 281 P10 EN SA
1 Kick Plate K1050 10" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Smoke Seal S88D PE

Notes:
Storeroom function. Latch retracted with key.
Field verify existing hinge prep/size.

Set: 4.2

Doors: 106, 132

3 Hinge (heavy weight) T4A3786 US26D MK
1 Storeroom Lock LC-8204 LNL US26D SA
1 Mort. Cylinder 30-138 626 SC
1 Closer 281 P10 EN SA
1 Kick Plate K1050 10" x 2" LDW 4BE CSK US32D RO
1 Wall Stop 406 US32D RO
1 Smoke Seal S88D PE

Notes:
Storeroom function. Latch retracted with key.
Field verify existing hinge prep/size.

Set: 5.0

3 Hinge TA2714 US26D MK
1 Office Lock LC-8205 LNL US26D SA
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Model/Description</th>
<th>Finish</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mort. Cylinder</td>
<td>1</td>
<td>30-138</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Door Closer</td>
<td>1</td>
<td>281 O</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>1</td>
<td>K1050 10" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
</tbody>
</table>

Notes:
Field verify existing hinge prep/size.

Set: 5.1

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Model/Description</th>
<th>Finish</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>3</td>
<td>TA2714</td>
<td>US26D</td>
<td>MK</td>
</tr>
<tr>
<td>Office Lock</td>
<td>1</td>
<td>LC-8205 LNL</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td>Mort. Cylinder</td>
<td>1</td>
<td>30-138</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Door Closer</td>
<td>1</td>
<td>281 O</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>1</td>
<td>K1050 10" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>1</td>
<td>S88D</td>
<td>PE</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Field verify existing hinge prep/size.

Set: 5.2

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Model/Description</th>
<th>Finish</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>3</td>
<td>TA2714</td>
<td>US26D</td>
<td>MK</td>
</tr>
<tr>
<td>Office Lock</td>
<td>1</td>
<td>LC-8205 LNL</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td>Mort. Cylinder</td>
<td>1</td>
<td>30-138</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Door Closer</td>
<td>1</td>
<td>281 CPS</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>1</td>
<td>K1050 10" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>1</td>
<td>S88D</td>
<td>PE</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Field verify existing hinge prep/size.

Set: 6.0

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Model/Description</th>
<th>Finish</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinge</td>
<td>3</td>
<td>TA2714</td>
<td>US26D</td>
<td>MK</td>
</tr>
<tr>
<td>Utility Lock</td>
<td>1</td>
<td>LC-8217 LNL</td>
<td>US26D</td>
<td>SA</td>
</tr>
<tr>
<td>Mort. Cylinder</td>
<td>2</td>
<td>30-138</td>
<td>SC</td>
<td></td>
</tr>
<tr>
<td>Door Closer</td>
<td>1</td>
<td>281 P10</td>
<td>EN</td>
<td>SA</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>1</td>
<td>K1050 F 10" x 2" LDW 4BE CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>1</td>
<td>406</td>
<td>US32D</td>
<td>RO</td>
</tr>
</tbody>
</table>
Notes:
Both levers always locked. Key on either side retracts latch
Field verify existing hinge prep/size.

Set: 8.0

<table>
<thead>
<tr>
<th>Item</th>
<th>Model Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doors: 101A, 141A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Hinge (heavy weight)</td>
<td>T4A3386 NRP</td>
<td>US32D MK</td>
</tr>
<tr>
<td>1 Keyed Removable Mullion</td>
<td>KR-4954</td>
<td>VC</td>
</tr>
<tr>
<td>1 Exit Device, Exit Only</td>
<td>98 EO</td>
<td>626 LD VD</td>
</tr>
<tr>
<td>1 Exit Device, Night Latch</td>
<td>98NL 996NL 06</td>
<td>626 VD</td>
</tr>
<tr>
<td>2 Rim Cylinder</td>
<td>Provided by Owner</td>
<td>626 SC</td>
</tr>
<tr>
<td>2 Door Closer</td>
<td>4111 SCUSH</td>
<td>AL LC</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>425</td>
<td>AL NG</td>
</tr>
<tr>
<td>2 Weatherstripping</td>
<td>Integral to door/frame assembly</td>
<td></td>
</tr>
<tr>
<td>2 Sweep</td>
<td>C627A</td>
<td>NG</td>
</tr>
</tbody>
</table>

Notes: Northwood University standard is for continuous geared hinges on doors over 3'-0" wide.
Doors can be mechanically dogged down for push/pull operation.

END OF SECTION 087100
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:

1. Glass for doors and interior borrowed lites.
2. Glazing sealants and accessories.

1.2 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Glass Samples: For each type of glass product other than clear monolithic vision glass; 12 inches (300 mm) square.
C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
D. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer and manufacturers of insulating-glass units with sputter-coated, low-E coatings.
B. Product Certificates: For glass.
C. Preconstruction adhesion and compatibility test report.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications for Insulating-Glass Units with Sputter-Coated, Low-E Coatings: A qualified insulating-glass manufacturer who is approved by coated-glass manufacturer.
B. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.
1.6 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.

1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty for Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: Five years from date of Substantial Completion.

C. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 4000 "Quality Requirements," to design glazing.

B. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the International Building Code and ASTM E 1300.

1. Design Wind Pressures: As indicated on Drawings.
2. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch (25 mm), whichever is less.
3. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.

C. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

D. Thermal and Optical Performance Properties: Provide glass with performance properties specified, as indicated in manufacturer's published test data, based on procedures indicated below:
1. **U-Factors:** Center-of-glazing values, according to NFRC 100 and based on LBL's WINDOW 5.2 computer program, expressed as Btu/sq. ft. x h x deg F (W/sq. m x K).

2. **Solar Heat-Gain Coefficient and Visible Transmittance:** Center-of-glazing values, according to NFRC 200 and based on LBL's WINDOW 5.2 computer program.

3. **Visible Reflectance:** Center-of-glazing values, according to NFRC 300.

2.2 GLASS PRODUCTS, GENERAL

A. Glazing Publications:
Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling:
Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program:
Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness:
Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.

1. **Minimum Glass Thickness for Exterior Lites:** 6 mm.

E. Strength:
Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.3 GLASS PRODUCTS

A. Clear Annealed Float Glass:
ASTM C 1036, Type I, Class 1 (clear), Quality-Q3.

B. Fully Tempered Float Glass:
ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.

2.4 LAMINATED GLASS

A. Laminated Glass:
ASTM C 1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.

1. **Construction:** Laminate glass with polyvinyl butyral interlayer to comply with interlayer manufacturer's written instructions.
2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.
3. Interlayer Color: Clear unless otherwise indicated.

2.5 INSULATING GLASS

A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190.
 1. Sealing System: Dual seal, with polyisobutylene and silicone primary and secondary sealants.
 2. Spacer: Nonmetallic laminate or nonmetallic tube, black color.

2.6 GLAZING SEALANTS

A. General:
 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 3. Field-applied sealants shall have a VOC content of not more than 250 g/L.
 4. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. May National Associates, Inc.; a subsidiary of Sika Corporation; Bondaflex Sil 201 FC.
 c. Tremco Incorporated; Tremsil 600.
 2. Applications: Interior glazing.

C. Glazing Sealant: Acid-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Comimg Corporation; 999-A.
 b. GE Construction Sealants; Momentive Performance Materials Inc.; SCS1000 Contractors.
 c. Pecora Corporation; 860.
 d. Polymeric Systems, Inc; PSI-601.
 e. Sika Corporation; Sikasil-GP.
 f. Tremco Incorporated; Proglaze.
 2. Applications: Butt glazing.
2.7 MISCELLANEOUS GLAZING MATERIALS

A. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

B. Setting Blocks: Elastomeric material with a Shore, Type A durometer hardness of 85, plus or minus 5.

C. Spacers: Elastomeric blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.

D. Edge Blocks: Elastomeric material of hardness needed to limit glass lateral movement (side walking).

E. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

F. Decorative Film Overlay: Translucent, dimensionally stable, cast PVC film, 2-mil- (0.05-mm-) minimum thickness, with pressure-sensitive, clear adhesive back for adhering to glass and releasable protective backing.

1. Product: Subject to compliance with requirements, provide the following:
 a. 3M.; Fasara Glass Finishes, ESSEN (SH2EMES).

2.8 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.

1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 a. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.

PART 3 - EXECUTION

3.1 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.
C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.2 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Install gaskets so they protrude past face of glazing stops.

3.3 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.
B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.4 DECORATIVE FILM

A. Install decorative film to number 4 surface of existing insulating glass where indicated on Drawings in accordance with decorative film manufacturer’s written instructions and recommendations.

3.5 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.

3.6 MONOLITHIC GLASS SCHEDULE

A. Glass Type GL-1: Clear fully tempered float glass.

1. Minimum Thickness: 6 mm.
2. Safety glazing required.

B. Glass Type GL-2: Tinted fully tempered float glass.

1. Product: Subject to compliance with requirements, provide one of the following:
 a. PPG Industries Corp; Grayline II.
2. Tint Color: Gray.
3. Minimum Thickness: 6 mm.
5. Solar Heat Gain Coefficient: 0.36 maximum.
6. Safety glazing required.

3.7 LAMINATED GLASS SCHEDULE

A. Glass Type LG-1: Clear laminated glass with two plies of annealed float glass.

1. Minimum Thickness of Each Glass Ply: 3 mm.
2. Interlayer Thickness: 0.030 inch (0.76 mm).
3. Safety glazing required.

3.8 INSULATING GLASS SCHEDULE

A. Glass Type IG-1: Low-E-coated, tinted insulating glass.
 1. Overall Unit Thickness: 1 inch (25 mm).
 2. Minimum Thickness of Each Glass Lite: 6 mm.
 a. Tint Color: Dark gray.
 4. Interspace Content: Argon.
 5. Indoor Lite: Clear fully tempered float glass.
 a. Products: One of the following:
 1) PPG Industries, Inc.; Solarban 67.
 7. Winter Nighttime U-Factor: 0.25 maximum.
 8. Summer Daytime U-Factor: 0.22 maximum.
 10. Solar Heat Gain Coefficient: 0.12 maximum.
 11. Safety glazing required.

3.9 GLAZING SCHEDULE

A. Exterior Openings: Install with glazing gaskets unless indicated otherwise. Provide insulating glass IG-1 unless indicated otherwise.

B. Interior Openings: Install with gaskets in aluminum frames and sealant in other locations unless indicated otherwise. Provide safety glass, GL-1 or LG-1 unless indicated otherwise.

END OF SECTION 08 8000
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fire-protection-rated glazing.

1.2 COORDINATION

A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Glass Samples: For each type of glass product; 12 inches (300 mm) square.

C. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installers.

B. Product Certificates: For each type of glass and glazing product, from manufacturer.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs glass installers for this Project who are certified under the National Glass Association's Certified Glass Installer Program.

1.6 WARRANTY

A. Manufacturer's Special Warranty on Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.

1. Warranty Period: 10 years from date of Substantial Completion.
B. Manufacturer's Special Warranty on Double Glazing Units with Clear Gel Fill: Manufacturer agrees to replace units that deteriorate within specified warranty period. Deterioration of double glazing units with clear gel fill is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning glass contrary to manufacturer's written instructions. Evidence of failure is the leakage of gel fill from units, air bubbles within units, or obstruction of vision by contamination or deterioration of gel.

1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GLASS PRODUCTS, GENERAL

A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organization below unless more stringent requirements are indicated. Refer to these publications for glazing terms not otherwise defined in this Section or in referenced standards.

B. Safety Glazing Labeling: Permanently mark glazing with certification label of the Safety Glazing Certification Council. Label shall indicate manufacturer's name, type of glass, glass thickness, and safety glazing standard with which glass complies.

2.2 GLASS PRODUCTS

A. Tempered Float Glass: ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class I (clear) unless otherwise indicated, Quality-Q3.

B. Laminated Glass: ASTM C 1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.

2.3 FIRE-PROTECTION-RATED GLAZING

A. Fire-Protection-Rated Glazing: Listed and labeled by a testing agency acceptable to authorities having jurisdiction, for fire-protection ratings indicated, based on positive-pressure testing according to NFPA 257 or UL 9, including the hose-stream test, and shall comply with NFPA 80.

1. Fire-protection-rated glazing required to have a fire-protection rating of 20 minutes shall be exempt from the hose-stream test.

B. Fire-Protection-Rated Glazing Labeling: Permanently mark fire-protection-rated glazing with certification label of a testing agency acceptable to authorities having jurisdiction. Label shall indicate manufacturer's name; test standard; whether glazing is permitted to be used in doors or openings; if permitted in openings, whether or not glazing has passed the hose-stream test; whether or not glazing meets 450 deg F (250 deg C) temperature-rise limitation; and the fire-resistance rating in minutes.

C. Laminated Ceramic Glazing (FPG-1): Laminated glass made from two plies of clear, ceramic glass; 8-mm total thickness; and complying with 16 CFR 1201, Category II.
1. **Products:** Subject to compliance with requirements, provide the following:
 a. Schott North America, Inc.; Pyran Platinum L.

D. **Laminated Glass with Intumescent Interlayers (FPG-2):** Laminated glass made from multiple plies of uncoated, ultraclear float glass; with intumescent interlayers; and complying with 16 CFR 1201, Category II.

1. **Products:** Subject to compliance with requirements, provide one of the following:
 a. Interedge Technologies by AGC Flat Glass; Pyrobel.
 b. Pilkington North America; Pyrostop.
 c. Technical Glass Products; Pyrostop.
 d. Vetrotech Saint-Gobain; Contraflam.

2. **Temperature-Rise Limitation:** 450 deg F (250 deg C) where indicated on Drawings.

E. **Double Glazing Units with Clear Gel Fill (FPG-3):** Double glazing units made from two lites of uncoated, fully tempered, ultraclear float glass; with a perimeter edge seal enclosing a cavity filled with optically clear, intumescent gel; and complying with 16 CFR 1201, Category II.

1. **Products:** Subject to compliance with requirements, provide the following:
 a. SAFTI FIRST Fire Rated Glazing Solutions; SuperLite II-XL.

2. **Temperature-Rise Limitation:** 450 deg F (250 deg C) where indicated on Drawings.

2.4 GLAZING ACCESSORIES

A. Provide glazing gaskets, glazing sealants, glazing tapes, setting blocks, spacers, edge blocks, and other glazing accessories that are compatible with glazing products and each other and are approved by testing agencies that listed and labeled fire-resistant glazing products with which products are used for applications and fire-protection ratings indicated.

B. **Glazing Sealants for Fire-Rated Glazing Products:** Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 50, Use NT. Comply with sealant and glass manufacturers' written instructions for selecting glazing sealants suitable for applications indicated.

1. **Products:** Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 795.
 b. GE Construction Sealants; Momentive Performance Materials Inc.; SilGlaze II SCS2800.
 c. Tremco Incorporated; Spectrem 2.

2. Sealants shall have a VOC content of 250 g/L or less.
3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

2.5 MISCELLANEOUS GLAZING MATERIALS

A. **General:** Provide products of material, size, and shape complying with referenced glazing standard, requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.
3.1 GLAZING

A. Use methods approved by testing agencies that listed and labeled fire-resistant glazing products.

B. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials unless more stringent requirements are indicated, including those in referenced glazing publications.

C. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass is glass with edge damage or other imperfections that, when installed, could weaken glass and impair performance and appearance.

D. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

E. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

F. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

G. Provide spacers for glass lites where length plus width is larger than 50 inches (1270 mm).

H. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

3.2 CLEANING AND PROTECTION

A. Immediately after installation, remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

 1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer.

C. Remove and replace glass that is damaged during construction period.
3.3 FIRE-RESISTANT GLAZING SCHEDULE

A. Fire-Protection-Rated Glazing:

1. Provide glazing thickness as required to achieve ratings indicated on Drawings for glass sizes indicated.
2. Where FPG-1 is indicated on Drawings, provide FPG-1, FPG-2, or FPG-3.
3. Where FPG-2 is indicated on Drawings, provide FPG-2 or FPG-3.

END OF SECTION 08 8813
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Non-load-bearing steel framing systems for interior partitions.
 2. Suspension systems for interior ceilings and soffits.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Evaluation reports for firestop tracks.

1.4 QUALITY ASSURANCE

A. Code-Compliance Certification of Studs and Tracks: Provide documentation that framing members are certified according to the product-certification program of the Certified Steel Stud Association, the Steel Framing Industry Association, or the Steel Stud Manufacturers Association.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For fire-resistance-rated assemblies that incorporate non-load-bearing steel framing, provide materials and construction identical to those tested in assembly indicated, according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated on Drawings, according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 FRAMING SYSTEMS

A. Framing Members, General: Comply with ASTM C 754 for conditions indicated.

 1. Steel Sheet Components: Comply with ASTM C 645 requirements for metal unless otherwise indicated.

B. Studs and Tracks: ASTM C 645.

1. Steel Studs and Tracks:
 a. Minimum Base-Metal Thickness: 0.0329 inch (0.836 mm).
 1) For head runner, sill runner, jamb, and cripple studs at openings, provide framing of minimum 0.033 inch (0.84 mm).
 b. Depth: 3-5/8 inches (92 mm) unless indicated otherwise.

C. Slip-Type Head Joints: Where indicated, provide one of the following:

1. Single Long-Leg Track System: ASTM C 645 top track with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs, installed with studs friction fit into top track and with continuous bridging located within 12 inches (305 mm) of the top of studs to provide lateral bracing.
2. Double-Track System: ASTM C 645 top outer tracks, inside track with 2-inch- (51-mm-) deep flanges in thickness not less than indicated for studs and fastened to studs, and outer track sized to friction-fit over inner track.
3. Deflection Track: Steel sheet top runner manufactured to prevent cracking of finishes applied to interior partition framing resulting from deflection of structure above; in thickness not less than indicated for studs and in width to accommodate depth of studs.
 a. Products: Subject to compliance with requirements, provide one of the following:
 1) Blazeframe Industries; Bare Slotted Track (BST/BST 2).
 2) CEMCO; California Expanded Metal Products Co.; CST Slotted Deflection Track.
 3) ClarkDietrich Building Systems; SLP-TRK Slotted Deflection Track.
 4) Metal-Lite; The System.
 5) Steel Network, Inc. (The); VertiTrack VT.

D. Firestop Tracks: Top track manufactured to allow partition heads to expand and contract with movement of structure while maintaining continuity of fire-resistance-rated assembly indicated; in thickness not less than indicated for studs and in width to accommodate depth of studs.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Blazeframe Industries; Intumescent Framing, Fire Stop System.
 b. CEMCO; California Expanded Metal Products Co.; FAS Track.
 c. ClarkDietrich Building Systems; BlazeFrame.
 d. Fire Trak Corp; Fire Trak System attached to studs with Fire Trak Posi Klip.
 e. Metal-Lite; The System.
 f. Perfect Wall, Inc.; The System Slotted Deflection Track.
 g. Steel Network, Inc. (The); VertiTrack VT.

E. Hat-Shaped, Rigid Furring Channels: ASTM C 645.

1. Minimum Base-Metal Thickness: 0.0329 inch (0.836 mm).
2. Depth: 7/8 inch (22.2 mm) unless indicated otherwise.
2.3 SUSPENSION SYSTEMS

A. Tie Wire: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.062-inch (1.59-mm) diameter wire, or double strand of 0.048-inch (1.21-mm) diameter wire.

B. Wire Hangers: ASTM A 641/A 641M, Class 1 zinc coating, soft temper, 0.16 inch (4.12 mm) in diameter.

C. Flat Hangers: Steel sheet, 1 by 3/16 inch (25 by 5 mm) by length indicated.

D. Carrying Channels (Main Runners): Cold-rolled, commercial-steel sheet with a base-metal thickness of 0.0538 inch (1.367 mm) and minimum 1/2-inch (13-mm) wide flanges.

 1. Depth: 1-1/2 inches (38 mm).

E. Furring Channels (Furring Members):

 1. Hat-Shaped, Rigid Furring Channels: ASTM C 645, 7/8 inch (22 mm) deep.
 a. Minimum Base-Metal Thickness: 0.0179 inch (0.455 mm).

F. Grid Suspension System for Gypsum Board Ceilings: ASTM C 645, direct-hung system composed of main beams and cross-furring members that interlock.

 1. Products: Subject to compliance with requirements, provide one of the following:
 b. Chicago Metallic Corporation; 640/660 Drywall Ceiling Suspension.
 c. United State Gypsum Company; Drywall Suspension System.

2.4 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards.

 1. Fasteners for Steel Framing: Of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

B. Isolation Strip at Exterior Walls: Provide one of the following:

 2. Foam Gasket: Adhesive-backed, closed-cell vinyl foam strips that allow fastener penetration without foam displacement, 1/8 inch (3.2 mm) thick, in width to suit steel stud size.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

 1. Gypsum Board Assemblies: Also comply with requirements in ASTM C 840 that apply to framing installation.
B. Install framing and accessories plumb, square, and true to line, with connections securely fastened.

C. Install supplementary framing, and blocking to support fixtures, equipment services, heavy trim, grab bars, toilet accessories, furnishings, or similar construction.

D. Install bracing at terminations in assemblies.
 1. Install bracing on uncovered side of studs at walls covered on one side only at 48 inches (1.2 m) on center maximum.

E. Do not bridge building control and expansion joints with non-load-bearing steel framing members. Frame both sides of joints independently.

3.2 INSTALLING FRAMED ASSEMBLIES

A. Install framing system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.
 1. Spacing: 16 inches (406 mm) o.c. unless otherwise indicated.

B. Where studs are installed directly against exterior masonry walls or dissimilar metals at exterior walls, install isolation strip between studs and exterior wall.

C. Install studs so flanges within framing system point in same direction.

D. Install tracks at floors and overhead supports. Extend framing full height to structural supports or substrates above suspended ceilings except where partitions are indicated to terminate at suspended ceilings. Continue framing around ducts that penetrate partitions above ceiling.
 1. Slip-Type Head Joints: Where framing extends to overhead structural supports, install to produce joints at tops of framing systems that prevent axial loading of finished assemblies.
 2. Door Openings: Screw vertical studs at jambs to jamb anchor clips on door frames; install runner track section (for cripple studs) at head and secure to jamb studs.
 a. Install two studs at each jamb unless otherwise indicated.
 b. Install cripple studs at head adjacent to each jamb stud, with a minimum 1/2-inch (13-mm) clearance from jamb stud to allow for installation of control joint in finished assembly.
 3. Other Framed Openings: Frame openings other than door openings the same as required for door openings unless otherwise indicated. Install framing below sills of openings to match framing required above door heads.
 4. Fire-Resistance-Rated Partitions: Install framing to comply with fire-resistance-rated assembly indicated and support closures and to make partitions continuous from floor to underside of solid structure.
 a. Firestop Track: Where indicated, install to maintain continuity of fire-resistance-rated assembly indicated.
 5. Sound-Rated Partitions: Install framing to comply with sound-rated assembly indicated.

E. Direct Furring:
1. Attach to concrete or masonry with stub nails, screws designed for masonry attachment, or powder-driven fasteners spaced **24 inches (610 mm)** o.c.

F. Installation Tolerance: Install each framing member so fastening surfaces vary not more than **1/8 inch (3 mm)** from the plane formed by faces of adjacent framing.

3.3 INSTALLING CEILING SUSPENSION SYSTEMS

A. Install suspension system components according to spacings indicated, but not greater than spacings required by referenced installation standards for assembly types.

1. **Hangers:** **48 inches (1219 mm)** o.c.
2. **Carrying Channels (Main Runners):** **48 inches (1219 mm)** o.c.
3. **Furring Channels (Furring Members):** **16 inches (406 mm)** o.c.

B. Isolate suspension systems from building structure where they abut or are penetrated by building structure to prevent transfer of loading imposed by structural movement.

C. Suspend hangers from building structure as follows:

1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structural or suspension system.
 a. Splay hangers only where required to miss obstructions and offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.

2. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with locations of hangers required to support standard suspension system members, install supplemental suspension members and hangers in the form of trapezes or equivalent devices.
 a. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced installation standards.

3. Wire Hangers: Secure by looping and wire tying, either directly to structures or to inserts, eye screws, or other devices and fasteners that are secure and appropriate for substrate, and in a manner that will not cause hangers to deteriorate or otherwise fail.
4. Flat Hangers: Secure to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices and fasteners that are secure and appropriate for structure and hanger, and in a manner that will not cause hangers to deteriorate or otherwise fail.
5. Do not attach hangers to steel roof deck.
6. Do not attach hangers to permanent metal forms. Furnish cast-in-place hanger inserts that extend through forms.
7. Do not attach hangers to rolled-in hanger tabs of composite steel floor deck.
8. Do not connect or suspend steel framing from ducts, pipes, or conduit.

D. Installation Tolerances: Install suspension systems that are level to within **1/8 inch in 12 feet (3 mm in 3.6 m)** measured lengthwise on each member that will receive finishes and transversely between parallel members that will receive finishes.

END OF SECTION 09 2216
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Interior gypsum board.
 2. Tile backing panels.

B. Related Requirements:
 1. Section 06 1600 "Sheathing" for gypsum sheathing for exterior walls.
 2. Section 09 2216 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.4 FIELD CONDITIONS

A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.

B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.

C. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

B. STC-Rated Assemblies: For STC-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 90 and classified according to ASTM E 413 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. CertainTeed Corporation.
2. Continental Building Products, LLC.
3. Georgia-Pacific Building Products.
5. Temple-Inland Building Products by Georgia-Pacific.
6. USG.

B. Gypsum Board, Type X: ASTM C 1396/C 1396M.

1. Thickness: 5/8 inch (15.9 mm).
2. Long Edges: Tapered.

C. Gypsum Ceiling Board: ASTM C 1396/C 1396M.

1. Thickness: 1/2 inch (12.7 mm).
2. Long Edges: Tapered.

D. Impact-Resistant Gypsum Board: ASTM C 1396/C 1396M gypsum board, tested according to ASTM C 1629/C 1629M.

1. Products:
 a. Continental Building Products, LLC; Protecta HIR 300.

2. Core: 5/8 inch (15.9 mm), Type X.
3. Surface Abrasion: ASTM C 1629/C 1629M, meets or exceeds Level 3 requirements.
4. Indentation: ASTM C 1629/C 1629M, meets or exceeds Level 1 requirements.
8. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.4 TILE BACKING PANELS

A. Glass-Mat, Water-Resistant Backing Board: ASTM C 1178/C 1178M, with manufacturer's standard edges.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corporation; GlasRoc Tile Backer.
 b. Georgia-Pacific Building Products; DensShield Tile Backer.
 c. National Gypsum Company; eXP Tile Backer.
 d. Temple-Inland Building Products by Georgia-Pacific; Green Glass Tilebacker.
2. Core: 5/8 inch (15.9 mm), Type X.
3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.5 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.

1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc.
2. Shapes:
 a. Cornerbead.
 b. LC-Bead: J-shaped; exposed long flange receives joint compound.
 c. Expansion (control) joint.

2.6 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:

1. Interior Gypsum Board: Paper.
2. Tile Backing Panels: As recommended by panel manufacturer.

C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.

1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
3. Fill Coat: For second coat, use setting-type, sandable topping compound.
4. Finish Coat: For third coat, use setting-type, sandable topping compound.

D. Joint Compound for Tile Backing Panels:
1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.

2.7 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer’s written instructions.

B. Laminating Adhesive: Adhesive or joint compound recommended for directly adhering gypsum panels to continuous substrate.

1. Laminating adhesive shall have a VOC content of 50 g/L or less).

C. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.

1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.

D. Sound-Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.

1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.
2. Thickness: 3-1/2 inches (89 mm) unless indicated otherwise.

PART 3 - EXECUTION

3.1 APPLYING PANELS

A. General: Comply with ASTM C 840.

1. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
2. Form control and expansion joints with space between edges of adjoining gypsum panels.
3. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 a. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 b. Fit gypsum panels around ducts, pipes, and conduits.
 c. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.
4. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
5. For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer’s written instructions.
6. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.
7. **STC-Rated Assemblies:** Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written instructions for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.

8. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

B. Install interior gypsum board in the following locations:

1. **Type X:** Vertical surfaces unless otherwise indicated.
2. **Ceiling Type:** Ceiling surfaces.
3. **Impact-Resistant Type:** All locations within 8 feet (2.4 m) of floor and other locations indicated on Drawings.
4. **Tile Backing Panels:** Locations to receive tile.

C. Single-Layer Application:

1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
3. **Fastening Methods:** Apply gypsum panels to supports with steel drill screws.

D. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written instructions and temporarily brace or fasten gypsum panels until fastening adhesive has set.

E. Applying Tile Backing Panels:

1. **Glass-Mat, Water-Resistant Backing Panels:** Comply with manufacturer's written installation instructions and install at locations indicated to receive tile. Install with 1/4-inch (6.4-mm) gap where panels abut other construction or penetrations.
2. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.

F. Installing Trim Accessories: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.

1. **Control Joints:** Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.
2. **Interior Trim:** Install in the following locations:
 a. **Cornerbead:** Use at outside corners.
 b. **LC-Bead:** Use at exposed panel edges.
3.2 FINISHING GYPSUM BOARD

A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Panels that are substrate for tile.
 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 09 9123 “Interior Painting.”

3.3 PROTECTION

A. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

B. Remove and replace panels that are wet, moisture damaged, and mold damaged.

END OF SECTION 09 2900
PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes acoustical panels and exposed suspension systems for interior ceilings.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
 A. Research reports.
 B. Evaluation Reports: For each acoustical panel ceiling suspension system, from ICC-ES.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance data.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Acoustical Ceiling Units: Full-size panels equal to 2 percent of quantity installed.
 2. Hold-Down Clips: Equal to 2 percent of quantity installed.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Deliver acoustical panels, suspension-system components, and accessories to Project site and store them in a fully enclosed, conditioned space where they will be protected against damage from moisture, humidity, temperature extremes, direct sunlight, surface contamination, and other causes.
 B. Before installing acoustical panels, permit them to reach room temperature and a stabilized moisture content.

1.7 FIELD CONDITIONS
 A. Environmental Limitations: Do not install acoustical panel ceilings until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, work above ceilings is complete, and ambient
temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: Class A according to ASTM E 1264.

2.2 ACOUSTICAL PANELS
A. Acoustic Panel Ceiling (Refer to Material Selection Schedule): Provide manufacturer's standard panels complying with Type and Form: Type IV, mineral base with membrane-faced overlay; Form 2, water felted; with factory-applied paint on face according to ASTM E 1264 and, pattern, acoustical rating, and light reflectance unless otherwise indicated.

2.3 METAL SUSPENSION SYSTEM
A. Metal Suspension-System Standard: Provide manufacturer's standard, direct-hung, metal suspension system and accessories according to ASTM C 635/C 635M and designated by type, structural classification, and finish indicated.
 1. High-Humidity Finish: Where indicated, provide coating tested and classified for "severe environment performance" according to ASTM C 635/C 635M.
B. Wide-Face, Capped, Double-Web, Steel Suspension System (Type-1): Main and cross runners roll formed from cold-rolled steel sheet; prepainted, electrolytically zinc coated, or hot-dip galvanized, G30 (Z90) coating designation; with prefinished 15/16-inch- (24-mm-) wide metal caps on flanges.
 1. Products: Subject to compliance with requirements, provide one of the following:
 b. CertainTeed Corp.; 15/16 inch Classic Hook System.
 c. Rockfon (Roxul Inc.); Snap Grid 200.
 d. USG Interiors, Inc.; Subsidiary of USG Corporation; Donn DX.
 3. End Condition of Cross Runners: Butt-edge type.
 5. Cap Material: Cold-rolled steel.
 6. Cap Finish: Painted to match color of acoustical unit.
2.4 ACCESSORIES

A. Attachment Devices: Size for five times the design load indicated in ASTM C 635/C 635M, Table 1, "Direct Hung," unless otherwise indicated. Comply with seismic design requirements.

B. Wire Hangers, Braces, and Ties: Provide wires as follows:
 2. Size: Wire diameter sufficient for its stress at three times hanger design load (ASTM C 635/C 635M, Table 1, "Direct Hung") will be less than yield stress of wire, but not less than 0.106-inch- (2.69-mm-) diameter wire.

C. Hanger Rods: Mild steel, zinc coated or protected with rust-inhibitive paint.

D. Hold-Down Clips: Manufacturer's standard hold-down.

2.5 METAL EDGE MOLDINGS AND TRIM

A. Roll-Formed, Sheet-Metal Edge Moldings and Trim: Type and profile indicated or, if not indicated, manufacturer's standard moldings for edges and penetrations that comply with seismic design requirements; formed from sheet metal of same material, finish, and color as that used for exposed flanges of suspension-system runners.
 1. Edge moldings shall fit acoustical panel edge details and suspension systems indicated and match width and configuration of exposed runners unless otherwise indicated.
 2. For circular penetrations of ceiling, provide edge moldings fabricated to diameter required to fit penetration exactly.
 3. Provide trim cover pieces fabricated for inside and outside corners appropriate for adjacent construction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Measure each ceiling area and establish layout of acoustical panels to balance border widths at opposite edges of each ceiling. Avoid using less-than-half-width panels at borders unless otherwise indicated.

B. Layout openings for penetrations centered on the penetrating items.

3.2 INSTALLATION

A. Install acoustical panel ceilings according to ASTM C 636/C 636M and manufacturer's written instructions.

B. Suspend ceiling hangers from building's structural members and as follows:
 1. Install hangers plumb and free from contact with insulation or other objects within ceiling plenum that are not part of supporting structure or of ceiling suspension system.
2. Splay hangers only where required to miss obstructions; offset resulting horizontal forces by bracing, countersplaying, or other equally effective means.

3. Where width of ducts and other construction within ceiling plenum produces hanger spacings that interfere with location of hangers at spacings required to support standard suspension-system members, install supplemental suspension members and hangers in form of trapezes or equivalent devices.

4. Secure wire hangers to ceiling-suspension members and to supports above with a minimum of three tight turns. Connect hangers directly to structure or to inserts, eye screws, or other devices that are secure and appropriate for substrate and that will not deteriorate or otherwise fail due to age, corrosion, or elevated temperatures.

5. Secure flat, angle, channel, and rod hangers to structure, including intermediate framing members, by attaching to inserts, eye screws, or other devices that are secure and appropriate for both the structure to which hangers are attached and the type of hanger involved. Install hangers in a manner that will not cause them to deteriorate or fail due to age, corrosion, or elevated temperatures.

6. Do not support ceilings directly from permanent metal forms or floor deck. Fasten hangers to cast-in-place hanger inserts, postinstalled mechanical or adhesive anchors, or power-actuated fasteners that extend through forms into concrete.

7. When steel framing does not permit installation of hanger wires at spacing required, install carrying channels or other supplemental support for attachment of hanger wires.

8. Do not attach hangers to steel deck tabs.

9. Do not attach hangers to steel roof deck. Attach hangers to structural members.

10. Space hangers not more than 48 inches (1200 mm) o.c. along each member supported directly from hangers unless otherwise indicated; provide hangers not more than 8 inches (200 mm) from ends of each member.

11. Size supplemental suspension members and hangers to support ceiling loads within performance limits established by referenced standards.

C. Install edge moldings and trim of type indicated at perimeter of acoustical ceiling area and where necessary to conceal edges of acoustical panels.

1. Do not use exposed fasteners, including pop rivets, on moldings and trim.

D. Install suspension-system runners so they are square and securely interlocked with one another. Remove and replace dented, bent, or kinked members.

E. Install acoustical panels with undamaged edges and fit accurately into suspension-system runners and edge moldings. Scribe and cut panels at borders and penetrations to provide precise fit.

1. Arrange directionally patterned acoustical panels as follows:
 a. Install panels with pattern running in one direction parallel to long axis of space.

2. For square-edged panels, install panels with edges fully hidden from view by flanges of suspension-system runners and moldings.

3. Install hold-down clips within 20 ft (6.1 m) of exterior doors and in areas indicated; space according to panel manufacturer's written instructions unless otherwise indicated.

END OF SECTION 09 5113
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Resilient sheet flooring.
 2. Resilient tile flooring.

B. Related Sections:
 1. Section 09 6513 "Resilient Base and Accessories" for resilient base, reducer strips, and other accessories installed with resilient floor coverings.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Retain "Shop Drawings" Paragraph below if required.

C. Shop Drawings: For each type of resilient sheet flooring.

D. Include flooring layouts, locations of seams, edges, columns, doorways, enclosing partitions, built-in furniture, cabinets, and cutouts.

E. Show details of special patterns.

F. Samples for Verification: For each type of resilient flooring, in manufacturer's standard size, but not less than 6-by-9-inch (150-by-230-mm) sections of each color, texture, and pattern required.

 1. For heat-welding bead, manufacturer's standard-size Samples, but not less than 9 inches (230 mm) long, of each color required.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.
1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Resilient Sheet Flooring: Furnish not less than 10 linear feet (3 linear m) for every 500 linear feet (150 linear m) or fraction thereof, in roll form and in full roll width for each type, color, and pattern of flooring installed.

 2. Floor Tile: Furnish one box for every 50 boxes or fraction thereof, of each type, color, and pattern of floor tile installed.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are competent in techniques required by manufacturer for resilient flooring installation and seaming method indicated.

 1. Engage an installer who employs workers for this Project who are trained or certified by resilient sheet flooring manufacturer for installation techniques required.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store resilient flooring and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C).

 1. Store rolls upright.
 2. Store floor tiles on flat surfaces.

1.8 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F (21 deg C) or more than 85 deg F (29 deg C), in spaces to receive resilient flooring during the following periods:

 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F (13 deg C) or more than 95 deg F (35 deg C).

C. Close spaces to traffic during resilient flooring installation.

D. Close spaces to traffic for 48 hours after resilient flooring installation.

E. Install resilient flooring after other finishing operations, including painting, have been completed.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Test-Response Characteristics: For resilient flooring, as determined by testing identical products according to ASTM E 648 or NFPA 253 by a qualified testing agency.
 1. Critical Radiant Flux Classification: Class I, not less than 0.45 W/sq. cm.

2.2 RESILIENT FLOORING

A. Products: Subject to compliance with requirements, provide products indicated on Drawings.

2.3 RESILIENT SHEET FLOORING

A. Sheet Vinyl Flooring (SV-1): As follows:
 1. Product: Subject to compliance with requirements, provide materials as indicated on the material selection schedule.
 2. Wearing Surface: Smooth
 3. Sheet Width: 6'-7'

B. Luxury Vinyl Floor Tile (LVT-1) As follows:

C. Products: Subject to compliance with requirements, provide products indicated on the material selection schedule.

2.4 INSTALLATION MATERIALS

A. Trowelable Leveling and Patching Compounds: Latex-modified, portland-cement-based or blended hydraulic-cement-based formulation provided or approved by resilient sheet flooring manufacturer for applications indicated.

C. Adhesives: Water-resistant type recommended by flooring and adhesive manufacturers to suit resilient sheet flooring and substrate conditions indicated.

PART 3 - EXECUTION

3.1 PREPARATION

A. Prepare substrates according to resilient flooring manufacturer’s written instructions to ensure adhesion of resilient sheet flooring.
B. Concrete Substrates: Prepare according to ASTM F 710.

1. Verify that substrates are dry and free of curing compounds, sealers, and hardeners.
2. Remove substrate coatings and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, using mechanical methods recommended by resilient flooring manufacturer. Do not use solvents.
3. Alkalinity and Adhesion Testing: Perform tests recommended by resilient flooring manufacturer. Proceed with installation only after substrate alkalinity falls within range on pH scale recommended by manufacturer in writing, but not less than 5 or more than 9 pH.
4. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft. (304.8 sq. m), and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 a. Relative Humidity Test: Using in-situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.

C. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.

D. Existing Buildings: Provide trowel-applied underlayment over all surfaces to receive resilient flooring where existing flooring is removed.

E. Do not install resilient flooring until materials are the same temperature as space where they are to be installed.

1. At least 48 hours in advance of installation, move flooring and installation materials into spaces where they will be installed.

F. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient flooring.

3.2 RESILIENT FLOORING INSTALLATION

A. General: Comply with manufacturer's written instructions for installing resilient flooring.

1. Scribe and cut resilient flooring to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
2. Extend resilient flooring into toe spaces, door reveals, closets, and similar openings.
3. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on resilient flooring as marked on substrates. Use chalk or other nonpermanent marking device.
4. Install resilient flooring on covers for telephone and electrical ducts and similar items in installation areas. Maintain overall continuity of color and pattern between pieces of flooring installed on covers and adjoining flooring. Tightly adhere flooring edges to substrates that abut covers and to cover perimeters.
5. Adhere resilient flooring to substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
6. Seamless Installation:
 a. Heat-Welded Seams: Comply with ASTM F 1516. Rout joints and heat weld with welding bead to fuse sections permanently into a seamless flooring installation. Prepare, weld, and finish seams to produce surfaces flush with adjoining flooring surfaces.
b. Chemically Bonded Seams: Bond seams with chemical-bonding compound to fuse sections permanently into a seamless flooring installation. Prepare seams and apply compound to produce tightly fitted seams without gaps, overlays, or excess bonding compound on flooring surfaces.

B. Resilient Sheet Flooring: Unroll resilient sheet flooring and allow it to stabilize before cutting and fitting.

1. Lay out resilient sheet flooring as follows:
 a. Maintain uniformity of flooring direction.
 b. Minimize number of seams; place seams in inconspicuous and low-traffic areas, at least 6 inches (152 mm) away from parallel joints in flooring substrates.
 c. Match edges of flooring for color shading at seams.
 d. Avoid cross seams.

C. Resilient Tile: Lay out floor tiles from center marks established with principal walls, discounting minor offsets, so tiles at opposite edges of room are of equal width. Adjust as necessary to avoid using cut widths that equal less than one-half tile at perimeter.

1. Lay tiles in pattern indicated.
2. Match floor tiles for color and pattern by selecting tiles from cartons in the same sequence as manufactured and packaged, if so numbered. Discard broken, cracked, chipped, or deformed tiles.
 a. Lay tiles in pattern of colors and sizes indicated.

3.3 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient flooring.

B. Perform the following operations immediately after completing resilient flooring installation:

1. Remove adhesive and other blemishes from surfaces.
2. Sweep and vacuum surfaces thoroughly.
3. Damp-mop surfaces to remove marks and soil.

C. Cover resilient flooring until Substantial Completion.

END OF SECTION 09 6500
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Resilient base.
 2. Resilient molding accessories.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Furnish not less than 10 linear feet (3 linear m) for every 500 linear feet (150 linear m) or fraction thereof, of each type, color, pattern, and size of resilient product installed.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Store resilient products and installation materials in dry spaces protected from the weather, with ambient temperatures maintained within range recommended by manufacturer, but not less than 50 deg F (10 deg C) or more than 90 deg F (32 deg C).

1.5 FIELD CONDITIONS

A. Maintain ambient temperatures within range recommended by manufacturer, but not less than 70 deg F (21 deg C) or more than 95 deg F (35 deg C), in spaces to receive resilient products during the following time periods:

 1. 48 hours before installation.
 2. During installation.
 3. 48 hours after installation.

B. After installation and until Substantial Completion, maintain ambient temperatures within range recommended by manufacturer, but not less than 55 deg F (13 deg C) or more than 95 deg F (35 deg C).

C. Install resilient products after other finishing operations, including painting, have been completed.
PART 2 - PRODUCTS

2.1 RESILIENT BASE
 A. Thermoplastic-Rubber Base (Refer to Material Selection Schedule): ASTM F 1861, Type TP (rubber, thermoplastic), Group I (solid, homogeneous):

2.2 RESILIENT MOLDING ACCESSORIES
 A. Resilient Molding Accessory:
 1. Manufacturer: Same manufacturer as base.
 2. Resilient Moldings: Transition strips as required for terminations and transitions of flooring types. Material and color shall match resilient base in room installed.

2.3 INSTALLATION MATERIALS
 A. Trowelable Leveling and Patching Compounds: Latex-modified, portland cement based or blended hydraulic-cement-based formulation provided or approved by resilient-product manufacturer for applications indicated.
 B. Adhesives: Water-resistant type recommended by resilient-product manufacturer for resilient products and substrate conditions indicated.
 1. Adhesives shall have a VOC content of 50 g/L or less.

PART 3 - EXECUTION

3.1 PREPARATION
 A. Prepare substrates according to manufacturer’s written instructions to ensure adhesion of resilient products.
 B. Fill cracks, holes, and depressions in substrates with trowelable leveling and patching compound; remove bumps and ridges to produce a uniform and smooth substrate.
 C. Do not install resilient products until they are the same temperature as the space where they are to be installed.
 1. At least 48 hours in advance of installation, move resilient products and installation materials into spaces where they will be installed.
 D. Immediately before installation, sweep and vacuum clean substrates to be covered by resilient products.
3.2 RESILIENT BASE INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient base.

B. Apply resilient base to walls, columns, pilasters, casework and cabinets in toe spaces, and other permanent fixtures in rooms and areas where base is required.

C. Install resilient base in lengths as long as practical without gaps at seams and with tops of adjacent pieces aligned.

D. Tightly adhere resilient base to substrate throughout length of each piece, with base in continuous contact with horizontal and vertical substrates.

E. Do not stretch resilient base during installation.

F. On masonry surfaces or other similar irregular substrates, fill voids along top edge of resilient base with manufacturer's recommended adhesive filler material.

G. Preformed Corners: Install preformed corners before installing straight pieces.

H. Job-Formed Corners:

1. Outside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length.
 a. Form without producing discoloration (whitening) at bends.

2. Inside Corners: Use straight pieces of maximum lengths possible and form with returns not less than 3 inches (76 mm) in length.
 a. Miter or cope corners to minimize open joints.

3.3 RESILIENT ACCESSORY INSTALLATION

A. Comply with manufacturer's written instructions for installing resilient accessories.

B. Resilient Molding Accessories: Butt to adjacent materials and tightly adhere to substrates throughout length of each piece. Install reducer strips at edges of floor covering that would otherwise be exposed.

3.4 CLEANING AND PROTECTION

A. Comply with manufacturer's written instructions for cleaning and protecting resilient products.

B. Cover resilient products subject to wear and foot traffic until Substantial Completion.

END OF SECTION 09 6513
SECTION 09 6813 - TILE CARPETING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes modular carpet tile.

B. Related Requirements:

1. Section 09 6513 "Resilient Base and Accessories" for resilient wall base and accessories installed with carpet tile.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each of the following products and for each color and texture required. Label each Sample with manufacturer's name, material description, color, pattern, and designation indicated on Drawings and in schedules.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Material Certificates: Signed by manufacturer certifying that materials conform to the requirements.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Carpet Tile: Full-size units equal to 5 percent of amount installed for each type indicated, but not less than 10 sq. yd. (8.3 sq. m).

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is certified by the Floor Covering Installation Board or who can demonstrate compliance with its certification program requirements.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Comply with CRI’s "CRI Carpet Installation Standard."

1.8 FIELD CONDITIONS

A. Comply with CRI’s "CRI Carpet Installation Standard" for temperature, humidity, and ventilation limitations.

B. Environmental Limitations: Do not deliver or install carpet tiles until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and ambient temperature and humidity conditions are maintained at levels planned for building occupants during the remainder of the construction period.

C. Do not install carpet tiles over concrete slabs until slabs have cured and are sufficiently dry to bond with adhesive and concrete slabs have pH range recommended by carpet tile manufacturer.

1.9 WARRANTY

A. Special Warranty for Carpet Tiles: Manufacturer agrees to repair or replace components of carpet tile installation that fail in materials or workmanship within specified warranty period.

1. Warranty does not include deterioration or failure of carpet tile due to unusual traffic, failure of substrate, vandalism, or abuse.

2. Failures include, but are not limited to, the following:
 a. More than 10 percent edge raveling, snags, and runs.
 b. Dimensional instability.
 c. Excess static discharge.
 d. Loss of tuft-bind strength.
 e. Loss of face fiber.
 f. Delamination.

PART 2 - PRODUCTS

2.1 CARPET TILE

A. Carpet Tile (Refer to Material Selection Schedule): As follows:

1. Performance Characteristics:
 a. Sustainable Product Certification: Gold level certification according to ANSI/NSF 140.
 b. Emissions: Provide carpet tile that complies with testing and product requirements of CRI's "Green Label Plus" testing program.
 c. Electrostatic Propensity: Less than 3.5 kV according to AATCC 134.
 d. Soil-Resistance Treatment per manufacturer.
 e. Critical Radiant Flux Classification: Not less than 0.45 W/sq. cm according to NFPA 253.
2.2 INSTALLATION ACCESSORIES

A. Trowelable Leveling and Patching Compounds: Latex-modified, hydraulic-cement-based formulation provided or recommended by carpet tile manufacturer.

B. Adhesives: Water-resistant, mildew-resistant, nonstaining, pressure-sensitive type to suit products and subfloor conditions indicated, that comply with flammability requirements for installed carpet tile, and are recommended by carpet tile manufacturer for releasable installation.

1. VOC Content: 50 g/L or less.

PART 3 - EXECUTION

3.1 PREPARATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for maximum moisture content, alkalinity range, installation tolerances, and other conditions affecting carpet tile performance.

1. Concrete Slabs:
 a. Moisture Testing: Perform tests so that each test area does not exceed 1000 sq. ft. (304.8 sq. m), and perform no fewer than three tests in each installation area and with test areas evenly spaced in installation areas.
 1) Relative Humidity Test: Using in situ probes, ASTM F 2170. Proceed with installation only after substrates have a maximum 75 percent relative humidity level measurement.
 2) Perform additional moisture tests recommended in writing by adhesive and carpet tile manufacturers. Proceed with installation only after substrates pass testing.

2. Proceed with installation only after unsatisfactory conditions have been corrected.

B. Preparation: General: Comply with CRI's "CRI Carpet Installation Standards" and with carpet tile manufacturer's written installation instructions for preparing substrates indicated to receive carpet tile.

1. Use trowelable leveling and patching compounds, according to manufacturer's written instructions, to fill cracks, holes, depressions, and protrusions in substrates. Fill or level cracks, holes and depressions 1/8 inch (3 mm) wide or wider, and protrusions more than 1/32 inch (0.8 mm) unless more stringent requirements are required by manufacturer's written instructions.

2. Concrete Substrates: Remove coatings, including curing compounds, and other substances that are incompatible with adhesives and that contain soap, wax, oil, or silicone, without using solvents. Use mechanical methods recommended in writing by adhesive and carpet tile manufacturers.

3. Broom and vacuum clean substrates to be covered immediately before installing carpet tile.

3.2 INSTALLATION

A. General: Comply with CRI's "CRI Carpet Installation Standard," Section 18, "Modular Carpet" and with carpet tile manufacturer's written installation instructions.

B. Installation Method: Glue down; install every tile with full-spread, releasable, pressure-sensitive adhesive.
1. Installation Pattern: Refer to Material Selection Schedule.

C. Maintain dye-lot integrity. Do not mix dye lots in same area.

D. Maintain pile-direction patterns recommended in writing by carpet tile manufacturer.

E. Cut and fit carpet tile to butt tightly to vertical surfaces, permanent fixtures, and built-in furniture including cabinets, pipes, outlets, edgings, thresholds, and nosings. Bind or seal cut edges as recommended by carpet tile manufacturer.

F. Extend carpet tile into toe spaces, door reveals, closets, open-bottomed obstructions, removable flanges, alcoves, and similar openings.

G. Maintain reference markers, holes, and openings that are in place or marked for future cutting by repeating on carpet tile as marked on subfloor. Use nonpermanent, nonstaining marking device.

H. Install pattern parallel to walls and borders.

I. Cleaning: Perform the following operations immediately after installing carpet tile:

 1. Remove excess adhesive and other surface blemishes using cleaner recommended by carpet tile manufacturer.

 2. Remove yarns that protrude from carpet tile surface.

J. Protect installed carpet tile to comply with CRI's "CRI Carpet Installation Standard," Section 20, "Protecting Indoor Installations."

K. Protect carpet tile against damage from construction operations and placement of equipment and fixtures during the remainder of construction period. Use protection methods indicated or recommended in writing by carpet tile manufacturer.

END OF SECTION 09 6813
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes surface preparation and the application of paint systems on interior substrates.

B. Related Requirements:
 1. Section 05 1200 "Structural Steel Framing" for shop priming structural steel.
 2. Section 05 5000 "Metal Fabrications" for shop priming metal fabrications.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.
 1. Include Printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.

B. Samples for Verification: For each type of paint system and in each color and gloss of topcoat.
 1. Submit Samples on rigid backing, 8 inches (200 mm) square.
 2. Apply coats on Samples in steps to show each coat required for system.
 3. Label each coat of each Sample.
 4. Label each Sample for location and application area.

C. Product List: Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.3 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Paint: 5 percent, but not less than 1 gal. (3.8 L) of each material and color applied.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F (7 deg C).
 1. Maintain containers in clean condition, free of foreign materials and residue.
 2. Remove rags and waste from storage areas daily.
1.5 FIELD CONDITIONS

A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F (10 and 35 deg C).

B. Do not apply paints when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3 deg C) above the dew point; or to damp or wet surfaces.

PART 2 - PRODUCTS

2.1 PAINT, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:

1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.

2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.

C. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction.

D. Colors: Match colors indicated in a color schedule.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:

1. Concrete: 12 percent.
2. Masonry (Clay and CMUs): 12 percent.
3. Gypsum Board: 12 percent.

C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.

1. Gypsum Board Substrates: Verify that finishing compound is sanded smooth.

D. Proceed with coating application only after unsatisfactory conditions have been corrected.

1. Application of coating indicates acceptance of surfaces and conditions.
3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and paint systems indicated.

B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.

1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection if any.

C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
2. Concrete Substrates: Remove release agents, curing compounds, efflorescence, and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces to be painted exceeds that permitted in manufacturer's written instructions.
3. Masonry Substrates: Remove efflorescence and chalk. Do not paint surfaces if moisture content or alkalinity of surfaces or mortar joints exceeds that permitted in manufacturer's written instructions.
4. Steel Substrates: Remove rust, loose mill scale, and shop primer, if any. Clean using methods recommended in writing by paint manufacturer.
5. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
6. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.
7. Cotton or Canvas Insulation Covering Substrates: Remove dust, dirt, and other foreign material that might impair bond of paints to substrates.

3.3 APPLICATION

A. Paint exposed surfaces, except where these Specifications indicate that the surface or material is not to be painted or is to remain natural. If an item or a surface is not specifically mentioned, paint the item or surface the same as similar adjacent materials or surfaces. If a color of finish is not indicated, Architect will select from standard colors and finishes available.

1. Existing Buildings: Where new finishes are indicated in existing spaces, paint all existing previously painted items including but not limited to, doors and frames, fire extinguisher cabinets, mechanical devices, electrical panels, and similar items.

B. Apply paints according to manufacturer's written instructions and to recommendations in "MPI Manual."

1. Use applicators and techniques suited for paint and substrate indicated.
2. Paint surfaces behind movable equipment and furniture same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed equipment or furniture with prime coat only.
3. Paint front and backsides of access panels, removable or hinged covers, and similar hinged items to match exposed surfaces.

4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.

5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.

C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.

D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.

E. Painting Fire Suppression, Plumbing, HVAC, Electrical, Communication, and Electronic Safety and Security Work:

1. Paint the following work where exposed in equipment rooms:
 a. Tanks that do not have factory-applied final finishes.
 b. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.

2. Paint the following work where exposed in occupied spaces:
 a. Equipment, including panelboards.
 b. Uninsulated metal piping.
 c. Uninsulated plastic piping.
 d. Pipe hangers and supports.
 e. Metal conduit.
 f. Plastic conduit.
 g. Duct, equipment, and pipe insulation having cotton or canvas insulation covering or other paintable jacket material.
 h. Other items as directed by Architect.

3. Paint portions of internal surfaces of metal ducts, without liner, behind air inlets and outlets that are visible from occupied spaces flat black.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Owner may engage the services of a qualified testing and inspecting agency to inspect and test paint for dry film thickness.

1. Contractor shall touch up and restore painted surfaces damaged by testing.
2. If test results show that dry film thickness of applied paint does not comply with paint manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with paint manufacturer's written recommendations.
3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, repairing, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.

D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 INTERIOR PAINTING SCHEDULE

A. Concrete Substrates, Nontraffic Surfaces:

1. Institutional Low-odor/VOC Latex System MPI INT 3.1M: Provide the following on ceilings unless indicated otherwise:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI #149.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 3.
 c. Topcoat: Latex, interior, institutional low odor/VOC, flat (MPI Gloss Level 1), MPI #143.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 4.

B. CMU Substrates:

1. Institutional Low-odor/VOC Latex System MPI INT 4.2E:
 1) VOC Content: E Range of E3.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 4.5.

C. Steel Substrates:

1. Water-Based Light Industrial Coating System MPI INT 5.1B:
 1) VOC Content: E Range of E2.
 2) Environmental Performance Rating: EPR 2.
 c. Topcoat: Light industrial coating, interior, water based, semi-gloss (MPI Gloss Level 5), MPI #153.
 1) VOC Content: E Range of E2.
 2) Environmental Performance Rating: EPR 2.
2. Water-Based Dry-Fall System MPI INT 5.1CC:
 a. Prime Coat: Shop primer specified in Section where substrate is specified.
 b. Topcoat: Dry fall, latex, flat, MPI #118.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 3.

D. Galvanized-Metal Substrates:

1. Water-Based Light Industrial Coating System MPI INT 5.3K:
 a. Prime Coat: Primer, galvanized, water based, MPI #134.
 1) VOC Content: E Range of E2.
 2) Environmental Performance Rating: EPR 2.
 c. Topcoat: Light industrial coating, interior, water based, semi-gloss (MPI Gloss Level 5), MPI #153.
 1) VOC Content: E Range of E2.
 2) Environmental Performance Rating: EPR 2.

E. Gypsum Board Substrates:

1. Institutional Low-odor/VOC Latex System MPI INT 9.2M: Provide the following on ceilings unless indicated otherwise:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI #149.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 3.
 c. Topcoat: Latex, interior, institutional low odor/VOC, flat (MPI Gloss Level 1), MPI #143.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 4.

2. Institutional Low-odor/VOC Latex System MPI INT 9.2M: Provide the following on walls unless indicated otherwise:
 a. Prime Coat: Primer sealer, interior, institutional low odor/VOC, MPI #149.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 3.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 4.5.

F. Cotton or Canvas and ASJ Insulation-Covering Substrates: Including pipe and duct coverings:

1. Institutional Low-odor/VOC Latex System MPI INT 10.1D:
 a. Prime Coat: Primer sealer, latex, interior, MPI #50.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 3.
 c. Topcoat: Latex, interior, institutional low odor/VOC, flat (MPI Gloss Level 1), MPI #143.
 1) VOC Content: E Range of E3.
 2) Environmental Performance Rating: EPR 4.
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes plastic-laminate countertops.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product, including panel products and high-pressure decorative laminate.

B. Shop Drawings: Show location of each item, dimensioned plans and elevations, large-scale details, attachment devices, and other components.

1. Show locations and sizes of cutouts and holes for plumbing fixtures, faucets, and other items installed in plastic-laminate countertops.

C. Samples for Initial Selection:

1. Countertop edge material.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For fabricator.

1.4 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom fabricate products similar to those required for this Project and whose products have a record of successful in-service performance.

B. Installer Qualifications: Fabricator of products.

1.5 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet work is complete, and HVAC system is operating and maintaining temperature and relative humidity at occupancy levels during the remainder of the construction period.

B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication, and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Established Dimensions: Where countertops are indicated to fit to other construction, establish dimensions for areas where countertops are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.
PART 2 - PRODUCTS

2.1 PLASTIC-LAMINATE COUNTERTOPS

A. Quality Standard: Unless otherwise indicated, comply with the "Architectural Woodwork Standards" for grades indicated for construction, installation, and other requirements.

B. Grade: Custom in accordance with AWI.

C. High-Pressure Decorative Laminate: NEMA LD 3, Grade HGS.

D. Colors, Patterns, and Finishes: Provide materials and products that result in colors and textures of exposed laminate surfaces complying with the following requirements:
 1. As indicated by manufacturer's designations on Drawings.

E. Edge Treatment: 3-mm PVC edging.

F. Core Material at Sinks: Particleboard made with exterior glue.

G. Core Thickness: 1-1/8 inch (29 mm).

H. Backer Sheet: Provide plastic-laminate backer sheet, NEMA LD 3, Grade BKL, on underside of countertop substrate.

2.2 WOOD MATERIALS

A. Wood Products: Provide materials that comply with requirements of referenced quality standard unless otherwise indicated.

B. Composite Wood and Agrifiber Products: Provide materials that comply with requirements of referenced quality standard for each type of woodwork and quality grade specified unless otherwise indicated.

2.3 MISCELLANEOUS MATERIALS

A. Adhesive for Bonding Plastic Laminate: Contact cement.
 1. Adhesive for Bonding Edges: Hot-melt adhesive or adhesive specified above for faces.

B. VOC Limits for Installation Adhesives and Sealants: Use products that comply with the following limits for VOC content when calculated according to 40 CFR 59, Subpart D (EPA Method 24):
 1. Wood Glues: 30 g/L.
 2. Multipurpose Construction Adhesives: 70 g/L.
 3. Structural Wood Member Adhesive: 140 g/L.
 4. Architectural Sealants: 250 g/L.
2.4 FABRICATION

A. Fabricate countertops to dimensions, profiles, and details indicated. Provide front and end overhang of 1 inch (25 mm) over base cabinets.

B. Complete fabrication, including assembly, to maximum extent possible before shipment to Project site. Disassemble components only as necessary for shipment and installation. Where necessary for fitting at site, provide ample allowance for scribing, trimming, and fitting.

C. Shop cut openings to maximum extent possible to receive appliances, plumbing fixtures, electrical work, and similar items. Locate openings accurately and use templates or roughing-in diagrams to produce accurately sized and shaped openings. Sand edges of cutouts to remove splinters and burrs.

1. Seal edges of openings in countertops with a coat of varnish.

PART 3 - EXECUTION

3.1 PREPARATION

A. Before installation, condition countertops to average prevailing humidity conditions in installation areas.

3.2 INSTALLATION

A. Grade: Install countertops to comply with same grade as item to be installed.

B. Assemble countertops and complete fabrication at Project site to the extent that it was not completed in the shop.

1. Provide cutouts for appliances, plumbing fixtures, electrical work, and similar items.

2. Seal edges of cutouts by saturating with varnish.

C. Field Jointing: Where possible, make in the same manner as shop jointing, using dowels, splines, adhesives, and fasteners recommended by manufacturer. Prepare edges to be joined in shop so Project-site processing of top and edge surfaces is not required. Locate field joints where shown on Shop Drawings.

1. Secure field joints in plastic-laminate countertops with concealed clamping devices located within 6 inches (150 mm) of front and back edges and at intervals not exceeding 24 inches (600 mm). Tighten according to manufacturer's written instructions to exert a constant, heavy-clamping pressure at joints.

D. Install countertops level, plumb, true, and straight. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches (3 mm in 2400 mm).

E. Scribe and cut countertops to fit adjoining work, refinish cut surfaces, and repair damaged finish at cuts.

F. Countertops: Anchor securely by screwing through corner blocks of base cabinets or other supports into underside of countertop.
1. Install countertops with no more than 1/8 inch in 96-inch (3 mm in 2400-mm) sag, bow, or other variation from a straight line.
2. Secure backsplashes to tops with concealed metal brackets at 16 inches (400 mm) o.c. and to walls with adhesive.
3. Seal junctures of tops, splashes, and walls with mildew-resistant silicone sealant or another permanently elastic sealing compound recommended by countertop material manufacturer.

END OF SECTION 12 3623.13
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Solid surface material countertops.
 2.

B. Related Requirements:
 1. Section 06 4116 “Plastic-Laminate Faced Architectural Cabinets”
 2. Section 22 4000 "Plumbing Fixtures" for sinks and plumbing fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For solid surface materials.

B. Shop Drawings: For countertops. Show materials, finishes, edge and backsplash profiles, methods of joining, and cutouts for plumbing fixtures.
 1. Show locations and details of joints.
 2. Show direction of directional pattern, if any.

C. Samples: For each material that requires color selection.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For solid surface material countertops to include in maintenance manuals. Include Product Data for care products used or recommended by Installer and names, addresses, and telephone numbers of local sources for products.

1.4 QUALITY ASSURANCE

A. Fabricator Qualifications: Shop that employs skilled workers who custom-fabricate countertops similar to that required for this Project, and whose products have a record of successful in-service performance.

B. Installer Qualifications: An authorized representative who is trained and approved by manufacturer for installation of units required for this Project.
1.5 FIELD CONDITIONS

A. Environmental Limitations: Do not deliver or install countertops until building is enclosed, wet-work is complete, and HVAC system is operating and maintaining temperature and relative humidity at levels planned for building occupants during the remainder of the construction period.

B. Field Measurements: Where countertops are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Established Dimensions: Where countertops are indicated to fit to other construction, establish dimensions for areas where countertops are to fit. Provide allowance for trimming at site, and coordinate construction to ensure that actual dimensions correspond to established dimensions.

PART 2 - PRODUCTS

2.1 SOLID SURFACE COUNTERTOP MATERIALS

A. Solid Surface Material: Homogeneous-filled plastic resin complying with ICPA SS-1.

1. Product: As noted on Material Selection Schedule located on drawings.

B. Particleboard: ANSI A208.1, Grade M-2-Exterior Glue.

2.2 COUNTERTOP FABRICATION

A. Fabricate countertops according to solid surface material manufacturer's written instructions and to the AWI/AWMAC/WI's "Architectural Woodwork Standards."

1. Grade: Custom.

B. Configuration:

1. Front: Straight, slightly eased at top.
2. Backsplash: Straight, slightly eased at corner.

C. Countertops: 1/2-inch- (12 mm-) thick, solid surface material laminated to 3/4-inch- (19-mm-) thick particleboard with exposed edges built up with 1/2-inch- (12.7-mm-) thick, solid surface material.

D. Backsplashes: 1/2-inch- (12 mm-) thick, solid surface material.

E. Fabricate tops with shop-applied edges unless otherwise indicated. Comply with solid surface material manufacturer's written instructions for adhesives, sealers, fabrication, and finishing.

1. Fabricate with loose backsplashes for field assembly.

F. Joints: Fabricate countertops in sections for joining in field.
G. Cutouts and Holes:

2. Fittings: Drill countertops in shop for plumbing fittings, undercounter soap dispensers, and similar items.

2.3 INSTALLATION MATERIALS

A. Adhesive: Product recommended by solid surface material manufacturer.

B. Sealant: Comply with applicable requirements in Section 07 9200 "Joint Sealants."

C. Support Brackets: Fabricated from 2 by 2-inch (51 by 51-inch) "T"-shaped aluminum extrusions with manufacturer's powder-coat finish.

 1. Product: Similar to Rakks; EH-1818.
 2. Weight Capacity: 450 pounds per bracket.
 3. Mount to wall evenly spaced, not more than 36" O.C.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, with Installer present, for compliance with requirements for installation tolerances, location of framing and reinforcements, and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install countertops level to a tolerance of 1/8 inch in 8 feet (3 mm in 2.4 m), 1/4 inch (6 mm) maximum. Do not exceed 1/64-inch (0.4-mm) difference between planes of adjacent units.

B. Fasten countertops by screwing through corner blocks of base units into underside of countertop. Predrill holes for screws as recommended by manufacturer.

C. Bond joints with adhesive and draw tight as countertops are set. Mask areas of countertops adjacent to joints to prevent adhesive smears.

 1. Install metal splines in kerfs in countertop edges at joints where indicated. Fill kerfs with adhesive before inserting splines and remove excess immediately after adjoining units are drawn into position.
 2. Clamp units to temporary bracing, supports, or each other to ensure that countertops are properly aligned and joints are of specified width.
D. Install backsplashes and end splashes by adhering to wall and countertops with adhesive.

E. Complete cutouts not finished in shop. Mask areas of countertops adjacent to cutouts to prevent damage while cutting. Make cutouts to accurately fit items to be installed, and at right angles to finished surfaces unless beveling is required for clearance. Ease edges slightly to prevent snipping.
 1. Seal edges of cutouts in particleboard subtops by saturating with varnish.

F. Apply sealant to gaps at walls; comply with Section 07 9200 "Joint Sealants."

3.3 CLEANING

A. Repair or remove and replace defective work as directed on completion of installation.

B. Clean finished surfaces, touch up as required, and remove or refinish damaged or soiled areas to match original factory finish, as approved by Architect.

END OF SECTION 12 3661.16
SECTION 22 0500 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes the following:
 1. Piping materials and installation instructions common to most piping systems.
 2. Dielectric fittings.
 3. Sleeve-seal systems.
 4. Sleeves.
 5. Stack-sleeve fittings.
 7. Grout.
 8. Equipment installation requirements common to equipment sections.
 10. Concrete bases.
 11. Supports and anchorages.

1.2 ACTION SUBMITTALS
A. Product Data: For dielectric fittings.

1.3 QUALITY ASSURANCE
A. Provide plumbing systems, equipment, and materials in accordance with applicable codes and regulations, and with authorities having jurisdiction.

B. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

C. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels, and similar information needed for distinct identifications; adequately packaged and protected to
prevent damage during shipment, storage, handling, and up to substantial completion. Coordinate deliveries of mechanical materials and equipment to minimize construction site congestion.

1.5 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for plumbing installations.

B. Coordinate installation of required supporting devices and sleeves in structural components.

C. Coordinate requirements for access panels and doors for plumbing items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

1.6 PROJECT COMMISSIONING

A. Project has an independent commissioning authority (CxA). Contractors for this project shall meet CxA requirements and shall coordinate with and participate in commissioning activities.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

A. Refer to individual Division 22 piping Sections for special joining materials not listed below.

B. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

C. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

D. Solvent Cements for Joining Plastic Piping:

1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.3 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded end connections that match piping system materials.

1. Insulating Material: Suitable for system fluid, pressure, and temperature.
2.4 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Plastic.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.5 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.6 STACK-SLEEVE FITTINGS

A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.7 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Cast-Brass Type: With polished, chrome-plated or rough-brass finish and setscrew fastener.
C. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

D. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

E. Split-Casting Brass Type: With polished, chrome-plated or rough-brass finish and with concealed hinge and setscrew.

F. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed or exposed-rivet hinge, and spring-clip fasteners.

2.8 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.9 PLUMBING ROOF PENETRATIONS

A. Pipe Curbs for Single or Multiple Pipe Penetrations: Prefabricated heavy-gage galvanized steel or aluminum curb with mitered and welded corners, minimum 1 1/2 inch thick rigid fiberglass insulation adhered to inside walls, built-in cant and mounting flange for roof decks, wood nailer, and acrylic clad ABS plastic cover(s), PVC boot(s), and stainless steel clamps. Size as required to suit roof opening and piping. Overall minimum height shall be 12 inches above roof insulation. Pate or equivalent.

1. Provide curbs with level tops and bottoms to match roof slope.

B. Pipe Curbs for Single Pipe Penetrations: All roof pipe penetrations up to 10" O.D. shall be flashed and sealed using a Pate or equivalent pipe seal, consisting of a spun aluminum base having a minimum five inch roof surface flange, a stepped polyvinyl chloride boot to be secured to the base and the pipe with adjustable stainless steel clamps as furnished.

1. Provide curbs with bottoms to match roof slope.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump
sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

1. Drawings are diagrammatic with no attempt made to show every ell, tee, transition, fitting, or appurtenance. Provide installations that are complete in every detail, compliant with all applicable codes, and as required to provide a fully functional and operational system even though every item is not specifically indicated.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.

3.2 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and finished floors according to the following:

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
e. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated or rough-brass finish.
f. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated or rough-brass finish.

3.3 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
 1. Sleeves are not required for core-drilled holes.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 "Joint Sealants."

E. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.4 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 6200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-Barrier Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.5 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls Above Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves, galvanized-steel wall sleeves, or galvanized-steel-pipe sleeves.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves, galvanized-steel wall sleeve, or galvanized-steel-pipe sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 b. Piping NPS 6 (DN 150) and Larger: Stack-sleeve fittings.

5. Interior Partitions:
3.7 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

H. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Nonpressure Piping: Join according to ASTM D 2855.

I. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.

3.8 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2(DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2(DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Wet Piping Systems: Install dielectric unions, dielectric coupling, or dielectric nipple fittings to connect piping materials of dissimilar metals.
3.9 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Sequence, coordinate, and integrate installations of plumbing equipment.

B. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

C. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

D. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations.

E. Install equipment to allow right of way for piping installed at required slope.

F. Installing contractor shall bear all additional costs, including that of Architect/Engineer redesign and that of other trades, incurred as a result of installation of other than scheduled equipment.

G. Verify final equipment locations for roughing-in.

H. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.10 PAINTING

A. Painting of plumbing systems, equipment, and components is specified in Division 09 painting sections.

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.11 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 section for cast-in-place concrete.
3.12 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.13 GROUTING

A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
 1. Clean surfaces that will come into contact with grout.
 2. Provide forms as required for placement of grout.
 3. Avoid air entrapment during placement of grout.
 4. Place grout, completely filling equipment bases.
 5. Place grout on concrete bases and provide smooth bearing surface for equipment.
 6. Place grout around anchors.
 7. Cure placed grout.

3.14 INSTALLATION OF ACCESS DOORS

A. Where lay-in ceilings are used, the access to ceiling space is provided through the removable ceiling panels. Where access is required to valves, pipes, or other devices in spaces above non-removable ceilings or in chases, the Contractor requiring the access doors shall provide access doors. Access doors required in rated walls and ceiling shall bear the same rating. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."
 1. Set frames accurately in position and securely attached to supports, with face panels plumb and level in relation to adjacent finish surfaces.
 2. Adjust hardware and panels after installation for proper operation.

3.15 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 22 0500
SECTION 22 0513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer’s factory.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

B. For motors using variable frequency controller, motors to be designed for such application and suitable for use throughout speed range without overheating.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in plumbing equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.
 1. Provide premium efficient motors where scheduled or when used with a variable frequency controller.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

G. Temperature Rise: Class B.

H. Insulation: Class F.

I. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

J. Enclosure Material: Manufacturer's standard material.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with controller.

B. Motors Used with Variable Frequency Controllers: [Ratings, characteristics, and features coordinated with and approved by controller manufacturer.]
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Shaft Grounding Ring: Factory installed shaft grounding ring consisting of maintenance free, circumferential, bearing protection ring with conductive micro fiber shaft contacting material.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

2.6 ELECTRONIC COMMUTATION MOTOR (ECM)

A. Description: Motor to be an electronic commutation motor (ECM) specifically designed for direct drive applications. Motors shall be permanently lubricated with heavy-duty ball bearings to match the equipment load and prewired to the specific voltage and phase. Internal motor circuitry shall convert AC power supplied to the fan to DC power to operate the motor. Motor shall be speed controllable down to 20% of full speed (80% turndown). Speed shall be controlled by either a potentiometer dial mounted on the motor or by a 0-10 VDC signal. Motor shall be a minimum of 85% efficient at all speeds.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 22 0513
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Thermometers.
 2. Gages.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. NSF Compliance as required by authorities having jurisdiction:
 2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."
 3. Comply with NSF 372, "Drinking Water System Components – Lead Content"

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft.
 2. Marsh Bellofram.
 3. Miljoco Corp.
 4. Trerice, H. O. Co.
 5. Weiss Instruments, Inc.

B. Case: Metal or plastic, 9 inches (229 mm) long.

C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.
D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

E. Window: Glass or plastic.

F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.

H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 THERMOWELLS

A. Manufacturers: Same as manufacturer of thermometer being used.

B. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

C. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ashcroft.
2. Marsh Bellofram.
3. Miljoco Corp.
4. Trerice, H. O. Co.
5. Weiss Instruments, Inc.

B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Liquid-filled type, drawn steel or cast aluminum, 4-1/2-inch (114-mm) diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4 (DN 8), bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer with front recalibration.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure (100 kPa of vacuum to 103 kPa of pressure).
11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:
2. Tubing: NPS 1/4(DN 8) copper.
3. Snubbers: ASME B40.5, NPS 1/4(DN 8) brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS
 A. Install thermometers in the outlet of each domestic hot-water storage tank and elsewhere as indicated on drawings.
 B. Provide the following temperature ranges for thermometers:
 1. Domestic Hot Water: 30 to 180 deg F, with 2-degree scale divisions (Minus 1 to plus 82 deg C, with 1-degree scale divisions).

3.2 GAGE APPLICATIONS
 A. Install pressure gages for discharge of each pressure-reducing valve and elsewhere as indicated.

3.3 INSTALLATIONS
 A. Install direct-mounting thermometers and adjust vertical and tilted positions.
 B. Install thermowells with socket extending one-third of diameter of pipe and in vertical position in piping tees where thermometers are indicated.
 C. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
 1. Provide elbows as required to install gauges at location and angle readable from standing position on floor.
 D. Install ball valve and snubber fitting in piping for each pressure gage.
 E. Install thermometers and gages adjacent to machines and equipment to allow service and maintenance for thermometers, gages, machines, and equipment.
 F. Adjust faces of thermometers and gages to proper angle for best visibility.

END OF SECTION 22 0519
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Bronze ball valves.
2. Iron, lug type butterfly valves.
4. Iron swing check valves.

B. Related Sections:

1. Division 22 plumbing piping Sections for specialty valves applicable to those Sections only.
2. Division 22 Section "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.3 QUALITY ASSURANCE

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
2. ASME B31.9 for building services piping valves.

C. NSF Compliance as required by authorities having jurisdiction:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."
3. Comply with NSF 372, "Drinking Water System Components – Lead Content"

1.4 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect valve ends from damage.
4. Set butterfly valves closed or slightly open.
5. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Refer to valve schedule articles for applications of valves.

B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

C. Valve Sizes: Same as upstream piping unless otherwise indicated.

D. Valve Actuator Types:
 1. Handwheel: For valves other than quarter-turn types.
 2. Handlever: For quarter-turn valves NPS 6 (DN 150) and smaller.

E. Valves in Insulated Piping: Valves in domestic cold water lines with more than 1/2-inch (13-mm) insulation shall include the following:
 1. Ball Valves: Stem extensions or extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.

F. Valve-End Connections:
 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 2. Solder Joint: With sockets according to ASME B16.18.
 3. Threaded: With threads according to ASME B1.20.1.

2.2 BRONZE BALL VALVES

A. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Crane Co.; Crane Valve Group; Crane Valves.
c. Hammond Valve.
d. Milwaukee Valve Company.
e. NIBCO INC.
f. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 b. SWP Rating: 150 psig (1035 kPa).
 c. CWP Rating: 600 psig (4140 kPa).
 d. Body Design: Two piece, threaded.
 e. Body Material: Cast Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

2.3 IRON, LUG TYPE BUTTERFLY VALVES

A. 200 CWP, Iron, Single-Flange Butterfly Valves with Aluminum-Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane.
 c. DeZurik.
 d. Hammond Valve.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Aluminum bronze.

2.4 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
d. NIBCO INC.
e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Horizontal flow.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Disc: PTFE.

2.5 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts Regulator Co.; a division of Watts Water Technologies, Inc.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig (1380 kPa).
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow.

3.3 ADJUSTING

A. Adjust or replace leaking valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. Valve Applications:

1. Domestic Water:
 a. Shutoff Service: Ball and butterfly valves.
 b. Throttling Service: Ball and butterfly valves.
 c. Check Valves:
 1) NPS 2(DN 50) and Smaller: Bronze swing check valves with nonmetallic disc.
 2) NPS 2-1/2(DN 65) and Larger: Iron swing type check valves with metal seat.
B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves with the following end connections:

1. For Copper Tubing, NPS 2(DN 50) and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4(DN 65 to DN 100): Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2(DN 50) and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Ball Valves: Two piece, full port, bronze with bronze trim.
3. Bronze Swing Check Valves: Class 125, nonmetallic disc.

B. Pipe NPS 2-1/2(DN 65) and Larger:

2. Iron Swing Check Valves: Class 125, metal seats.

END OF SECTION 22 0523
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Pipe positioning systems.

B. See Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers, and pipe and equipment supports.

C. See Division 21 fire-suppression sections for pipe hangers for fire-suppression piping.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
3. Channels: Continuous slotted steel channel with inturned lips.
4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

B. Non-MFMA Manufacturer Metal Framing Systems:

1. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
3. Channels: Continuous slotted steel channel with inturned lips.
4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig (688-kPa) ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.
2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use thermal-hanger shield inserts for insulated piping and tubing.

G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN 100 to DN 400), requiring up to 4 inches (100 mm) of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN 20 to DN 600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 (DN 15 to DN 600) if little or no insulation is required.
5. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8 (DN 15 to DN 200).
6. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
7. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
8. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
9. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.
10. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42 (DN 50 to DN 1050), if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.

I. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.

J. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
4. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
5. C-Clamps (MSS Type 23): For structural shapes.
6. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb (340 kg).
 b. Medium (MSS Type 32): 1500 lb (680 kg).
c. Heavy (MSS Type 33): 3000 lb (1360 kg).

8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

K. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

L. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.

M. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

N. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

O. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

1. Use powder-actuated fasteners only in concrete construction that is suitable for their installation.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Metal Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal movement of piping systems, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, and at changes in direction of piping.

L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:

 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.9 for building services piping.

 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 (DN 100) and larger if pipe is installed on rollers.

 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2(DN 8 to DN 90): 12 inches (305 mm) long and 0.048 inch (1.22 mm) thick.
 b. NPS 4(DN 100): 12 inches (305 mm) long and 0.06 inch (1.52 mm) thick.
 c. NPS 5 and NPS 6(DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.
d. NPS 8 to NPS 14 (DN 200 to DN 350): 24 inches (610 mm) long and 0.075 inch (1.91 mm) thick.

5. Pipes NPS 8 (DN 200) and Larger: Include wood or reinforced calcium-silicate-insulation inserts.
6. Insert Material: Length at least as long as protective shield.
7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm) maximum.

3.5 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
SECTION 22 0553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Pipe labels.
3. Stencils.
4. Valve tags.

1.2 ACTION SUBMITTALS

A. Valve Schedules: For each piping system.

1.3 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

1.4 QUALITY ASSURANCE

A. Comply with ANSI A13.1 “Pipe Labeling Guide” for color scheme, length of field and letter height.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.
2. Letter Color: Black.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 a. Size of label shall be proportional to equipment size.
6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic label including flow arrow formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic label with contact-type, permanent-adhesive backing. Include flow arrow label with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service matching designations or abbreviations as used on Drawings.

2.3 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; and minimum letter height of 3/4 inch (19 mm) for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material: Fiberboard or metal.
2. Stencil Paint: Exterior, gloss, black enamel unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.

1. Tag Material: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Provide glass front frame for each valve schedule for mounting in building mechanical room.
2. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Pipe Label Applications: Install pipe labels as follows:

1. Use pretensioned pipe labels or self-adhesive pipe labels.

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.

1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is concealed above ceilings or exposed in unfinished mechanical rooms; accessible maintenance spaces such as shafts, tunnels, and plenums as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet (15 m) along each run.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Install glass front frame valve schedule in building mechanical room. Locate at Owners representative approved location.
PROJECT NO. 21-134.00
STROSAKER - FLOOD RECOVERY
NORTHWOOD UNIVERSITY

IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

END OF SECTION 22 0553
1.1 SUMMARY

A. Section includes insulation materials for plumbing systems:

B. Related Sections:
 1. Division 23 Section "HVAC Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated below. Include thermal conductivity, water-vapor permeance, thickness, and jackets (if any).

 1. Insulation Materials:
 a. Mineral fiber.
 b. Flexible elastomeric.
 2. Field-applied jackets.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 22 0529 "Hangers and Supports for Plumbing Piping and Equipment."
B. Coordinate clearance requirements with piping Installer for piping insulation application.

1. Establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

D. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. K-Flex USA.

E. Mineral-Fiber, Preformed Pipe Insulation:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.

2. **Type I, 850 Deg F (454 Deg C) Materials:** Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ or ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

D. ASJ Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
 3. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. Joint Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Permanently flexible, elastomeric sealant.
3. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Fitting Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Adhesive: As recommended by jacket material manufacturer.
3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, and mechanical joints.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Width: 3 inches (75 mm).
2. Thickness: 11.5 mils (0.29 mm).
3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive.

1. Width: 2 inches (50 mm).
2. Thickness: 6 mils (0.15 mm).
3. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
4. Elongation: 500 percent.
5. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.9 SECUREMENTS

A. Staples: Outward-clinching insulation staples, nominal 3/4-inch- (19-mm-) wide, stainless steel or Monel.

B. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
E. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- (75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above-ambient services, do not install insulation to the following:

 1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations:
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation at roof structure and seal with joint sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations:
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant.
 3. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 4. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 5. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Division 07 Section "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece.
and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For mineral fiber insulation, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

1. Flexible elastomeric pipe insulation only allowed in concealed or mechanical room locations.

B. Insulation Installation on Roof Drain Sumps:

1. Install pipe insulation to bottom of roof drain sumps.

2. Secure insulation to roof drain sumps and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Roof Drain Bodies:
1. Install pipe insulation to bottom of roof drain bodies exposed within building.
2. Secure insulation to roof drain bodies and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

E. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

F. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC fitting jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints. Seal with manufacturers recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
 2. Fill inside of fitting jackets to prevent collapse of jacket.

3.9 FINISHES

A. Paintable Jacket Material: Paint jacket with paint system identified in Division 09 painting Sections.

3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable pipe insulation materials and thicknesses are identified for each piping system and pipe size range.
 1. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Chrome-plated pipes and fittings.
3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. **NPS 1 (DN 25) and Smaller**: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch (13 mm) thick.
 b. Flexible Elastomeric: 1/2 inch (13 mm) thick.

2. **NPS 1-1/4 (DN 32) and Larger**: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
 b. Flexible Elastomeric: 1 inch (25 mm) thick.

B. Domestic Hot and Recirculated Hot Water:

1. **NPS 1 (DN 25) and Smaller**: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch (25 mm) thick.
 b. Flexible Elastomeric: 1 inch (25 mm) thick.

2. **NPS 1-1/4 (DN 32) and Larger**: Insulation shall be one of the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1-1/2 inch (38 mm) thick.
 b. Flexible Elastomeric: 1-1/2 inch (38 mm) thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. **Pipe Fittings with Mineral Fiber Insulation**:

1. PVC Fitting Covers: 20 mils (0.6 mm) thick, white.

END OF SECTION 22 0700
SECTION 22 0800 - COMMISSIONING OF PLUMBING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes commissioning process requirements for plumbing systems, assemblies, and equipment.
 B. Related Sections:
 1. Division 01 Section "General Commissioning Requirements" for general commissioning requirements.
 2. Division 23 Section "Commissioning of HVAC" for HVAC commissioning requirements.
 3. Division 26 Section "Commissioning of Electrical" for electrical commissioning requirements.

1.2 ABBREVIATIONS
 A. Refer to Division 01 Section “General Commissioning Requirements” for list of abbreviations used in the Specifications and in the Commissioning Plan.

1.3 DEFINITIONS
 A. Refer to Division 01 Section “General Commissioning Requirements” for list of definitions used in the Specifications and in the Commissioning Plan.

1.4 COORDINATION
 A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to coordination during the commissioning process.

1.5 COMMISSIONING PROCESS
 A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to the commissioning process.

1.6 COMMISSIONING TEAM RESPONSIBILITIES
 A. Provide information requested by the CxA for final commissioning documentation.
 1. Test reports
 B. Assist the CxA in all verification and functional performance tests.
 C. Refer to Division 01 Section “General Commissioning Requirements” for additional requirements pertaining to the contractor responsibilities.
1.7 SYSTEMS TO BE COMMISSIONED

 A. Any plumbing equipment or systems that are monitored and or controlled by Building Management System will be commissioned with no sampling methods.

 B. Refer to Division 01 Section “General Commissioning Requirements” for plumbing systems to be commissioned.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

 A. Refer to Division 01 Section “General Commissioning Requirements” for test equipment requirements.

PART 3 - EXECUTION

3.1 MEETINGS

 A. Refer to Division 01 Section “General Commissioning Requirements” for meeting requirements.

3.2 START-UP, PREFUNCTIONAL CHECKLISTS AND INITIAL CHECKOUT

 A. No commissioning checklists will be required to be completed by Plumbing contractor.

 B. Refer to Division 01 Section “General Commissioning Requirements” for additional participation requirements for start-up, prefucntional checklists and initial checkout.

3.3 FUNCTIONAL PERFORMANCE TESTING

 A. Sampling: No sampling of any equipment will be permitted. All equipped or types referenced in Division 01 Section “General Commissioning Requirements” will be 100% sample rate regardless of qty or size of equipment or system.

 B. Refer to Division 01 Section “General Commissioning Requirements” for additional participation requirements for functional performance testing.

3.4 DOCUMENTATION, NON-CONFORMANCE AND APPROVAL OF TESTS

 A. Refer to Division 01 Section “General Commissioning Requirements” for approval procedures.

3.5 DEFERRED TESTING

 A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to deferred testing.
3.6 WRITTEN WORK PRODUCTS

A. Refer to Division 01 Section “General Commissioning Requirements” for requirements pertaining to written work products related to the commissioning process.

END OF SECTION 22 0800
SECTION 22 1116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes domestic water piping inside the building.
 B. Related Sections include the following:
 1. Division 22 Section "Facility Water Distribution Piping" (Bid Package 1) for water-service piping outside the building from source to the point where water-service piping enters the building.
 2. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and fittings.
 3. Division 22 Section "Domestic Water Piping Specialties" for water distribution piping specialties.

1.2 PERFORMANCE REQUIREMENTS
 A. Provide components and installation capable of producing domestic water piping systems with 125 psig (860 kPa), unless otherwise indicated.

1.3 INFORMATIONAL SUBMITTALS
 B. Field quality-control test reports.

1.4 QUALITY ASSURANCE
 A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
 B. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9," for potable domestic water piping and components.
 C. Comply with NSF 372, "Drinking Water System Components – Lead Content” for potable domestic water piping and components.

1.5 REGULATORY REQUIREMENTS
 A. Comply with the provisions of the following:
PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Refer to Part 3 "Pipe and Fitting Applications" Article for applications of pipe, tube, fitting, and joining materials.

B. Transition Couplings for Aboveground Pressure Piping: Coupling or other manufactured fitting the same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.2 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Types K (ASTM B 88M, Types A), water tube, annealed temper.

B. Hard Copper Tube: ASTM B 88, Types L (ASTM B 88M, Types B), water tube, drawn temper.
 2. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends. Furnish Class 300 flanges if required to match piping.
 3. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body, with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

C. General-duty valves are specified in Division 22 Section "General-Duty Valves for Plumbing Piping."

D. Balancing and drain valves are specified in Division 22 Section "Domestic Water Piping Specialties."

PART 3 - EXECUTION

3.1 PIPE AND FITTING APPLICATIONS

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below, unless otherwise indicated.

B. Flanges may be used on aboveground piping, unless otherwise indicated.

C. Under-Building-Slab, Water-Service Piping on Service Side of Water Meter: Refer to Division 22 Section "Facility Water Distribution Piping."

D. Aboveground Domestic Water Piping: Use any of the following piping materials for each size range:
 1. NPS 1/4 (6.35mm) and Smaller for Dishwasher, Coffee Maker, and Refrigerator Final Connection: Soft copper tube, Type L (Type B); copper fittings; and soldered or compression joints.
 2. NPS 1 (DN 25) and Smaller: Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.
3. **NPS 1-1/4 and NPS 1-1/2 (DN 32 and DN 40):** Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.
4. **NPS 2 (DN 50):** Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.
5. **NPS 2-1/2 (DN 65):** Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.
6. **NPS 3 (DN 80):** Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.
7. **NPS 4 (DN 100):** Hard copper tube, Type L (Type B); copper pressure fittings; and soldered joints.

3.2 VALVE APPLICATIONS

A.
Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. **Shutoff Duty:** Use bronze ball valves for piping NPS 2 (DN 50) and smaller. Use cast-iron butterfly valves with flanged ends for piping NPS 2-1/2 (DN 65) and larger.
2. **Throttling Duty:** Use bronze ball valves for piping NPS 2 (DN 50) and smaller. Use cast-iron butterfly valves with flanged ends for piping NPS 2-1/2 (DN 65) and larger.
3. **Hot-Water-Piping, Balancing Duty:** Calibrated balancing valves.
4. **Drain Duty:** Hose-end drain valves.

B.
Install shutoff valve close to water main on each branch and riser serving plumbing fixtures or equipment, on each water supply to equipment, on each water supply to plumbing fixtures that do not have supply stops and on each water supply to plumbing fixtures that do have supply stops but where take off from main or branch is not in the same room.

C.
Install drain valves for equipment at base of each water riser, at low points in horizontal piping, and where required to drain water piping.

1. Install hose-end drain valves at low points in water mains, risers, and branches.

D.
Install calibrated balancing valves in each hot-water circulation return branch and discharge side of each pump and circulator. Set calibrated balancing valves partly open to restrict but not stop flow. Calibrated balancing valves are specified in Division 22 Section "Domestic Water Piping Specialties."

3.3 PIPING INSTALLATION

A.
Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B.
Install under-building-slab copper tubing according to CDA's "Copper Tube Handbook."

C.
Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."

D.
Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve, inside the building at each domestic water service entrance. Pressure gages are specified in Division 22 Section "Meters and Gages for Plumbing Piping," and drain valves and strainers are specified in Division 22 Section "Domestic Water Piping Specialties."
1. Include a backflow preventer as required by local authority having jurisdiction.

E. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

3.4 JOINT CONSTRUCTION

A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Soldered Joints: Use ASTM B 813, water-flushable, lead-free flux; ASTM B 32, lead-free-alloy solder; and ASTM B 828 procedure, unless otherwise indicated.

3.5 WATER METER INSTALLATION

A. Rough-in domestic water piping for water meter connection according to utility company's requirements.

3.6 HANGER AND SUPPORT INSTALLATION

A. Pipe hanger and support devices are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:

1. Vertical Piping: MSS Type 8 or Type 42, clamps.
2. Individual, Straight, Horizontal Piping Runs: According to the following:
 a. 100 Feet (30 m) and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet (30 m): MSS Type 43, adjustable roller hangers.
3. Multiple, Straight, Horizontal Piping Runs 100 Feet (30 m) or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
4. Base of Vertical Piping: MSS Type 52, spring hangers.

B. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced 1 size for double-rod hangers, to a minimum of 3/8 inch (10 mm).

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 (DN 20) and Smaller: 60 inches (1500 mm) with 3/8-inch (10-mm) rod.
2. NPS 1 and NPS 1-1/4 (DN 25 and DN 32): 72 inches (1800 mm) with 3/8-inch (10-mm) rod.
3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): 96 inches (2400 mm) with 3/8-inch (10-mm) rod.
4. NPS 2-1/2 (DN 65): 108 inches (2700 mm) with 1/2-inch (13-mm) rod.
5. NPS 3 to NPS 4 (DN 80 to DN 100): 10 feet (3 m) with 1/2-inch (13-mm) rod.

F. Install supports for vertical copper tubing every 10 feet (3 m).
3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment and machines to allow service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

3.8 FIELD QUALITY CONTROL

A. Inspect domestic water piping as follows:
 1. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 2. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 a. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 b. Final Inspection: Arrange final inspection for authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 3. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
 4. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

B. Test domestic water piping as follows:
 1. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 2. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 3. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 4. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 5. Repair leaks and defects with new materials and retest piping or portion thereof until satisfactory results are obtained.
 6. Prepare reports for tests and required corrective action.

3.9 ADJUSTING

A. Perform the following adjustments before operation:
 1. Close drain valves, hydrants, and hose bibbs.
 2. Open shutoff valves to fully open position.
 3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
5. Remove plugs used during testing of piping and plugs used for temporary sealing of piping during installation.
7. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new domestic water piping before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction or, if methods are not prescribed, procedures described in either AWWA C651 or AWWA C652 or as described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm (50 mg/L) of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm (200 mg/L) of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.

B. Prepare and submit reports of purging and disinfecting activities.

END OF SECTION 22 1116
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following domestic water piping specialties:

1. Backflow preventers.
2. Calibrated balancing valves.
3. Strainers.
4. Drain valves.
5. Water hammer arresters.

B. Related Sections include the following:

1. Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers and pressure gages in domestic water piping.
2. Division 22 Section "Sanitary Waste Piping Specialties" for trap seal protection device.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig (860 kPa), unless otherwise indicated.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. NSF Compliance as required by authorities having jurisdiction:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."
3. Comply with NSF 372, "Drinking Water System Components – Lead Content"
PART 2 - PRODUCTS

2.1 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ames Co.
 b. Conbraco Industries, Inc.; Apollo Valves.
 c. FEBCO; SPX Valves & Controls.
 e. Zurn Plumbing Products Group; Wilkins Div.

3. Operation: Continuous-pressure applications.
4. Pressure Loss: 12 psig (83 kPa) maximum, through middle 1/3 of flow range.
5. Body: Bronze for NPS 2 (DN 50) and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 (DN 65) and larger.
6. End Connections: Threaded for NPS 2 (DN 50) and smaller; flanged for NPS 2-1/2 (DN 65) and larger.
7. Accessories:
 a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 (DN 50) and smaller; outside screw and yoke gate-type with flanged ends on inlet and outlet of NPS 2-1/2 (DN 65) and larger.

2.2 CALIBRATED BALANCING VALVES

A. Copper-Alloy Calibrated Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bell & Gossett.
 b. Armstrong International, Inc.
 c. Tour Andersson.
 d. Apollo Valves.

2. Type: Ball valve with two readout ports and memory setting indicator.
4. Size: Same as connected piping, but not larger than NPS 2 (DN 50).

2.3 STRAINERS FOR DOMESTIC WATER PIPING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ames.
2. Apollo.
3. Watts.
5. Wilkins.
B. Y-Pattern Strainers:
 1. Pressure Rating: 125 psig (860 kPa) minimum, unless otherwise indicated.
 2. Body: Bronze for NPS 2(DN 50) and smaller; cast iron for NPS 2-1/2(DN 65) and larger.
 3. End Connections: Threaded for NPS 2(DN 50) and smaller; flanged for NPS 2-1/2(DN 65) and larger.
 4. Screen: Stainless steel with round perforations, unless otherwise indicated.
 5. Perforation Size:
 a. Strainers NPS 2(DN 50) and Smaller: 0.020 inch (0.51 mm).
 b. Strainers NPS 2-1/2 to NPS 4(DN 65 to DN 100): 0.062 inch (1.57 mm).
 c. Strainers NPS 5(DN 125) and Larger: 0.10 inch (2.54 mm).
 6. Drain: Pipe plug for NPS 2(DN 50) and smaller; Factory-installed, hose-end drain valve for NPS 2-1/2(DN 65) and larger.

2.4 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig (2760-kPa) minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

B. Gate-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: Class 125.
 5. Inlet: NPS 3/4(DN 20) threaded or solder joint.
 6. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.5 WATER HAMMER ARRESTERS

A. Water Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; Wade Div.
 e. Watts.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.

B. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
 3. Do not install bypass piping around backflow preventers.

C. Install calibrated balancing valves in locations where they can easily be adjusted.

D. Install Y-pattern strainers for water on supply side of each inline pump and elsewhere as indicated.

E. Install individual water tempering valves at each connection to barrier-free lavatories and sinks in accordance with manufacturers' recommendations and in compliance with the plumbing code and authority having jurisdiction.

F. Install water hammer arresters in water piping according to PDI-WH 201.

G. Install hose bibs with vacuum breaker on wall.

H. Install nonfreeze wall hydrants with valve body within building, not within outside wall.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping and specialties.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and prepare test reports:

f. Zurn Plumbing Products Group; Specification Drainage Operation.

3. Type: Metal bellows.
4. Size: ASSE 1010, Sizes AA and A through F or PDI-WH 201, Sizes A through F.
1. Test each backflow preventer according to authorities having jurisdiction and the device's reference standard.

2. Test each domestic water piping specialty according to authorities having jurisdiction and the device's reference standard.

B. Remove and replace malfunctioning domestic water piping specialties and retest as specified above.

3.4 ADJUSTING

A. Set field-adjustable flow set points of calibrated balancing valves.

B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.

END OF SECTION 22 1119
SECTION 22 1123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following all-bronze and bronze-fitted centrifugal pumps for domestic water circulation:

1. Wet rotor circulator with ECM

B. Terminology used in this Section is from HI 1.1-1.2 and HI 5.1-5.6.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Product Options: Drawings indicate size, profiles, and dimensional requirements of domestic water pumps and are based on the specific system indicated. Refer to Division 01 Section "Product Requirements."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. UL Compliance: Comply with UL 778 for motor-operated water pumps.

D. NSF Compliance as required by authorities having jurisdiction:
2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."
3. Comply with NSF 372, "Drinking Water System Components – Lead Content”

1.7 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.
B. Protect bearings and couplings against damage.
C. Comply with pump manufacturer's written rigging instructions for handling.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 WET ROTOR INLINE PUMPS

A. Manufacturers:
 1. Bell & Gossett.

B. Basis of Design: Bell & Gossett Model ecocirc XL.

C. Description: Factory-assembled and -tested, wet rotor in-line pumps with ECM motor and integrated variable frequency drive.

1. Pump and Motor Assembly: Motor and impeller on common shaft and designed for installation with pump and motor shaft mounted horizontally.
2. Casing: Lead-free bronze, with companion-flange connections.
3. Impeller: Plastic or stainless steel.
5. Rotor: Permanent magnet.
7. Gasket/O-Ring: EPDM.
8. All Other Wetted Parts: Stainless steel.
9. Motor Type: Electronically commutated motor /permanent magnet and includes:
 a. Class F motor insulation.
 b. Integrated motor protection against over/under voltage, over temperature of motor and/or electronics, over current, locked rotor and dry run (no load condition).
10. Integrated Variable Frequency Drive: Tested as one unit by the manufacturer and includes:
 a. MODBUS or BACnet connections built into the VFD as standard.
 b. Analog inputs, such as 0-10V and 4-20mA inputs built into the VFD.

12. Maximum Working Temperature: 230°F.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 0500 “Common Motor Requirements for Plumbing Equipment.”

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 CONTROLS

A. Thermostats: Electric; adjustable for control of hot-water circulation pump.

1. Manufacturers:
 a. Honeywell International, Inc.
 b. Square D.

2. Type: Strap-on sensor for installation on hot-water circulation piping.
3. Operation of Pump: On or off.
5. Settings: Start pump at 100 deg F (38 deg C) and stop pump at 120 deg F (49 deg C).

2.5 FLEXIBLE CONNECTORS

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.
3.3 CONTROL INSTALLATION
 A. Install electric-type thermostats on hot-water return piping.

3.4 CONNECTIONS
 A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
 B. Install piping adjacent to pumps to allow service and maintenance.
 C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles. Refer to Division 22 Section "Domestic Water Piping."
 1. Install shutoff valve and strainer on suction side of pumps, and check valve and throttling valve on discharge side of pumps. Install valves same size as connected piping. Refer to Division 22 Section "General-Duty Valves for Plumbing Piping" for general-duty valves for domestic water piping and Division 22 Section "Domestic Water Piping Specialties" for strainers.
 D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
 F. Connect thermostats to pumps that they control.

3.5 IDENTIFICATION
 A. Comply with requirements for identification specified in Section 22 0553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.6 STARTUP SERVICE
 A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Set thermostats for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 7. Start motor.
 8. Open discharge valve slowly.
 9. Adjust temperature settings on thermostats.
3.7 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 22 1123
SECTION 22 3300 - ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following electric water heaters:
 1. Commercial, storage electric water heaters.
 2. Compression tanks.
 3. Water heater accessories.

1.2 ACTION SUBMITTALS

A. Product Data: For each type and size of water heater indicated. Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings: Diagram power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Source quality-control test reports.
B. Field quality-control test reports.
C. Warranty: Special warranty specified in this Section.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain same type of electric water heaters through one source from a single manufacturer.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
D. ASME Compliance: Where indicated, fabricate and label commercial water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
E. NSF Compliance as required by authorities having jurisdiction:

2. Comply with NSF 61, "Drinking Water System Components - Health Effects; Sections 1 through 9."

3. Comply with NSF 372, "Drinking Water System Components – Lead Content"

1.6 COORDINATION

A. Coordinate size and location of concrete bases with Architectural and Structural Drawings.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of electric water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Period(s): From date of Substantial Completion:
 a. Commercial Electric Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Five years.
 b. Compression Tanks: One year(s).

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 COMMERCIAL ELECTRIC WATER HEATERS

A. Commercial, Storage Electric Water Heaters: Comply with UL 1453 requirements for storage-tank-type water heaters.

1. Manufacturers:
 b. Bock Water Heaters, Inc.
 d. Cemline Corporation.
 e. Lochinvar Corporation.
 f. PVI Industries, LLC.
 a. Tappings: Factory fabricated of materials compatible with tank and piping connections. Attach tappings to tank before testing.
 1) NPS 2(DN 50) and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2(DN 65) and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges, and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Pressure Rating: 150 psig (1035 kPa).
 c. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending lining material into tappings.

3. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 c. Insulation: Comply with ASHRAE/IESNA 90.1.
 d. Jacket: Steel with enameled finish.
 e. Heating Elements: Electric, screw-in or bolt-on immersion type arranged in multiples of three.
 1) Staging: Input not exceeding 18 kW per step.
 f. Temperature Control: Adjustable thermostat.
 g. Safety Controls: High-temperature-limit and low-water cutoff devices or systems.
 h. Relief Valves: ASME rated and stamped and complying with ASME PTC 25.3, for combination temperature and pressure relief valves. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

4. Special Requirements: NSF 5 construction.
5. Building Automation System Interface: Normally closed dry contacts for enabling and disabling water heater.

2.3 COMPRESSION TANKS

A. Description: Steel pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

1. Manufacturers:
 a. AMTROL Inc.
 b. Armstrong Pumps, Inc.
 c. Bell and Gossett.
 d. Smith, A. O.; Aqua-Air Div.
 e. State Industries, Inc.
 f. Taco, Inc.
 g. Watts Regulator Co.
h. Wessels Co.

2. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1, pipe thread.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

2.4 SOURCE QUALITY CONTROL

A. Test and inspect water heater storage tanks, specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial water heater storage tanks before shipment to minimum of one and one-half times pressure rating.

C. Prepare test reports.

PART 3 - EXECUTION

3.1 WATER HEATER INSTALLATION

A. Install commercial water heaters on concrete bases.
 1. Exception: Omit concrete bases for commercial water heaters if installation on stand, bracket, suspended platform, or direct on floor is indicated.
 2. Concrete base construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."

B. Install water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer’s recommended clearances. Arrange units so controls and devices needing service are accessible.

C. Install thermometer on outlet piping of water heaters. Refer to Division 22 Section "Meters and Gages for Plumbing Piping" for thermometers.

D. Install water regulator, with integral bypass relief valve, in booster-heater inlet piping and water hammer arrester in booster-heater outlet piping.

E. Install piping-type heat traps on inlet and outlet piping of water heater storage tanks without integral or fitting-type heat traps.

F. Fill water heaters with water.

G. Charge compression tanks with air.
3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to water heaters to allow service and maintenance. Arrange piping for easy removal of water heaters.

C. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Leak Test: After installation, test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, confirm proper operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace water heaters that do not pass tests and inspections and retest as specified above.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial electric water heaters. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 22 3300
SECTION 23 0500 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Piping materials and installation instructions common to most piping systems.
2. Dielectric fittings.
3. Sleeve-seal systems.
4. Sleeves.
5. Stack-sleeve fittings.
7. Grout.
8. Equipment installation requirements common to equipment sections.
10. Concrete bases.
11. Supports and anchorages.

1.2 ACTION SUBMITTALS

A. Product Data: For dielectric fittings.

1.3 QUALITY ASSURANCE

A. Provide HVAC systems, equipment, and materials in accordance with Michigan Mechanical Code and other applicable codes and regulations, and with authorities having jurisdiction.

B. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

C. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

D. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.
1.4 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Deliver products to project properly identified with names, model numbers, types, grades, compliance labels, and similar information needed for distinct identifications; adequately packaged and protected to prevent damage during shipment, storage, handling, and up to substantial completion. Coordinate deliveries of mechanical materials and equipment to minimize construction site congestion.

1.5 COORDINATION

A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.

B. Coordinate installation of required supporting devices and sleeves in structural components.

C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

1.6 PROJECT COMMISSIONING

A. Project has an independent commissioning authority (CxA). Contractors for this project shall meet CxA requirements and shall coordinate with and participate in commissioning activities.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.

B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be of the same manufacturer as the grooved components.

1. All castings used for coupling housings, fittings, valve bodies, etc., shall include listing/approval stamp, label, or other markings made to specified standards.

2.2 JOINING MATERIALS

A. Refer to individual Division 23 piping Sections for special joining materials not listed below.

B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

D. Solder Filler Metals: ASTM B32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.

F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.3 DIELECTRIC FITTINGS

A. Description: Combination fitting of copper alloy and ferrous materials with threaded end connections that match piping system materials.

 1. Insulating Material: Suitable for system fluid, pressure, and temperature.

B. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig (1725-kPa) minimum working pressure at 180 deg F (82 deg C) with threaded end connections.

C. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

D. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig (2070-kPa) minimum working pressure at 225 deg F (107 deg C).

2.4 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.

 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Plastic.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.5 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint.

2.6 STACK-SLEEVE FITTINGS

A. Description: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring, bolts, and nuts for membrane flashing.

1. Underdeck Clamp: Clamping ring with setscrews.

2.7 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

B. One-Piece, Cast-Brass Type: With polished, chrome-plated or rough-brass finish and setscrew fastener.

C. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

D. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

E. Split-Casting Brass Type: With polished, chrome-plated or rough-brass finish and with concealed hinge and setscrew.

F. Split-Plate, Stamped-Steel Type: With chrome-plated finish, concealed or exposed-rivet hinge, and spring-clip fasteners.

2.8 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.9 MECHANICAL ROOF PENETRATIONS

A. Roof Curbs for Duct Penetrations: Prefabricated heavy-gage galvanized steel or aluminum curb with mitered and welded corners, minimum 1 1/2 inch thick rigid fiberglass insulation adhered to inside walls, built-in cant and mounting flange for roof decks, and wood nailer. Size as required to suit roof opening and ductwork. Overall minimum height shall be 12 inches above roof insulation. Provide curbs with level
tops and bottoms to match roof slope. Provide galvanized steel flashing and seal water tight. Provide insulation on interior flashing surfaces exposed to building air. Pate or equivalent.

B. Pipe Curbs for Single or Multiple Pipe Penetrations: Prefabricated heavy-gage galvanized steel or aluminum curb with mitered and welded corners, minimum 1 1/2 inch thick rigid fiberglass insulation adhered to inside walls, built-in cant and mounting flange for roof decks, wood nailer, and acrylic clad ABS plastic cover(s), PVC boot(s), and stainless steel clamps. Size as required to suit roof opening and piping. Overall minimum height shall be 12 inches above roof insulation. Provide curbs with level tops and bottoms to match roof slope. Pate or equivalent.

C. Pipe Curbs for Single Pipe Penetrations: All roof pipe penetrations up to 10” O.D. shall be flashed and sealed using a Pate or equivalent pipe seal, consisting of a spun aluminum base having a minimum five inch roof surface flange, a stepped polyvinyl chloride boot to be secured to the base and the pipe with adjustable stainless steel clamps as furnished.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved.

1. Drawings are diagrammatic with no attempt made to show every ell, tee, transition, fitting, or appurtenance. Provide installations that are complete in every detail, compliant with all applicable codes, and as required to provide a fully functional and operational system even though every item is not specifically indicated.

C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping to permit valve servicing.

G. Install piping at indicated slopes.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install piping to allow application of insulation.

K. Select system components with pressure rating equal to or greater than system operating pressure.
3.2 ESCUTCHEON INSTALLATION

A. Install escutcheons for penetrations of walls, ceilings, and finished floors according to the following:

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Chrome-Plated Piping: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 c. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece, cast-brass or split-casting brass type with polished, chrome-plated or rough-brass finish.

2. Escutcheons for Existing Piping:
 a. Chrome-Plated Piping: Split-casting brass type with polished, chrome-plated finish.
 b. Insulated Piping: Split-plate, stamped-steel type with concealed or exposed-rivet hinge.
 c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 d. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-casting brass type with polished, chrome-plated finish.
 e. Bare Piping in Unfinished Service Spaces: Split-casting brass type with polished, chrome-plated or rough-brass finish.
 f. Bare Piping in Equipment Rooms: Split-casting brass type with polished, chrome-plated or rough-brass finish.

3.3 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

1. Sleeves are not required for core-drilled holes.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch (25-mm) annular clear space between piping and concrete slabs and walls.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches (50 mm) above finished floor level.

2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 9200 "Joint Sealants."

E. Fire-BARRIER Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.4 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pipe or pipe insulation.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 07 6200 "Sheet Metal Flashing and Trim."
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches (50 mm) above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Using grout, seal the space around outside of stack-sleeve fittings.

B. Fire-BARRIER Penetrations: Maintain indicated fire rating of floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 8413 "Penetration Firestopping."

3.5 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls Above Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves, galvanized-steel wall sleeves, or galvanized-steel-pipe sleeves.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves, galvanized-steel wall sleeve, or galvanized-steel-pipe sleeves.
2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6 (DN 150): Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 (DN 150) and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch (25-mm) annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 b. Piping NPS 6 (DN 150) and Larger: Stack-sleeve fittings.

5. Interior Partitions:
 b. Piping NPS 6 (DN 150) and Larger: Galvanized-steel-sheet sleeves.

3.7 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
3.8 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Wet Piping Systems: Install dielectric unions, dielectric couplings, or dielectric nipple fittings to connect piping materials of dissimilar metals.

3.9 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

A. Sequence, coordinate, and integrate installations of mechanical equipment, giving particular attention to large equipment requiring positioning prior to closing in the building.

B. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.

C. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

D. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations.
 1. Extend grease fittings to accessible locations.

E. Install equipment to allow right of way for piping installed at required slope.

F. Installing contractor shall bear all additional costs, including that of Architect/Engineer redesign and that of other trades, incurred as a result of installation of other than scheduled equipment.

G. Verify final equipment locations for roughing-in.

H. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.10 PAINTING

A. Painting of HVAC systems, equipment, and components is specified in Division 09 painting sections.

B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.
3.11 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
7. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete and reinforcement as specified in Division 03 section for cast-in-place concrete.

3.12 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.

C. Field Welding: Comply with AWS D1.1.

3.13 GROUTING

A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.

1. Clean surfaces that will come into contact with grout.
2. Provide forms as required for placement of grout.
3. Avoid air entrapment during placement of grout.
4. Place grout, completely filling equipment bases.
5. Place grout on concrete bases and provide smooth bearing surface for equipment.
6. Place grout around anchors.
7. Cure placed grout.

3.14 MECHANICAL ROOF PENETRATIONS

A. Install mechanical roof penetrations in accordance with roof curb manufacturer’s recommendations and in strict compliance with roofing manufacturer’s requirements.

1. Roofs with Warranty: Roof penetrations and curbs shall be installed in such a manner to maintain roofing warranty.
B. Roof Curbs for Duct Penetrations: Provide galvanized steel flashing and seal water tight. Provide insulation on interior flashing surfaces exposed to building air.

C. Pipe Curbs for Pipe Penetrations: Secure boot to curb base and secure boot to pipe with adjustable stainless steel clamps.

3.15 INSTALLATION OF ACCESS DOORS

A. Where lay-in ceilings are used, the access to ceiling space is provided through the removable ceiling panels. Where access is required to valves, pipes, dampers or other devices in spaces above non-removable ceilings or in chases, the Contractor requiring the access doors shall provide access doors. Access doors required in rated walls and ceiling shall bear the same rating. Access panels and doors are specified in Division 08 Section "Access Doors and Frames."

1. Set frames accurately in position and securely attached to supports, with face panels plumb and level in relation to adjacent finish surfaces.
2. Adjust hardware and panels after installation for proper operation.

3.16 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 23 0500
SECTION 23 0513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory.

1.2 ACTION SUBMITTALS

A. Product Data: For each field installed shaft grounding ring.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

B. For motors using variable frequency controller, motors to be designed for such application and suitable for use throughout speed range without overheating.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in HVAC equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet (1000 m) above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Energy efficient, as defined in NEMA MG 1.
 1. Provide premium efficient motors where scheduled or when used with a variable frequency controller.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Class B.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Manufacturer's standard material.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with controller.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Shaft Grounding Ring: Factory installed Aegis Model SGR shaft grounding ring consisting of maintenance free, circumferential, bearing protection ring with conductive micro fiber shaft contacting material.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

2.6 ELECTRONIC COMMUTATION MOTOR (ECM)

A. Description: Motor to be an electronic commutation motor (ECM) specifically designed for direct drive fan applications. Motors shall be permanently lubricated with heavy-duty ball bearings to match the fan load and prewired to the specific voltage and phase. Internal motor circuitry shall convert AC power supplied to the fan to DC power to operate the motor. Motor shall be speed controllable down to 20% of full speed (80% turndown). Speed shall be controlled by either a potentiometer dial mounted on the motor or by a 0-10 VDC signal. Motor shall be a minimum of 85% efficient at all speeds.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 0513
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Flexible-hose expansion joints.
 2. Pipe bends and loops.
 3. Alignment guides and anchors.

1.2 DEFINITIONS

A. BR: Butyl rubber.
B. Buna-N: Nitrile rubber.
C. CR: Chlorosulfonated polyethylene synthetic rubber.
D. CSM: Chlorosulfonyl-polyethylene rubber.
E. EPDM: Ethylene-propylene-diene terpolymer rubber.
F. NR: Natural rubber.
G. PTFE: Polytetrafluoroethylene plastic.

1.3 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping system fluids, materials, working pressures, and temperatures.
B. Capability: Products shall absorb 200 percent of maximum axial movement between anchors.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and bends.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
3. Alignment Guide Details: Detail field assembly and attachment to building structure.
4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections,
 and location for each expansion joint.

1.5 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Product Certificates: For each type of pipe expansion joint, signed by product manufacturer.

1.6 CLOSEOUT SUBMITTALS
A. Maintenance Data: For pipe expansion joints to include in maintenance manuals.

1.7 QUALITY ASSURANCE
A. Welding Qualifications: Qualify procedures and personnel according to the following:
 2. Welding to Piping: ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 EXPANSION JOINTS
A. Flexible-Hose Expansion Joints: Manufactured assembly with two flexible-metal-hose legs joined by long-
 radius, 180-degree return bend or center section of flexible hose; with inlet and outlet elbow fittings,
 corrugated-metal inner hoses, and braided outer sheaths.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
 c. Flex-Pression, Ltd.
 d. Metraflex, Inc.
 2. Flexible-Hose Expansion Joints for Copper Piping: Copper-alloy fittings with solder- joint end
 connections.
 a. NPS 2(DN 50) and Smaller: Bronze hoses and single-braid bronze sheaths with 450 psig at
 70 deg F(3100 kPa at 21 deg C) and 340 psig at 450 deg F(2340 kPa at 232 deg C) ratings.
 b. NPS 2-1/2 to NPS 4(DN 65 to DN 100): Stainless-steel hoses and single-braid, stainless-
 steel sheaths with 300 psig at 70 deg F(2070 kPa at 21 deg C) and 225 psig at 450
 deg F(1550 kPa at 232 deg C) ratings.
 3. Flexible-Hose Expansion Joints for Steel Piping: Carbon-steel fittings with threaded end
 connections for NPS 2(DN 50) and smaller and flanged, grooved, or weld end connections for
 NPS 2-1/2(DN 65) and larger.
2.2 ALIGNMENT GUIDES

A. Description: Steel, factory fabricated, with bolted two-section outer cylinder and base for alignment of piping and two-section guiding spider for bolting to pipe.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Adsco Manufacturing, LLC.
 b. Advanced Thermal Systems, Inc.
 c. Flex-Hose Co., Inc.
 d. Flexicraft Industries.
 e. Flex-Weld, Inc.
 f. Hyspan Precision Products, Inc.
 g. Metraflex, Inc.
 h. Piping Technology & Products, Inc.
 i. Senior Flexonics, Inc.; Pathway Division.

2.3 MATERIALS FOR ANCHORS

A. Steel Shapes and Plates: ASTM A 36/A 36M.

B. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel, hex head.

C. Washers: ASTM F 844, steel, plain, flat washers.

D. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, and tension and shear capacities appropriate for application.
 2. Expansion Plug: Zinc-coated steel.

E. Chemical Fasteners: Insert-type-stud bonding system anchor for use with hardened portland cement concrete, and tension and shear capacities appropriate for application.
 1. Bonding Material: ASTM C 881, Type IV, Grade 3, 2-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.

F. Concrete: Portland cement mix, 3000 psi(20.7 MPa) minimum. Comply with requirements in Division 03 Section "Cast-in-Place Concrete" for formwork, reinforcement, and concrete.
G. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink, nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi(34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

A. Install manufactured, nonmetallic expansion joints according to FSA's "Technical Handbook: Non-Metallic Expansion Joints and Flexible Pipe Connectors."

B. Install expansion joints of sizes matching size of piping in which they are installed.

C. Install alignment guides to allow expansion and to avoid end-loading and torsional stress.

3.2 PIPE BEND AND LOOP INSTALLATION

A. Install pipe bends and loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.

B. Attach pipe bends and loops to anchors.

2. Concrete Anchors: Attach by fasteners. Follow fastener manufacturer's written instructions.

3.3 SWING CONNECTIONS

A. Connect risers and branch connections to mains with at least five pipe fittings, including tee in main.

B. Connect mains and branch connections to terminal units with at least four pipe fittings, including tee in main.

3.4 ALIGNMENT-GUIDE INSTALLATION

A. Install guides on piping adjoining pipe expansion fittings and loops.

B. Attach guides to pipe and secure to building structure.

3.5 ANCHOR INSTALLATION

A. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
B. Fabricate and install steel anchors by welding steel shapes, plates, and bars to piping and to structure. Comply with ASME B31.9 and AWS D1.1.

C. Construct concrete anchors of poured-in-place concrete of dimensions indicated and include embedded fasteners.

D. Install pipe anchors according to expansion-joint manufacturer's written instructions if expansion joints or compensators are indicated.

E. Use grout to form flat bearing surfaces for expansion fittings, guides, and anchors installed on or in concrete.

END OF SECTION 23 0516
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Thermometers.
2. Gages.
3. Test plugs.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ashcroft.
2. Marsh Bellofram.
3. Miljoco Corp.
4. Trerice, H. O. Co.
5. Weiss Instruments, Inc.

B. Case: Metal or plastic, 9 inches (229 mm) long.

C. Tube: Red or blue reading, organic-liquid filled, with magnifying lens.

D. Tube Background: Satin-faced, nonreflective aluminum with permanently etched scale markings.

E. Window: Glass or plastic.

F. Connector: Adjustable type, 180 degrees in vertical plane, 360 degrees in horizontal plane, with locking device.

G. Stem: Copper-plated steel, aluminum, or brass for thermowell installation and of length to suit installation.
H. Accuracy: Plus or minus 1 percent of range or plus or minus 1 scale division to maximum of 1.5 percent of range.

2.2 THERMOWELLS

A. Manufacturers: Same as manufacturer of thermometer being used.

B. Description: Pressure-tight, socket-type metal fitting made for insertion into piping and of type, diameter, and length required to hold thermometer.

C. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ashcroft.
2. Marsh Bellofram.
3. Miljoco Corp.
4. Trerice, H. O. Co.
5. Weiss Instruments, Inc.

B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Liquid-filled type, drawn steel or cast aluminum, 4-1/2-inch(114-mm) diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4(DN 8), bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer with front recalibration.
6. Pointer: Red or other dark-color metal.
7. Window: Glass or plastic.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure(100 kPa of vacuum to 103 kPa of pressure).
11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

1. Valves: NPS 1/4(DN 8) brass:
 a. Ball valve for water systems.
2. Tubing: NPS 1/4(DN 8) steel or copper.
3. Snubbers: ASME B40.5, NPS 1/4(DN 8) brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
2.4 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flow Design, Inc.
2. MG Piping Products Co.
4. Peterson Equipment Co., Inc.
5. Sisco Manufacturing Co.
6. Treice, H. O. Co.

B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.

C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F (3450 kPa at 93 deg C).

D. Core Inserts: One or two self-sealing rubber valves.

 1. Insert material for air or water service at minus 30 to plus 275 deg F (minus 35 to plus 136 deg C) shall be EPDM.
 2. Insert material for oil, or gas service at 20 to 200 deg F (minus 7 to plus 93 deg C) shall be CR.

PART 3 - EXECUTION

3.1 THERMOMETER APPLICATIONS

A. Install thermometers in the following locations:

 1. Inlet and outlet of each hydronic chiller.
 2. Inlet and outlet of each hydronic coil in air-handling units.
 3. Inlet and outlet of each thermal storage tank.
 4. Elsewhere as indicated on drawings.

B. Provide the following temperature ranges for thermometers:

 1. Heating Hot Water: 30 to 180 deg F, with 2-degree scale divisions (Minus 1 to plus 115 deg C, with 1-degree scale divisions).
 2. Chilled Water: 0 to 100 deg F, with 2-degree scale divisions (Minus 18 to plus 38 deg C, with 1-degree scale divisions).

3.2 GAGE APPLICATIONS

A. Install pressure gages in the following locations:

 1. At heating-water inlets and outlets of boilers.
 2. At chilled-water inlets and outlets of chillers
 3. Across suction and discharge of each base mounted pump
4. Elsewhere as indicated on drawings.

3.3 INSTALLATIONS

A. Install direct-mounting thermometers and adjust vertical and tilted positions.

B. Install thermowells with socket extending one-third of diameter of pipe and in vertical position in piping tees where thermometers are indicated.

C. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.
 1. Provide elbows as required to install gauges at location and angle readable from standing position on floor.

D. Install ball valve and snubber fitting in piping for each pressure gage for fluids.

E. Install test plugs in tees in piping.

3.4 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.

3.5 ADJUSTING

A. Calibrate meters according to manufacturer's written instructions, after installation.

B. Adjust faces of meters and gages to proper angle for best visibility.

END OF SECTION 23 0519
1.1 SUMMARY

A. This Section includes the following general-duty valves:
 1. Copper-alloy ball valves.
 2. Ferrous-alloy butterfly valves.

B. Related Sections include the following:
 1. Division 21 fire-suppression piping and fire pump Sections for fire-protection valves.
 2. Division 23 piping Sections for specialty valves applicable to those Sections only.
 3. Division 23 Section "Identification for HVAC Piping and Equipment" for valve tags and charts.
 4. Division 23 Section "Instrumentation and Control for HVAC" for control valves and actuators.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated. Include body, seating, and trim materials; valve design; pressure and temperature classifications; end connections; arrangement; dimensions; and required clearances. Include list indicating valve and its application. Include rated capacities; shipping, installed, and operating weights; furnished specialties; and accessories.

1.3 QUALITY ASSURANCE

A. ASME Compliance: ASME B31.9 for building services piping valves.

B. ASME Compliance for Ferrous Valves: ASME B16.10 and ASME B16.34 for dimension and design criteria.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect valve ends from damage.
 4. Set butterfly valves closed or slightly open.
 5. Block check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 VALVES, GENERAL

A. Refer to Part 3 "Valve Applications" Article for applications of valves.

B. Bronze Valves: NPS 2(DN 50) and smaller with threaded ends.

C. Ferrous Valves: NPS 2-1/2(DN 65) and larger with flanged ends, unless otherwise indicated.

D. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

E. Valve Sizes: Same as upstream pipe, unless otherwise indicated.

F. Valve Actuators:

1. Lever Handle: For quarter-turn valves NPS 4(DN 100) and smaller.
2. Gear Drive: For quarter-turn valves NPS 5(DN 125) and larger.

G. Extended Valve Stems: Include the following on 1-1/2" and larger insulated valves in chilled water lines:

1. 2-inch (50-mm) stem extensions.
2. Extended operating handle of nonthermal-conductive material, and protective sleeves that allow operation of valves without breaking the vapor seals or disturbing insulation.

H. Memory Stops: Include memory stops that are fully adjustable after insulation is applied.

J. Valve Grooved Ends: AWWA C606.

K. Valve Threaded Ends: Threaded with threads according to ASME B1.20.1.
L. Valve Bypass and Drain Connections: MSS SP-45.

2.3 COPPER-ALLOY BALL VALVES

A. Manufacturers:
 1. Two-Piece, Copper-Alloy Ball Valves:
 b. Crane.
 c. Hammond Valve.
 d. Jamesbury, Inc.
 e. Jomar International, LTD.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Watts Industries, Inc.; Water Products Div.

B. Copper-Alloy Ball Valves, General: MSS SP-110.

C. Two-Piece, Copper-Alloy Ball Valves: Cast bronze threaded two-piece body with full-port, chrome-plated bronze ball; PTFE or TFE seats; and 600-psig (4140 kPa) minimum CWP rating and blowout-proof stem.

2.4 FERROUS-ALLOY BUTTERFLY VALVES

A. Manufacturers:
 1. Lug Type, Ferrous-Alloy Butterfly Valves:
 a. Apollo Valves.
 b. Crane.
 c. General Signal; DeZurik Unit.
 d. Tyco / Grinnell.
 e. Hammond Valve.
 f. Milwaukee Valve Company.
 g. NIBCO INC.
 h. Watts Industries, Inc.; Water Products Div.

B. Ferrous-Alloy Butterfly Valves, General: MSS SP-67, Type I, for tight shutoff.

C. Flangeless, 200-psig (1380-kPa) CWP Rating, Ferrous-Alloy Butterfly Valves: Lug type with one- or two-piece stainless steel stem, ASTM A 126 cast iron or ASTM A 536 ductile iron body, EPDM seat, aluminum bronze disc.

D. Grooved-End, Minimum 200-psig (1380-kPa) CWP Rating, Ferrous-Alloy Butterfly Valves: Ductile-iron body with grooved ends, one- or two-piece stainless steel stem, EPDM seat, aluminum bronze disc.

2.5 BRONZE CHECK VALVES

A. Manufacturers:
 1. Type 4, Bronze, Swing Check Valves with Nonmetallic Disc:
a. Crane.
b. Hammond Valve.
c. Milwaukee Valve Company.
d. NIBCO INC.
e. Watts Industries, Inc.; Water Products Div.

B. Bronze Check Valves, General: MSS SP-80.

C. Type 4, Class 125, Bronze, Swing Check Valves: Bronze body with nonmetallic disc and bronze seat.

D. Type 4, Class 150, Bronze, Swing Check Valves: Bronze body with nonmetallic disc and bronze seat.

2.6 GRAY-IRON SWING CHECK VALVES

A. Manufacturers:

1. Gray-Iron Swing Check Valves:
 a. Crane.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts Industries, Inc.; Water Products Div.

C. Class 125, gray-iron, swing check valves with bronze trim and asbestos-free gasket.

D. Class 250, gray-iron, swing check valves bronze trim and asbestos-free gasket.

E. 300-psig(2070-kPa) CWP Rating, Grooved-End, Swing Check Valves: Ductile-iron body with grooved ends, EDPM seals, and ductile iron or stainless steel disc.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.
3.2 VALVE APPLICATIONS

A. Refer to piping Sections for specific valve applications. If valve applications are not indicated, use the following:

1. Shutoff Service: Ball or butterfly valves.
2. Throttling Service: Ball or butterfly valves.

B. Select valves, except lug types, with the following end connections:

1. For Copper Tubing, NPS 2 (DN 50) and Smaller: Threaded ends.
2. For Steel Piping, NPS 2 (DN 50) and Smaller: Threaded ends.
3. For Steel Piping, NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Flanged ends.
4. For Steel Piping, NPS 5 (DN 125) and Larger: Flanged ends.

C. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP class or CWP ratings may be substituted.

D. Hydronic Water Piping: For chilled water piping systems, use the following types of valves:

1. Ball Valves, NPS 2 (DN 50) and Smaller: Two-piece, 600-psig (4140-kPa) CWP rating, copper alloy.
2. Butterfly Valves, NPS 2-1/2 (DN 65) and Larger: Lug type, 200-psig (1380-kPa) CWP rating, ferrous alloy, with aluminum bronze disc and EPDM rubber seat and seals.
3. Swing Check Valves, NPS 2 (DN 50) and Smaller: Type 4, Class 125 or 150, bronze.
4. Swing Check Valves, NPS 2-1/2 (DN 65) and Larger: Class 125, gray iron.
5. Grooved-End, Ductile-Iron, Swing Check Valves, NPS 2-1/2 (DN 65) and Larger: 300-psig (2070-kPa) CWP rating.

3.3 VALVE INSTALLATION

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

C. Locate valves for easy access and provide separate support where necessary.

D. Install valves in horizontal piping with stem at or above center of pipe.

E. Install valves in position to allow full stem movement.

F. Install check valves for proper direction of flow.

3.4 JOINT CONSTRUCTION

A. Refer to Division 23 Section "Common Work Results for HVAC" for basic piping joint construction.
3.5 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

END OF SECTION 23 0523
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following hangers and supports for HVAC system piping and equipment:

1. **Metal** pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Pipe stands.
7. Equipment supports.

B. Related Sections include the following:

1. Division 05 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Division 21 fire-suppression sections for pipe hangers for fire-protection piping.
3. Division 23 Section(s) "Metal Ducts" for duct hangers and supports.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society for The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

B. Non-MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 3. Channels: Continuous slotted steel channel with inturned lips.
 4. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.4 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig (688-kPa) ASTM C 552, Type II cellular glass with 100-psig (688-kPa) or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig (862-kPa) minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches (50 mm) beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated or stainless steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STAND FABRICATION

A. Pipe Stands, General: Shop or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod-roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.

 1. Base: Plastic or stainless steel.
 2. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 3. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.

 1. Bases: One or more plastic.
 2. Vertical Members: Two or more protective-coated-steel channels.
 3. Horizontal Member: Protective-coated-steel channel.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.
2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.

F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

G. Use thermal-hanger shield inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F (49 to 232 deg C) pipes, NPS 4 to NPS 16 (DN 100 to DN 400), requiring up to 4 inches (100 mm) of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24 (DN 20 to DN 600), requiring clamp flexibility and up to 4 inches (100 mm) of insulation.
 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24 (DN 15 to DN 600), if little or no insulation is required.
 5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30 (DN 15 to DN 750).
 6. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 7. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36 (DN 100 to DN 900), with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.

9. Adjustable, Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36 (DN 65 to DN 900), if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.

10. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30 (DN 25 to DN 750), from 2 rods if longitudinal movement caused by expansion and contraction might occur.

11. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes, NPS 2 to NPS 20 (DN 65 to DN 500), from single rod if horizontal movement caused by expansion and contraction might occur.

12. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42 (DN 50 to DN 1050), if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500).

2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20 (DN 20 to DN 500), if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches (150 mm) for heavy loads.

2. Steel Clevises (MSS Type 14): For 120 to 450 deg F (49 to 232 deg C) piping installations.

3. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

4. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F (49 to 232 deg C) piping installations.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.

2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

4. C-Clamps (MSS Type 23): For structural shapes.

5. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.

6. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb (340 kg).
 b. Medium (MSS Type 32): 1500 lb (680 kg).
 c. Heavy (MSS Type 33): 3000 lb (1360 kg).
L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.

N. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

1. Use powder-actuated fasteners only in concrete construction that is suitable for their installation.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Metal Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches (100 mm) thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

F. Pipe Stand Installation:
1. Pipe Stand Types except Curb-Mounting Type: Assemble components and mount on smooth surface. Do not penetrate roof membrane.

G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal movement of piping systems, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2(DN 65) and larger and at changes in direction of piping.

L. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

N. Insulated Piping: Comply with the following:
1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4(DN 100) and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4(DN 100) and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2(DN 8 to DN 90): 12 inches(305 mm) long and 0.048 inch(1.22 mm) thick.
 b. NPS 4(DN 100): 12 inches(305 mm) long and 0.06 inch(1.52 mm) thick.
c. NPS 5 and NPS 6 (DN 125 and DN 150): 18 inches (457 mm) long and 0.06 inch (1.52 mm) thick.

5. Insert Material: Length at least as long as protective shield.
6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches (40 mm) maximum.

3.6 PAINTING

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
SECTION 23 0553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

 A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.
 3. Stencils.
 4. Valve tags.

1.2 ACTION SUBMITTALS

 A. Valve Schedules: For each piping system.

1.3 COORDINATION

 A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
 B. Coordinate installation of identifying devices with locations of access panels and doors.
 C. Install identifying devices before installing acoustical ceilings and similar concealment.

1.4 QUALITY ASSURANCE

 A. Comply with ANSI A13.1 “Pipe Labeling Guide” for color scheme, length of field and letter height.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

 A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch (1.6 mm) thick, and having predrilled holes for attachment hardware.
 2. Letter Color: Black.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F (71 deg C).
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch (64 by 19 mm).
 a. Size of label shall be proportional to equipment size.
6. Minimum Letter Size: 1/4 inch (6.4 mm) for name of units if viewing distance is less than 24 inches (600 mm), 1/2 inch (13 mm) for viewing distances up to 72 inches (1830 mm), and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number.

2.2 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic label including flow arrow formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic label with contact-type, permanent-adhesive backing. Include wrap around flow arrow label with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service matching designations or abbreviations as used on Drawings.

2.3 STENCILS

A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches (32 mm) for ducts; and minimum letter height of 3/4 inch (19 mm) for access panel and door labels, equipment labels, and similar operational instructions.

1. Stencil Material: Fiberboard or metal.
2. Stencil Paint: Exterior, gloss, black enamel unless otherwise indicated. Paint may be in pressurized spray-can form.
3. Identification Paint: Exterior enamel in colors according to ASME A13.1 unless otherwise indicated.

2.4 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch (6.4-mm) letters for piping system abbreviation and 1/2-inch (13-mm) numbers.

1. Tag Material: Brass, 0.032-inch (0.8-mm) minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link or beaded chain; or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch (A4) bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
1. Provide glass front frame for each valve schedule for mounting in building mechanical room.
2. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Pipe Label Applications: Install pipe labels as follows:
 1. Use pretensioned pipe labels or self-adhesive pipe labels.

B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, on each piping system.
 1. Identification Paint: Use for contrasting background.

C. Locate pipe labels where piping is concealed above ceilings or exposed in unfinished mechanical rooms; accessible maintenance spaces such as shafts, tunnels, and plenums as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet (15 m) along each run.

3.4 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; equipment shutoff valves; convenience and hose connections; and HVAC terminal devices and similar roughing-in connections of end-use units. List tagged valves in a valve schedule.
B. Install glass front frame valve schedule in building mechanical room. Locate at Owners representative approved location.

END OF SECTION 23 0553
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 2. Testing, Adjusting, and Balancing Equipment.
 3. Testing, adjusting, and balancing existing systems and equipment.

1.2 DEFINITIONS

B. BAS: Building automation systems.
D. TAB: Testing, adjusting, and balancing.
F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
G. TDH: Total dynamic head.

1.3 ACTION SUBMITTALS

A. LEED Submittals:
 1. Not Applicable.

1.4 INFORMATIONAL SUBMITTALS

C. System Readiness Checklists: Within 90 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.
D. Examination Report: Submit a summary report of the examination review required in "Examination" Article.
E. Certified TAB Reports: Submit four copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.

F. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.5 QUALITY ASSURANCE

 A. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

 B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

1.6 FIELD CONDITIONS

 A. Owner Occupancy: Owner will occupy the site and existing building during TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.7 COORDINATION

 A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

 B. Perform TAB after leakage and pressure tests on distribution systems have been satisfactorily completed.

1.8 PROJECT COMMISSIONING

 A. Project has an independent commissioning authority (CxA). TAB Specialists for this project shall meet CxA requirements and shall coordinate with and participate in commissioning activities.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

 A. Subject to compliance with requirements, engage one of the following:

 1. Subject to compliance with requirements, provide the services of one of the following:
3.2 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

E. Examine equipment performance data.

 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and verify that equipment with functioning controls is ready for operation.

I. Examine terminal units and verify that they are accessible and their controls are connected and functioning.

J. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

K. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
M. Examine system pumps to ensure absence of entrained air in the suction piping.

N. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers' startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance"; ASHRAE 111; NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems"; SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing"; and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 0700 "HVAC Insulation."
C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 23 3113 "Metal Ducts."

3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:

1. Check liquid level in expansion tank.
2. Check highest vent for adequate pressure.
3. Check flow-control valves for proper position.
4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
5. Verify that motor starters are equipped with properly sized thermal protection.
6. Check that air has been purged from the system.

3.7 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:
 1. Verify that the differential-pressure sensor is located as indicated.
 2. Determine whether there is diversity in the system.

C. For systems with no diversity:
 1. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
 2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.
 3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.
 4. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.
5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

6. Prior to verifying final system conditions, determine the system differential-pressure set point.

7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

8. Mark final settings and verify that all memory stops have been set.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

10. Verify that memory stops have been set.

D. For systems with diversity:

1. Determine diversity factor.

2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.

3. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.

e. Perform temperature tests after flows have been balanced.

6. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure, and verify that it is within manufacturer’s specified range.
 b. Perform temperature tests after flows have been verified.

7. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.

9. Prior to verifying final system conditions, determine system differential-pressure set point.

10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

11. Mark final settings and verify that memory stops have been set.

12. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps’ operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

13. Verify that memory stops have been set.

3.8 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first.

B. Balance the secondary circuits after the primary circuits are complete.

C. Adjust pumps to deliver total design gpm.

1. Measure total water flow.
 a. Position valves for full flow through coils.
 b. Measure flow by main flow meter, if installed.
 c. If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.

2. Measure pump TDH as follows:
 a. Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 b. Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 c. Convert pressure to head and correct for differences in gage heights.
 d. Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer’s pump curve at zero flow and verify that the pump has the intended impeller size.
e. With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

D. Adjust flow-measuring devices installed in mains and branches to design water flows.
 1. Measure flow in main and branch pipes.
 2. Adjust main and branch balance valves for design flow.
 3. Re-measure each main and branch after all have been adjusted.

E. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 1. Measure flow at terminals.
 2. Adjust each terminal to design flow.
 3. Re-measure each terminal after it is adjusted.
 4. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 5. Perform temperature tests after flows have been balanced.

F. For systems with pressure-independent valves at terminals:
 1. Measure differential pressure and verify that it is within manufacturer's specified range.
 2. Perform temperature tests after flows have been verified.

G. For systems without pressure-independent valves or flow-measuring devices at terminals:
 1. Measure and balance coils by either coil pressure drop or temperature method.
 2. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

H. Verify final system conditions as follows:
 1. Re-measure and confirm that total water flow is within design.
 2. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 3. Mark final settings.

I. Verify that memory stops have been set.

3.9 PROCEDURES FOR HEAT EXCHANGERS

A. Adjust water flow to within specified tolerances.

B. Measure inlet and outlet water temperatures.

C. Check settings and operation of safety and relief valves. Record settings.

3.10 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
1. Manufacturer's name, model number, and serial number.
4. Phase and hertz.
5. Nameplate and measured voltage, each phase.
6. Nameplate and measured amperage, each phase.
7. Starter size and thermal-protection-element rating.
8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.11 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Prior to demolition of air and water HVAC distributions systems and equipment, measure and record existing air and water flow conditions for all equipment, ductwork and hydronic piping systems serving area being modified during the project.

1. Measure and record the operating speeds and flow rates of existing equipment.
2. Measure and record the flow rates at interconnection points between existing and new work.
3. After revisions are complete, measure all the HVAC air and water systems modified and restore the systems to their original or scheduled capacities.

B. Perform a preconstruction inspection of existing equipment that is to remain and be reused.

1. Measure and record the operating speed, airflow, and static pressure of each fan.
2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
3. .
4. Check the condition of coils.
5. Check the operation of the drain pan and condensate-drain trap.
6. Check bearings and other lubricated parts for proper lubrication.

C. Before performing testing and balancing of existing systems after construction, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:

1. New filters are installed.
2. Coils are clean and fins combed.
3. Drain pans are clean.
4. Fans are clean.
5. Bearings and other parts are properly lubricated.
6. Deficiencies noted in the preconstruction report are corrected.

3.12 TOLERANCES

A. Set HVAC system's flow rates within the following tolerances: Set HVAC system's airflow rates and water flow rates within the following tolerances:
1. Chilled-Water Flow Rate: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.13 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.14 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Equipment operating curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect/Engineer's name and address.
6. Contractor's name and address.
7. Report date.
8. Signature of TAB supervisor who certifies the report.
9. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
10. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
11. Nomenclature sheets for each item of equipment.
12. Data for terminal units, including manufacturer's name, type, size, and fittings.
13. Notes to explain why certain final data in the body of reports vary from indicated values.
14. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Water flow rates.
 2. Pipe and valve sizes and locations.

E. Apparatus-Coil Test Reports:
 1. Coil Data:
 a. System identification.
 b. Location.
 c. Coil type.
 d. Number of rows.
 e. Fin spacing in fins per inch (mm) o.c.
 f. Make and model number.
 g. Face area in sq. ft. (sq. m).
 h. Tube size in NPS (DN).
 i. Tube and fin materials.
 j. Circuiting arrangement.
 2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm (L/s).
 b. Average face velocity in fpm (m/s).
 c. Air pressure drop in inches wg (Pa).
 d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).
 e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).
 f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).
 g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
 h. Water flow rate in gpm (L/s).
 i. Water pressure differential in feet of head or psig (kPa).
 j. Entering-water temperature in deg F (deg C).
 k. Leaving-water temperature in deg F (deg C).
3.15 TOLERANCES

A. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm (L/s).
 g. Water pressure differential in feet of head or psig (kPa).
 h. Required net positive suction head in feet of head or psig (kPa).
 i. Pump rpm.
 j. Impeller diameter in inches (mm).
 k. Motor make and frame size.
 l. Motor horsepower and rpm.
 m. Voltage at each connection.
 n. Amperage for each phase.
 o. Full-load amperage and service factor.
 p. Seal type.
 q. Variable frequency drive information.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig (kPa).
 b. Pump shutoff pressure in feet of head or psig (kPa).
 c. Actual impeller size in inches (mm).
 d. Full-open flow rate in gpm (L/s).
 e. Full-open pressure in feet of head or psig (kPa).
 f. Final discharge pressure in feet of head or psig (kPa).
 g. Final suction pressure in feet of head or psig (kPa).
 h. Final total pressure in feet of head or psig (kPa).
 i. Final water flow rate in gpm (L/s).
 j. Voltage at each connection.
 k. Amperage for each phase.
 l. Variable frequency drive setpoint.

B. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.
3.16 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Engineer and commissioning authority.

B. Engineer and commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:

1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.

F. Prepare test and inspection reports.

END OF SECTION 23 0593
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulation materials for HVAC systems.

B. Related Sections:
 1. Division 22 Section "Plumbing Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated below:
 1. Mineral fiber.
 2. Flexible elastomeric.
 3. Field installed jackets

1.3 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program.

B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application.
1. Establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Provide ASJ or FSK for ductwork applications, as scheduled.

H. Mineral-Fiber, Preformed Pipe Insulation:

1. Type I, 850 deg F (454 deg C) Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ or ASJ-SSL jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

I. Mineral-Fiber, Pipe, Duct and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. (40 kg/cu. m) or more. Thermal conductivity (k-value) at 100 deg F (55 deg C) is 0.29 Btu x in./h x sq. ft. x deg F (0.042 W/m x K) or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Provide ASJ for equipment applications.
2. Provide ASJ or FSK for ductwork applications, as scheduled.
2.2 INSULATING CEMENTS
 A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.

2.3 ADHESIVES
 A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
 B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 E. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. For indoor applications, use adhesive that has a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS
 A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-C-19565C, Type II.
 B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.
 1. Water-Vapor Permeance: ASTM E 96, Procedure B, 0.013 perm(0.009 metric perm) at 43-mil(1.09-mm) dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 180 deg F(Minus 29 to plus 82 deg C).
 C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 1. Water-Vapor Permeance: ASTM F 1249, 3 perms(2 metric perms) at 0.0625-inch(1.6-mm) dry film thickness.
 2. Service Temperature Range: Minus 20 to plus 200 deg F(Minus 29 to plus 93 deg C).
 3. Solids Content: 63 percent by volume and 73 percent by weight.
2.5 SEALANTS

A. Joint Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Permanently flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. FSK Jacket Flashing Sealants:
 1. Products:
 a. Childers Products, Division of ITW; CP-76-8.
 b. Foster Products Corporation, H. B. Fuller Company; 95-44.
 c. Marathon Industries, Inc.; 405.
 d. Mon-Eco Industries, Inc.; 44-05.
 e. Vimasco Corporation; 750.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 5. Color: Aluminum.
 6. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. ASJ Flashing Sealants, and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).
 5. For indoor applications, use sealants that have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACkETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Fitting Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Adhesive: As recommended by jacket material manufacturer.
 3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, traps, and mechanical joints.

C. Aluminum Jacket: Comply with ASTM B 209(ASTM B 209M), Alloy 3003, 3005, 3105 or 5005, Temper H-14.
 1. Factory cut and rolled to size or sheet and roll stock ready for shop or field sizing.
 2. Finish and thickness are indicated in field-applied jacket schedules.
 3. Factory-Fabricated Fitting Covers:
 a. Same material, finish, and thickness as jacket.
 b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 c. Tee covers.
 d. Flange and union covers.
 e. End caps.
 f. Beveled collars.
 g. Valve covers.
 h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Self-Adhesive Outdoor Jacket: Minimum 40-mil-(1.0-mm-) thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with aluminum-foil facing.
 1. Coordinate color with Architect and Owner.
 2. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Polyguard; Alumaguard.
 b. MFM Building Products; Flex Clad 400

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches(75 mm).
 2. Thickness: 11.5 mils(0.29 mm).
 3. Adhesion: 90 ounces force/inch(1.0 N/mm) in width.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch(7.2 N/mm) in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Width: 3 inches (75 mm).
2. Thickness: 6.5 mils (0.16 mm).
3. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications.

1. Width: 2 inches (50 mm).
2. Thickness: 6 mils (0.15 mm).
3. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
4. Elongation: 500 percent.
5. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Width: 2 inches (50 mm).
2. Thickness: 3.7 mils (0.093 mm).
3. Adhesion: 100 ounces force/inch (1.1 N/mm) in width.
4. Elongation: 5 percent.
5. Tensile Strength: 34 lbf/inch (6.2 N/mm) in width.

2.9 SECUREMENTS

A. Aluminum Bands: ASTM B 209 (ASTM B 209M), Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch (0.51 mm) thick, 1/2 inch (13 mm) or 3/4 inch (19 mm) wide with wing or closed seal.

B. Insulation Pins and Hangers:

1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 b. Spindle: Copper- or zinc-coated, low carbon steel, aluminum, or stainless steel; fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, nylon sheet, 0.030 inch (0.76 mm) thick by 1-1/2 inches (38 mm) in diameter.
b. Spindle: Nylon, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches (63 mm).

c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch (0.76 mm) thick by 2 inches (50 mm) square.
 b. Spindle: Copper- or zinc-coated, low carbon steel, aluminum, or stainless steel; fully annealed, 0.106-inch-(2.6-mm-) diameter shank, length to suit depth of insulation indicated.
 c. Adhesive-backed base with a peel-off protective cover.

4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick, galvanized-steel, aluminum, or stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-(0.41-mm-) thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches (38 mm) in diameter.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-(19-mm-) wide, stainless steel or Monel.

D. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

2.10 REMOVABLE INSULATED EQUIPMENT COVER

A. Provide custom built removable insulating equipment cover for equipment indicated. Covers shall conform to the shape of the equipment.
 1. Construct covers using two layers of flexible vapor barrier materials with two parallel rows of lock stitching, stuffed with insulation, using belt and loops or velcro like material to hold cover in place.
 2. Cover to overlap pipe insulation.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.

2. Cover circumferential joints with 3-inch-(75-mm-) wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches (100 mm) o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches (38 mm). Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches (50 mm) o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

O. For above ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations:
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation at roof structure and seal with joint sealant.
 3. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 4. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 5. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant.
 3. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
4. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
5. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches (50 mm).

1. Comply with requirements in Division 07 Section "Penetration Firestopping" and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:

1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches (50 mm).
2. Pipe: Install insulation continuously through floor penetrations.
3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.5 EQUIPMENT, TANK, AND VESSEL INSULATION INSTALLATION

A. Mineral Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. On tanks and vessels, maximum anchor-pin spacing is 3 inches (75 mm) from insulation end joints, and 16 inches (400 mm) o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.

6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches (150 mm) from each end. Install wire or cable between two circumferential girdles 12 inches (300 mm) o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches (1200 mm) o.c. Use this network for securing insulation with tie wire or bands.

7. Stagger joints between insulation layers at least 3 inches (75 mm).

8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.

9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.

10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.

1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.

2. Seal longitudinal seams and end joints.

C. Insulation Installation Over Chilled Water Pump Volutes:

1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch (150-mm) centers, starting at corners. Install 3/8-inch (10-mm) diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.

2. Fabricate boxes from galvanized steel or aluminum, at least 0.050 inch (1.3 mm) thick.

3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For mineral fiber insulation, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Insulation Installation on Control Valves:

1. Omit insulation over control valves.

3.7 FLEXIBLE ELASTOMERIC INSULATION INSTALLATION

A. Seal longitudinal seams and end joints with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturers recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3. MINERAL-FIBER INSULATION INSTALLATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches (150 mm) o.c.
4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch (25 mm), and seal joints with flashing sealant. Cover open ends of insulation and seal.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 b. On duct sides with dimensions larger than 18 inches (450 mm), place pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).
5. Overlap unfaced blankets a minimum of 2 inches (50 mm) on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches (450 mm) o.c.
6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
7. Insulate duct stiffeners, trapeze hanger bars, and duct flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

F. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches (450 mm) and smaller, place pins along longitudinal centerline of duct. Space 3 inches (75 mm) maximum from insulation end joints, and 16 inches (400 mm) o.c.
 b. On duct sides with dimensions larger than 18 inches (450 mm), space pins 16 inches (400 mm) o.c. each way, and 3 inches (75 mm) maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches (50 mm) from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch (13-mm) outward-clinching staples, 1 inch (25 mm) o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F (10 deg C) at 18-foot (5.5-m) intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches (75 mm).

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, trapeze hanger bars, and duct flanges that protrude beyond insulation surface with 6-inch-(150-mm-) wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches (150 mm) o.c.

3.9 FIELD-APPLIED JACKET INSTALLATION

A. Where PVC fitting jackets are indicated, install with 1-inch (25-mm) overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturers recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
 2. Fill inside of fitting jackets to prevent collapse of jacket.

B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant.
recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

3.10 FINISHES

A. Paintable Jacket Material: Paint jacket with paint system identified in Division 09 painting Sections.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation: Insulate the following in accordance with insulation schedule:

1. Supply air.
2. Outdoor air.
3. Return air.
4. Relief air.
5. Exhaust air.

B. Items Not Insulated:

1. Factory-insulated flexible ducts.
2. Factory-insulated plenums and casings, except as indicated.
3. Flexible connectors.
5. Factory-insulated access panels and doors.
6. Volume control balancing damper lever handles.

C. Definitions:

1. Concealed: Above solid ceiling and not visible from below.
2. Exposed: In rooms with no ceilings or with partial ceilings (i.e. “cloud type ceilings”) and visible from below.
3. Finished Spaces: Spaces with room finishes accessible by building occupants.
4. Unfinished Spaces: Spaces with no or limited room finishes accessible by building maintenance and support staff only.

3.12 EQUIPMENT INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor’s option.

B. Insulate equipment in paragraphs below that are not factory insulated.

C. Chilled-water pump volute removable metal cover insulation shall be one of the following:

1. Mineral-Fiber Board with FSK Jacket: 1 inch (25 mm) thick and 3-lb/cu. ft. (48-kg/cu. m) nominal density.
2. Flexible Elastomeric: 1 inch (25 mm) thick.

D. Chilled-water air-separator insulation shall be one of the following:
1. Mineral-Fiber Pipe and Tank with ASJ: 1 inch (25 mm) thick.
2. Flexible Elastomeric: 1 inch (25 mm) thick.

3.13 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable insulation materials and thicknesses are identified for each piping system and pipe size range.

1. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Control valve stem and actuator.

3.14 INDOOR PIPING INSULATION SCHEDULE

A. Chilled Water, above 40 Deg F (5 Deg C): Insulation shall be one of the following:

1. Mineral-Fiber, Preformed Pipe, Type I: 1 inch (25 mm) thick.
2. Flexible Elastomeric: 1 inch (25 mm) thick.
 a. Only allowed on concealed chilled water lines or within mechanical rooms.

B. Heating-Hot-Water Supply and Return, 200 Deg F (93 Deg C) and below: Insulation shall be the following:

1. Mineral-Fiber, Preformed Pipe, Type I: 1-1/2 inch (38 mm) thick, NPS 1-1/4 (DN 32) diameter and under; 2 inches (50 mm) thick, over NPS 1-1/4 (DN 32) diameter.

C. Refrigerant Suction: Insulation shall be one of the following:

1. Mineral-Fiber, Preformed Pipe, Type I: 2 inches (50 mm) thick.
2. Flexible Elastomeric: 2 inches (50 mm) thick.

3.15 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Chilled Water: Insulation shall be the following:

1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches (50 mm) thick.

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Pipe Fittings with Mineral Fiber Insulation:

1. PVC Fitting Covers: 20 mils (0.6 mm) thick, white.
3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping:
 1. Cover flexible elastomeric insulation with one of the following:
 a. Adhere 10 x 10 woven mesh using insulation manufacturer’s recommended adhesive and finish with two coats of manufacturer’s recommended finish.
 b. Aluminum, Smooth or Stucco Embossed: 0.024 inch (0.61 mm) thick.
 2. Cover mineral fiber insulation with one of the following:
 a. Self-adhesive outdoor jacket with aluminum foil facing.
 b. Aluminum, Smooth or Stucco Embossed: 0.024 inch (0.61 mm) thick.

3.18 REMOVABLE INSULATED EQUIPMENT COVER SCHEDULE

A. Install removable insulating equipment cover over brazed plate heat exchangers.

END OF SECTION 23 0700
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.

B. Related Sections:
 1. Division 01 Section "General Commissioning Requirements" for general commissioning process requirements.
 2. Section 21 Section "Commissioning of Fire Suppression System" for commissioning process activities for Fire Suppression systems, assemblies, equipment, and components.
 3. Section 22 Section "Commissioning of Plumbing" for commissioning process activities for Plumbing systems, assemblies, equipment, and components.
 4. Division 26 Section "Commissioning of Electrical Systems" for electrical systems commissioning requirements.
 5. Section 28 Section "Commissioning of Fire Alarm" for commissioning process activities for Fire Alarm systems, assemblies, equipment, and components.

1.2 DEFINITIONS

A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.

B. CxA: Commissioning Authority.

D. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.3 CONTRACTOR'S RESPONSIBILITIES

A. Perform commissioning tests at the direction of the CxA as defined in the Commissioning Plan.

B. Complete the project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components furnished and installed as part of the construction contract.

C. Attend construction phase controls coordination meeting.

D. Attend testing, adjusting, and balancing review and coordination meeting.

E. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
F. Provide information requested by the CxA for final commissioning documentation.

G. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

H. Provide training to Owner’s personnel on system operations, preventive maintenance, sequence of operations, and general function on systems.

1.4 CxA’s RESPONSIBILITIES

A. Prepare project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.

B. Direct commissioning testing.

C. Verify testing, adjusting, and balancing of Work are complete.

1.5 COMMISSIONING DOCUMENTATION

A. Provide the following information to the CxA for inclusion in the commissioning plan:

1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.

2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.

3. Process and schedule for completing construction checklists and manufacturer’s prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.

4. Certificate of completion certifying that installation, prestart checks, and startup procedures have been completed.

5. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.

6. Test and inspection reports and certificates.

7. Corrective action documents.

8. Verification of testing, adjusting, and balancing reports.

1.6 INFORMATIONAL SUBMITTALS

A. Certificates of readiness.

B. Certificates of completion of installation, prestart, and startup activities.

PART 2 - PRODUCTS (Not Used)
PART 3 - EXECUTION

3.1 TESTING PREPARATION

A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.

B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.

C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.

D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).

E. Inspect and verify the position of each device and interlock identified on checklists.

F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.

G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.2 TESTING AND BALANCING VERIFICATION

A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.

B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.

C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.

1. The CxA will notify testing and balancing agency 10 days in advance of the date of field verification. Notice will not include data points to be verified.

2. The testing and balancing agency shall use the same instruments (by model and serial number) that were used when original data were collected.

3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.

4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.3 GENERAL TESTING REQUIREMENTS

A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.

C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.

D. The CxA along with the HVAC&R Installer, testing and balancing agency, and HVAC&R Instrumentation and Control Installer shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.

E. Tests will be performed using design conditions whenever possible.

F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.

G. The CxA may direct that set points be altered when simulating conditions is not practical.

H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

I. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Construction Manager, CxA, and Owner. After deficiencies are resolved, reschedule tests.

J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

K. If Cx Functional Tests cannot be satisfactorily completed because of a deficiency of the HVAC or Controls system and retesting is required retesting will be billed at an hourly rate expensed to the contractor responsible for the deficiency.

3.4 HVAC&R SYSTEMS, SUBSYSTEMS, AND EQUIPMENT TESTING PROCEDURES

A. Testing and Acceptance Procedures: Testing requirements are specified in Division 23. Provide submittals, test data, inspector record, and equipment certifications to the CxA.

B. HVAC&R Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Division 23 Sections "Instrumentation and Control for HVAC" and "Sequence of Operations for HVAC Controls." Assist the CxA with preparation of testing plans.

C. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment requirements are specified in Division 23 piping Sections. HVAC&R Installer shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:

1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings keyed to pipe zones
or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.

2. Description of equipment for flushing operations.
4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.

D. Energy Supply System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of steam systems and equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.

E. HVAC&R Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air, steam, and hydronic distribution systems; special exhaust; and other distribution systems, including HVAC&R terminal equipment and unitary equipment.

END OF SECTION 23 0800
PART 1 - GENERAL

1.1 SUMMARY

A. Work shall include furnishing all labor, materials, equipment, and service necessary for a complete and operating Building Management System (BMS), utilizing direct digital controls. The BMS shall be capable of total integration of the facility infrastructure systems with user access to all system data either locally over a secure Intranet within the building or by remote access by a standard Web Browser over the Internet. This shall include HVAC control, electrical, and chilled water metering, energy management, alarm monitoring, and all trending, reporting and maintenance management functions related to normal building operations all as indicated.

1. All labor, material, equipment and software not specifically referred to herein or on the plans, required to meet the functional intent of this specification, shall be provided without additional cost to the Owner.

B. Work shall include but not limited to providing controls and instrumentation in accordance with equipment sequence of operations and their point lists. Point lists shall be a guide to the points required for control system. Final points required shall be determined by sequence of operation requirements.

C. Work required in this section shall include providing all control components, control wiring, and services required for the connection and operation of the Air Handling Units including related variable frequency drives as indicated on drawings, and as specified in Section 23 0993.

D. Work required in this section shall include providing all control components, control wiring, and services required for the connection and operation of the hydronic heating and cooling system and equipment as indicated on drawings and as specified in Sections 23 2123, 23 5216, 23 6423, and Section 23 0993.

E. Work required in this section shall include providing all control components, control wiring, and services required for the connection of the remaining equipment as indicated on drawings, as specified in various Division 23 sections, and as specified in Section 23 0993.

F. Work required in this section shall include complying with requirements of commission sections for commissioning requirements.

G. Work required in this section shall include the complete Building Management System (BMS) including all controllers Interoperable LonWorks Controllers (ILC), Interoperable BACnet Controllers (IBC), control devices, control panels, controller programming, controller programming software, controller input/output wiring, power wiring, interlock and safety wiring, graphical user interface, Graphical User Interface (GUI), Graphical Development Tool (GDT), Network Area Controller(s) (NAC), server software, controller software and programming of the NAC and server, development of all graphical screens, setup of schedules, logs and alarms, global server software control applications, system integration and coordination of the NAC and server software to the Wide Area Network.

H. Ethernet LAN wiring, and Ethernet routing devices if applicable. The BMS shall provide a single point Ethernet connection utilizing OBIX TCP/IP to the Owner’s WAN.
I. Work required in this section shall include providing all electrical work required for this section. The system shall include all interconnecting wiring and conduit as required for a fully operational system as specified. Wiring shall be installed as per local codes or Division 26 whichever is more stringent.

1. Power supply wiring and conduit from power source to power connection on DDC controls and DDC control panels.
 a. Line voltage wiring shall utilize methods and materials complying with the requirements of the Electrical Specifications, local building code, and NEC.

2. Control wiring and conduit between field-installed controls, indicating devices, and control panels.
 a. Low voltage wiring shall use methods and materials complying with the requirements of the Electrical Specifications, local building code and NEC. Plenum rated cable is acceptable where concealed and accessible.

1.2 RELATED SECTIONS

A. The following Sections contain requirements that relate to this Section:

1. Division 23 Section "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.

1.3 WORK BY OTHERS

A. Setting in place of control valves, flow meters, water pressure and differential taps, flow switches, thermal wells, control dampers, airflow stations, and access doors.

B. Duct smoke detectors provide under Division 28.

1.4 ACTION SUBMITTALS

A. Refer to Division 1 for submittal administrative requirements and procedures.

B. Submittal shall consist of:

1. System architecture showing all digital devices, computers and network configuration.
2. Equipment lists of all proposed devices and equipment including data sheets of all products. Provide a PIC statement for each BACnet device and interoperability certification for each LonMark field device provided.
3. Valve, damper, and well and tap schedules showing size, configuration, capacity and location of all equipment.
4. Data entry forms for initial parameters. Contractor shall provide English listing of all analog points with columnar blanks for high and low warning limits and high and low alarm limits, and a listing of all systems with columnar blanks for beginning and end of occupancy periods; and samples of proposed text for points and messages (for at least two systems of at least 15 points total) including sample 480 character alarm message. All text shall be approved prior to data entry.
5. Schematic device wiring and piping interconnection diagrams including panel and device power and sources.
6. Software design data including flowchart of a typical DDC program showing interrelationship between inputs, PID functions, all other functions, outputs, etc.
7. A complete written Sequence of Operation in suppliers own terminology.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data for control systems equipment to include in the operation and maintenance manual specified in Division 1. Include the following:
1. Maintenance instructions and spare parts lists for each type of control device.
2. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
3. Calibration records and list of set points.

B. Project Record Documents: Upon completion of the work, provide a complete set of ‘as-built’ drawings and application software on USB drive media or compact disk. Drawings shall be provided as AutoCAD™ or Visio™ compatible files. Three copies of the ‘as-built’ drawings shall be provided in addition to the documents on USB drive media or compact disk.

1.6 CODES AND APPROVALS

A. The complete BMS installation shall be in strict compliance to the national, state and local mechanical and electrical codes and the electrical section of these specifications. All devices shall be UL or FM listed and labeled for the specific use, application and environment to which they are applied.

B. The system shall comply with NFPA 90A Air Conditioning and 90B Warm Air Heating, Air conditioning.

C. System shall be designed and manufactured to ISO 9001 quality standard, and all electronic equipment shall conform to the requirements of FCC regulation Part 15, Section 15 governing radio frequency electromagnetic interference and be so labeled.

1.7 WARRANTY

A. All components, system software, and parts supplied by the BMS contractor shall be guaranteed against defects in materials and workmanship for one year from acceptance date. The BMS contractor at no charge shall furnish labor to repair, reprogram, or replace components during the warranty period. All corrective software modifications made during warranty periods shall be updated on all user documentation and on user and manufacturer archived software disks. The Contractor shall respond to the Owners request for warranty service within 48 hours during normal business hours.

B. Warranty Access
1. The Owner shall grant to the controls installer reasonable access to the BMS during the warranty period.

1.8 BMS CONTRACTOR QUALIFICATIONS

A. The BMS contractor shall have a local office staffed with “Niagara AX Certified” factory trained engineers fully capable of providing instruction, routine maintenance and 24-hour emergency service on all system components. The BMS contractor shall have a three year experience record in the design and installation
of computerized building systems similar in scope and performance to that specified herein, and shall be prepared to provide evidence of this history as condition of acceptance and approval during Submittal.

1. The successful bidder shall have a minimum of three “Niagara AX Certified” engineers under direct employ of the bidding office. Niagara AX Certified engineers will have successfully completed the Tridium factory authorized software programming class taught by an accredited Niagara AX Certified instructor. Copies of actual certificates may be requested and must be supplied within 24 hours of the request.

1.9 SOFTWARE LICENSE AGREEMENT

A. Software licensing for the Network Area Controller (NAC) and server software shall give the Owner the capability to control their system and determine which contractors can bid and engineer their system.

B. It shall be possible to insure the Owner can prevent unauthorized partners from accessing the system for engineering changes.

C. Software licensing shall have the freedom to individually manage authorized parties and independent parties.

D. The software licensing shall have no restrictions on which brand of NAC, server software or System Programming tools can interact with the system. Station Compatibility IN and Station Compatibility OUT must = ALL and Tool Compatibility must = ALL.

E. The Owner shall accept the manufacturer's standard software and firmware licensing agreement as a condition of this contract. Such license shall grant use of all programs and application software to Owner as defined by the manufacturer's license agreement, but shall protect manufacturer's rights to disclosure of trade secrets contained within such software.

1.10 ADDED POINT AND MEMORY CAPACITY

A. The BMS software/firmware provided shall have the capacity for an unlimited number of NACs. Systems requiring future upgrades to accomplish this are not acceptable; capacity shall be provided at the time of bid.

B. Total system point capacity shall have the capacity for an unlimited number of future points. Systems requiring future upgrades to accomplish this are not acceptable; capacity shall be provided at the time of bid.

C. Supervising software shall allow unlimited expansion. Supervising software that is limited to the number of network area controllers is not acceptable

1.11 BMS TESTING AND ADJUSTING

A. If proper sequencing or system functions cannot be achieved with the factory provided controls as specified and installed by the equipment manufacturer, and additional controls are required, the required additional controls shall be added at the expense of the factory controls provider.
B. If proper sequencing or system functions cannot be achieved with the BMS controls as specified and installed and additional controls are required, the required additional controls shall be added at the expense of the controls provider.

1.12 DELIVERY, STORAGE, AND PROTECTION

A. Store equipment and materials inside and protected from weather.

B. Factory-Mounted Components: Arrange for shipping control devices to terminal unit manufacturer for factory mounting on equipment.

1.13 COORDINATION

A. Coordinate location of exposed control sensors with plans and room details before installation.

1.14 PROJECT COMMISSIONING

A. Project has an independent commissioning authority (CxA). Contractors for this project shall meet CxA requirements and shall coordinate with and participate in commissioning activities.

PART 2 - PRODUCTS

2.1 INSTALLERS

A. Subject to compliance with requirements, provide installation, products and services by one of the following:

1. Honeywell Controls Corporate.
2. Control Resource (Hurst Mechanical)
3. Trane

2.2 GENERAL

A. The Building Management System (BMS) shall be comprised of a network of interoperable, stand-alone digital controllers, Network Area Controllers, server software server, graphical user interface software, Web Browser Clients, printers, network devices and other devices as specified herein.

B. Provide the capability to open all control valves in each individual system at one time (I.E. zone, riser) to facilitate water balancing.

C. The controllers and devices shall use either the Echelon® LONMARK® or BACnet™ protocol for openness and interoperability. The controllers and devices shall be 100% programmable and configurable from within the Honeywell NiagaraAX™ Supervisor Workbench. No additional configuration tools shall be required to edit, re-program, or access the Echelon® LONMARK® or BACnet™ controllers. Controllers requiring a separate configuration tool for these functions are not acceptable.
2.3 OPEN, INTEROPERABLE, INTEGRATED ARCHITECTURES

A. The intent of this specification is to provide a peer-to-peer networked, stand-alone, distributed control system with the capability to integrate SNMP, LonWorks, BACnet IP, BACnet MSTP, Modbus TCP/IP or Modbus RTU communication protocols in one open, interoperable system.

B. The supplied computer software shall employ object-oriented technology (OOT) for representation of all data and control devices within the system. In addition, adherence to industry standards including ANSI / ASHRAE™ Standard 135, BACnet and LonMark to assure interoperability between all system components is required. For each LonWorks device that does not have LonMark certification, the device supplier must provide an XIF file for the device. For each BACnet device, the device supplier must provide a PICS document showing the installed device’s compliance level. Minimum compliance is Level 3; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet. For each Modbus device supplier must provide a Registry of data points available on the system.

C. All components and controllers supplied under this contract shall be true “peer-to-peer” communicating devices. Components or controllers requiring “polling” by a host to pass data shall not be acceptable.

D. The supplied system must incorporate the ability to access all data using standard web browsers without requiring proprietary operator interface and configuration programs. An Open DataBase Connectivity (ODBC) or Structured Query Language (SQL) compliant server database is required for all system database parameter storage. This data shall reside on a supplier-installed server for all database access. Systems requiring proprietary database and user interface programs shall not be acceptable.

E. The installed system shall provide secure password access to all features, functions and data contained in the overall BMS. Secure Socket Layer (SSL) encryption shall be an available option for remote access.

F. The installed system must be totally scalable to allow for future expansion with the addition of controllers and/or input/output devices. It shall not be necessary to remove equipment supplied under this contract to expand the system.

G. The failure of any single component or network shall not interrupt the control functions of non-affected devices. A single network failure shall only affect shared communications or shared data; individual application controllers and network controllers shall continue normal operation minus only the data from a remote device from the affected network. Automatic default values for all network transported data shall be provided to allow continued operation until the network is restored.

H. A hierarchical topology is required to assure reasonable system response times and to manage the flow and sharing of data without unduly burdening the customer’s internal Intranet network. Systems employing a “flat” single tiered architecture shall not be acceptable.

1. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 5 seconds for network connected user interfaces.

2. Maximum acceptable response time from any alarm occurrence (at the point of origin) to the point of annunciation shall not exceed 60 seconds for remote or dial-up connected user interfaces.

2.4 NETWORK AREA CONTROLLER (NAC)

A. The following requirements apply to product selection:
1. Manufacturers:
 a. Subject to compliance with requirements, provide products by one of the manufacturers specified.
 1) Honeywell Enterprise Building Integrator (EBI).

B. The controls Installer shall supply one or more Network Area Controllers (NAC) as part of this contract. Number of area controllers required is dependent on the type and quantity of devices.

C. The Network Area Controller (NAC) shall provide the interface between the ILC, IBC and the Network server software, and provide global supervisory control functions over the control devices connected to the BMS. It shall be capable of executing application control programs to provide:

1. Calendar functions
2. Scheduling
3. Trending
4. Alarm monitoring and routing
5. Time synchronization
6. Integration of LonWorks controller data, Modbus controller data and BACnet controller data
7. Network Management functions for all LonWorks based devices

D. The Network Area Controller must provide the following hardware features as a minimum:

1. Two Isolated Ethernet Ports – 10/100 Mbps
2. One RS-232 port
3. One RS-485 port
4. One LonWorks Interface Port – 78KB FTT-10A
5. Battery Backup
6. Flash memory for long term data backup (If battery backup or flash memory is not supplied, the controller must contain a hard disk with at least 10 gigabyte storage capacity)
7. The NAC must be capable of operation over a temperature range of 32 to 130 deg F (0 to 55 deg C)
8. The NAC must be capable of withstanding storage temperatures of between 32 to 158 deg F (0 to 70 deg C)
9. The NAC must be capable of operation over a humidity range of 5 to 95% RH, non-condensing

E. The NAC shall support standard Web browser access via the Intranet/Internet. It shall support an unlimited number of clients.

F. Event Alarm Notification and actions

1. The NAC shall provide alarm recognition, storage; routing, management, and analysis to supplement distributed capabilities of equipment or application specific controllers.
2. The NAC shall be able to route any alarm condition to any defined user location whether connected to a local network or remote via dial-up telephone connection, or wide-area network.
3. Alarm generation shall be selectable for annunciation type and acknowledgement requirements including but limited to:
 a. To alarm
 b. Return to normal
 c. To fault
4. Provide for the creation of a minimum of eight of alarm classes for the purpose of routing types and or classes of alarms, i.e.: security, HVAC, Fire, etc.
5. Provide timed (schedule) routing of alarms by class, object, group, or node.
6. Provide alarm generation from binary object “runtime” and /or event counts for equipment maintenance. The user shall be able to reset runtime or event count values with appropriate password control.
7. Control equipment and network failures shall be treated as alarms and annunciated.
8. Alarms shall be annunciated in any of the following manners as defined by the user:
 a. Screen message text
 b. Email or text message of the complete alarm message to multiple recipients. Provide the ability to route and send alarms based on:
 1) Day of week
 2) Time of day
 3) Recipient
9. Graphic with flashing alarm object(s)
10. Printed message, routed directly to a dedicated alarm printer
11. The following shall be recorded by the NAC for each alarm (at a minimum):
 a. Time and date
 b. Location (building, floor, zone, office number, etc.)
 c. Equipment (air handler #, access way, etc.)
 d. Acknowledge time, date, and user who issued acknowledgement.
 e. Number of occurrences since last acknowledgement.
12. Alarm actions may be initiated by user defined programmable objects created for that purpose.
13. Defined users shall be given proper access to acknowledge any alarm, or specific types or classes of alarms defined by the user.
14. A log of all alarms shall be maintained by the NAC and/or a server (if configured in the system) and shall be available for review by the user.
15. Provide a “query” feature to allow review of specific alarms by user defined parameters.
16. A separate log for system alerts (controller failures, network failures, etc.) shall be provided and available for review by the user.
17. An Error Log to record invalid property changes or commands shall be provided and available for review by the user.

G. Data Collection and Storage
1. The NAC shall have the ability to collect data for any object and store this data for future use.
2. The data collection shall be performed by log objects, resident in the NAC that shall have, at a minimum, the following configurable properties:
3. Designating the log as interval or deviation.
4. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
5. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.
6. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
7. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.
8. All log data shall be stored in a relational database and the data shall be accessed from a standard Web Browser.
9. All log data, when accessed from the Network server software (NS), shall be capable of being manipulated using standard SQL statements.

10. All log data shall be available to the user in the following data formats:
 a. HTML
 b. XML
 c. Plain Text
 d. Comma or tab separated values

11. Systems that do not provide log data in HTML and XML formats at a minimum shall not be acceptable.

12. The NAC shall have the ability to archive its log data to Network server software on the network. Provide the ability to configure the following archiving properties, at a minimum:
 a. Archive on time of day
 b. Archive on user-defined number of data stores in the log (buffer size)
 c. Archive when log has reached it’s user-defined capacity of data stores
 d. Provide ability to clear logs once archived

H. Audit Logs

1. Provide and maintain an Audit Log that tracks all activities performed on the NAC. Provide the ability to specify a buffer size for the log and the ability to archive the log based on time to the Network server software. For each log entry, provide the following data:
 a. Time and date
 b. User ID
 c. Change or activity: i.e., Change set-point, add or delete objects, commands, etc.

I. Database Back-Up and Storage

1. The NAC shall have the ability to automatically backup its database. The database shall be backed up based on a user-defined time interval.
2. Copies of the current database and, at the most recently saved database shall be stored on the Network server software. The age of the most recently saved database is dependent on the user-defined database save interval.
3. The NAC database shall be stored, at a minimum, in XML format to allow for user viewing and editing, if desired. Other formats are acceptable as well, as long as XML format is supported.

2.5 INTEROPERABLE LON CONTROLLER (ILC)

A. Controls shall be microprocessor based Interoperable LonMark™ or LonWorks Controllers (ILC). Where possible, all Interoperable LonWorks Controllers shall bear the applicable LonMark™ interoperability logo on each product delivered.

B. HVAC control shall be accomplished using LonMark™ based devices where the application has a LonMark profile defined. Where LonMark devices are not available for a particular application, devices based on LonWorks shall be acceptable. Publicly available specifications for the Applications Programming Interface (API) must be provided to Owner for each LonWorks / LonMark controller defining the programming or setup of each device. The controls Installer shall provide all programming, documentation and programming tools necessary to set up and configure the supplied devices per the specified sequences of operation.
C. The controls Installer shall run the LonWorks network trunk to the nearest Network Area Controller (NAC). Coordinate locations of the NAC with the LonMark devices to ensure that maximum network wiring distances, as specified by the LonWorks wiring guidelines, are not exceeded. A maximum of 126 devices may occupy any one LonWorks trunk and must be installed using the appropriate trunk termination devices. All LonWorks and LonMark devices must be supplied using FTT-10A LonWorks communications transceivers.

D. The Network Area Controller (NAC), will provide all scheduling, alarming, trending, and network management for the LonMark / LonWorks based devices.

E. The ILCs shall communicate with the NAC at a baud rate of not less than 78.8K baud. The ILC shall provide LED indication of communication and controller performance to the technician, without cover removal.

F. All ILCs shall be fully application programmable and shall at all times maintain their LONMARK certification, if so certified. Controllers offering application selection only (non-programmable), require a 10% spare point capacity to be provided for all applications. All control sequences within or programmed into the ILC shall be stored in non-volatile memory, which is not dependent upon the presence of a battery, to be retained.

G. The controls Installer shall provide documentation for each device, with the following information at a minimum:

1. Network Variable Inputs (nvi’s); name and type
2. Network Variable Outputs (nvo’s); name and type
3. Network configuration parameters (nci, nco); name and type

H. It is the responsibility of the controls Installer to ensure that the proper Network Variable Inputs and Outputs (nvi and nvo) are provided in each ILC, as required by the point charts.

I. The controls Installer of any programmable ILC shall provide one copy of the manufacturer’s programming tool, with documentation, to the Owner.

2.6 INTEROPERABLE BACnet CONTROLLER (IBC)

A. Controls shall be microprocessor based Interoperable BACnet Controllers (IBC) in accordance with the ANSI/ASHRAE Standard 135-1995. The application control program shall be resident within the same enclosure as the input/output circuitry, which translates the sensor signals. The system supplier must provide a PICS document showing the installed systems compliance level to the ANSI/ASHRAE Standard 135-1995, to Owner.

B. The IBCs shall communicate with the NAC via an Ethernet connection at a baud rate of not less than 10 Mbps or via the RS485 connection at a baud rate of not less than 38 kbps.

C. The IBC Sensor shall connect directly to the IBC and shall not utilize any of the I/O points of the controller. The IBC Sensor shall provide a two-wire connection to the controller that is polarity and wire type insensitive. The IBC Sensor shall provide a communications jack for connection to the BACnet communication trunk to which the IBC controller is connected. The IBC Sensor, the connected controller, and all other devices on the BACnet bus shall be accessible by the POT.
D. All IBCs shall be fully application programmable and shall at all times maintain their BACnet Level 3 compliance. Controllers offering application selection only (non-programmable), require a 10% spare point capacity to be provided for all applications. All control sequences within or programmed into the IBC shall be stored in non-volatile memory, which is not dependent upon the presence of a battery, to be retained.

E. The controls Installer shall provide documentation for each device, with the following information at a minimum:

1. BACnet Device; MAC address, name, type and instance number
2. BACnet Objects; name, type and instance number

F. Ensure that the proper BACnet objects are provided in each IBC, as required by the point charts.

2.7 NETWORKS

A. The Local Area Network (LAN) shall be a 100 Megabits/sec Ethernet network supporting TCP/IP, BACnet IP, Modbus, Java, XML, and HTTP for maximum flexibility for integration of building data with enterprise information systems.

B. Local area network minimum physical and media access requirements:

1. Ethernet; IEEE standard 802.3
2. Cable; 10 Base-T, UTP-8 wire, category 5E or 6
3. Minimum throughput; 10 Mbps, with ability to increase to 100 Mbps

2.8 NETWORK ACCESS

A. Owners WAN / LAN Access: Controls Installer must adhere to Owner’s policy and requirements to obtain Owner’s WAN access.

2.9 GRAPHICAL USER INTERFACE (GUI)

A. The graphical component of the BMS is of critical importance and should consider the following descriptions and graphic representations to be the minimum acceptable. Enhanced graphics shall include detailed 2-dimensional building site and floor plan graphics, 3-dimensional equipment graphics with fan, damper and valve animations providing operators an aid to comprehending complex system operation. Every graphic page shall contain a tabular and cascading menu navigational structure, established in an HTML frame based format to allow immediate “one-click” access to other building systems without the need to back up through the navigational tree.

B. Navigation is done through the use of an HTML-based menu bar. The contents of the menu bar shall be customized to match the specific requirements of each building, while retaining the same general categories for consistency and familiarity.

1. The menu bar shall employ cascading menus. With this navigation concept, the operator shall not be more than two mouse button operations from any view. Some examples of the operator screens follow.
2. A navigational toolbar at the top of each BMS page will be provided and have the following links/functions:
 a. Home: A link that takes the user to a main entry point of navigation at a building or district level.
 b. Chart Builder: A tool that allows charts to be made comparing historical data. It allows custom-built chart data to be exported as an Excel or PDF file.
 c. Alarm Console: A table that shows all points that are in an alarm state. It allows users to silence or acknowledge alarms.
 d. Schedules: A page that shows equipment schedule periods. It allows users to change occupancy times with a weekly or calendar scheduler.
 e. Information: A page with links to pertinent documents, including a User’s Guide.
 f. Weather: A page that shows current local weather conditions in a seven-day forecast.
 g. Alarm History: A log of previous alarms that features sorting and time range filters.
 h. Audit Log: A log of users who have accessed the BMS. It records changes made by users and features sorting and time range filters.
 i. Override Summary: A table of all equipment with a manual override status.
 j. User Configuration: A page that allows users to change login and profile information. Users with administrative rights may add or delete users to the BMS.
 k. Floor Plans: Links to floor plan sections are shown as graphic outline keys or descriptive tabs.
 l. Main Systems Tabs: Links to major systems and equipment such as Hydronic Systems or Air Handlers are listed in descriptive tabs.

3. Displays shall provide real-time information with visual display of alarm condition by change of color and/or flashing text/color background.
4. Displays can be viewed from a non-proprietary, commercial Web Browser.
5. Points that have been defined as data-writes, either as a digital (on/off) or analog (change value) point type, will be setup such that an operator, by right-clicking the data object or graphic, will be able to command a digital value, or modify an analog value. Operators shall view equipment status from the menu. Menu items shall include headings for major equipment categories such as Chillers, etc. Cascading menus from each major category, shall allow the operator to select a particular piece of equipment; i.e. Chiller.
6. A maximum of 40 points will be provided in a single status display screen. Points that have been defined as data-writes, either as a digital (on/off) or analog (change value) point type, shall be setup such that an operator, by right-clicking the data object or graphic, shall be able to command a digital value, or modify an analog value.

C. All Graphics and schedules will reside at the supervisory software level and not at the NAC level to allow for “one password” access to all NACs on the system and global scheduling and trending.

2.10 CUSTOM GRAPHICS - REQUIRED

A. Home Page

1. The building site overview shall provide a “mouse over” function to highlight the floor plan area to be accessed as a navigational aid. Room numbers and/or names will be included at the owner’s request. Critical data points, i.e. Outdoor Air Temperature, Outdoor Air Relative Humidity, Hot Water Supply Temperature, Chilled Water Supply Temperature or National Weather Service data will be continuously visible, in real time, within the HTML frame on all screens. Additional points may be added or deleted at the owner’s request without cost.
B. Floor Plans

1. Detailed floor plans shall be created with a vector drawing program accurately depicting the actual building layout to include all rooms, walls, and hallways. All space sensors shall be accurately placed in their actual locations and tagged with their real time space temperature and equipment each is associated with, i.e. 72.5°F/RTU-1, 74.2°/AHU-1, 73.4°/TU-1. Floor plans too large to be practically shown with data points will provide a “mouse over” function to highlight the floor plan area to be accessed. Room numbers and/or names will be included at the owner’s request.

C. Mechanical Systems

1. Detailed graphics for each mechanical system will include; Chiller, CW Piping and Pumps as a minimum. Mechanical systems will include on-screen access to their respective set-points, trend logs and schedule. All time schedules will be setup as directed by the owner prior to final job turnover.
2. Dynamic trends of all data points shall be set up (specification will be followed as to actual number of trend points possible) prior to final job turnover. Each trend will be available directly on screen for quick trend access.
3. Data points will be shown for all relevant inputs and outputs and be positioned near the actual device. Analog and digital parameters will be able to be modified directly from the equipment screen.

D. Schedules

1. Graphical schedules shall allow the operator to adjust time of day schedules by dragging the On Event slider. An unlimited number of On/Off events shall be allowed for each schedule and schedules can be linked into a Master/Slave scheduling scheme. Schedules shall allow the user to add/edit/delete holiday and special event schedules. Schedules shall be included for each major piece of equipment.

E. Logging

1. Logs shall be provided for all points defined as requiring collection and archiving of their real-time values. Log data will be provided in HTML, XML, comma- and tab-separated value, and plain-text formats.
2. Setup parameters for each log include; log intervals, number of collection samples, log collection times and archive times, delta logging with change value selection, etc.
3. For every log, the data shall be viewable in both tabular and chart formats.
4. Logs shall be archived to the server software daily at a user specified time of day. Archive data shall be available from the creation time of the log until the last archive time.
5. For every log, the data can be viewed in both tabular and chart formats.
6. Logs and archives will be accessible from a Web Browser (Internet Explorer 5.0 or greater).
7. Analog Logs: Value Collected every 15 minutes for a log total of 2 days.
8. Each of the following of point types shall be continuously logged. The user shall have the ability to select up to 3 points to be displayed on a single trending graph.
 a. All Temperatures
 b. All Temperature setpoints
 c. All Valve Positions
 d. All VFD %
 e. All Enthalpies
2.11 WEB BROWSER CLIENTS

A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer™ or Netscape Navigator™. Systems requiring additional software (to enable a standard Web browser) to be resident on the client machine, or manufacturer-specific browsers shall not be acceptable.

B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the BMS, shall not be acceptable.

C. The Web browser client shall support at a minimum, the following functions:

1. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.

2. HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.

3. Storage of the graphical screens shall be in the NAC or server software, without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.

4. Real-time values displayed on a Web page shall update automatically without requiring a manual “refresh” of the Web page.

5. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
 a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 1) Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 2) Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 b. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the pop-up menu. No entry of text shall be required.
 c. View logs and charts
 d. View and acknowledge alarms
 e. Setup and execute SQL queries on log and archive information

6. The system shall provide the capability to specify a user’s (as determined by the log-on user identification) home page. Provide the ability to limit a specific user to just their defined home page. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.

7. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

2.12 SERVER SOFTWARE FUNCTIONS AND HARDWARE

A. The server software shall be provided. The server software shall support all TCP/IP connected to the control system router.
B. The Network server software shall provide the following functions, at a minimum:

1. Global Data Access: The server software shall provide complete access to distributed data defined anywhere in the system.
2. Distributed Control: The server software shall provide the ability to execute global control strategies based on control and data objects in any control system in the network, local or remote.
3. The server software shall include a master clock service for its subsystems and provide time synchronization for all control systems.
4. The server software shall accept time synchronization messages from trusted precision Atomic Clock Internet sites and update its master clock based on this data.
5. The server software shall provide scheduling for all control systems and their underlying field control devices.
6. The server software shall provide demand limiting that operates across all control systems. The server software must be capable of multiple demand programs for sites with multiple meters and or multiple sources of energy. Each demand program shall be capable of supporting separate demand shed lists for effective demand control.
7. The server software shall implement the BACnet Command Prioritization scheme (16 levels) for safe and effective contention resolution of all commands issued to control systems. Systems not employing this prioritization shall not be accepted.
8. Each control system supported by the server software shall have the ability to archive its log data, alarm data and database to the Network server software, automatically. Archiving options shall be user-defined including archive time and archive frequency.
9. The server software shall provide central alarm management for all control systems supported by the server software. Alarm management shall include:
 a. Routing of alarms to display, printer, email and pagers
 b. View and acknowledge alarms
 c. Query alarm logs based on user-defined parameters
10. The server software shall provide central management of log data for all control systems supported by the server software. Log data shall include process logs, runtime and event counter logs, audit logs and error logs. Log data management shall include:
 a. Viewing and printing log data
 b. Exporting log data to other software applications
 c. Query log data based on user-defined parameters

C. Server software Hardware Requirements: supplied by

1. The system integrator will be responsible for loading and testing the software on the PC.
2. The system integrator will coordinate with the owner for testing and authorization.

2.13 SYSTEM PROGRAMMING

A. The Graphical Development Tool (GDT) shall provide the ability to perform system programming and graphic display engineering as part of a complete software package. The programming toolset will be provided to the owner as part of this project. The programming software shall be the same programming toolset as used by the contractor’s engineers when programming this project. Access to the programming functions and features of the GDT shall be through password access as assigned by the system administrator.
B. The GDT shall be available in two versions; a thick-client version licensed to the computing platform on which it is installed and a thin-client version, capable of providing the complete set of engineering functions through a standard Web Browser. Programming and development tools not capable of providing all engineering and application development functions with a standard Web Browser are not acceptable.

C. A library of control, application, and graphic objects shall be provided to enable the creation of all applications and user interface screens. Applications are to be created by selecting the desired control objects from the library, dragging or pasting them on the screen, and linking them together using a built-in graphical connection tool. Completed applications may be stored in the library for future use. Graphical User Interface screens shall be created in the same fashion. Data for the user displays is obtained by graphically linking the user display objects to the application objects to provide “real-time” data updates. Any real-time data value or object property may be connected to display its current value on a user display. All graphics must be created with a vector 3-D imaging software package, i.e., Dream Weaver, Illustrator, Cool 3-D or other commercially available graphics package.

D. Programming Methods

1. Provide the capability to copy objects from the supplied libraries, or from a user-defined library to the user’s application. Objects shall be linked by a graphical linking scheme by dragging a link from one object to another. Object links will support one-to-one, many-to-one, or one-to-many relationships. Linked objects shall maintain their connections to other objects regardless of where they are positioned on the page and shall show link identification for links to objects on other pages for easy identification. Links will vary in color depending on the type of link; i.e., internal, external, hardware, etc.

2. Configuration of each object will be done through the object’s property sheet using fill-in the blank fields, list boxes, and selection buttons. Use of custom programming, scripting language, or a manufacturer-specific procedural language for configuration will not be accepted.

3. The software shall provide the ability to view the logic in a monitor mode. When on-line, the monitor mode shall provide the ability to view the logic in real time for easy diagnosis of the logic execution. When off-line (debug), the monitor mode shall allow the user to set values to inputs and monitor the logic for diagnosing execution before it is applied to the system.

4. All programming shall be done in real-time. Systems requiring the uploading on the owner’s IT network, and downloading of database objects shall not be allowed.

5. The system shall support object duplication within a customer’s database. An application, once configured, can be copied and pasted for easy re-use and duplication. All links, other than to the hardware, shall be maintained during duplication.

2.14 OBJECT LIBRARIES

A. A standard library of objects shall be included for development and setup of application logic, user interface displays, system services, and communication networks.

B. The objects in this library shall be capable of being copied and pasted into the user’s database and shall be organized according to their function. In addition, the user shall have the capability to group objects created in their application and store the new instances of these objects in a user-defined library.

C. In addition to the standard libraries specified here, the supplier of the system shall maintain an on-line accessible (over the Internet) library, available to all registered users to provide new or updated objects and applications as they are developed.
D. All control objects shall conform to the control objects specified in the BACnet specification.

E. The library shall include applications or objects for the following functions, at a minimum:

1. Scheduling Object. The schedule must conform to the schedule object as defined in the BACnet specification, providing 7-day plus holiday & temporary scheduling features and a minimum of 10 on/off events per day. Data entry to be by graphical sliders to speed creation and selection of on-off events.

2. Calendar Object. The calendar must conform to the calendar object as defined in the BACnet specification, providing 12-month calendar features to allow for holiday or special event data entry. Data entry to be by graphical “point-and-click” selection. This object must be “linkable” to any or all scheduling objects for effective event control.

3. Duty Cycling Object. Provide a universal duty cycle object to allow repetitive on/off time control of equipment as an energy conserving measure. Any number of these objects may be created to control equipment at varying intervals.

4. Temperature Override Object. Provide a temperature override object that is capable of overriding equipment turned off by other energy saving programs (scheduling, duty cycling etc.) to maintain occupant comfort or for equipment freeze protection.

5. Start-Stop Time Optimization Object. Provide a start-stop time optimization object to provide the capability of starting equipment just early enough to bring space conditions to desired conditions by the scheduled occupancy time. Also, allow equipment to be stopped before the scheduled un-occupancy time just far enough ahead to take advantage of the building’s “flywheel” effect for energy savings. Provide automatic tuning of all start / stop time object properties based on the previous day’s performance.

6. Demand Limiting Object. Provide a comprehensive demand-limiting object that is capable of controlling demand for any selected energy utility (electric). The object shall provide the capability of monitoring a demand value and predicting (by use of a sliding window prediction algorithm) the demand at the end of the user defined interval period (1-60 minutes). This object shall also accommodate a utility meter time sync pulse for fixed interval demand control. Upon a prediction that will exceed the user defined demand limit (supply a minimum of 6 per day), the demand limiting object shall issue shed commands to either turn off user specified loads or modify equipment set points to effect the desired energy reduction. If the list of sheddable equipment is not enough to reduce the demand to below the set point, a message shall be displayed on the users screen (as an alarm) instructing the user to take manual actions to maintain the desired demand. The shed lists are specified by the user and shall be selectable to be shed in either a fixed or rotating order to control which equipment is shed the most often. Upon suitable reductions in demand, the demand-limiting object shall restore the equipment that was shed in the reverse order in which it was shed. Each sheddable object shall have a minimum and maximum shed time property to effect both equipment protection and occupant comfort.

F. The library shall include control objects for the following functions. All control objects shall conform to the objects as specified in the BACnet specification.

1. Analog Input Object - Minimum requirement is to comply with the BACnet standard for data sharing. Allow high, low and failure limits to be assigned for alarming. Also, provide a time delay filter property to prevent nuisance alarms caused by temporary excursions above or below the user defined alarm limits.

2. Analog Output Object - Minimum requirement is to comply with the BACnet standard for data sharing.

3. Binary Input Object - Minimum requirement is to comply with the BACnet standard for data sharing. The user must be able to specify either input condition for alarming. This object must also include
the capability to record equipment run-time by counting the amount of time the hardware input is in an “on” condition. The user must be able to specify either input condition as the “on” condition.

4. Binary Output Object - Minimum requirement is to comply with the BACnet standard for data sharing. Properties to enable minimum on and off times for equipment protection as well as interstart delay must be provided. The BACnet Command Prioritization priority scheme shall be incorporated to allow multiple control applications to execute commands on this object with the highest priority command being invoked. Provide sixteen levels of priority as a minimum. Systems not employing the BACnet method of contention resolution shall not be acceptable.

5. PID Control Loop Object - Minimum requirement is to comply with the BACnet standard for data sharing. Each individual property must be adjustable as well as to be disabled to allow proportional control only, or proportional with integral control, as well as proportional, integral and derivative control.

6. Comparison Object - Allow a minimum of two analog objects to be compared to select either the highest, lowest, or equality between the two linked inputs. Also, allow limits to be applied to the output value for alarm generation.

7. Math Object - Allow a minimum of four analog objects to be tested for the minimum or maximum, or the sum, difference, or average of linked objects. Also, allow limits to be applied to the output value for alarm generation.

8. Custom Programming Objects - Provide a blank object template for the creation of new custom objects to meet specific user application requirements. This object must provide a simple BASIC-like programming language that is used to define object behavior. Provide a library of functions including math and logic functions, string manipulation, and e-mail as a minimum. Also, provide a comprehensive on-line debug tool to allow complete testing of the new object. Allow new objects to be stored in the library for re-use.

9. Interlock Object - Provide an interlock object that provides a means of coordination of objects within a piece of equipment such as an Air Handler or other similar types of equipment. An example is to link the return fan to the supply fan such that when the supply fan is started, the return fan object is also started automatically without the user having to issue separate commands or to link each object to a schedule object. In addition, the control loops, damper objects, and alarm monitoring (such as return air, supply air, and mixed air temperature objects) will be inhibited from alarming during a user-defined period after startup to allow for stabilization. When the air handler is stopped, the interlocked return fan is also stopped, the outside air damper is closed, and other related objects within the air handler unit are inhibited from alarming thereby eliminating nuisance alarms during the off period.

10. Temperature Override Object - Provide an object whose purpose is to provide the capability of overriding a binary output to an “On” state in the event a user specified high or low limit value is exceeded. This object is to be linked to the desired binary output object as well as to an analog object for temperature monitoring, to cause the override to be enabled. This object will execute a Start command at the Temperature Override level of start/stop command priority unless changed by the user.

11. Composite Object - Provide a container object that allows a collection of objects representing an application to be encapsulated to protect the application from tampering, or to more easily represent large applications. This object must have the ability to allow the user to select the appropriate parameters of the “contained” application that are represented on the graphical shell of this container.

G. The object library shall include objects to support the integration of devices connected to the Network Area Controller or server software. At a minimum, provide the following as part of the standard library included with the programming software:
1. LonMark/LonWorks devices. These devices shall include, but not be limited to, devices for control of HVAC, lighting, access, and metering. Provide LonMark manufacturer-specific objects to facilitate simple integration of these devices. All network variables defined in the LonMark profile shall be supported. Information (type and function) regarding network variables not defined in the LonMark profile shall be provided by the device manufacturer.

2. For devices not conforming to the LonMark standard, provide a dynamic object that can be assigned to the device based on network variable information provided by the device manufacturer. Device manufacturer shall provide an XIF file and documentation for the device to facilitate device integration.

3. For BACnet devices, provide the following objects at a minimum:
 a. BACnet AI
 b. BACnet AO
 c. BACnet BI
 d. BACnet BO
 e. BACnet Device

4. For each BACnet object, provide the ability to assign the object a BACnet device and object instance number.

2.15 OTHER CONTROL SYSTEM HARDWARE

A. Ethernet Switches
 1. 8 Port 10/100 MBPS Switch / Hub
 2. Din Rail Mounted
 3. LED communication indicators
 4. Acceptable Manufacturers
 a. Contemporary Controls
 b. INTEL
 c. Cisco Systems

B. Temperature Sensors and Transmitters
 1. General Sensor & Transmitter Requirements
 a. Provide sensors and transmitters required as outlined in the input/output summary and sequence of operation, and as required to achieve the specified accuracy as specified herein.
 b. Temperature transmitters shall be equipped with individual zero and span adjustments. The zero and span adjustments shall be non-interactive to permit calibration without iterative operations. Provide a loop test signal to aid in sensor calibration.
 c. Temperature transmitters shall be sized and constructed to be compatible with the medium to be monitored. Transmitters shall be equipped with a linearization circuit to compensate for non-linearities of the sensor and bridge and provide a true linear output signal.
 d. Temperature sensors shall be of the resistance type and shall be 10K or 20K Ohm Thermistor type.
 1) Thermistors are acceptable provided the mathematical relationship of a thermistor with respect to resistance and temperature with the thermistor fitting constraints is contained with the controllers operating software and the listed accuracy’s can be obtained. Submit proof of the software mathematical equation and thermistor manufacturer fitting constants used in the thermistor mathematical/expressions.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
Thermistors shall be of the Thermistor (NTC) Type with a minimum of 50 ohm/°C. resistance change versus temperature to insure good resolution and accuracy.

e. The following accuracy’s are required and include errors associated with the sensor, lead wire and A to D conversion.

<table>
<thead>
<tr>
<th>Type</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Air</td>
<td>+/-3%</td>
</tr>
<tr>
<td>Chilled/Hot Water</td>
<td>+/-1%</td>
</tr>
</tbody>
</table>

2) Sensors Used in Energy Water (BTU) or Process Calculations +/-1%

3) Sensors used in energy or process calculations shall be accurate over the process temperature range. Submit a manufacturer’s calibration report indicating that the calibration certification is traceable to the National Bureau of Standards (NBS) Calibration Report Nos. 209527/222173.

2. Thermowells
 a. When thermowells are required, the sensor and well shall be supplied as a complete assembly including well head and Greenfield fitting, except where wells are to be installed under separate contract.
 b. Thermowells shall be pressure rated and constructed in accordance with the system working pressure.
 c. Thermowells and sensors shall be mounted in a threadolet or 1/2” NPT saddle and allow easy access to the sensor for repair or replacement.
 d. Thermowells shall be constructed of the following materials:
 1) Chilled Water; brass.

3. Outside Air Sensors
 a. Outside air sensors shall be designed to withstand the environmental conditions to which they will be exposed. They shall also be provided with a solar shield.
 b. Sensors exposed to wind velocity pressures shall be shielded by a perforated plate surrounding the sensor element.
 c. Temperature transmitters shall be of NEMA 3R construction and rated for ambient temperatures.
 d. Solar load sensors shall be provided in locations shown. The use of a thermistor combined with a solar compensator is acceptable. Provide calibration charts as part of the O&M Manual.

4. Acceptable Manufacturers
 a. Honeywell
 b. Johnson Controls
 c. ACI
 d. Bapi

C. Differential Pressure Transmitters and Accessories

1. General Air and Water Pressure Transmitter Requirements:
 a. Pressure transmitters shall be constructed to withstand 100% pressure over-range without damage and to hold calibrated accuracy when subject to a momentary 40% over-range input.
 b. Pressure transmitters shall provide the option to transmit a 0 to 5V dc, 0 to 10V dc, or 4 to 20 mA output signal.
c. Differential pressure transmitters used for flow measurement shall be sized to the flow sensing device and shall be supplied with shutoff and bleed valves in the high and low sensing pick-up lines (3 valve manifolds).

d. Provide a minimum of a NEMA 1 housing for the transmitter. Locate transmitters in accessible local control panels wherever possible.

e. Low air pressure, differential pressure transmitters used for room pressurization control (i.e. laboratories, OR's clean rooms, etc.) shall be equipped with a LED display indicating the transmitter output signal.

f. Duct sensing pressure applications where the velocity exceeds 1500 fpm shall utilize a static pressure traverse probes.

D. Low Differential, Water Pressure Applications

1. The differential pressure transmitter shall be of industrial quality and transmit a linear, 4 to 20mA output in response to variation of flow meter differential pressure or water pressure sensing points.

2. The differential pressure transmitter shall have non-interactive zero and span adjustments adjustable from the outside cover and meet the following performance specifications.
 a. 0 – 10 input differential pressure range
 b. 4 - 20 mA output
 c. Maintain accuracy up to 20 to 1 ratio turndown
 d. Reference Accuracy: ± 0.2% of full span

3. Provide a two year warranty for each transmitter. Replace all transmitters found to be defective at no cost to the Owner during the warranty period. Acceptable Manufacturers:
 a. Tobar
 b. Veris
 c. Foxboro
 d. Omega
 e. Bailey
 f. Modus

E. Medium to High Differential Water Pressure Applications

1. The differential pressure transmitter shall meet the low pressure transmitter specifications except the following:
 a. Reference Accuracy: ±1% of full span (includes non-linearity, hysteresis, and repeatability)
 b. Warranty: 1 year.

2. Acceptable Manufacturers:
 a. Auto Tran
 b. Veris
 c. ACI
 d. Setra

3. Bypass Valve Assembly: Mount stand-alone pressure transmitters in a bypass valve assembly panel. The panel shall be constructed to NEMA 1 standards. The transmitter shall be installed in the panel with hi and low connections piped and valved. Air bleed units, bypass valves and compression fittings shall be provided

F. Electronic Valve And Damper Actuators
1. General Requirements
 a. Electronic actuators shall be electric, direct-coupled type capable of being mounted over the shaft of the damper. They shall be UL listed and the manufacturer shall provide a 2 year unconditional warranty from the date of commissioning. Power consumption shall not exceed 8 watts or 15 VA of transformer sizing capacity per high torque actuator nor 2 watts or 4 VA for VAV actuators. Sound level shall not exceed 45 dB for high torque or 35 dB for VAV actuators.
 b. Electronic overload protection shall protect actuator motor from damage. If damper jams actuator shall not burn-out. Internal end switch type actuators are not acceptable. Actuators may be mechanically and electrically paralleled on the same shaft to multiply the available torque. A reversing switch shall be provided to change action from direct to reverse in relation to control signal as operation requires.
 c. Warranty must be two years by manufacturer on actuator as a whole and all components.
 d. Acceptable manufacturers:
 1) Honeywell
 2) Johnson Controls
 3) Belimo

G. Valve Actuators

1. Control Valves Actuators (3 inch and smaller)
 a. Actuators shall have a gear release button on all non-spring return models to allow manual setting. The actuator shall have either an insulating air gap between it and the linkage or a non-conducting thermoplastic linkage. Care shall be taken to maintain the actuator's operating temperatures and humidity within its specifications. Pipes shall be fully insulated and heat shields shall be installed if necessary. Condensation may not form on actuators and shall be prevented by a combination of insulation, air gap, or other thermal break.
 b. The control circuit shall be fully modulating using 2 - 10 volt or 4 - 20 mA signals. Accuracy and repeatability shall be within 1/21 of control signal. A 2 - 10 v or 4 - 20 mA signal shall be produced by the actuator which is directly proportional to the shaft clamp position which can be used to control actuators which are paralleled off a master motor or to provide a feedback signal to the automation system indicating valve position.
 c. Valve body and actuators shall be shipped fully assembled and tested at the valve factory prior to shipment.

2. Control Valve Actuators (4 inch and larger)
 a. The valve actuator shall consist of a permanent split capacitor, reversible type electric motor which drives a compound epicycle gear. The electric actuator shall have visual mechanical position indication, readable from a distance of 8 meters, showing output shaft and valve position. Unit shall be mounting directly to the valves without brackets and adapters, or readily adapted to suit all other types quarter-turn valves.
 b. The actuator shall have an integral terminal strip, which, through conduit entries, will ensure simple wiring to power supplies. Cable entries shall have UL recommended gland stops within the NPT hole to prevent glands from being screwed in too far and damaging cable.
 c. The actuator shall be constructed to withstand high shock and vibrations without operations failure. The actuator cover shall have captive bolts to eliminate loss of bolts when removing the cover from the base. One copy of the wiring diagram shall be provided with the actuator.
 d. The actuator shall have a self-locking gear train which is permanently lubricated at the factory. The gearing shall be run on ball and needle bearings. Actuators with 70 N-m or more output torque shall have two adjustable factory calibrated mechanical torque limit...
switches of the single-pole, double-throw type. The motor shall be fitted with thermal overload protection. Motor rotor shaft shall run in ball bearings at each end of motor.

e. The actuator housing shall be hard anodized aluminum for full environmental protection.

f. The environmental temperature range of the actuator shall be -22 to 140 deg F (-30 to +60 deg C).

g. For intermittent on/off service, the actuator shall be rated at a 20% duty cycle (i.e., 12 minutes extended duty in every hour, or alternatively; one complete cycle every 2 minutes). For more frequent cycling and modulating service, an actuator shall be rated for continuous duty. The actuator rated for continuous duty shall be capable of operating 100% of the time at an ambient temperature of 104 deg F (40 deg C).

h. The actuator shall have an integral self-locking gear train. Motor brakes shall not be required to maintain desired valve position. Levers or latches shall not be required to engage or disengage the manual override. Mechanical travel stops, adjustable to 15° in each direction of 90° rotation shall be standard, as well as two adjustable travel limit switches with electrically isolated contacts. Additional adjustable switches shall be available as option.

i. Single Phase Motor: The motor shall have Class B insulation capable of withstanding locked-rotor for 25 seconds without overheating. Wiring shall also be Class B insulation. An auto-reset thermal cut-out protector shall be embedded in the motor windings to limit heat rise to 175 deg F (80 deg C) in a 104 deg F (40 deg C) ambient. All motors shall be capable of being replaced by simply disconnecting the wires and then removing mounting bolts. Disassembly of gears shall not be required to remove the motor.

j. Materials of Construction: The electric actuator shall have a pressure die-cast, hard anodized aluminum base and cover. The compound gear shall be made of die-cast, hard anodized aluminum or steel. An alloy steel worm gear shall be provided for manual override and torque limiting. Bearings for gears shall be of the ball and needle type; bronze bearings shall be used on the shafting parts.

k. Accessories:
 1) Potentiometer for providing continuous feedback of actuator position at the controller (for valves specified position feedback).

l. Acceptable manufacturers:
 1) Honeywell
 2) Johnson Controls
 3) Belimo

H. Control Valves

1. Control valves shall be 2-way or 3-way pattern as shown constructed for tight shutoff and shall operate satisfactorily against system pressures and differentials. Two-position valves shall be ‘line’ size. Proportional control valves shall be sized for a maximum pressure drop of 5 ft of head pressure drop at rated flow (except as may be noted on the drawings). Valves with sizes up to and including NPS 2 (DN 50) shall be “screwed” configuration and NPS 2-1/2 (DN 65) inch and larger valves shall be “flanged” configuration. Electrically controlled valves shall include spring return type actuators sized for tight shut-off against system pressures and furnished with integral switches for indication of valve position (open-closed). Three-way butterfly valves, when utilized, shall include a separate actuator for each butterfly segment.

2. Acceptable manufacturers:
 a. Honeywell
 b. Belimo

I. Switches
1. **Differential Pressure Switches**
 a. All pressure sensing elements shall be corrosion resistant. Pressure sensing elements shall be bourdon tubes, bellows, or diaphragm type. Units shall have tamper-proof adjustable range and differential pressure settings.
 b. Pressure sensor switch contacts shall be snap action micro-switch type. Sensor assembly shall operate automatically and reset automatically when conditions return to normal. Complete sensor assembly shall be protected against vibration at all critical movement pivots, slides and so forth.
 c. Differential pressure switches shall be vented to withstand a 50% increase in working pressure without loss of calibration.

2. **Electric Low Limit Thermostat (Freeze Stat)**
 a. Duct type, fixed 4 deg F (3 deg C) differential, range 32 to 60 deg F (0 to 15 deg C). Sensing element shall be a 20 feet (6m) long capillary tube responding to the lowest temperature sensed along any 12 inches (305 mm) of bulb length. Switch shall be SPDT 120/240 volts AC, rated for 10 amps at 120 volts full load. Unit shall be manually reset. Provide one low limit thermostat for each 20 sq. ft. (1.86 sq. m) or fraction thereof of coil surface area.
 b. Provide DPST switches, 1 NO, 1 NC contact.
 c. Provide manual type low limit thermostat set at 36 deg F (2 deg C) on each air handling unit.
 d. Provide thermostat override on air handling units for smoke control in area being served.

3. **Water Flow Switches**
 a. UL listed, suitable for all service application conditions. Body minimum working pressure rating shall equal or exceed service pressure. Switch electrical rating shall be 230 volts AC 3.7 ampere, 115 volts AC 7.4 ampere, and 125 VAC 115-230 VAC AC Pilot duty. Unit shall have two SPDT switches. Actuating flow rated shall be field adjustable for the specified and indicated service. Switch location shall preclude exposure to turbulent or pulsating flow conditions. Flow switch shall not cause pressure drop exceeding 2 psi at maximum system flow rate.

4. **Strap-On Aquastat**
 a. UL listed, provided with a suitable removable spring clip for attaching aquastat to pipe and a snap-action SPDT switch. Switch set-point shall be as indicated. Electrical rating shall be 5 amperes, 120 VAC.

5. **Current Sensitive Switches**: Solid state, split core current switch that operates when the current level (sensed by the internal current transformer) exceeds the adjustable trip point. Current switch to include an integral LED for indication of trip condition and a current level below trip set point.

J. **Flow, Pressure And Electrical Measuring Apparatus**

1. **Shielded Static Pressure Sensor**
 a. Provide for each zone where required a shielded static pressure sensor suitable for ceiling surface mounting, complete with multiple sensing ports, pressure impulse suppression chamber, airflow shielding, and 3/8" compression takeoff fittings, all contained in a welded stainless steel casing, with polish finish on the exposed surfaces.
 b. These probes shall be capable of sensing the static pressure in the proximity of the sensor to within 1% of the actual pressure value while being subjected to a maximum airflow of 1000 feet/min. (300 m/min) from a radial source.
c. The shielded static sensing devices shall be used for both reference and space pressure sensing.
d. Pressure sensors used for outside air pressure reference purposes shall be equipped with a conduit seal for pneumatic tubing and bushings for a weather tight installation.

2. Static Pressure Traverse Probe
 a. Provide multipoint traverse probes in the duct at each point where static pressure sensing is required.
 b. Each duct static traverse probe shall contain multiple static pressure sensors located along the exterior surface of the cylindrical probe. Pressure sensing points shall not protrude beyond the surface of the probe.
 c. The duct static traverse probe shall be of 304 stainless steel construction and (except for 3/4" dia. probes with lengths of 24 inches (610 mm) or less) be complete with threaded end support rod, sealing washer and nut, and mounting plate with gasket and static pressure signal fitting. The static traverse probe shall be capable of producing a steady, non-pulsating signal of standard static pressure without need for correction factors, with an instrument accuracy of ± 1/2%.
 d. Acceptable Manufacturers:
 1) Auto Tran
 2) Veris
 3) Setra

K. Relays And Contactors
 1. Relays other than those associated with digital output cards shall be general purpose, enclosed type and protected by a heat and shock resistant duct cover. Number of contacts and operational function shall be as required.
 2. Solid State Relays (SSR): Input/output isolation shall be greater than 10E9 ohms with a breakdown voltage of 1500V root mean square or greater at 60 Hz. The contact life shall be 10 x 10E6 operations or greater. The ambient temperature range of SSRs shall be -18 to 140 deg F (-28 To+60 deg C). Input impedance shall not be less than 500 ohms. Relays shall be rated for the application. Operating and release time shall be for 100 milliseconds or less. Transient suppression shall be provided as an integral part of the relay.
 3. Contactors: Contactors shall be of the single coil, electrically operated, mechanically held type. Positive locking shall be obtained without the use of hooks, latches, or semipermanent magnets. Contactors shall be double-break-silver-to-silver type protected by arcing contacts. The number of contacts and rating shall be selected for the application. Operating and release times shall be 100 milliseconds or less. Contactors shall be equipped with coil transient suppression devices.

L. Temperature Control Panels
 1. Furnish temperature control panels of code gauge steel with locking doors for mounting all devices as shown. Panels shall conform to NEMA 1 standards, unless otherwise indicated.
 2. Control panels shall meet all requirements of UL508A and shall be so certified.
 3. All external wiring shall be connected to terminal strips mounted within the panel.
 4. Provide engraved phenolic nameplates identifying all devices mounted on the face of control panels and the identification number of the panel.
 5. A complete set of ‘as-built’ control drawings (relating to the controls within that panel) shall be furnished within each control panel.

M. Variable Frequency Drives: Furnished by air handling unit provider for AHUs and hydronic system pumps.
N. Any automatic control dampers not specified to be integral with other equipment. Frames shall not be less than 0.094 inch (2.39 mm) galvanized steel. Blades shall not be over 8 inches (200 mm) wide nor less than 0.063 inch (1.52 mm) galvanized steel roll formed. Bearings shall be oilite, ball-bearing or nylon with steel shafts. Side seals shall be stainless steel of the tight-seal spring type. Dampers and seals shall be suitable for temperature ranges of -40 to 200 deg F (-40 to 93 deg C).

1. Individual damper sections shall have a maximum of 16 sq. ft. (1.49 sq. m) of damper surface and each individual damper section to have its own damper operator.
2. All proportional control dampers shall be opposed blade type and all two-position dampers shall be parallel blade types.
3. Dampers shall be sized to meet ductwork or opening size.
4. Dampers shall be ultra-low leakage dampers and the blade edges shall be fitted with replaceable, snap-on, inflatable seals to limit damper leakage to 6 CFM per square foot for dampers in excess of sixteen inches square at 1-inch wg (250 Pa).

O. Thermally Isolated Dampers: Ruskin Model CDT150 or equivalent extruded aluminum thermally isolated control dampers with insulated air-foil shaped blades.

P. Digital Wall Module: Each wall module shall provide temperature indication to the digital controller.

1. Provide software-limited set point adjustment and occupied/unoccupied override capability where indicated.
2. Module mounted adjustments shall use buttons, no slides or wheels.

2.16 FLOW AND BTU METERS

A. Water Flow Meters: ONICON Model F-3500 water flow meters shall be electromagnetic style flow meters which translate liquid motion into electronic output signals proportional to the flow sensed. Flow meters shall be ‘insertion’ type complete with ‘hot-tap’ isolation valves to enable sensor removal without water supply system shutdown. Accuracy shall be ± 1% of actual reading from 2 to 20 feet per second flow velocities.

1. Include display module for BMS interface and local indication of flow rate and total.

B. BTU Meter Systems:

1. General: Built and calibrated by a single manufacturer and shall consist of a flow meter, two temperature sensors, a BTU meter, temperature thermowells, and all required mechanical installation hardware. A certificate of NIST* traceable calibration shall be provided with each system. All equipment shall be covered by a two year warranty.
 a. BTU Meter: Provide an ONICON System-10 BTU Meter. Output signals shall be either serial network (protocol conforming to BACnet® MS/TP, BACnet/IP, LONWORKS®, JCI-N2, MODBUS RTU RS485, MODBUS RTU TCP/IP, or Siemens-P1) and/or via individual analog and pulse outputs. Coordinate required protocol with building DDC system installer. Each BTU meter shall be factory programmed for its specific application, and shall be re-programmable using the front panel keypad (no special interface device or computer required).
 1) The BTU meter shall provide the following points both at the integral LCD and as outputs to the building control system:
 a) Energy Total
b) Energy Rate
c) Flow Rate
d) Supply Temperature
e) Return Temperature.

b. Temperature Sensors: Temperature sensors shall be loop-powered current based (mA) sensors and shall be bath-calibrated and matched (NIST* traceable) for the specific temperature range for each application. The calculated differential temperature used in the energy calculation shall be accurate to within +0.15°F (including the error from individual temperature sensors, sensor matching, input offsets, and calculations).

c. Water Flow Meters: ONICON Model F-3500 water flow meters shall be electromagnetic style flow meters which translate liquid motion into electronic output signals proportional to the flow sensed. Flow meters shall be ‘insertion’ type complete with ‘hot-tap’ isolation valves to enable sensor removal without water supply system shutdown. Accuracy shall be + 1% of actual reading from 2 to 20 feet per second flow velocities.

PART 3 - EXECUTION

3.1 GENERAL

A. The BMS shall be designed, installed, and commissioned in a turnkey operational manner; including all labor not noted in Work by Others paragraph of PART I of this section of these specifications, and not noted in other sections of these specifications.

B. Where control devices are installed on insulated piping or ductwork, provide standoff brackets or thermowells sized to clear insulation thickness. Provide extended sensing elements, actuator linkages, and other accessories as required.

3.2 SEQUENCE OF OPERATION

A. Refer to Section 23 0993 for sequence of operations.

3.3 INSTALLATION

A. All controls Installer work shall be installed, wired, circuit tested and calibrated by factory certified technicians qualified for this work.

B. Install system and materials in accordance with manufacturer’s instructions, and as detailed on the project drawing set.

C. Drawings of BMS are diagrammatic only and any apparatus not shown, such as relays, accessories, etc., but required to make the system operative to the complete satisfaction of the Engineer shall be furnished and installed without additional cost.

D. Line and low voltage electrical connections to control equipment shown, specified, or shown on the control diagrams shall be furnished and installed by the controls Installer in accordance with these specifications.

E. All control devices mounted on the face of control panels shall be clearly identified as to function and system served with permanently engraved phenolic labels.
F. All wiring and tubing shall be properly supported and run in a neat and workmanlike manner. All wiring and tubing exposed and in equipment rooms shall run parallel to or at right angles to the building structure. All tubing and wiring within enclosures shall be neatly bundled and anchored to prevent obstruction to devices and terminals. All wiring shall be in accordance with all local and national codes. All line voltage wiring, all tubing exposed, and all wiring in equipment rooms shall be installed in conduit in accordance to the electrical specifications. All electronic wiring shall be #18 AWG minimum THHN and shielded if required, except standard network (Ethernet, LonWorks, etc.) cabling shall be as tested and recommended in lieu of #18 gauge twisted, #22 or #24 gauge is acceptable if used as a part of an engineered structured cabling system. The control manufacturer must submit technical and application documentation demonstrating that this cabling system has been tested and approved for use by the manufacturer of both the control system and the engineered structured cabling system.

G. This contractor shall provide all sensing, control, and interlock wiring and tubing for the following unless shown or specified elsewhere by others:

1. Chiller interlocks.
2. Hydronic piping pressure sensors.
3. HVAC equipment shut-down devices.

H. The controls contractor shall install all software and enter all computer data into the network area controllers, laptop computers, hardware, and related computers including all control programs, initial approved parameters and settings, and graphics.

I. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 40 inches (1016 mm) above the floor.

J. For airflow monitoring devices, perform the following field tests and inspections and prepare test reports:

1. Operational Test: After substantial completion of airflow system, start units to confirm proper operation and readings. Remove and replace malfunctioning units and retest.
2. Test calibration to confirm proper operation and readings.

K. Connect to electrical power monitor at main power service entrance disconnect to measure whole facility electrical usage.

3.4 ACCEPTANCE

A. The BMS contractor shall completely check out, calibrate and test all connected hardware and software to insure that the system performs in accordance with the approved specifications and sequences of operations.

1. Coordinate with other Installers the checkout of each controlled system

B. The controls Installer shall perform tests to verify proper performance of components, routines, and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the DDC system operation.
C. Upon completion of the performance tests described above, repeat these tests, point by point as described in the validation log above in presence of Owner's Representative, as required. Properly schedule these tests so testing is complete at a time directed by the Owner's Representative. Do not delay tests so as to prevent delay of occupancy permits or building occupancy.

D. System Acceptance: Satisfactory completion is when the controls Installer has performed successfully all the required testing to show performance compliance with the requirements of the Contract Documents to the satisfaction of the Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

3.5 TRAINING

A. All training shall be by the BMS Installer and shall utilize operators’ manuals and as-built documentation.

B. The controls Installer shall provide 40 hours of instruction to the Owner's designated personnel on the operation of the BMS and describe its intended use with respect to the programmed functions specified. Operator orientation of the BMS shall include, but not be limited to; device programming software, graphical development software, graphical user interface, the overall operation program, equipment functions (both individually and as part of the total integrated system), commands, systems generation, advisories, and appropriate operator intervention required in responding to the System's operation.

C. The training shall be in three sessions as follows:

1. Initial Training: One day session (8 hours) after system is started up and at least one week before first acceptance test. Manual shall have been submitted at least two weeks prior to training so that the Owners’ personnel can start to familiarize themselves with the system before training begins.
2. Follow-Up Training: Two one day sessions (8 hours each) after initial training, and before Formal Acceptance. These sessions will deal with more advanced topics and answer questions.
3. Warranty Follow Up: Two one day sessions (8 hours each) to be scheduled at the request of the Owner during the one year warranty period. These sessions shall cover topics as requested by the owner such as; how to add additional points, create and gather data for trends, graphic screen generation or modification of control routines.

D. On-Line Service: Include 40 hours of on-line service assistance to include but not be limited to:

1. Programming changes or modifications, including changes and adjustments to control algorithms
2. Graphic changes or modifications as requested by the Owner or consulting engineer.
3. Operator assistance to include short (1 hour or less) refresh training on system diagnostics and operation, i.e., geothermal optimization, scheduling, trending or operator setup.
4. Consulting engineer assistance to include assistance on control system optimization.

3.6 POINTS LIST

A. Refer to Section 23 0993 for points list. Provide all additional points as required to accomplish all BMS sequences indicated in the drawings and specifications.
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.
 6. Mechanical sleeve seals.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig (690 kPa) minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: More than 0.5 psig (3.45 kPa) but not more than 2 psig (13.8 kPa).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Piping specialties.
 2. Corrugated, stainless-steel tubing with associated components.
 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 4. Pressure regulators. Indicate pressure ratings and capacities.
 5. Dielectric fittings.
 6. Mechanical sleeve seals.
 7. Escutcheons.

B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.
1.5 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Construction Manager Owner no fewer than two days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Construction Manager's written permission.

1.7 COORDINATION

A. Coordinate the installation of the natural gas service by the local gas utility.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Face: Lapped.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. OmegaFlex, Inc.
 b. Parker Hannifin Corporation; Parflex Division.
 c. Titeflex.
 d. Tru-Flex Metal Hose Corp.

3. Coating: PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.

4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

5. Striker Plates: Steel, designed to protect tubing from penetrations.

6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

7. Operating-Pressure Rating: 5 psig (34.5 kPa).

C. PE Pipe: ASTM D 2513, SDR 11.

 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig (3.45 kPa).
 8. Maximum Length: 72 inches (1830 mm).

B. Y-Pattern Strainers:

 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2(DN 50) and smaller; flanged ends for NPS 2–1/2(DN 65) and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
4. CWP Rating: 125 psig (862 kPa).

C. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Manual Gas Shutoff Valve Schedules" below for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.

1. CWP Rating: 125 psig (862 kPa).
4. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
5. Service Mark: Valves 1-1/4 inches (32 mm) to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 (DN 65) and Larger: Comply with ASME B16.38.

1. CWP Rating: 125 psig (862 kPa).
3. Flanged Ends: Comply with ASME B16.5.
5. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.
3. Ball: Chrome-plated bronze.
4. Stem: Bronze; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
7. Ends: Threaded.
8. CWP Rating: 600 psig (4140 kPa).
9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.
4. Ends: Threaded or flanged.
5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig (862 kPa).
7. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Xomox Corporation; a Crane company.
2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
6. Ends: Threaded or flanged.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig (862 kPa).
9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 PRESSURE REGULATORS

A. General Requirements:

1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 (DN 50) and smaller; flanged for regulators NPS 2-1/2 (DN 65) and larger.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Combustion, Inc.
 d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
 e. Invensys.
 f. Maxitrol Company.
 g. Richards Industries; Jordan Valve Div.

2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
6. Orifice: Aluminum; interchangeable.
8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
12. Maximum Inlet Pressure: 5 psig (34.5 kPa).

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton Corporation; Controls Div.
 c. Harper Wyman Co.
 d. Maxitrol Company.
 e. SCP, Inc.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
2.6 SERVICE METERS

2.7 DIELECTRIC FITTINGS

A. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 f. Wilkins; Zurn Plumbing Products Group.

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for natural gas.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

B. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Watts Regulator Co.; Division of Watts Water Technologies, Inc.
 d. Wilkins; Zurn Plumbing Products Group.

3. Combination fitting of copper alloy and ferrous materials.
4. Insulating materials suitable for natural gas.
5. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.

C. Dielectric-Flange Kits:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.

3. Companion-flange assembly for field assembly.
4. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or PE bolt sleeves, phenolic washers, and steel backing washers.
5. Insulating materials suitable for natural gas.
6. Combination fitting of copper alloy and ferrous materials with threaded, brazed-joint, plain, or welded end connections that match piping system materials.
2.8 MOTORIZED GAS VALVES

A. Electrically Operated Valves: Comply with UL 429.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ASCO Power Technologies, LP; Division of Emerson.
 b. Goyen Valve Corp.; Tyco Environmental Systems.
 c. Magnatrol Valve Corporation.
 d. Parker Hannifin Corporation; Climate & Industrial Controls Group; Skinner Valve Div.
 e. Watts Regulator Co.; Division of Watts Water Technologies, Inc.

2. Pilot operated.
3. Body: Brass or aluminum.
5. Springs and Valve Trim: Stainless steel.
6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
7. NEMA ICS 6, Type 4, coil enclosure.

2.9 SLEEVES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

2.10 MECHANICAL SLEEVE SEALS

A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe and sleeve.
4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one nut and bolt for each sealing element.

2.11 ESCUTCHEONS

A. General Requirements for Escutcheons: Manufactured wall and ceiling escutcheons and floor plates, with ID to fit around pipe or tube, and OD that completely covers opening.
B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chrome-plated finish.

C. One-Piece, Cast-Brass Escutcheons: With set screw.
 1. Finish: Polished chrome-plated or rough brass.

D. Split-Casting, Cast-Brass Escutcheons: With concealed hinge and set screw.
 1. Finish: Polished chrome-plated.

E. One-Piece, Floor-Plate Escutcheons: Cast-iron floor plate.

F. Split-Casting, Floor-Plate Escutcheons: Cast brass with concealed hinge and set screw.

2.12 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored yellow.

PART 3 - EXECUTION

3.1 GAS SERVICE

A. Arrange and pay for the relocation of the natural gas service piping by the local gas utility. The Contractor shall be responsible for all fees and charges required by the local gas utility for complete installation, inspection, and testing of the system.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Install underground, natural-gas piping buried at least 36 inches (900 mm) below finished grade. Comply with requirements in Division 31 Section "Earth Moving" for excavating, trenching, and backfilling.
C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Install fittings for changes in direction and branch connections.

E. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
1. Install steel pipe for sleeves smaller than 6 inches (150 mm) in diameter.
2. Install cast-iron "wall pipes" for sleeves 6 inches (150 mm) and larger in diameter.

F. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

H. Install pressure gage downstream from each service regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install piping free of sags and bends.

I. Install fittings for changes in direction and branch connections.

J. Install escutcheons at penetrations of interior walls, ceilings, and floors.
1. New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 b. Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 c. Piping at Ceiling Penetrations in Finished Spaces: One-piece or split-casting, cast-brass type with polished chrome-plated finish.
 d. Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished chrome-plated finish.
 e. Piping in Equipment Rooms: One-piece, cast-brass type.
 f. Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.

2. Existing Piping:
 a. Piping at Wall and Floor Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 b. Piping at Ceiling Penetrations in Finished Spaces: Split-casting, cast-brass type with chrome-plated finish.
 c. Piping in Unfinished Service Spaces: Split-casting, cast-brass type with polished chrome-plated finish.
 d. Piping in Equipment Rooms: Split-casting, cast-brass type.
 e. Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.

K. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

L. Verify final equipment locations for roughing-in.

M. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

N. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm) long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

O. Extend relief vent connections for line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

P. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, unless indicated to be exposed to view.

Q. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
2. Underground Piping Beneath Buildings: Install underground piping beneath buildings encased in a code approved conduit designed to withstand superimposed loads and the same pressure as the pipe.

3. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

R. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

S. Connect branch piping from top or side of horizontal piping.

T. Install unions in pipes NPS 2(DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

U. Do not use natural-gas piping as grounding electrode.

V. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

W. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Division 23 Section "Meters and Gages for HVAC Piping."

X. Install automatic gas shutoff valve furnished by food service equipment supplier.

Y. Make final connection to gas-fired kitchen equipment furnished by food service equipment supplier.

3.5 VALVE INSTALLATION

A. Install manual gas shutoff valve at each gas-fired piece of equipment.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

C. Install motorized gas shutoff valve for classroom shut-off as indicated with switch at teacher's demonstration table.

D. Install master gas shutoff valve for classroom in wall box outside classroom as indicated.

3.6 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.

E. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

F. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.7 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1(DN 25) and Smaller: Maximum span, 96 inches(2438 mm); minimum rod size, 3/8 inch(10 mm).
 2. NPS 1-1/4(DN 32): Maximum span, 108 inches(2743 mm); minimum rod size, 3/8 inch(10 mm).
 3. NPS 1-1/2 and NPS 2(DN 40 and DN 50): Maximum span, 108 inches(2743 mm); minimum rod size, 3/8 inch(10 mm).
 4. NPS 2-1/2 to NPS 3-1/2(DN 65 to DN 90): Maximum span, 10 feet(3 m); minimum rod size, 1/2 inch(13 mm).
 5. NPS 4(DN 100) and Larger: Maximum span, 10 feet(3 m); minimum rod size, 5/8 inch(15.8 mm).

3.8 CONNECTIONS

A. Install piping adjacent to appliances to allow service and maintenance of appliances.

B. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches(1800 mm) of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
 1. Install pressure regulator at connection to gas-fired appliance and equipment as required to meet maximum gas pressure requirements of that particular device.

C. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.

3.10 PAINTING

A. Comply with requirements in Division 09 painting Sections for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, and piping specialties, except components with factory-applied paint or protective coating.
 1. Color to be safety yellow.

C. Paint interior exposed metal piping, valves, and piping specialties, except components with factory-applied paint or protective coating.
 1. Color to be safety yellow for exposed piping in mechanical rooms.
 2. Color to match building wall/ceiling color for exposed piping in finished spaces.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.12 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be the following:
 1. PE pipe and fittings joined by heat fusion; terminated in an accessible location.

B. Aboveground natural-gas piping shall be the following:
 1. For NPS 2(DN 50) and smaller, use steel pipe with malleable-iron fittings and threaded joints.
 2. For NPS 2-1/2(DN 65) and larger, use steel pipe with wrought-steel fittings and welded joints.
3.13 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG (3.45 kPa)

A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having threaded ends to match adjacent piping. Use at appliance connection only.
 2. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. For NPS 2 (DN 50) and smaller, use steel pipe with malleable-iron fittings and threaded joints.
 2. For NPS 2-1/2 (DN 65) and larger, use steel pipe with wrought-steel fittings and welded joints.

C. Underground, below building, piping shall be the following:
 1. For NPS 2 (DN 50) and smaller, use steel pipe with malleable-iron fittings and threaded joints with containment conduit.
 2. For NPS 2-1/2 (DN 65) and larger, use steel pipe with wrought-steel fittings and welded joints with containment conduit.

D. Underground Containment Conduit: Code approved conduit designed to withstand superimposed loads and the same pressure as the pipe.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating.

3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES MORE THAN 0.5 PSIG (3.45 kPa) AND LESS THAN 5 PSIG (34.5 kPa)

A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. For NPS 2 (DN 50) and smaller, use steel pipe with malleable-iron fittings and threaded joints.
 2. For NPS 2-1/2 (DN 65) and larger, use steel pipe with wrought-steel fittings and welded joints.

3.15 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller shall be one of the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.
 2. Bronze plug valve.

B. Distribution piping valves for pipe sizes NPS 2-1/2 (DN 65) and larger shall be one of the following:
 1. Bronze plug valve.
 2. Cast-iron, nonlubricated plug valve.
C. Valves in branch piping for single appliance shall be one of the following:

1. Two-piece, full-port, bronze ball valves with bronze trim.
2. Bronze plug valve.

END OF SECTION 23 1123
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following:

1. Hot-water heating piping.
2. Makeup-water piping.
3. Condensate-drain piping.
5. Air-vent piping.

B. Related Sections include the following:

1. Division 23 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping.
2. Division 23 Section "Common Work Results for HVAC" for general piping materials and installation requirements.
3. Division 23 Section "Meters and Gages for HVAC Piping" for thermometers and pressure gages.
4. Division 23 Section "General Duty Valves for HVAC Piping" for general-duty ball, butterfly, and check valves.
5. Division 23 Section "Hangers and Supports for HVAC Equipment" for pipe supports, product descriptions, and installation requirements. Hanger and support spacing is specified in this Section.
6. Division 23 Section "Identification for HVAC Piping and Equipment" for labeling and identifying hydronic piping.
7. Division 23 Section "Instrumentation and Control for HVAC" for temperature-control valves and sensors.
8. Division 23 Section "HVAC Water Treatment" for [glycol, pipe cleaning and water treatment for HVAC systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Pressure-seal fittings.
2. Calibrated Balancing Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves.
3. Air control devices.
4. Hydronic specialties.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.
1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Installers of Pressure-Sealed Joints: Installers shall be certified by the pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

B. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01.

C. Comply with the provisions of the following:
 1. Michigan Mechanical Code

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).

B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).

C. Wrought-Copper Fittings: ASME B16.22.

D. Copper, Mechanically Formed Tee Option: For forming T-branch on copper water tube.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. T-DRILL Industries Inc.

E. Wrought-Copper Unions: ASME B16.22.

2.2 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article.

B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 125, raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Slip-on or butt welded.
 3. Facings: Raised face.

H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.3 DUCTILE IRON PIPE AND FITTINGS

2.4 PLASTIC PIPE AND FITTINGS
 A. PVC Plastic Pipe: ASTM D 1785, Schedules 40 and 80, plain ends as indicated in Part 3 "Piping Applications" Article.
 C. PVC Solvent Cement: ASTM D 2564.

2.5 PEX PIPE AND FITTINGS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. HeatLink USA Inc.
 2. Mr. PEX
 3. Viega LLC.
 4. Uponor.
 5. Watts Radiant, Inc.; a division of Watts Water Technologies, Inc.
 B. Pipe Material: Crosslinked polyethylene (PEX) manufactured by PEX-a or Engle method, manufactured in accordance with ASTM F876 and ASTM F877.
 C. Oxygen Barrier: Limit oxygen diffusion through the tube to maximum 0.10 mg per cu. m/day at 104 deg F (40 deg C) according to DIN 4726.
D. Fittings: ASTM F1960 metal cold expansion or ASTM F 1807, metal insert and crimp rings.

E. Pressure/Temperature Rating: Minimum 100 psig (690 kPa) and 180 deg F (82 deg C).

2.6 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

F. Solvent Cements for Joining Plastic Piping:

1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 a. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

G. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.7 DIELECTRIC FITTINGS

A. Refer to Division 23 Section "Common Work Results for HVAC" for dielectric fittings.

2.8 VALVES

A. Butterfly, Check, and Ball Valves: Comply with requirements specified in Division 23 Section "General-Duty Valves for HVAC Piping."

B. Automatic Temperature-Control Valves, Actuators, and Sensors: Furnished by temperature controls provider. Refer to Division 23 Section "Instrumentation and Control for HVAC."

C. Bronze, Calibrated-Orifice, Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Bell & Gossett.
b. Tour & Andersson.

2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
4. Plug: Resin.
5. Seat: PTFE.
6. End Connections: Threaded or socket.
8. Handle Style: Lever, with memory stop to retain set position.
10. Maximum Operating Temperature: 250 deg F (121 deg C).

D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Bell & Gossett.
 b. Tour & Andersson.

2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
5. Disc: Glass and carbon-filled PTFE.
6. Seat: PTFE.
7. End Connections: Flanged or grooved.
9. Handle Style: Lever, with memory stop to retain set position.

E. Diaphragm-Operated, Pressure-Reducing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Bell & Gossett.

2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
7. Low inlet-pressure check valve.
8. Inlet Strainer: removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

F. Diaphragm-Operated Safety Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Bell & Gossett.
2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
8. Inlet Strainer: removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

G. Drain Valves:

1. Ball-Valve-Type, Hose-End Drain Valves:
 b. Pressure Rating: 400-psig(2760-kPa) minimum CWP.
 d. Body: Copper alloy.
 e. Ball: Chrome-plated brass.
 f. Seats and Seals: Replaceable.
 g. Handle: Vinyl-covered steel.
 h. Inlet: Threaded or solder joint.
 i. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2. Gate-Valve-Type, Hose-End Drain Valves:
 b. Pressure Rating: Class 125.
 e. Inlet: NPS 3/4(DN 20) threaded or solder joint.
 f. Outlet: Garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.9 AIR CONTROL DEVICES

A. Manual Air Vents:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amtrol, Inc.
 b. Bell & Gossett.

2. Body: Bronze.
3. Internal Parts: Nonferrous.
4. Operator: Screwdriver or thumbscrew.
5. Inlet Connection: NPS 1/2(DN 15).
7. CWP Rating: 150 psig(1035 kPa).
B. Automatic Air Vents:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amtrol, Inc.
 b. Bell & Gossett.
 2. Body: Bronze or cast iron.
 3. Internal Parts: Nonferrous.
 5. Inlet Connection: NPS 1/2 (DN 15).
 7. CWP Rating: 150 psig (1035 kPa).

C. Bladder-Type Expansion Tanks:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Bell & Gossett.
 2. Tank: Welded steel, rated for 125-psig (860-kPa) working pressure and 375 deg F (191 deg C) maximum operating temperature. Factory test with taps fabricated and supports installed and labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 3. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

D. Air Eliminators:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Spirotherm Inc.
 b. Amtrol, Inc.
 c. Armstrong Pumps, Inc.
 d. Bell & Gossett.
 e. Taco.
 f. Thrush Co. Inc.
 2. Description: Coalescing type air and dirt eliminator, steel fabricated, rated for 150 psig working pressure with internal coalescing bundle consisting of a copper core tube with continuous wound copper medium permanently affixed to the core. Eliminator shall have a separate venting chamber to prevent system contaminants from harming the float and venting valve operation. At the top of the venting chamber shall be an integral full port float actuated brass venting mechanism. Units shall include a valved side tap to flush floating dirt or liquids and for quick bleeding of large amounts of air during system fill or refill. Eliminator shall include a removable bottom head with connection for use as a blow down connection for periodic cleaning.

2.10 HYDRONIC PIPING SPECIALTIES
A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2(DN 50) and smaller; flanged ends for NPS 2-1/2(DN 65) and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

B. Stainless-Steel Bellow, Flexible Connectors:
2. End Connections: Threaded or flanged to match equipment connected.
3. Performance: Capable of 3/4-inch (20-mm) misalignment.
4. CWP Rating: 150 psig (1035 kPa).
5. Maximum Operating Temperature: 250 deg F (121 deg C).

C. Terminal Unit Stainless-Steel Flexible Connectors (RCP, VAV, etc.):
1. Tubing: CPE/EPDM inner tube with stainless steel braided cover, fire rated.
2. End Connections: Brass or plated carbon steel fittings with swivel on one end.

D. Pipe Cover System:
1. Description: Factory-fabricated vertical and horizontal steel cover support system with concealed surface mounted attachment for concealment of piping and its supports and insulation.
 a. Cover system shall incorporate a concealed snap-lock connection which, once assembled, renders the cover essentially irremovable with the use of ordinary tools.
2. Cover: Smooth in appearance and made of 18-gauge powder coated steel.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2(DN 50) and smaller, shall be any of the following:
1. Type L(B), drawn-temper copper tubing, wrought-copper fittings, and soldered or brazed joints.
2. Schedule 40 steel pipe; Class 125 cast-iron or Class 150 malleable-iron threaded fittings.

B. Hot-water heating piping, aboveground, NPS 2-1/2(DN 65) and larger, shall be the following:
1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

C. Hot-water heating piping installed below slabs, NPS 2(DN 50) and smaller, shall be the following:
1. Type K(A), annealed-temper copper tubing, wrought-copper fittings, and soldered or brazed joints. Use the fewest possible joints.
2. Pre-Insulated PEX Tube; fittings for PEX tube; and crimped or cold expansion joints.

D. Makeup-water piping installed aboveground, NPS 2(DN 50) and smaller, shall be the following:
 1. Type L(B), drawn-temper copper tubing, wrought-copper fittings, and soldered or brazed joints.

E. Condensate-Drain Piping: Type L(B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints or Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

F. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

G. Air-Vent Piping:
 1. Inlet: Same as service where installed.
 2. Outlet: Type L(B), annealed-temper copper tubing with soldered or flared joints.

H. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed.

3.2 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment.

B. Install throttling-duty valve and calibrated-orifice balancing valve at each branch connection to return main.

C. Install calibrated-orifice, balancing valves in the return pipe of each heating terminal.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 01, for installation requirements.

F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.3 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4(DN 20) drain valve, and short NPS 3/4(DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using tee fittings or where allowed, mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. For expansion compensation at risers and terminals, install connection between piping mains and risers with at least 5 pipe fittings including tee in main. Install connections between piping risers and terminal units with at least 4 pipe fittings including tee in riser.

Q. Install valves according to Division 23 Section "General-Duty Valves for HVAC Piping."

R. Install unions in piping, NPS 2(DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

S. Install flanges in piping, NPS 2-1/2(DN 65) and larger, at final connections of equipment and elsewhere as indicated unless mechanical grooved connections allowed.

T. Install strainers on inlet side of each in-line pump and elsewhere as indicated. Install NPS 3/4(DN 20) nipple and ball valve in blowdown connection of strainers NPS 2(DN 50) and larger. Match size of strainer blowoff connection for strainers smaller than NPS 2(DN 50).

U. Identify piping as specified in Division 23 Section "Identification for HVAC Piping and Equipment."
3.4 HANGERS AND SUPPORTS

A. Install structural steel members between building structure members as required for upper attachment of hangers and supports. Use members of size and strength required for span and load. The use of joist or truss bridging for hanging and supporting is prohibited.

B. Hanger, support, and anchor devices are specified in Division 23 Section "Hangers and Supports for HVAC Piping and Equipment." Comply with the following requirements for maximum spacing of supports.

C. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet (6 m) long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet (6 m) or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet (6 m) or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

D. Install hangers for steel piping with maximum spacing and minimum rod in accordance Michigan Mechanical Code or MSS SP-69.

E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
3. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
4. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).

F. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 2 (DN 50) and Smaller: 48 inches (1200 mm) with 3/8-inch (10-mm) rod.

H. Install supports for vertical PVC piping every 48 inches (1200 mm).

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

H. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Nonpressure Piping: Join according to ASTM D 2855.
 a. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 b. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

I. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

3.6 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only.

C. Install piping to expansion tank with a 2 percent upward slope toward tank.

D. Install air eliminator in pump suction. Install ball valve in blowdown connection.

1. Install piping from automatic air vent in top of air eliminator and extend full size to nearest floor drain.

E. Install tangential air separator in pump suction. Install ball valve in blowdown connection. Install blowdown piping; extend full size to nearest floor drain.

F. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
1. Install tank fittings that are shipped loose.
2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.

G. Install diaphragm type expansion tanks below piping. Ensure tank is properly charged with air to match system fill pressure.

H. Install bladder type expansion tanks on the floor. Vent and purge air from hydronic system, and ensure tank is properly charged with air to match system fill pressure.

I. Install chilled water buffer tanks level and plumb, firmly anchored. Arrange so devices needing servicing are accessible.

1. Install the following devices on tanks where indicated:
 a. Air vent.
 b. Hose bibb drain valve.

2. After installing tanks with factory finish, inspect finishes and repair damages to finishes.

3. Install drain line from automatic air vents down to floor using copper tubing.

J. Install flexible connectors at inlet and discharge connections to base mounted pumps and other vibration-producing equipment.

K. Install flexible hose connectors at inlet and discharge connections to ceiling mounted coil connections.

L. Install pipe cover system where indicated in accordance with manufacturer’s requirements. Paint cover to match surrounding area. Coordinate with Architect.

3.7 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install ports for test plugs and pressure gages at pumps and elsewhere as indicated according to Division 23 Section “Meters and Gages for HVAC Piping.”

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections and elsewhere as indicated according to Division 23 Section “Meters and Gages for HVAC Piping.”

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.

2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.

3. Isolate expansion tanks and determine that hydronic system is full of water.

4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system’s working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.

2. Inspect pumps for proper rotation.

3. Set makeup pressure-reducing valves for required system pressure.

4. Inspect air vents at high points of system and determine if all are installed and bleed air completely.

5. Set temperature controls so all coils are calling for full flow.

6. Inspect and set operating temperatures of hydronic equipment to specified values.

7. Verify lubrication of motors and bearings.

END OF SECTION 23 2113
SECTION 23 2123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Wet rotor circulator with ECM.
2. Pump specialty fittings.

B. Related Sections include the following:

1. Division 23 Section "Common Work Results for HVAC" for general installation requirements and concrete equipment bases.
2. Division 23 Section "Common Motor Requirements for HVAC Equipment" for general motor requirements and shaft grounding rings.
3. Division 23 Section "Meters and Gages for HVAC Piping" for pressure gauges requirements at pumps.

1.2 DEFINITIONS

A. Buna-N: Nitrile rubber.

B. EPT: Ethylene propylene terpolymer.

1.3 ACTION SUBMITTALS

A. Product Data: Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.

1. No pump shall be submitted whose impeller diameter exceeds 90% of the maximum published impeller diameter for the pump, nor an impeller which is less than 15% larger than the smallest published impeller diameter for the pump.

B. Shop Drawings: Show pump layout and connections. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.

1.4 CLOSEOUT SUBMITTALS

A. Alignment Certificate: Include signed certificate verifying based mounted pump alignment procedures have been completed.

B. Operation and maintenance data.
1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain hydronic pumps through one source from a single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Manufacturer's Preparation for Shipping: Clean flanges and exposed machined metal surfaces and treat with anticorrosion compound after assembly and testing. Protect flanges, pipe openings, and nozzles with flange covers or with screwed-in plugs.

B. Store pumps in dry location.

C. Retain protective covers for flanges and protective coatings during storage.

D. Protect bearings and couplings against damage from sand, grit, and other foreign matter.

E. Comply with pump manufacturer's written rigging instructions.

1.7 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, provide products by the following:

1. Bell & Gossett.

2.2 WET ROTOR INLINE PUMPS

A. Basis of Design: Bell & Gossett Model ecocirc XL.

B. Description: Factory-assembled and -tested, wet rotor in-line pumps with ECM motor and integrated variable frequency drive.

C. Pump and Motor Assembly: Motor and impeller on common shaft and designed for installation with pump and motor shaft mounted horizontally.

1. Casing: Cast iron, with companion-flange connections.
2. Casing: Lead-free bronze, with companion-flange connections.
3. Impeller: Plastic or stainless steel.
5. Rotor: Permanent magnet.
7. Gasket/O-Ring: EPDM.
8. All Other Wetted Parts: Stainless steel.
9. Motor Type: Electronically commutated motor / permanent magnet and includes:
10. Class F motor insulation.

D. Integrated motor protection against over/under voltage, over temperature of motor and/or electronics, over current, locked rotor and dry run (no load condition).

E. Integrated Variable Frequency Drive: Tested as one unit by the manufacturer and includes:

F. MODBUS or BACnet connections built into the VFD as standard.

G. Analog inputs, such as 0-10V and 4-20mA inputs built into the VFD.

H. Maximum Working Pressure: 175 psi.

I. Maximum Working Temperature: 230°F.

2.3

2.4 PUMP SPECIALTY FITTINGS

A. Suction Diffuser: Angle pattern, 175-psig(1204-kPa) pressure rating, ductile or cast-iron body and end cap, pump-inlet fitting; with bronze startup and bronze or stainless-steel permanent strainers; bronze or stainless-steel straightening vanes; drain plug; and factory-fabricated support. Manufacturer shall be the same as the pump.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install pumps with access for periodic maintenance including removal of motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. For base-mounted pumps located on slab-on-grade type floors, set pumps on concrete equipment bases. Disconnect coupling before setting. Do not reconnect couplings until alignment procedure is complete.
1. Support pump baseplate on rectangular metal blocks and shims, or on metal wedges with small taper, at points near foundation bolts to provide a gap of 3/4 to 1-1/2 inches (19 to 38 mm) between pump base and foundation for grouting.

2. Adjust metal supports or wedges until pump and driver shafts are level. Check coupling faces and suction and discharge flanges of pump to verify that they are level and plumb.

E. Trim pump impellers as required to have pump discharge balancing valves no more than 50% closed.

3.2 ALIGNMENT

A. Align pump and motor shafts and piping connections after setting on foundation, grout has been set and foundation bolts have been tightened, and piping connections have been made.

1. Alignment procedure to be witnessed by Engineer or Owner representative with witness signing the alignment certificate.

B. Comply with pump and coupling manufacturers' written instructions.

C. Adjust pump and motor shafts for angular and offset alignment by methods specified in HI 1.1-1.5, "Centrifugal Pumps for Nomenclature, Definitions, Application and Operation."

D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install suction diffuser and shutoff valve on suction side of base mounted pumps.

F. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

G. Install pressure gage across pump suction and discharge. Install single gage with metal tubing and multiple input selector valves.

H. Install check valve and gate or ball valve on each condensate pump unit discharge.

I. Install electrical connections for power, controls, and devices.

J. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
K. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Perform the following startup checks for each pump before starting:
 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.
5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Open discharge valve slowly.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 23 2123
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes HVAC water-treatment for the following systems:
 1. Heating hot-water.
 2. Chilled water.

1.2 PERFORMANCE REQUIREMENTS

A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.

1.3 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for the following products:
 1. Bypass feeders.
 2. Cartridge-type filters.
 3. Glycol.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

B. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality.

1.5 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion, scale formation, and biological growth for piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion, and shall include the following:

1. Initial water analysis and HVAC water-treatment recommendations.
2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
3. Periodic field service and consultation.
5. Laboratory technical analysis.
6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Service Providers: Subject to compliance with requirements, HVAC water-treatment service provider offering products and services that may be incorporated into the Work include, but are not limited to, the following:

1. Enerco Corporation.

2.2 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch(89-mm) fill opening in the top, and NPS 3/4(DN 20) bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.

2.3 CHEMICAL TREATMENT TEST EQUIPMENT

A. Test Kit: Manufacturer-recommended equipment and chemicals in a wall-mounting cabinet for testing solutions to maintain performance requirements for each required characteristic.
2.4 CHEMICALS
 A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment, and that can attain water quality requirements.

2.5 FILTRATION EQUIPMENT
 A. Cartridge-Type Filters:
 1. Description: Type 304 stainless steel housing with minimum 150 psig pressure rating and 275 degree F temperature rating. For 2 inch inlet and outlet connection units, include support legs, fail-safe removable cover, cover gasket, and drain outlet. For 1 inch inlet and outlet connection units, include support bracket, fail-safe removable cover, cover gasket, and drain outlet. Filter media and support to be 100% stainless steel. Filter media to be cleanable stainless steel cartridges rated at 40 microns. Provide two complete sets of stainless steel filter cartridges.
 a. Include cotton filters for system startup, one set of 150 micron and one set of 75 micron.

PART 3 - EXECUTION

3.1 WATER ANALYSIS
 A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION - GENERAL
 A. Install water testing equipment on wall near water chemical application equipment.

3.3 INSTALLATION OF BYPASS FEEDERS
 A. Install bypass feeders in closed hydronic systems, and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps, unless otherwise indicated on Drawings.
 2. Install an isolation valves on inlet, outlet, and drain below feeder inlet.
 3. Install a swing check on inlet after the isolation valve.

3.4 INSTALLATION OF CARTRIDGE FILTERS
 A. Install cartridge filter in hydronic system where indicated. Install throttling valves on each side of filter.
 1. Install 150 micron cotton filter during initial system start-up and use until loaded.
 2. Replace with 75 micron cotton filter and use until loaded.
 3. Replace with 40 micron stainless steel filters after system cleaning.
 B. Install pressure gage across filter unit to show pressure drop through unit.
C. Mount wall bracket mounted units with top of filter at maximum 48 inches above floor.

3.5 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Division 23 Section "Common Work Results for HVAC."

D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Division 23 Section "General-Duty Valves for HVAC Piping."

E. Refer to Division 22 Section "Domestic Water Piping Specialties" for backflow preventers required in makeup water connections to potable-water systems.

F. Confirm applicable electrical requirements in Division 26 Sections for connecting electrical equipment.

G. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

H. Connect wiring according to Division 26 Sections.

3.6 CLEANING AND TREATMENT OF HYDRONIC SYSTEMS

A. Pre-Cleaning: Thoroughly flush all piping with fresh water. Determine loop capacity in gallons using electric contact head type bronze constructed water meter. Fill system from completely dry to full, including air bleed out. Submit written report of system capacity in gallons taken from water meter. Drain system completely. Open drip legs and other non-flow piping to remove debris. Remove and clean all strainers.

B. Cleaning of Non-Glycol Systems: Refill system with fresh water along with alkaline detergent cleaner. Feed cleaner through bypass feeder at recommended use rates. Circulate 8 to 72 hours. Flush system. Open, clean, and inspect all strainers, drip legs, and non-flow areas. Refill with fresh water, bleed air from system, and allow system to make-up fresh water and bleed air until water leaving system is of same quality as make-up water.

C. Treatment of Non-Glycol Systems: Immediately introduce corrosion inhibitor through bypass feeder to protect the clean system.

D. Sectional Cleaning: If entire system is not cleaned and treated at one time, each untreated section shall be isolated from treated sections. Untreated sections to be cleaned and treated as described above before connection to a previously treated section. Provide written report for each individual section.

E. For non-glycol systems, perform tests determining analysis of supply water solution and submit written test results.
3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 a. Test equipment (coils, heat exchangers, control valves, strainers, etc.) to verify water flow through equipment is not reduced due to debris caused by flushing and cleaning activities.
 3. Place HVAC water-treatment system into operation during the preliminary phase of HVAC systems' startup procedures.
 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 7. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
 8. Repair leaks and defects with new materials and retest piping until no leaks exist.

C. Remove and replace malfunctioning components and retest as specified above.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 23 2500
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes metal ducts for air-distribution systems.

B. Related Sections include the following:

1. Division 23 Section "Air Duct Accessories" for dampers, duct-mounting access doors, turning vanes, flexible ducts, and flexible connectors.

1.2 SYSTEM DESCRIPTION

A. Duct system design, as indicated, has been used to select size and type of air-moving and distribution equipment and other air system components. Changes to layout or configuration of duct system must be specifically approved in writing by Architect/Engineer. Accompany requests for layout modifications with calculations showing that proposed layout will provide original design results without increasing system total pressure.

1.3 ACTION SUBMITTALS

A. Product data for the following items:

2. Duct Liner.

B. Duct Leakage Reports: Submit duct leakage test reports. The reports shall be certified proof that the systems have been leak tested, in accordance with this specification section and the referenced standards and are an accurate representation of the system leakage.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. NFPA Compliance:

1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
1.6 DELIVERY, STORAGE, AND PROTECTION

A. Deliver sealant materials to site in original unopened containers or bundles with labels informing about manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multi-component materials.

B. Store and handle sealant materials in compliance with manufacturers’ recommendations to prevent their deterioration or damage due to moisture, high or low temperatures, contaminants, or other causes.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHEET METAL MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90(Z275) coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.

C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.

D. Tie Rods: Galvanized steel, 1/4-inch(6-mm) minimum diameter for lengths 36 inches(900 mm) or less; 3/8-inch(10-mm) minimum diameter for lengths longer than 36 inches(900 mm).

E. Bird Screen: 1/2 inch mesh, 16 gage galvanized wire.

2.3 DUCT LINER

A. Fibrous-Glass Liner: Comply with NFPA 90A or NFPA 90B and with NAIMA AH124.

 1. Manufacturers:
 a. CertainTeed Corp.; Insulation Group.
 c. Knauf Fiber Glass GmbH.
 d. Owens Comling.

 2. Materials: ASTM C 1071; surfaces exposed to airstream shall be coated to prevent erosion of glass fibers.
2.4 SEALANT MATERIALS

A. Water-Based Joint and Seam Sealant: Flexible, adhesive sealant, resistant to UV light when cured, UL 723 listed, and complying with NFPA requirements for Class 1 ducts.

1. For indoor applications, use adhesive that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Flanged Joint Mastic: One-part, acid-curing, silicone, elastomeric joint sealant complying with ASTM C 920, Type S, Grade NS, Class 25, Use O.

C. Flange Gaskets: Butyl rubber or EPDM polymer with polyisobutylene plasticizer.

2.5 HANGERS AND SUPPORTS

A. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
2. Exception: Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.

B. Install structural steel members between building structure members as required for upper attachment of hangers and supports. Use members of size and strength required for span and load. The use of joist or truss bridging for hanging and supporting is prohibited.

C. Hanger Materials: Galvanized sheet steel or threaded steel rod.

1. Hangers Installed in Corrosive Atmospheres: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
2. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for steel sheet width and thickness and for steel rod diameters.
D. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

E. Trapeze and Riser Supports: Steel shapes complying with ASTM A 36/A 36M.

2.6 RECTANGULAR DUCT FABRICATION

A. Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" and complying with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.
 1. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure class.
 2. Deflection: Duct systems shall not exceed deflection limits according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."

B. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches (480 mm) and larger and 0.0359 inch (0.9 mm) thick or less, with more than 10 sq. ft. (0.93 sq. m) of nonbraced panel area unless ducts are lined.

2.7 APPLICATION OF LINER IN RECTANGULAR DUCTS

A. All sizes shown on the drawings for ducts which require duct liner shall be sizes inside the liner.

B. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.

C. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.

D. Butt transverse joints without gaps and coat joint with adhesive.

E. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.

F. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and standard liner product dimensions make longitudinal joints necessary.

G. Secure liner with mechanical fasteners 4 inches (100 mm) from corners and at intervals not exceeding 12 inches (300 mm) transversely; at 3 inches (75 mm) from transverse joints and at intervals not exceeding 18 inches (450 mm) longitudinally.

H. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 1. Fan discharges.
 2. Intervals of lined duct preceding unlined duct.
 3. Upstream edges of transverse joints in ducts where air velocities are greater than 2500 fpm (12.7 m/s) or where indicated.
I. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.8 FABRICATED PIPE COVERS

A. General: Provide as indicated carbon steel or stainless steel pipe covers for vertical pipe runs. Pipe covers shall be self supporting, securely attached to building structure with tamper resistant removable fasteners.

2.9 ROUND AND FLAT-OVAL DUCT AND FITTING FABRICATION

A. Spiral Duct Manufacturers:

1. Allied Mechanical Services.
2. Eastern Sheet Metal.
3. SET Duct.
4. LaPine Metal Products.
6. River City Mechanical.
7. SEMCO Incorporated.
8. Universal Spiral Air.

B. Round, Longitudinal-Seam Ducts: Fabricate 12 inch (305 mm) and smaller ducts and drops to diffusers of galvanized steel according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."

C. Round, Spiral Lock-Seam Ducts: Fabricate 13 inch (330 mm) and larger ducts of galvanized steel according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible." Fabricate ducts larger than 72 inches (1830 mm) in diameter with butt-welded longitudinal seams.

D. Duct Joints:

1. Ducts up to 20 Inches (500 mm) in Diameter: Interior, center-beaded slip coupling, sealed before and after fastening, attached with sheet metal screws.
2. Ducts 21 to 72 Inches (535 to 1830 mm) in Diameter: Three-piece, gasketed, flanged joint consisting of two internal flanges with sealant and one external closure band with gasket.
3. Ducts Larger Than 72 Inches (1830 mm) in Diameter: Companion angle flanged joints per SMACNA "HVAC Duct Construction Standards--Metal and Flexible," Figure 3-2.

E. 90-Degree Tees and Laterals and Conical Tees: Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," with metal thicknesses specified for longitudinal-seam straight ducts.

F. Diverging-Flow Fittings: Fabricate with reduced entrance to branch taps and with no excess material projecting from fitting onto branch tap entrance.

G. Fabricate elbows using die-formed, gored, pleated, or mitered construction. Bend radius of die-formed, gored, and pleated elbows shall be 1-1/2 times duct diameter. Unless elbow construction type is indicated, fabricate elbows as follows:
1. Mitered-Elbow Radius and Number of Pieces: Welded construction complying with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
2. Round Mitered Elbows: Welded construction with metal thickness equal to or greater than that of ducts.
3. 90-Degree, 2-Piece, Mitered Elbows: Use only for supply systems or for material-handling Class A or B exhaust systems and only where space restrictions do not permit using radius elbows. Fabricate with single-thickness turning vanes.
4. Round Elbows 8 Inches (200 mm) and Less in Diameter: Fabricate die-formed elbows for 45- and 90-degree elbows and pleated elbows for 30 and 60 degrees only. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.
5. Round Elbows 9 through 14 Inches (225 through 355 mm) in Diameter: Fabricate with gored construction, unless space restrictions require mitered elbows. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.
6. Round Elbows Larger Than 14 Inches (355 mm) in Diameter and All Flat-Oval Elbows: Fabricate gored elbows unless space restrictions require mitered elbows.
7. Die-Formed Elbows for Sizes through 8 Inches (200 mm) in Diameter and All Pressures 0.040 inch (1.0 mm) thick with 2-piece welded construction.
8. Round Gored-Elbow Metal Thickness: Same as metal thickness or greater than that of ducts.

PART 3 - EXECUTION

3.1 DUCTWORK CONSTRUCTION

A. Provide ductwork constructed in accordance with SMACNA Duct Construction Standards but no less than the static pressure classification as indicated below. Fabricate ductwork that will have less leakage than the percentage of system design air flow as indicated below. Test all ductwork for leakage, unless otherwise noted, in accordance with SMACNA HVAC Air Duct Leakage Test Manual and the following.

1. VAV Supply Air Ductwork (AHU to Terminal Units)
 a. Duct Construction Static Pressure Class: +6-inch wg (1500 Pa).
 b. SMACNA Seal Class: A.
 c. Testing Static Pressure: +6-inch wg (1500 Pa).
2. VAV Supply Air Ductwork (Terminal Units to Diffusers)
 b. SMACNA Seal Class: C.
 c. Testing Static Pressure: No testing required.
3. Constant Volume Supply Air Ductwork (AHU to Diffusers)
 a. Duct Construction Static Pressure Class: +3-inch wg (750 Pa).
 b. SMACNA Seal Class: B.
 c. Testing Static Pressure: +3-inch wg (750 Pa).
4. Return Air Ductwork
 a. Duct Construction Static Pressure Class: -3-inch wg (750 Pa).
 b. SMACNA Seal Class: B.
 c. Testing Static Pressure: -3-inch wg (750 Pa).
5. Exhaust Air Ductwork (To ERV)
PROJECT NO. 21-134.00
STROSACKER - FLOOD RECOVERY
NORTHWOOD UNIVERSITY

METAL DUCTS

6. Exhaust Air Ductwork (From ERV)
 a. Duct Construction Static Pressure Class: -3-inch wg (750 Pa).
 b. SMACNA Seal Class: B.
 c. Testing Static Pressure: -3-inch wg (750 Pa).

7. Exhaust Air Ductwork (To roof fans)
 a. Duct Construction Static Pressure Class: -3-inch wg (750 Pa).
 b. SMACNA Seal Class: B.
 c. Testing Static Pressure: -3-inch wg (750 Pa).

8. Exhaust Air Ductwork (To inline ceiling fans)
 a. Duct Construction Static Pressure Class: -1-inch wg (250 Pa).
 b. SMACNA Seal Class: C.
 c. Testing Static Pressure: No testing required.

9. Exhaust Air Ductwork (From inline ceiling fans)
 b. SMACNA Seal Class: C.
 c. Testing Static Pressure: No testing required.

10. Relief Air Ductwork
 b. SMACNA Seal Class: C.
 c. Testing Static Pressure: No testing required.

11. Outside Air Ductwork
 a. Duct Construction Static Pressure Class: -1-inch wg (250 Pa).
 b. SMACNA Seal Class: C.
 c. Testing Static Pressure: No testing required.

12. Transfer Air Ductwork
 a. Duct Construction Static Pressure Class: -1/2-inch wg (125 Pa).
 b. SMACNA Seal Class: C.
 c. Testing Static Pressure: No testing required.

3.2 DUCT APPLICATIONS
A. All ducts shall be galvanized steel.

3.3 DUCT INSTALLATION
A. Construct and install ducts according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
B. Install round and flat-oval ducts in lengths not less than 12 feet(3.7 m) unless interrupted by fittings.
C. Install ducts with fewest possible joints.

D. Install fabricated fittings for changes in directions, size, and shape and for connections.

E. Install couplings tight to duct wall surface with a minimum of projections into duct. Secure couplings with sheet metal screws. Install screws at intervals of 12 inches (300 mm), with a minimum of 3 screws in each coupling.

F. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines; avoid diagonal runs.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.

I. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated.

J. Coordinate layout with suspended ceiling, fire and smoke-control dampers, lighting layouts, and similar finished work.

K. Seal all joints and seams. Apply sealant to male end connectors before insertion, and afterward to cover entire joint and sheet metal screws.

L. Electrical Equipment Spaces: Route ducts to avoid passing through transformer vaults and electrical equipment spaces and enclosures.

M. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1-1/2 inches (38 mm).

N. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions, install appropriately rated fire dampers, sleeves, and firestopping sealant. Fire and smoke dampers are specified in Division 23 Section "Air Duct Accessories." Firestopping materials and installation methods are specified in Division 07 Section "Penetration Firestopping."

O. Paint interiors of metal ducts, that do not have duct liner, for 24 inches (600 mm) upstream of registers and grilles. Apply one coat of flat, black, latex finish coat over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 09 painting Sections.

P. Coordinate duct installations with installation of accessories, dampers, coil frames, equipment, controls and other associated work of ductwork system. Install duct mounted control dampers supplied by Temperature Control Installer.

Q. At ends of ducts which are not connected to equipment or air distribution devices at time of ductwork installation, provide temporary closure of polyethylene film or other covering which will prevent entrance of dust and debris until time connections are to be completed.

R. Where indicated, install wire mesh bird screen grilles mounted in a removable frame.
3.4 DUCT CLEANLINESS REQUIREMENTS

A. Protect duct interiors from the elements and foreign materials in accordance with the following SMACNA's "Duct Cleanliness for New Construction." Guidelines:

1. Basic Level.
2. Intermediate Level.
3. Advance Level.

3.5 SEAM AND JOINT SEALING

A. All ductwork shall be suitably cleaned and prepared, and sealant applied in strict accordance with manufacturer's instructions. Manufacturer's recommendations for cure time shall be followed before pressure testing is begun. Any additional paint or coatings must conform to manufacturer's specifications. Seal duct seams and joints as follows:

1. Pressure Classifications Greater Than 3 Inches Water Gage: All transverse joints, longitudinal seams, and duct penetrations (SMACNA Seal Class A).
2. Pressure Classification 2 and 3 Inches Water Gage: All transverse joints and longitudinal seams (SMACNA Seal Class B).
3. Pressure Classification Less than 2 Inches Water Gage: Transverse joints only (SMACNA Seal Class C).

B. Seal ducts and leak test where indicated before external insulation is applied.

3.6 HANGING AND SUPPORTING

A. Support ductwork with support systems indicated in SMACNA "HVAC Duct Construction Standards".

B. Support horizontal ducts within 24 inches (600 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

C. Support vertical ducts at maximum intervals of 16 feet (5 m) and at each floor.

D. Install upper attachments to structures with an allowable load not exceeding one-fourth of failure (proof-test) load.

E. Install powder-actuated concrete fasteners after concrete is placed and completely cured.

1. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.

3.7 DUCT SUPPORTS ABOVE ROOF INSTALLATION

A. Install above roof ductwork supports following support, curb, and roofing manufacturer guidelines. Where necessary, patch roofing in accordance with roofing manufacturer requirements.

B. New Roof Installations:
1. Curb-Mounted-Type Duct Stands: Assemble components or fabricate duct stand and mount on permanent, stationary roof curb. See Section 23 0500 "Common Work Results for HVAC" for curbs.

C. Existing Roof Installations:
 1. High Type Duct Stand Types: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

3.8 CONNECTIONS

A. Make connections to equipment with flexible connectors according to Division 23 Section "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

C. Louver Plenums: Fabricate of heavy gauge sheet metal material in compliance with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
 1. Fabricate with sloped bottom surface.
 2. Apply two coats of fire retardant, bitumastic waterproofing material to interior surfaces of bottom and lower half of sides.

3.9 FIELD QUALITY CONTROL

A. Provide duct leakage testing in accordance with SMACNA HVAC Air/Duct Leakage Test Manual and prepare test reports.

B. Disassemble, reassemble, and seal segments of the systems as required to accommodate leakage testing, and as required for compliance with test requirements.

C. Conduct tests, in the presence of the Architect/Engineer, at static pressures equal to the maximum design pressure of the system or the section being tested. If pressure classifications are not indicated, test entire system at the maximum system design pressure. Do not pressurize systems above the maximum design operating pressure. Give 3 days' advanced notice for testing.

D. Remake leaking joints as required and apply sealants to achieve specified maximum allowable leakage.

E. Seal and leak test externally insulated ducts prior to insulation installation.

F. Provide Leakage Testing on ductwork located in inaccessible locations (underslab, in walls and chases, etc.) before final covering is performed.

END OF SECTION 23 3113
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

2. Fire dampers.
3. Flange connectors.
4. Duct silencers.
5. Turning vanes.
6. Duct-mounted access doors.
7. Flexible connectors.
8. Flexible ducts.

B. Related Sections:

1. Division 23 Section "Instrumentation and Control for HVAC" for motorized control dampers and damper actuators.
2. Division 23 Section "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
3. Division 28 Section "Fire Detection and Alarm" for duct-mounted fire and smoke detectors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

1.5 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 2. Exposed-Surface Finish: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2D finish for concealed applications and No. 4 for exposed applications.

E. Extruded Aluminum: Comply with ASTM B 221(ASTM B 221M), Alloy 6063, Temper T6.

F. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.2 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Air Balance Inc.; a division of Mestek, Inc.
 b. American Warming and Ventilating; a division of Mestek, Inc.
 c. Flexmaster U.S.A., Inc.
 d. Greenheck.
 e. McGill AirFlow LLC.
 f. METALAIRE, Inc.
 g. Nailor Industries Inc.
 h. Pottorff.
 i. Ruskin Company.
 j. Trox USA Inc.
 k. Vent Products Company, Inc.
 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Hat-shaped, galvanized-steel channels, 0.064-inch (1.62-mm) minimum thickness.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch (1.62 mm) thick.

7. Bearings:
 a. Oil-impregnated bronze or molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Damper Hardware:

1. Locking manual quadrant calibrated to show damper position.
2. Zinc-plated, die-cast core with dial and handle made of 3/32-inch (2.4-mm) thick zinc-plated steel, and a 3/4-inch (19-mm) hexagon locking nut.
3. Include center hole to suit damper operating-rod size.
4. Include elevated platform for insulated duct mounting.

2.3 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air Balance Inc.; a division of Mestek, Inc.
2. Arrow United Industries; a division of Mestek, Inc.
3. Cesco Products; a division of Mestek, Inc.
5. McGill AirFlow LLC.
6. METALAIRE, Inc.
7. Nailor Industries Inc.
8. NCA Manufacturing, Inc.
10. Ruskin Company.

B. Type: Static; rated and labeled according to UL 555 by an NRTL.

C. Fire Rating: 1-1/2 hours.

D. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch (0.85-mm) thick galvanized steel; with mitered and interlocking corners.

E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
1. Minimum Thickness: 0.052 or 0.138 inch (1.3 or 3.5 mm) thick, as indicated, and of length to suit application.

2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

F. Mounting Orientation: Vertical or horizontal as indicated.

G. Blades: Roll-formed, interlocking, 0.034-inch-(0.85-mm-) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-(0.85-mm-) thick, galvanized-steel blade connectors.

H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

I. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.

2.4 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Ductmate Industries, Inc.
 2. Nexus PDQ; Division of Shilco Holdings Inc.

B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.5 DUCT SILENCERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Industrial Noise Control, Inc.
 2. McGill AirFlow LLC.
 3. Ruskin.
 5. Aerosonics
 6. Commercial Acoustics
 7. Dynasonics
 8. Vibron
 9. Semco
 10. VAW
 11. Price-HVAC

B. General Requirements:

 1. Factory fabricated.
2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.

3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

4. The dynamic insertion loss in dB for silencers shall not be less than that shown on the Duct Silencer Schedule at the face air velocity of +1,000 fpm (+ indicates airflow in the same direction as attenuation).

5. Duct silencers shall not produce self-noise power levels in dB re 10^{-12} watts that exceed those shown on the Duct Silencer Schedule.

6. Duct silencers static pressure drop shall not exceed those indicated on the duct silencer schedule for the scheduled airflow velocity and location shown.

C. Shape:

1. Rectangular straight with splitters or baffles.
2. Round straight with center bodies or pods.

D. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90(Z275), galvanized sheet steel, 0.034 inch (0.85 mm) thick.

1. Sheet Metal Thickness for Units up to 24 Inches (600 mm) in Diameter: 0.034 inch (0.85 mm) thick.
2. Sheet Metal Thickness for Units 26 through 40 Inches (660 through 1000 mm) in Diameter: 0.040 inch (1.02 mm) thick.
3. Sheet Metal Thickness for Units 42 through 52 Inches (1060 through 1300 mm) in Diameter: 0.052 inch (1.3 mm) thick.
4. Sheet Metal Thickness for Units 54 through 60 Inches (1370 through 1500 mm) in Diameter: 0.064 inch (1.62 mm) thick.

F. Inner Casing and Baffles: ASTM A 653/A 653M, G90(Z275) galvanized sheet metal, 0.034 inch (0.85 mm) thick, and with 1/8-inch-(3-mm-) diameter perforations.

G. Connection Sizes: Match connecting ductwork unless otherwise indicated.

H. Principal Sound-Absorbing Mechanism:

1. Dissipative type with fill material.
 a. Fill Material: Inert, mold-resistant, and vermin- and moisture-proof fibrous material.

2. Lining: Mylar.

I. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.

1. Lock form and seal or continuously weld joints.

J. Accessories:

1. Factory-installed end caps to prevent contamination during shipping.
K. Source Quality Control: Test according to ASTM E 477.

2.6 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. METALAIRE, Inc.
4. SEMCO Incorporated.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 2-3, "Vanes and Vane Runners," and 2-4, "Vane Support in Elbows."

D. Vane Construction: Single wall for ducts up to 48 inches (1200 mm) wide and double wall for larger dimensions.

2.7 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a division of Mestek, Inc.
2. Cesco Products; a division of Mestek, Inc.
3. Ductmate Industries, Inc.
5. Greenheck Fan Corporation.
6. McGill AirFlow LLC.
7. Nailor Industries Inc.
8. Pottorff.
9. Ruskin.
10. Ventfabrics, Inc.

C. Rectangular Ductwork Applications:

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
 d. Fabricate doors airtight and suitable for duct pressure class.
2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches (460 mm) Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 24 Inches (600 by 60 mm): Three hinges and two compression latches with outside and inside handles.

D. Round Ductwork Applications:

1. Sandwich Type for Uninsulated Ductwork: Oval shaped inner and outer plates connected by bolt fasteners and compression springs with hand knobs for compression fit in duct sidewall.
 a. Provide doors with insulated inner plate for installation in pre-insulated double wall ductwork.

2. Rectangular Type for Insulated Ductwork: Same as specified for rectangular ductwork application with field or factory installed rectangular tap.

E. Pressure Relief Access Door:

1. Door and Frame Material: Galvanized sheet steel.
2. Door: Single wall for uninsulated duct applications and double wall with insulation fill for insulated duct applications with metal thickness applicable for duct pressure class.
3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
4. Doors close when pressures are within set-point range.
5. Hinge: Continuous piano.
7. Seal: Neoprene or foam rubber.
8. Insulation Fill: 1-inch-(25-mm-) thick, fibrous-glass or polystyrene-foam board.
9. Factory set at pressure settings indicated below:
 a. Spring clips rated at 3-inch wg (750 Pa) negative and 5-inch wg (1250 Pa) positive for VAV applications.
 b. Spring clips rated at 2-inch wg (500 Pa) negative and 3-inch wg (750 Pa) positive for constant volume systems.

2.8 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ductmate Industries, Inc.
2. Duro Dyne Inc.
3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches (89 mm) wide attached to 2 strips of 2-3/4-inch-(70-mm-) wide, 0.028-inch-(0.7-mm-) thick, galvanized sheet steel or 0.032-inch-(0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.

1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
2. Tensile Strength: 480 lb/inch (84 N/mm) in the warp and 360 lb/inch (63 N/mm) in the filling.
3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

1. Minimum Weight: 24 oz./sq. yd. (810 g/sq. m).
2. Tensile Strength: 530 lb/inch (93 N/mm) in the warp and 440 lb/inch (77 N/mm) in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).

2.9 FLEXIBLE DUCTS

A. Insulated, Flexible Duct (Type F-1): UL 181, Class 1, acoustically rated, woven fiberglass fabric with flame resistant coated core supported by helically wound, spring-steel wire; fibrous-glass insulation (R-4.2); bidirectional reinforced metallized vapor-barrier film.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Themaflex Model M-KC or comparable product by the following:
 a. Flexmaster U.S.A., Inc.
2. Positive Pressure Rating: 16-inch wg (4000 Pa) positive for sizes 4 to 10 Inches (100 to 250 mm), 10-inch wg (2500 Pa) positive for sizes 12 to 16 Inches (300 to 400 mm).
3. Negative Pressure Rating: 2.0-inch wg (500 Pa) negative for sizes 4 to 16 Inches (100 to 400 mm).
4. Maximum Air Velocity: 6000 fpm (30 m/s).
5. Temperature Range: Minus 20 to plus 250 deg F (Minus 29 to plus 1221 deg C).
6. Insulation R-value: R-4.2

B. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action or nylon strap in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s “HVAC Duct Construction Standards - Metal and Flexible” for metal ducts.

B. Install duct accessories of galvanized-steel materials in galvanized-steel ducts.

C. Install turning vanes in all square or rectangular 90 degree elbows.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
1. Install steel volume dampers in steel ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install fire dampers according to UL listing.

G. Connect ducts to duct silencers rigidly.

1. Do not locate duct silencers within one duct diameter from fan discharge/intake openings, elbows, or takeoffs.

2. When elbows precede duct silencer by less than 3 duct widths (as measured in the elbow plane), splitters should be parallel to the plane of the elbow turn.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. At outdoor-air intakes and mixed-air plenums.
3. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
4. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 a. For fire or smoke dampers located in ducts with no other air path between AHU outlet and damper, install pressure relief access doors upstream of fire or smoke dampers.
 b. For fire or smoke dampers located in ducts with high velocity and no other air path between AHU outlet and damper, install pressure relief access doors upstream and downstream of fire or smoke dampers.
 c. For fire or smoke dampers located in ducts with high velocity and other air paths between AHU outlet and damper, install pressure relief access doors downstream of fire or smoke dampers.
5. At each change in direction and at maximum 50-foot (15-m) spacing.
6. Upstream from turning vanes.
7. Upstream or downstream from duct silencers.
8. Upstream and downstream of duct mounted airflow monitor devices.
9. At duct mounted smoke detectors.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

I. Access Door Minimum Sizes:

1. Two-Hand or Inspection Access: 12 by 12 inches (300 by 300 mm).
2. Head and Shoulders Access: 20 by 16 inches (500 by 400 mm).
4. For ducts less than 12 by 12 inches (300 by 300 mm), install largest size access door that fits duct size from manufacturer’s standard sizes.

J. Install flexible connectors to connect ducts to equipment.

K. Install flexible ducts as follows:
1. Install flexible ducts at accessible concealed locations only.
2. Connect terminal units to high velocity supply ducts with maximum 18-inch (450-mm) lengths of flexible duct Type F-1, clamped or strapped in place. Flexible ducts are for alignment purposes only. Do not use flexible ducts to change directions.
3. Connect diffusers to ducts directly or with maximum 36-inch (914.4-mm) lengths of flexible duct Type F-1, clamped or strapped in place. Flexible ducts are for alignment purposes only. Do not use flexible ducts to change directions.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 3300
PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes shutoff single-duct air terminal units.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated, include rated capacities, furnished specialties, sound-power ratings, and accessories.

1.3 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.4 QUALITY ASSURANCE
A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

B. NFPA Compliance: Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

PART 2 - PRODUCTS

2.1 MANUFACTURERS
A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHUTOFF SINGLE-DUCT AIR TERMINAL UNITS
A. Manufacturers:

1. Anemostat; a Mestek Company.
2. Johnson Controls
4. Nailor Industries of Texas Inc.
5. Price Industries.
6. Titus.
7. Trane.
8. Tuttle & Bailey.

B. Configuration: Volume-damper assembly inside unit casing with control components located inside a protective metal shroud.

C. Casing: Steel or aluminum.

1. Casing Lining: Minimum 1/2-inch-(13-mm-) thick, coated, fibrous-glass duct liner complying with ASTM C 1071; secured with adhesive. Cover liner with nonporous foil and seal edges.
2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
3. Air Outlet: S-slip and drive connections.
4. Access: Removable panels for access to dampers and other parts requiring service, adjustment, or maintenance; with airtight gasket.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Velocity Sensors: Multipoint array with velocity sensors in air inlet.

E. Regulator Assembly: Extruded-aluminum or galvanized-steel components; key damper blades onto shaft with nylon-fitted pivot points located inside unit casing.

1. Factory-calibrated and field-adjustable assembly with shaft extension for connection to externally mounted control actuator.

F. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.

1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg(750-Pa) inlet static pressure.

G. Hot-Water Heating Coil: Copper tube, mechanically expanded into aluminum-plate fins; leak tested underwater to 200 psig(1380 kPa); and factory installed.

H. Direct Digital Controls: Single-package unitary controller and actuator specified in Division 23 Section "Instrumentation and Control for HVAC."

1. The terminal unit controller flow transducer and damper actuators shall be supplied by the controls contractor for factory installation on the terminal unit. All controls components shall be mounted and wired per the control contractor’s documentation. When required the control components shall be installed within a controls enclosure provided by the terminal manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

C. Install piping adjacent to air terminal units to allow service and maintenance.
 1. Offset piping at coils to allow for coil removal.

D. Hot-Water Piping: In addition to requirements in Division 23 Section "Hydronic Piping," connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve, shutoff valve, drain valve, and union or flange.
 1. Provide coil bypass during flushing activities.

E. Connect ducts to air terminal units according to Division 23 Section "Metal Ducts."

F. Ground units with electric heating coils according to Division 26 Section "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

H. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. After installing air terminal units, test for compliance with requirements.
2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 23 3600
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes diffusers, registers, and grilles.

B. Related Sections:
 1. Division 23 Section "Air Duct Accessories" for fire dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Subject to compliance with requirements, provide products by one of the following:
 1. Grilles, Registers and Diffusers:
 a. Anemostst.
 b. Krueger.
 c. Price.
 d. Tuttle and Bailey.
 e. Titus.
 f. Nailor.

2.2 DIFFUSERS

A. General: Provide manufacturer's standard diffusers where shown; of size, shape, capacity and type as listed on diffuser schedule, with accessories and finishes as indicated.
 1. Diffuser Faces:
 a. Square: Square housing; core of square concentric louvers; square or round duct connection.
b. Rectangular: Rectangular housing; core of rectangular concentric louvers; square or round duct connection.

c. Panel: Square or rectangular housing extended to form panel to fit in ceiling system module; core of square or rectangular concentric louvers; square or round duct connection.

2. Diffuser Mountings
 a. Surface: Diffuser housing at duct, wall or ceiling surface with gasketed perimeter flange.
 b. Lay-In: Diffuser housing sized to fit between ceiling exposed suspension tee bars and rest on top surface of tee bar.

2.3 GRILLES AND REGISTERS

A. General: Provide manufacturer's standard grilles and registers where shown; of size, shape, capacity and type as listed on schedule, with accessories and finishes as indicated.

1. Register and Grille Materials:
 a. Steel Construction: Manufacturer's standard stamped sheet steel frame and adjustable blades.
 b. Aluminum Construction: Manufacturer's standard extruded aluminum frame and adjustable blades.

2.4 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 DIFFUSER, REGISTER, AND GRILLE INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts.

D. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 3713
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes modular indoor air handling units.

1.2 ACTION SUBMITTALS

A. Product Data: For each air-handling unit indicated.
 1. Unit dimensions and weight.
 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
 4. Certified coil-performance ratings with system operating conditions indicated.
 5. Dampers, including housings and linkages.
 6. Filters with performance characteristics.
 7. Wiring diagrams.

1.3 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set for each air-handling unit.
1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

E. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver air-handling units as a factory-assembled unit to the extent allowable by shipping limitations, with protective covering.

B. Lift and support units with the manufacturer's designated lifting or supporting points.

C. Disassemble and reassemble units as required for movement into the final location following manufacturer's written instructions.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carrier.
2. Trane.
3. JCI.
4. Daikin

2.2 MANUFACTURED UNITS

A. General Description: Provide factory assembled modular air-handling units comprised of dimensionally compatible casing modules which house all system components; including fans, motor and drive assembly, access sections, coils, plenums, filters, drain pans, and dampers.
2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings: Construct of structural steel framing with removable 2" thick double-wall insulated panels; all galvanized steel materials.

 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 2. Casing Joints: Sheet metal screws or pop rivets.
 3. Sealing: Seal all joints with water-resistant sealant.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Casing Walls: Galvanized solid sheet steel with integral seals at all framing element contact surfaces, and secured to frame with corrosion resistant fastening system configured to minimized thermal bridging to air side of unit.

C. Casing Insulation and Adhesive:

 2. Location and Application: Encased between outside and inside casing.

D. Inspection and Access Panels and Access Doors:

 1. Panel and Door Fabrication: Formed and reinforced, double-wall insulated panels of same materials and thicknesses as casing.

 2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

 3. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Fabricate windows in doors where indicated of safety glass with rubber seals.
 d. Door Size: Minimum 18 inches(450 mm) wide by full height of unit casing up to a maximum height of 72 inches(1800 mm).

 4. Locations and Applications:
 a. Fan Section: Doors and inspection and access panels.
 b. Access Section: Doors.
 c. Coil Section: Doors and inspection and access panels.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Air Blender Section: Doors.
 g. Mixing Section: Doors.
5. Service Light: Factory wired 100-W equivalent LED in a vaporproof fixture with switched junction box located outside of unit.
 a. Locations: As indicated on schedule.

E. Condensate Drain Pans:
 1. Fabricated with minimum one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and to direct water toward drain connection.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches (50 mm) deep.
 2. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 3. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate outside of unit with threaded nipple and cap on one end of pan.
 4. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
 5. Locations:
 a. Cooling Coil Sections.

F. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.

2.4 FAN, DRIVE, AND MOTOR SECTION

A. Fan Mounting: Mount fan and motor on a structural steel frame mounted on manufacturer's standard restrained vibration isolation mounting devices having a minimum static deflection of 1 inch (25 mm) sized to eliminate fan vibration and noise. Provide flexible duct connecting between unit casing and fan outlet.

B. Fan Shaft Bearings:
 1. Grease-Lubricated, Bearings: Self-aligning, pillow-block type with 2-piece, cast-iron housing with grease lines extended to outside unit and a rated life of 200,000 hours according to ABMA.

C. Plenum Fans:
 1. Housings: Steel frame and panel; fabricated without fan scroll and volute housing.
 3. Drives: Direct drive.
 4. Guards: Comply with requirements specified by OSHA and fabricate according to SMACNA's "HVAC Duct Construction Standards"; 0.1046-inch-(2.7-mm-) thick, 3/4-inch (20-mm) diamond-mesh wire screen, welded to steel angle frame; prime coated.

D. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."
 1. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

3. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Division 26 Sections.

E. Variable Frequency Drives: Provided by Temperature Controls Installer. Refer to Division 23 Section “Instrumentation and Controls for HVAC.”

2.5 COIL SECTION

A. General Requirements for Coil Section:

1. Comply with ARI 410.
2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
3. Coils shall not act as structural component of unit.

B. Connections: Provide factory installed piping connection points outside of unit casing and ready for field connections; with casing penetration points sealed against leakage for unit's rated pressure.

C. Water Coils: Drainable, rigidly supported across the full face of the coil, and pitched to allow drainage.

1. Fins: Aluminum, constructed from flat plate with belled collars for tubes. Fins shall be bonded to tubes by mechanically expanding copper tubes.
2. Tubes: Seamless copper.
4. Headers: Steel or cast iron, with connections for drain valve and air vent and threaded piping connections.
5. Rows: Cooling water coils shall be 6 row minimum.

2.6 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:

1. Comply with NFPA 90A.
2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
3. Provide filter holding frames arranged for flat or angular orientation, with access doors. Filters shall be removable from one side or lifted out from access plenum.

B. Prefilters: Extended-surface, disposable panel filters:

1. Factory-fabricated, dry, extended-surface type.
2. Thickness: 2 inches (50 mm).
3. Arrestance (ASHRAE 52.1): 90.
5. Media: Fibrous material formed into deep-V-shaped pleats and held by self-supporting wire grid.
7. Mounting Frames: Galvanized steel, with gaskets and fasteners.
C. Filters: Extended-surface, rigid media filters:

1. Factory-fabricated, dry, deep pleated, rigid type.
4. Length: 12 inches (300 mm).
5. Media: High density fibrous material with support grid and contour stabilizers.
7. Mounting Frames: Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks with space for prefilter.

D. Filter Gage:

1. 3-1/2-inch-(90-mm-) diameter, diaphragm-actuated dial in metal case.
2. Vent valves.
3. Black figures on white background.
4. Front recalibration adjustment.
5. 2 percent of full-scale accuracy.
6. Range: 0 to 2.0-inch wg (0 to 500 Pa).
7. Accessories: Static-pressure tips with integral compression fittings, 1/4-inch (6-mm) tubing, and 2- or 3-way vent valves.

2.7 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm (10-m/s) face velocity through damper and 4-inch wg (1000-Pa) pressure differential.

B. Mixing Box Outdoor- and Return-Air Dampers: Galvanized-steel or aluminum dampers mechanically fastened to cadmium-plated steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.

1. For combination filter and mixing box section, include cabinet support members to hold 2-inch-(50-mm-) thick, pleated, flat, throwaway filters.

C. Economizer Outdoor, Relief and Return Air Dampers: Low-leakage, galvanized-steel or aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals with cadmium-plated steel operating rod. Leakage rate shall not exceed 5 cfm/sq. ft. (0.22 L/s per sq. m) at 1-inch wg (250 Pa) and 9 cfm/sq. ft. (0.4 L/s per sq. m) at 4-inch wg (1.0 MPa).

2.8 AIRFLOW MEASURING DEVICES

A. Outside Air Airflow Stations:

1. Provide airflow monitors on outside air dampers capable of continuously measuring the outside air volume. Airflow monitors shall provide a 2 to 10 Vdc signal which corresponds to cfm for controlling and documenting airflow.

B. Fan Air Airflow Stations:
1. Provide airflow monitors on each fan capable of continuously measuring the air volume. Airflow monitors shall provide a 2 to 10 Vdc signal which corresponds to cfm for controlling and documenting airflow.

C. Fan Inlet Airflow Probes:

1. Provide on supply and exhaust fans, airflow probes mounted in the fan inlets capable of continuously measuring the air handling capacity (air volume) of the respective plenum fans.
 a. The fan inlet airflow traverse probes shall be factory calibrated to NIST traceable standards and use "bead in glass" thermistor thermal dispersion technology.
 b. The fan inlet airflow traverse probes shall not significantly impact fan performance or contribute to fan generated noise levels.
 c. The probes shall be capable of producing steady, non-pulsating signals of standard total and static pressure, without need for flow corrections or factors, with an accuracy of 3% of actual reading.

2. Include a transmitter for each probe to communicate the fans CFM to the building DDC control system.
3. The fan inlet airflow probes shall be the Ebtron “Gold Series”.

D. Outside Air Inlet Airflow Probes:

1. Provide on outside air dampers airflow probes capable of continuously measuring the outside air volume.
 a. The airflow probes shall be factory calibrated to NIST traceable standards and use thermal dispersion technology.
 b. The airflow traverse probes shall not significantly impact fan performance or contribute to fan generated noise levels.
 c. The probes shall be capable of producing steady, non-pulsating signals of standard total and static pressure, without need for flow corrections or factors, with an accuracy of 3% of actual reading.

2. Include a transmitter for each probe to communicate the CFM to the building DDC control system.
3. The airflow probes shall be the Ebtron “Gold Series”.

2.9 SOURCE QUALITY CONTROL

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.

B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."

C. Water Coils: Factory tested to 300 psig(2070 kPa) according to ARI 410 and ASHRAE 33.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Equipment Mounting: Install air-handling units on concrete bases. Secure units to anchor bolts installed in concrete bases. Comply with requirements for concrete bases specified in Division 23 “Common Work Results for HVAC”.

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
2. Install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Equipment Mounting: Install air-handling units on structural-steel support frame. Secure frame to floor and unit to frame.

C. Arrange installation of units to provide access space around air-handling units for service and maintenance.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

E. Install filter-gage, static-pressure taps upstream and downstream of filter bank. Mount filter gages on outside of filter housing or filter plenum in accessible position.

3.2 MOTOR GROUNDING

A. Provide factory installed shaft grounding ring at each three phase motor utilizing a variable frequency controller. Comply with requirements in Division 23 Section "Common Motor Requirements for HVAC Equipment."

B. Provide copper braided grounding strap between motor and metallic conduit for motors controlled by variable frequency motor controllers.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to air-handling unit to allow service and maintenance.

C. Connect to condensate drain pans and extend to nearest floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
D. **Hydronic Water Piping:** Comply with applicable requirements in Division 23 Section "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install calibrated balancing valve and union or flange at each coil return connection.

E. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Air Duct Accessories."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. **Leak Test:** After installation, test coils and connections for leaks.
 2. **Fan Operational Test:** After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. **Test and adjust controls and safeties:** Replace damaged and malfunctioning controls and equipment.

C. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. **startup service.**

 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Verify that shipping, blocking, and bracing are removed.
 3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations.
 5. Verify that bearings and other moving parts are lubricated with factory-recommended lubricants.
 6. Verify that dampers open and close, and maintain minimum outdoor-air setting.
 7. Comb coil fins for parallel orientation.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:

 1. Energize motor; verify proper operation of motor, drive system, and fan wheel.
 2. Measure and record motor electrical values for voltage and amperage.
 3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING

A. Adjust damper linkages for proper damper operation.
B. Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new clean filters.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 23 7313
SECTION 23 8216 - AIR COILS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following types of air coils that are not an integral part of air-handling units:
 1. Hot-water.

B. Related Sections include the following:
 1. Division 23 Sections for air coils that are integral to air-handling units.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each air coil. Include rated capacity and pressure drop for each air coil.

B. Shop Drawings: Diagram power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. ASHRAE Compliance:
 1. Comply with ASHRAE 15 for refrigeration system safety.
 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
PART 2 - PRODUCTS

2.1 WATER COILS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aerofin Corporation.
 2. Carrier Corporation.
 3. Coil Company, LLC.
 4. Dunham-Bush, Inc.
 7. Trane.
 8. USA Coil & Air.

B. Performance Ratings: Tested and rated according to ARI 410 and ASHRAE 33.

C. Minimum Working-Pressure/Temperature Ratings: 200 psig (1380 kPa), 325 deg F (163 deg C).

D. Source Quality Control: Factory tested to 300 psig (2070 kPa).

E. Tubes: ASTM B 743 copper, minimum 0.020 inch (0.508 mm) thick.

F. Fins: Aluminum, minimum 0.006 inch (0.152 mm) thick.

G. Headers: Cast iron with drain and air vent tapings; seamless copper tube with brazed joints, prime coated; or steel with brazed joints, prime coated.

H. Frames: Galvanized-steel channel frame, for flanged mounting.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install coils level and plumb.

B. Install coils in metal ducts and casings constructed according to SMACNA’s "HVAC Duct Construction Standards, Metal and Flexible."

C. Install galvanized or stainless-steel drain pan under each cooling coil.
 1. Construct drain pans with connection for drain; insulated and complying with ASHRAE 62.1.
 2. Construct drain pans to extend beyond coil length and width and to connect to condensate trap and drainage.
 3. Extend drain pan upstream and downstream from coil face.
 4. Extend drain pan under coil headers and exposed supply piping.

D. Install moisture eliminators for cooling coils. Extend drain pan under moisture eliminator.
E. Straighten bent fins on air coils.
F. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.
G. Encase smaller than 12 x 12 inch water coils within ductwork in accordance with SMACNA Duct Construction Standards.

3.2 CONNECTIONS
A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to coils to allow service and maintenance.
C. Connect water piping with unions and shutoff valves to allow coils to be disconnected without draining piping. Control valves are specified in Division 23 Section "Instrumentation and Control for HVAC," and other piping specialties are specified in Division 23 Section "Hydronic Piping."
D. Connect steam piping with gate valve and union and steam condensate piping with union, strainer, trap, and gate valve to allow coils to be disconnected without draining piping. Control valves are specified in Division 23 Section "Instrumentation and Control for HVAC," and other piping specialties are specified in Division 23 Section "Steam and Condensate Heating Piping."
E. Connect to condensate drain pans and extend to nearest floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
F. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL
A. Perform the following field tests and inspections and prepare test reports:
 1. Leak Test: After installation and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, operate electric coils to confirm proper unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

END OF SECTION 23 8216
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Hydronic convector.

1.2 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories for each type of product indicated.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

C. Color Samples for Initial Selection: For units with factory-applied color finishes.

D. Color Samples for Verification: For each type of exposed finish required.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Modine.
 2. Rittling, a div. of Hydro-Air Components.
 3. Sigma.
 4. Sterling.
5. Trane.

B. Performance Ratings: Rate finned-tube radiators according to Hydronics Institute's "I=B=R Testing and Rating Standard for Finned-Tube (Commercial) Radiation."

C. Heating Elements: Copper tubing mechanically expanded into flanged collars of evenly spaced aluminum fins resting on element supports. One tube end shall be belled.

D. Element Supports: Ball-bearing cradle type to permit longitudinal movement on enclosure brackets.

E. Front Panel: Minimum 0.0781-inch-(1.98-mm-) thick steel.

F. Wall-Mounting Back Panel: Minimum 0.0329-inch-(0.85-mm-) thick steel, full height, with full-length channel support for front panel without exposed fasteners.

G. Floor-Mounting Pedestals: Conceal insulated piping at maximum 36-inch(914-mm) spacing. Pedestal-mounting back panel shall be solid panel matching front panel. Provide stainless-steel escutcheon for floor openings at pedestals.

H. Support Brackets: Locate at maximum 36-inch(914-mm) spacing to support front panel and element.

I. Finish: Baked finish in manufacturer's [standard] [custom] color as selected by Architect.

J. Damper: Knob-operated internal damper at enclosure outlet.

K. Access Doors: Factory made, permanently hinged with tamper-resistant fastener, minimum size 6 by 7 inches(150 by 175 mm), integral with enclosure.

L. Enclosure Style: Sloped top.
 1. Bottom Inlet: Open bottom.
 2. Top Outlet Grille: Punched louver; painted to match enclosure.

M. Accessories:
 1. Filler sections, corners, relay sections, and splice plates all matching the enclosure and grille finishes.

2.2 HOT-WATER CONVECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Modine.
 2. Rittling, a div. of Hydro-Air Components.
 3. Sigma.
 4. Sterling.
 5. Trane.
B. Convectors: Seamless copper tubing mechanically expanded into evenly spaced aluminum fins and rolled into cast-iron or brass headers with inlet/outlet and air vent; steel side plates and supports. Factory-pressure-test element at minimum 100 psig (690 kPa).

C. Front and Top Panel: Minimum 0.0677-inch- (1.7-mm-) thick steel with exposed corners rounded; removable front panels with tamper-resistant fasteners braced and reinforced for stiffness.
 1. Recessed Cabinets: One-piece front panel, with 4-side gasketed overlap.

D. Wall-Mounting Back and End Panels: Minimum 0.0428-inch- (1.1-mm-) thick steel.

E. Floor-Mounting Pedestals: Conceal conduit for power and control wiring at maximum 36-inch (914-mm) spacing. Pedestal-mounting back panel shall be solid panel matching front panel.

F. Support Brackets: Locate at maximum 36-inch (914-mm) spacing to support front panel and element.

G. Insulation: 1/2-inch- (13-mm-) thick, fibrous glass on inside of the back of the enclosure.

H. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.

I. Damper: Knob-operated internal damper.

J. Access Doors: Factory made, permanently hinged with tamper-resistant fastener, minimum size 6 by 7 inches (150 by 175 mm), integral with enclosure.

K. Enclosure Style: Flat top.
 1. Front Inlet Grille: Punched louver; painted to match enclosure.
 2. Front Outlet Grille: Punched louver; painted to match enclosure.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive convection heating units for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Examine roughing-in for hydronic-piping connections to verify actual locations before convection heating unit installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONVECTOR INSTALLATION

A. Install units level and plumb.

B. Install valves within reach of access door provided in enclosure.
3.3 Install air-seal gasketing between wall and recessing flanges or front cover of fully recessed unit.

 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Section "Hydronic Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect hot-water units and components to piping according to Division 23 Section "Hydronic Piping."
 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.

C. Connect steam units and components to piping according to Division 23 Section "Steam and Condensate Heating Piping."
 1. Install shutoff valve on inlet; install strainer, steam trap, and shutoff valve on outlet.

D. Install control valves as required by Division 23 Section "Instrumentation and Control for HVAC."

E. Install piping adjacent to convection heating units to allow service and maintenance.

F. Ground electric convection heating units according to Division 26 Section "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Retouch any marred or scratched surfaces of factory-finished cabinets, using finish materials furnished by manufacturer.

B. Perform the following field tests and inspections and prepare test reports:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper convection heating unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace convection heating units that do not pass tests and inspections and retest as specified above.

END OF SECTION 23 8233
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Electrical Scope of work
2. Electrical equipment coordination and installation.
3. Rough-in
4. Electrical Demolition
5. Common electrical installation requirements.

1.2 SCOPE OF WORK

A. The scope of work is to include but not be limited to the following:

1. Obtain all required electrical construction permits and inspections.
2. File electrical service request with the Electric Utility for a new (upgraded, primary, secondary) electrical service.
3. Provide a 277/480 volt, 3 phase, 4 wire, distribution system for lighting and HVAC equipment.
4. Provide a 120/208 volt, 3 phase, 4 wire, distribution system for convenience receptacles, small appliances and small motors.
5. Refer to mechanical drawings, security, communications and access control drawings. Provide low voltage raceways (1/2" minimum) for all thermostats, controls and low voltage systems. No low voltage wiring of any type shall be visible in exposed ceiling areas.
6. Provide complete electrical installation including all components, i.e. light fixtures, lamps, receptacles, conduit, wire, etc.
7. Provide fire alarm system.
8. Provide raceway system for sound system, clock/program system, and security system.
9. Provide raceway system for telephone/data networking systems.
10. Provide for Owner training by factory representatives in operation and maintenance of systems where specified.
11. Provide selective demolition of electrical systems and equipment as indicated on the drawings.
12. Submit documentation such as shop drawings, record documents, maintenance manuals, infrared scan results, systems test results, fire alarm system certification, etc. as specified.

1.3 COORDINATION

A. Coordinate arrangement, mounting, and support of electrical equipment:

1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
3. To allow right of way for piping and conduit installed at required slope.
4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

B. Coordinate electrical systems, equipment and materials installation with other building components.

C. Coordinate installation of electrical panelboard tubs, backboxes and concealed conduit and tubing with masonry/concrete work.

D. Coordinate connection of electrical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies and controlling agencies. Provide required connection for each service.

E. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.

F. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division 08 Section "Access Doors and Frames."

G. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

1.4 INTERPRETATIONS

A. It is the intent of these Drawings and Specifications to result in a complete electrical installation in complete accordance with applicable code and ordinances.

B. Drawings are diagrammatic in character and do not necessarily indicate every required junction box, pull box, ell, etc. Items not specifically mentioned in the specification or noted on the Drawings, but which are necessary to make a complete working installation, shall be included.

C. Drawings and Specifications are complementary. Whatever is called for in either is binding as though called for in both. The more stringent requirement shall govern.

PART 2 - PRODUCTS

PART 3 - EXECUTION

3.1 ELECTRICAL DEMOLITION

A. Disconnect, demolish, and remove electrical system equipment and components indicated to be removed.

B. Accessible Work: Remove exposed electrical equipment and installations, indicated to be demolished, in their entirety.

C. Inaccessible Work: Cut and remove buried raceway and wiring, indicated to be demolished, 2 inches below the surface of adjacent construction. Cap raceways and patch surface to match existing finish.
D. All existing fixtures, equipment, etc., that are removed and not indicated to be relocated, or reused, shall first be offered to the Owner, after Owner has approved, the remaining removed items shall become property of the Contractor and shall be removed from the building site.

E. Remove, store, clean, reinstall, reconnect, and make operational components indicated for relocation.

F. Protect existing electrical equipment and installations not indicated to be removed. If damaged or disturbed in the course of the Work, remove damaged portions and install new products of equal capacity, quality, and functionality.

G. Contractor shall examine the Drawings and Specifications, and existing conditions. All costs relating to maintaining existing services or relocating existing circuits and/or equipment shall be included in the bid. Contractor is required to complete all work necessary to meet these requirements without additional expense to the Owner or his Representative.

H. Equipment Replacement: Contractor shall verify all circuit breakers and fuse sizes against the existing wire size prior to replacing switchboards, panelboards and disconnect switches. Notify the Architect of any discrepancies prior replacing equipment.

3.2 ROUGH-IN

A. Verify final locations for rough-ins with field measurements and with the requirements of the actual equipment to be connected.

B. Refer to equipment specifications in Divisions 02 through 49 for rough-in requirements.

3.3 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1, Standard Practices for Good Workmanship in Electrical Construction.

B. Arrange for chases, slots and openings in other building components during progress of construction, to allow for electrical installations.

C. Sequence, coordinate and integrate installations of electrical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.

D. Install systems, materials and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed exposed in finished spaces.

E. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

F. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

G. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
H. Right of Way: Give to piping systems installed at a required slope.

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section "Penetration Firestopping."

END OF SECTION 26 0500
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Building wires and cables rated 600 V and less.
2. Connectors, splices, and terminations rated 600 V and less.

1.2 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.3 CLOSEOUT SUBMITTALS

A. Dated documentation of torque values of cable connections on all equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Conductor Material: Copper complying with NEMA WC 70/ICEA S-95-658.

B. Conductor Insulation Types: Type THHN-2, THWN-2, Type XHHW-2, Type RHW2 and Type SO

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.
3.1 CONDUCTOR AND INSULATION APPLICATIONS

A. Minimum conductor size for power wiring #12 AWG.

B. Service Entrance: Type THHN-2-THWN-2, single conductors in raceway.

C. Exposed Feeders: Type THHN-2-THWN-2, single conductors in raceway.

D. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN-2-THWN-2, single conductors in raceway.

E. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

F. Fire Pump Feeder: Provide UL 2196 listed electrical circuit protective system with a minimum 2-hour fire rating such as RHW2 or Draka “Lifeline MC”. Alternatively to RHW2, feeder can be routed underground into 2-hour rated room or routed in 2 hour rated soffit.

G. Emergency Power Feeder: Provide UL 2196 listed electrical circuit protective system with a minimum 2-hour fire rating such as RHW2 or Draka “Lifeline MC”. This includes all legally required, life safety ATS’s, panels, branch panels. Routing the feeder in a non-sprinkled ceiling space of a sprinkled building does not negate the need for this requirement. Alternatively to RHW2, feeder can be routed underground into 2-hour rated room our routed in 2 hour rated soffit.

H. Emergency Power Branch Circuits: Other than NFPA 130 applications, provide 2-hour rated cables as indicated above.

I. Exposed Branch Circuits, including in Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

J. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-2-THWN-2, single conductors in raceway.

K. Fixture Whips: Type MC cable may be used for light fixture whips only, with a maximum length of 6 feet.

L. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-2-THWN-2, single conductors in raceway.

M. Underground Feeders and Branch Circuits: Type THHN-2-THWN-2, single conductors in raceway.

N. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

O. Fire Alarm Circuits: UL2196 rated cabling in raceway or Power-limited, fire-protective, signaling circuit cable where raceway is not specified.

P. Class 1 Control Circuits: Type THHN-2-THWN-2, in raceway.
Q. Class 2 Control Circuits: Type THHN-2-THWN-2, in raceway or Power-limited cable, concealed in building finishes where raceway is not specified.

R. Dimming Control Circuits: Provide 600V rated cabling for 0-10V dimming circuits. Wiring to be installed in conduit where exposed. Install in accordance with the proper class 1 or class 2 circuit requirements as required by the lighting control system used.

3.2 INSTALLATION OF CONDUCTORS AND CABLES

A. Where 120 volt, 20 amp, branch circuit wiring from panelboard to first outlet exceeds 100 feet in length, increase home-run wire size to #10 AWG.

B. Where 277 volt, 20 amp, branch circuit wiring from panelboard to first light fixture exceeds 150 feet in length, increase home-run wire size to #10 AWG.

C. Common neutral conductors shall not be used for convenience outlet or lighting branch circuits.

D. Neutral conductors shall be clearly labeled at the panelboard with the circuit number of associated phase conductors.

E. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

F. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

G. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

H. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

I. Seal around cables penetrating fire-rated elements according to Division 07 Section "Penetration Firestopping."

J. Cable tie tightness where applicable shall be per NECA and UL standards, do not over tighten.

K. One-hour and Two-hour cables should be installed using components specified in appropriate FHIT document and Manufacturer Installation guide. Substitutions are not permitted.

3.3 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 26 0553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches (300 mm) of slack.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Division 26 Section "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.

2. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

C. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 26 0519
PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes: Grounding systems and equipment.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

1.4 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. Comply with UL 467 for grounding and bonding materials and equipment.
 C. Comply with IEEE837 – Standard for qualifying permanent connections used in Substation Grounding

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Grounding Conductors, Cables, Connectors, and Rods:
 a. Copperweld Corp.
 c. FCI Burndy Products.
 d. Ideal Industries, Inc.
 e. ILSCO.
 g. O-Z/Gedney Co.; a business of the EGS Electrical Group.
 h. Raco, Inc.; Division of Hubbell.
 i. Thomas & Betts, A Member of the ABB Group.
2.2 GROUNDING CONDUCTORS

A. For insulated conductors, comply with Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Material: Copper.

C. Equipment Grounding Conductors: Insulated with green-colored insulation.

D. Grounding Electrode Conductors: Stranded cable.

E. Underground Conductors: Bare stranded unless otherwise indicated.

F. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

G. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulators.

2.3 CONNECTOR PRODUCTS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.

1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Compression Connectors: Irreversible hydraulic compression kits of types recommended by kit manufacturer for materials being joined and installation conditions.

E. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long barrel, two-bolt connection to ground bus bar

2.4 GROUNDING ELECTRODES

A. Ground Rods: Sectional type; copper-clad steel.
PART 3 - EXECUTION

3.1 APPLICATION

A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.

B. In raceways, use insulated equipment grounding conductors.

C. Exothermic-Welded or Irreversible Compression Connections: Use for connections to structural steel and for underground connections.

D. Equipment Grounding Conductor Terminations: Use bolted pressure clamps.

E. Install equipment grounding conductors or grounding electrode conductors that are routed through exposed ceiling spaces in conduit.

F. Label equipment grounding conductors and grounding electrode conductors as indicated in “Identification for Electrical Systems”.

G. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

H. Ground Rod Clamps at Test Wells: Use bolted pressure clamps with at least two bolts.

I. Grounding Bus: Install in electrical service equipment rooms.

 1. Size: 1/4 inch by 2 inches bare, annealed copper.
 2. Use insulated spacer; space 1 inch (25.4 mm) from wall and support from wall 6 inches (150 mm) above finished floor, unless otherwise indicated.
 3. At doors, route the bus up to the top of the door frame, across the top of the doorway, and down to the specified height above the floor.

J. Underground Grounding Conductors: Use tinned-copper conductor, No. 2/0 AWG minimum unless noted otherwise. Bury at least 24 inches (600 mm) below grade.

3.2 EQUIPMENT GROUNDING CONDUCTORS

A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

 1. Feeders and branch circuits.
 2. Lighting circuits.
 3. Receptacle circuits.
 5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

D. Signal and Communication Equipment: In addition to grounding and bonding required by NFPA 70, provide a separate grounding system complying with requirements in TIA/ATIS J-STD-607-A.

1. For telephone, alarm, voice and data, and other communication equipment, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
2. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-4-by-12-inch (6.3-by-100-by-300-mm) grounding bus.
3. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

E. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.3 COUNTERPOISE (PERIMETER GROUND LOOP)

A. Ground the steel framework of the building with a driven ground rod at the base of every corner column and at intermediate exterior columns at distances not more than 60 feet apart. Provide a grounding conductor (counterpoise), electrically connected to each ground rod and to each steel column, extending around the perimeter of the building. Use tinned-copper conductor not less than No. 2/0 AWG for counterpoise and for tap to building steel. Bury counterpoise not less than 18 inches below grade and 24 inches from building foundation. Do not install in concrete floor.

3.4 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes.
1. Drive ground rods until tops are 6 inches (50 mm) below finished floor or final grade, unless otherwise indicated.
2. Interconnect ground rods with grounding electrode conductors. Use exothermic welds, except as otherwise indicated. Make connections without exposing steel or damaging copper coating.
3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
4. Bond all steel structure and concrete reinforcement steel / rebar.

D. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Concrete-Encased Electrodes: Connect grounding conductor to the foundation reinforcing bars or rods and bond the bars together with steel tie wires.

F. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

G. Grounding Variable-Frequency Motors: Provide copper braided grounding strap between motor and metallic conduit (EMT or IMC) in addition of the equipment grounding conductor on motors controlled with a variable-frequency controller.

3.5 CONNECTIONS

A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
3. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

B. Exothermic-Welded Connections: Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.

C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.

D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.

E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.

F. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.

G. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.6 UNDERGROUND DISTRIBUTION SYSTEM GROUNDING

A. Duct Banks: Install a grounding conductor with at least 50 percent ampacity of the largest phase conductor in the duct bank.

B. Manholes and Handholes: Install a driven ground rod close to wall and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide a No. 1/0 AWG bare tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressurer-sensitive tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Connections to Manhole Components: Connect exposed-metal parts, such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and counterpoise circling pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Use tinned-copper conductor not less than No. 2
AWG for counterpoise and for taps to equipment ground pad. Bury counterpoise not less than 18 inches below grade and 6 inches from the foundation.

3.7 LABELING

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems" Article for instruction signs. The label or its text shall be green.

B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.

1. Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at ground test wells. Make tests at ground rods before any conductors are connected.

B. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.
3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.
4. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohms.
5. Manhole Ground: 10 ohms.

C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 0526
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS

A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
 d. GS Metals Corp.
 e. Thomas & Betts Corporation/ A Member of the ABB Group.
f. Unistrut; Tyco International, Ltd.
g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel and malleable-iron hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 for application of hangers and supports for electrical equipment and systems, except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
1. Secure raceways and cables to trapeze member with clamps approved for application.
2. Secure raceways and cables to these supports with single-bolt conduit clamps using spring friction action for retention in support channel.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

E. Provide independent support rings/shepherd hooks for any low voltage communications systems cabling. Cabling shall not rest on ceiling and shall be organized neatly on hooks. Cable shall not be visible in exposed ceiling spaces.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 for installation requirements, except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).
D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts, beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or spring-tension clamps.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and seismic criteria at Project.

B. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

C. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 3000 "Cast-in-Place Concrete."

D. Anchor equipment to concrete base.

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer’s written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Comply with requirements in Division 09 painting Sections for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

1.

END OF SECTION 26 0529
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal conduits, tubing, and fittings.
2. Nonmetal conduits, tubing, and fittings.
3. Metal wireways and auxiliary gutters.
4. Nonmetal wireways and auxiliary gutters.
5. Surface raceways.
7. Handholes and boxes for exterior underground cabling.

1.2 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.

1.3 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. LEED Submittals:

1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, hand holes and attachment details.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
1.5 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. EMT: Comply with ANSI C80.3 and UL 797.

D. FMC: Comply with UL 1; zinc-coated steel.

E. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

F. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Setscrew or compression.
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

G. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUIT AND TUBING

A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ENT: Comply with NEMA TC 13 and UL 1653.

C. RNC: Type EPC-40-PVC and EPC-80-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

D. LFNC: Comply with UL 1660.

E. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
F. Fittings for LFNC: Comply with UL 514B.

G. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

H. Solvent cements and adhesive primers shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 PVC COATED RIGID METAL CONDUIT

A. The PVC coated rigid metal conduit shall be hot dip galvanized inside and out. The interior galvanizing shall be listed per UL 6. The exterior galvanizing shall be listed per UL 6 as primary corrosion protection. Thread protectors shall be used on the exposed threads of the PVC coated conduit. PVC coated RMC steel conduit shall comply with UL 6, ANSI C80.1, and NEMA RN-1 standards without exception.

B. The PVC coating, in compliance with NEMA RN-1, shall be nominal 40 mils in thickness continuous over the entire length of the conduit except at the threads, and be free of blisters, bubbles or pin-holes. PVC shall be UL listed as a primary corrosion protection.

C. A urethane coating shall be uniformly and consistently applied to the interior of conduit. This internal coating shall be a nominal 2 mils thickness. All male threads on elbows and nipples shall be zinc coated using zinc rich paint.

D. Coated couplings shall be used with coated conduit. The thickness of the coating on couplings shall be at least equal to the thickness of the coating on the conduit. Each coated coupling shall have a flexible PVC sleeve which extends from each end of the coupling and which will overlap the PVC coating on the conduit when the coupling has been installed on the conduit. The length of the sleeve extension(s) shall be at least equivalent to the nominal Trade Size for sizes 1/2" up through 1-1/2". For Trade Size 2” through 6”, the length of the sleeve extension(s) shall be at least 2 inches. The PVC sleeve shall be a nominal thickness of 40 mils in thickness. The inside diameter of the overlapping sleeve shall be less than the outside diameter of the PVC-coated conduit.

2.4 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1 or 3R as required.

B. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

D. Wireway Covers: Hinged type, Screw-cover type, Flanged-and-gasketed type.

E. Finish: Manufacturer’s standard enamel finish.
2.5 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Description: PVC plastic, extruded and fabricated to size and shape indicated, with snap-on cover and mechanically coupled connections with plastic fasteners.

B. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.

2.6 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers. Finish with manufacturer’s standard prime coating and ivory finish coat.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Thomas & Betts Corporation / A Member of the ABB Group
 b. Walker Systems, Inc.; Wiremold Company (The)
 c. Wiremold Company (The); Electrical Sales Division

C. Surface Nonmetallic Raceways: Two-piece construction, manufactured of rigid PVC compound with matte texture ivory color.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hellermann Tyton
 b. Hubbell, Inc.; Wiring Device Division
 c. Lamson & Sessions; Carlon Electrical Products
 d. Mono-systems, Inc.
 e. Panduit Corp.
 f. Walker Systems, Inc.; Wiremold Company (The)
 g. Wiremold Company (The); Electrical Sales Division

E. Types, sizes, and channels as indicated and required for each application, with fittings that match and mate with raceways. Provide concealed support clips or fasten raceway internally. Do not use external mounting straps.
2.7 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

E. Metal Floor Boxes:
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Nonmetallic Floor Boxes: Nonadjustable, round.
 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.

H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb (32 kg).
 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

K. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

L. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

M. Telephone/Data Backboxes: Provide 2-gang, 3 ½ inch deep backboxes with single gang raised cover unless noted otherwise on plans.
N. Low Voltage Boxes: 5-Square telecommunications outlet boxes (5 in. square x 2.875 deep w/ cable management) shall be used for all low voltage applications. 5-square box shall support 5e, 6, augmented 6, 7, and optical fiber cables. Low voltage boxes shall support integral cable management by allowing slack cable to be wound internally while maintaining minimum bend radius requirements. 5-square boxes shall also be used for all fire alarm applications.

O.

2.8 FACTORY FINISHES

A. Finish: For raceway, enclosure, or cabinet components, provide manufacturer's standard gray paint applied to factory-assembled surface raceways, enclosures, and cabinets before shipping.

2.9 CABLE PATHWAY AND FIRESTOP DEVICE

A. Manufacturer:
 1. Specified Technologies, Inc., EZ-Path fire rated pathway.
 2. Wiremold, FlameStopper FS Series thru-wall fitting for fire walls.

B. Description: Through-the-wall 3” x 3” steel wiring channel or 4” EMT equipped with heat expanding intumescent fire stopping material.

C. Wiring channel shall be provided with steel wall plates allowing for single or multiple channels to be ganged together.

D. Wiring channel shall have an F rating equal to the rating of the barrier in which it is installed.

E. Wiring channel shall be capable of allowing a 0 to 100 percent visual fill of cable.

F. Wiring channel shall be tested in accordance with ASTM E 814 (ANSI/UL1479). Channel shall bear the UL classification marking.

G. Provide the quantity of devices needed to allow a cable pass cross section capacity of 50 percent of the adjacent cable tray cross section.
B. Indoors:
 1. Exposed in Unfinished Utility Spaces (mechanical rooms, electrical rooms and tunnels): EMT.
 2. Exposed in Finished Spaces: All conduit shall be concealed unless specifically indicated on plans.
 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit.
 4. Concrete Floors: RNC.
 5. Concealed in Ceilings and Interior Walls and Partitions: EMT
 6. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC; except use LFMC in damp or wet locations.
 7. Damp or Wet Locations: Rigid steel conduit.
 8. Boxes and Enclosures: NEMA 250, Type 1, except as follows:
 a. Damp or Wet Locations: NEMA 250, Type 4, nonmetallic.

C. Minimum Raceway Size: 1/2-inch trade size (16mm).

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this Article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Provide separate raceways for lighting, receptacle, and motor loads. Do not mix branch circuit wiring for these different loads in the same raceway.

C. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

D. Complete raceway installation before starting conductor installation.

E. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."

F. Install temporary closures to prevent foreign matter from entering raceways.

G. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above finished slab.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.

I. Make bends and offsets so ID is not reduced. Keep legs of bends in same plane and keep straight legs of offsets parallel, unless otherwise indicated.

J. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 1. Install concealed raceways with a minimum of bends in shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.
2. Conduit and EMT may be surface mounted in Mechanical and Electrical Rooms except for wiring devices, light switches, low voltage devices or any other device shall be concealed in new wall.
3. Surface mounted conduit or EMT may be used where specifically approved by Architect/Engineer. In such situations, the conduit, fastening devices, and junction boxes shall be painted to match the adjacent surface.

K. Raceways Embedded in Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches (50 mm) of concrete cover.
 1. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 2. Space raceways laterally to prevent voids in concrete.
 3. Run conduit larger than 1-inch trade size (27mm) parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 4. Change from nonmetallic tubing to rigid steel conduit before rising above floor or grade.

L. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 1. Run parallel or banked raceways together on common supports.
 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.

M. Stub-ups to Above Recessed Ceilings:
 1. Use EMT or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Join raceways with fittings designed and approved for that purpose and make joints tight.
 1. Use insulating bushings to protect conductors.

O. Tighten set screws of threadless fittings with suitable tools.

P. Terminations:
 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
 3. Telephone, data and fiber optic cable conduits shall be provided with bushings on conduit ends.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire.

R. Color-Coding: Paint fire alarm system junction boxes and covers red.

S. Raceways for Optical Fiber and Communications Cable: Install as follows:
 1. 3/4-Inch(19-mm) Trade Size and Smaller: Install raceways in maximum lengths of 50 feet(15 m).
 2. 1-Inch(25-mm) Trade Size and Larger: Install raceways in maximum lengths of 75 feet(23 m).
3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

T. Telephone, data, AV, security, access control, fiber optic cable system, building control cabling, lighting control, 0-10V dimming control and any other low voltage systems cabling shall be installed in conduit in areas of exposed ceiling. In areas with accessible ceilings, the low voltage systems cables shall be neatly routed and independently supported with cable rings to the nearest cable tray, technology closet, conduit run or equipment connection. Systems to be in conduit in accessible ceiling spaces where required elsewhere in the specification or drawings.

U. Telephone, data and fiber optic cable system conduit shall be provided with wide sweep bends.

V. Telephone, data and fiber optic cable outlets shall be provided with a 1 inch conduit stubbed into accessible ceiling space unless noted otherwise on the drawings. Provide bushings on the ends of the conduit.

W. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

X. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C) and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 d. Attics: 135 deg F (75 deg C) temperature change.

3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
Y. **Stub-up Connections:** Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches (150 mm) above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.

Z. **Flexible Connections:** Use maximum of 72 inches (1830 mm) of flexible conduit for recessed and semi-recessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for all motors. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.

AA. **Flexible Connections to Lighting Fixtures:**

1. Above ceilings that are continuous to wall: Provide flexible conduit to all recessed lighting fixtures, maximum length as indicated. For fixtures mounted on grid ceilings, provide adequate length of flexible conduit to allow relocation of fixture on grid space in any lateral direction.
2. Above clouds or above suspended ceiling elements that are visible and exposed, Flexible Connections to Lighting Fixtures shall be limited to reduce sight of flexible conduit. Flexible connections to light fixtures shall not be visible from standing on the floor or nearby landings or overlooks. Minimize angle of visibility, run EMT as necessary and coordinate with trades to group systems to minimize drops. All drops to element/cloud to be EMT and shall not be flex.

BB. **Equipment Grounding Conductor:** Install a green equipment grounding conductor in all flexible conduit and non-metallic (PVC) conduit.

CC. **Surface Raceways:** Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.

DD. **Recessed back-to-back boxes are not permitted in the same wall. Arrange boxes with at least 12 inches of horizontal spacing.**

EE. **Recessed Boxes in Masonry Walls:** Saw-cut opening for box in masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between the box and cover plate or the supported equipment and box.

FF. **Locate boxes so that cover or plate will not span different building finishes.**

GG. **Set floor boxes level and flush with finished floor surface.**

HH. **Set floor boxes level. Trim after installation to fit flush with finished floor surface.**

II. **Install hinged-cover enclosures and cabinets plumb. Support at each corner.**

JJ. **Provide stainless steel cover plates on all abandoned boxes that remain from selective demolition.**

KK. **Cable pathway and firestop device:** Install in locations where indicated on the plans. Arrange singly or in gangs and mounted above accessible ceilings. Install the devices in strict accordance with the manufacturer’s recommendations.

3.3 **INSTALLATION OF UNDERGROUND CONDUIT**

A. **Direct-Buried Conduit:**
1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches (150 mm) in nominal diameter.
2. Install backfill as specified in Division 31 Section "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches (300 mm) of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout length elbow.
5. Transition from PVC-Schedule 80 (RNC) to RMC underground, no RNC conduit shall exposed outdoors or inside building.
6. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
7. Underground Warning Tape: Comply with requirements in Section 26 0553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

 A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

 B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

 C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch (25 mm) above finished grade.

 D. Install handholes with bottom below frost line 42" below grade.

 E. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Division 26 Section "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 07 8413 "Penetration Firestopping."

3.7 PROTECTION

A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.8 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

END OF SECTION 26 0533
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.
 B. Related Requirements:
 1. Division 07 Section "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit EQ 4: For sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 2 - PRODUCTS

2.1 SLEEVES
 A. Exterior Wall Sleeves:
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.

 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel.
 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Presealed Systems.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
2. Sealant shall have VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Sealant shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division 07 Section “Joint Sealants.”
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 26 0544
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels.
8. Miscellaneous identification products.

1.2 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

A. Comply with ANSI A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.4 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
C. Coordinate installation of identifying devices with location of access panels and doors.
D. Install identifying devices before installing acoustical ceilings and similar concealment.
PART 2 - PRODUCTS

2.1 RACEWAY AND CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.2 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.3 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend, machine printed by thermal transfer or equivalent process.

2.4 NAMEPLATES AND SIGNS

A. Engraved Plastic Nameplates and Signs: Engraving stock, melamine plastic laminate, minimum 1/16 inch (1.6 mm) thick for signs up to 20 sq. in. (129 sq. cm) and 1/8 inch (3.2 mm) thick for larger sizes.
1. Engraved legend with black letters on white face.
2. Punched or drilled for mechanical fasteners.

B. Baked-Enamel Signs for Interior Use: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for the application. 1/4-inch (6.4-mm) grommets in corners for mounting.

C. Exterior, Metal-Backed, Butyrate Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for the application. 1/4-inch (6.4-mm) grommets in corners for mounting.

D. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32, stainless-steel machine screws with nuts and flat and lock washers.

2.5 UNDERGROUND-LINE WARNING TAPE

A. Tape:

1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
2. Printing on tape shall be permanent and shall not be damaged by burial operations.
3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.
4. Not less than 6 inches wide by 4 mils thick (152 mm wide by 0.102 mm thick).
5. Compounded for permanent direct-burial service.
6. Embedded continuous metallic strip or core.
7. Printed legend indicating type of underground line.

B. Color and Printing:

1. Comply with ANSI Z535.1 through ANSI Z535.5.
2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

2.6 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:

1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
2. 1/4-inch (6.4-mm) grommets in corners for mounting.
3. Nominal size, 7 by 10 inches (180 by 250 mm).

D. Metal-Backed, Butyrate Warning Signs:
1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application.
2. 1/4-inch (6.4-mm) grommets in corners for mounting.
3. Nominal size, 10 by 14 inches (250 by 360 mm).

E. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

2.7 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

B. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch (10 mm).

C. Stenciled Legend: In non-fading, waterproof, black ink or paint. Minimum letter height shall be 1 inch (25 mm).

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in Division 09 painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

B. Apply identification devices to surfaces that require finish after completing finish work.

C. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

D. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
E. Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designations with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.

F. Circuits with More Than 600 V: Identify raceway and cable with "DANGER--HIGH VOLTAGE" in black letters 2 inches (51 mm) high, stenciled with paint at 10-foot (3-m) intervals over a continuous, painted orange background. Identify the following:

1. Entire floor area directly above conduits running beneath and within 12 inches (305 mm) of a basement or ground floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to conduits concealed within wall.
3. All accessible surfaces of concrete envelope around conduits in vertical shafts, exposed in the building, or concealed above suspended ceilings.
4. Entire surface of exposed conduits.

G. Install painted identification according to manufacturer's written instructions and as follows:

1. Clean surfaces of dust, loose material, and oily films before painting.
2. Prime surfaces using type of primer specified for surface.
3. Apply one intermediate and one finish coat of enamel.

H. Caution Labels for Indoor Boxes and Enclosures for Power and Lighting: Install pressure-sensitive, self-adhesive labels identifying system voltage with black letters on orange background. Install on exterior of door or cover.

I. Circuit Identification on Device Plates.

1. Identify circuits feeding receptacles with the designation of the panelboard and the circuit number in permanent marker on the back of each device cover plate.
2. In mechanical, technology closets, electrical rooms and industrial type spaces, provide typed self-adhesive plastic labeling on outside of cover-plate to indicate the circuit number.

J. Circuit Identification Labels on Boxes: Install labels externally.

1. Exposed Boxes: Pressure-sensitive, self-adhesive plastic label on cover.
3. Labeling Legend: Permanent, waterproof listing of panel and circuit number or equivalent.

K. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot(15-m) maximum intervals in straight runs, and at 25-foot(7.6-m) maximum intervals in congested areas.

L. Underground-Line Warning Tape: During backfilling of trenches, install continuous underground-line warning tape directly above line at 6 to 8 inches(150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches(400 mm) overall.
3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Install labels at 20-foot (6-m) maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

2. Power.
3. UPS.

C. Color-Coding of Secondary Phase Conductors: Use the following colors for service feeder and branch-circuit phase conductors:

1. 208/120-V Conductors:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 e. Ground: Green.

2. 480/277-V Conductors:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 d. Neutral: Slate/Gray.
 e. Ground: Green.

3. Factory apply color the entire length of conductors, except the following field-applied, color-coding methods may be used instead of factory-coded wire for sizes larger than No. 10 AWG:
 a. Colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Use 1-inch-(25-mm-) wide tape in colors specified. Adjust tape bands to avoid obscuring cable identification markings.
 b. Colored cable ties applied in groups of three ties of specified color to each wire at each terminal or splice point starting 3 inches (76 mm) from the terminal and spaced 3 inches (76 mm) apart. Apply with a special tool or pliers, tighten to a snug fit, and cut off excess length.

D. Provide labelling of each independent, conductors at 50’ maximum centers, label at equipment and label at bus bars. Separate ground conductors routed concealed within conduit shall have conduit labels to identify the grounding conductor equipment or grounding/bonding location.
 a. Indicate what equipment is fed or where the equipment is fed from on the label.
 b. At service grounding bus bar, label “service grounding electrode conductor” at service entrance ground and label the equipment served by each equipment ground conductor.

E. Apply identification to conductors as follows:

1. Conductors to Be Extended in the Future: Indicate source and circuit numbers.
2. Multiple Power or Lighting Circuits in the Same Enclosure: Identify each conductor with source, voltage, circuit number, and phase. Use color-coding to identify circuits' voltage and phase.

3. Multiple Control and Communication Circuits in the Same Enclosure: Identify each conductor by its system and circuit designation. Use a consistent system of tags, color-coding, or cable marking tape.

F. Apply warning, caution, and instruction signs as follows:

1. Warnings, Cautions, and Instructions: Install to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.

2. Emergency Operation: Install engraved laminated signs with white legend on red background with minimum 3/8-inch-(9-mm-) high lettering for emergency instructions on power transfer, load shedding, and other emergency operations.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-(10-mm-) high letters for emergency instructions at equipment used for power transfer, load shedding and multiple services.

I. Equipment Identification Labels: Engraved plastic laminate. Install on each unit of equipment, including central or master unit of each system. This includes power, lighting, communication, signal, and alarm systems, unless units are specified with their own self-explanatory identification. Unless otherwise indicated, provide a single line of text with 1/2-inch-(13-mm-) high lettering on 1-1/2-inch-(38-mm-) high label; where two lines of text are required, use labels 2 inches(50 mm) high. Apply labels for each unit of the following categories of equipment using mechanical fasteners:

1. Panelboards, electrical cabinets, and enclosures.
2. Access doors and panels for concealed electrical items.
3. Electrical switchgear and switchboards.
4. Electrical substations.
5. Emergency system boxes and enclosures.
7. Disconnect switches.
8. Enclosed circuit breakers.
12. Power transfer equipment.
13. Contactors.
15. Dimmers.
17. Transformers.
18. Power-generating units.
19. Clock/program master equipment.
20. Call system master station.
21. Fire alarm control panel.
22. Security-monitoring master station or control panel.

END OF SECTION 26 0553
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.2 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals may be in digital form.
 a. Short-circuit study input data, including completed computer program input data sheets.
 b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.
B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.

F. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.

2. A member company of NETA.

3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. <Double click here to find, evaluate, and insert list of manufacturers and products.>

B. Comply with IEEE 399 and IEEE 551.

1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:

1. Protective device designations and ampere ratings.

2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
6. Derating factors and environmental conditions.
7. Any revisions to electrical equipment required by the study.

D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:
 1. One-line diagram of system being studied.
 2. Power sources available.
 3. Manufacturer, model, and interrupting rating of protective devices.
 4. Conductors.
 5. Transformer data.

G. Short-Circuit Study Output Reports:
 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.
 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.
 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the study.

B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 01 7839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.

B. Calculate short-circuit currents according to IEEE 551.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.
3. .

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.

H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION 26 0573.13
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.2 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form.

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report based on final approval of the distribution equipment submittals.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.

B. Operation and Maintenance Procedures: In addition to items specified in Section 01 7823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.4 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Arc-Flash Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

C. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Software Developers: Subject to compliance with requirements, available software developers offering software that may be used for the Work include, but are not limited to, the following:

1. ESA Inc. (Easy Power)
2. Operation Technology, Inc. (ETAP)
3. Power Analytics, Corporation. (Paladin)
4. SKM Systems Analysis, Inc.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate mandatory features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary.

B. Study descriptions, purpose, basis and scope.

C. One-line diagram, showing the following:

1. Protective device designations and ampere ratings.
2. Cable size and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center and panelboard designations.

D. Study Input Data: As described in "Power System Data" Article 3.3.

E. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 0572 "Overcurrent Protective Device Short-Circuit Study."

F. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination Study Report Contents" Article in Section 26 0573 "Overcurrent Protective Device Coordination Study."

G. Arc-Flash Study Output:

1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
a. Voltage.
b. Calculated symmetrical fault-current magnitude and angle.
c. Fault-point X/R ratio.
d. No AC Decrement (NACD) ratio – where applicable.
e. Equivalent impedance.
f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:

1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Working distance.
6. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of the computer printout.

2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 26 0553 "Identification for Electrical Systems." Produce a 4-by-6-inch thermal transfer label of high-adhesion polyester for each work location included in the analysis. Arc flash labels to be compliant with latest version of NFPA 70E.

B. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Flash protection boundary.
4. Site specific hazard risk category.
5. Incident energy.
7. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies:
 1. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 0572 "Overcurrent Protective Device Short-Circuit Study."
 2. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination Study Report Contents" Article in Section 26 0573 "Overcurrent Protective Device Coordination Study."

C. Calculate maximum and minimum contributions of fault-current size.
 1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
 2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.

D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.

E. Include low-voltage equipment locations, except equipment rated 240-V ac or less fed from transformers less than 125 kVA.

F. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors shall be decremented as follows:
 1. Fault contribution from induction motors should not be considered beyond three to five cycles.

H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:
 1. When the circuit breaker is in a separate enclosure.
 2. When the line terminals of the circuit breaker are separate from the work location.
I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing
time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on the one-line diagram on Drawings. Call discrepancies to
 the attention of Architect.
2. For new equipment, use characteristics submitted under the provisions of action submittals and
 information submittals for this Project.

B. Electrical Survey Data: Gather and tabulate the following input data to support study.

1. Product Data for overcurrent protective devices specified in other Sections and involved in
 overcurrent protective device coordination studies. Use equipment designation tags that are
 consistent with electrical distribution system diagrams, overcurrent protective device submittals,
 input and output data, and recommended device settings.
2. Obtain electrical power utility impedance at the service.
3. Power sources and ties.
4. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker,
 type of trip and available range of settings, SCCR, current rating, and breaker settings.
5. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor
 material.
6. Motor horsepower and NEMA MG 1 code letter designation.
7. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or
 nonmagnetic).

3.4 LABELING

A. Apply one arc-flash label for 600-V ac, 480-V ac, and applicable 208-V ac panelboards and disconnects
 and for each of the following locations:

1. Motor-control center.
2. Low-voltage switchboard.
3. Switchgear.
4. Medium-voltage switch.
5. Control panel.

3.5 APPLICATION OF WARNING LABELS

A. Install the arc-fault warning labels under the direct supervision and control of the Arc-Flash Study
 Specialist.

END OF SECTION 26 0574
PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes equipment and systems used to monitor and control electrical consumption:
 1. Multifunction meters.
 2. Raceways and boxes.
 3. Wires and cables.
 4. Identification.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings:
 1. Product Data submittals for multi-function meter equipment.
 2. Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.4 QUALITY ASSURANCE
 A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
 A. Solid state microprocessor-based monitoring and control of electrical power distribution system(s) that includes the following:
 1. Electrical meters that monitor, control, and connect to the data transmission network.
 2. LAN: High-speed, multi-access, open, nonproprietary, industry-standard communication protocols.
 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 C. UL Compliance: Listed and labeled as complying with UL 61010-1.
2.2 PERFORMANCE REQUIREMENTS

A. Addressable Devices: All transmitters and receivers shall communicate unique device identification and status reports to monitoring and control clients.

B. Interface with DDC System for HVAC: Provide factory-installed hardware and software to enable the DDC system for HVAC to monitor, display, and record data for use in processing reports.

1. Hardwired Monitoring Points: Electrical power demand (kilowatts), electrical power consumption (kilowatt-hours), KWD, power factor.
2. Communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely monitor meter information from a DDC system for HVAC operator workstation. Control features and monitoring points displayed locally at metering panel shall be available through the DDC system for HVAC.

C. Backup Power Source:

1. Electrical power distribution equipment served by a backup power source for controls shall have associated power monitoring and control system products that monitor and control such systems and equipment also served from a backup power source.

2.3 MULTIFUNCTION ENERGY METERS

A. Below is based on Schneider Electric/Square D "ION 6200 EP2" ["PM8000"] and is suitable for monitoring measured values. Storage, alarms, and other accessories or functions are not part of this instrument and are not included in this description, but they may be available from manufacturer.

B. Multifunction Energy Meter: Separately mounted, modular, permanently installed, solid-state, digital I/O instrument for power and energy metering and monitoring; complying with UL 61010-1.

1. Capable of metering 4-wire Y, 3-wire Y, 3-wire delta, and single-phase power systems.
2. Equipped with security lock to protect revenue related metering from unauthorized and accidental changes.

C. Environment: System components shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Indoor installation in spaces that have environmental controls to maintain ambient conditions of -20 to 70 degrees C and 5 to 95 percent relative humidity, noncondensing.
2. Comply with IEC 60529 degree of protection code of IP65 for the front of the meter, and code of IP30 for the body.

D. Overvoltage: Comply with UL 61010-1 overvoltage withstand rating for CAT III.

E. Accuracy:

1. Comply with ANSI C12.20, Class 0.5.
2. Neutral Current Measurement: Not more than 0.65 percent.
3. Power Factor: 1.0 percent.
4. Frequency: 0.1 percent.
5. THD: 1.0 percent.
6. Waveform Sampling: 64 per cycle.

F. Data Link:

1. To be compatible with building automation system.

G. Meter Physical Characteristics:

1. Display: Backlit LCD with antiglare and scratch-resistant lens.
2. Display of Metered Values:
 a. One screen to show at least three user-selected values displayed at the same time.
 Selections available to display shall include the following:
 1) All meters.
 2) Measurements.
 3) THD.
 4) Energy.
 5) Demand.
 6) Minimum and maximum values.
 7) Power demand.

H. Sampling Rate: Continuously sample and record voltage and current at a rate not less than 64 samples per cycle, simultaneously on all voltage and current channels of the meter.

I. Meters:

1. Instantaneous, rms:
 c. Active Power (kW): Each phase and three-phase total.
 d. Reactive Power (kVAR): Each phase and three-phase total.
 e. Apparent Power (kVA): Each phase and three-phase total.
 f. Power Factor: Each phase and three-phase total.

2. Energy:
 a. Active Energy (kWh): Three-phase total.

3. Demand, Derived from Instantaneous rms Meters:
 b. Active: Present and maximum.
 c. Reactive: Present and maximum.
 d. Apparent: Present and maximum.

4. Power Quality Measurements:
 a. THD: Current and voltage from measurements simultaneously from the same cycle, as can be calculated from the specified sampling rate.

J. I/O: Two optically isolated digital outputs for KY pulsing or control. Output signal characteristics shall be 150 mA at 200 V.
1. KY Pulse: Generate standard KY pulses for a user-defined increment of metered active energy as follows:
 a. User-defined pulse output, associated with kWh.
 b. User-defined pulse output, associated with kVARh.

K. Capacities and Characteristics:

1. Power Supply: 120-V ac, 60 Hz or low voltage DC.
2. Circuit Connections:
 a. Voltage: Measurement autoranging, 60- to 400-V ac L-N. Meter impedance shall be 2-megohm L-L or greater. Overload Tolerance: 1500-V ac, rms, continuously.
 b. Current: Connect to instrument grade current transformer with a metering range of 5 mA to 6 A. Overcurrent tolerance of the instrument shall be 10 A continuous, 50 A for 10 seconds once per hour, and 120 A for one second per hour.
 c. Frequency: 45 to 65 Hz.
 d. Time: Input from a GPS receiver to synchronize the internal clock of the instrument and to time-synchronize this instrument with the network to a deviation of not greater than 1 ms.

2.4 RACEWAYS AND BOXES

A. Comply with requirements in Section 26 0533 "Raceways and Boxes for Electrical Systems" for electrical power wiring and NFPA 70 Class 1 remote-control and signaling circuits.

2.5 WIRES AND CABLES

A. Electrical Power Wiring: Comply with requirements in Section 26 0519 "Low-Voltage Electrical Power Conductors and Cables."

1. Copper conductors are Type THHN/THWN-2.

B. Control Wiring:

1. Copper: Comply with requirements in Section 26 0523 "Control-Voltage Electrical Power Cables."

C. Balanced Twisted-Pair Cable: 100-ohm, four-pair balanced twisted-pair cable, Category 6.

D. Low-Voltage Control Cable: Multiple conductor, color-coded, No. 20 AWG copper, minimum.

 1. Sheath: PVC; except in plenum-type spaces, use sheath listed for plenums.
 2. Ordinary Switching Circuits: Three conductors unless otherwise indicated.
 3. Switching Circuits with Pilot Lights or Locator Feature: Five conductors unless otherwise indicated.

PART 3 - EXECUTION

3.1 NETWORK NAMING AND NUMBERING

A. Coordinate with Owner and provide unique naming and addressing for networks and devices.
3.2 GROUNDING

A. For data communication wiring, comply with NECA/BICSI 568.

B. For low-voltage control wiring and cabling, comply with requirements in Section 26 0526 "Grounding and Bonding for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections:

1. Visually inspect balanced twisted-pair cabling and optical-fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test balanced twisted-pair cabling cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination, but not after cross-connection.

a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in its "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in its "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

b. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

C. Wiring and cabling will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 26 0913
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. Indoor occupancy switchbox-mounted occupancy and outdoor motion sensors.

B. Related Requirements:
 1. Division 26 Section "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data

1.5 COORDINATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Douglas Lighting Controls
 2. Hubbell Lighting.
4. Lighting Control and Design.
5. Lithonia Lighting; Acuity Lighting Group, Inc.
6. Novitas, Inc.
7. Sensor Switch, Inc.
8. TORK.
9. Watt Stopper (The).

B. General Description: Wall- or ceiling-mounting, solid-state units with a separate relay unit.

1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
2. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
3. Relay Unit: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Power supply to sensor shall be 24-V dc, 150-mA, Class 2 power source as defined by NFPA 70.
4. Sensor shall have an additional single-pole, double throw isolated relay with normally open, normally closed and common outputs. The isolated relay is for use with HVAC control, data logging, and other control options.
5. Sensors shall be rated for their environment. Sensors installed in damp environment not limited to shower rooms, locker rooms, outdoor areas, shall be provided with high humidity option. High humidity option shall be available by the manufacturer when required.
6. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch(13-mm) knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
7. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
8. Bypass Switch: Override the on function in case of sensor failure.
9. Automatic Light-Level Sensor: Adjustable from 10 to 300 fc(21.5 to 2152 lx); keep lighting off when selected lighting level is present.

C. Dual Technology Type: Ceiling mounting; detect occupancy by sensing a combination of passive infrared heat and ultrasonic technologies in area of coverage.

1. Detector Sensitivity: Detect occurrences of 6-inch-(150-mm-) minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.(232 sq. cm).
2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft.(93 sq. m) when mounted on a 96-inch-(2440-mm-) high ceiling.

2.2 SWITCH-BOX OCCUPANCY SENSORS

A. Manufacturers:

1. Douglas Lighting Controls
2. Hubbell Lighting Inc.
4. Lighting Control and Design.
5. MYTECH Corporation.
6. Novitas, Inc.
7. Sensor Switch, Inc.
8. TORK.
9. Watt Stopper (The).

B. Description: PIR type with integral power-switching contacts rated for 800 W at 120-V ac, suitable for incandescent light fixtures, fluorescent light fixtures with magnetic or electronic ballasts, or 1/6-hp motors; and rated for 1000 W at 277-V ac, suitable for incandescent light fixtures, fluorescent light fixtures with magnetic or electronic ballasts, or 1/3-hp motors, minimum.

1. Sensor shall cover 1000 square feet for major motion and 300 square feet for minor motion.
2. Sensor shall have an audible warning that beeps before lights turn off automatically. This feature shall have the option of being disabled.
3. Include ground wire.
4. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (215 to 2150 lx); keeps lighting off when selected lighting level is present.
5. Sensor shall have an additional single-pole, double throw isolated relay with normally open, normally closed and common outputs. The isolated relay is for use with HVAC control, data logging, and other control options.

2.3 DIGITAL OCCUPANCY SENSORS AND DIMMERS

A. Manufacturers:

1. nLIGHT by Sensor Switch, An Acuity Brands Company.
2. Wattstopper.

B. Digital System Occupancy Sensors

1. Occupancy sensors system shall sense the presence of human activity within the desired space and fully control the on/off function of the lights.
2. All Sensors must be programmed for Vacancy Sensor operation for all rooms except for corridors and restrooms. Corridors and restrooms shall have the occupancy sensor turn the lights on when human activity is detected. The Digital Switch must be pressed for lighting to turn ON, and OFF. The sensor is for Automatic OFF ONLY.
3. Sensors shall utilize passive infrared (PIR) technology, which detects occupant motion, to initially turn lights on from an off state; thus preventing false on conditions. Ultrasonic or Microwave based sensing technologies shall not be accepted.
4. For applications where a second method of sensing is necessary to adequately detect maintained occupancy (such as in rooms with obstructions), a sensor with an additional “dual” technology shall be used.
5. Dual technology sensors shall have one of its two technologies not require motion to detect occupancy. Acceptable dual technology includes PIR/Microphonics (also known as Passive Dual Technology or PDT) which both looks for occupant motion and listens for sounds indicating occupants. Sensors where both technologies detect motion (PIR/Ultrasonic) shall not be acceptable.
6. All sensing technologies shall be acoustically passive meaning they do not transmit sounds waves of any frequency (for example in the Ultrasonic range), as these technologies have the potential for interference with other electronic devices within the space (such as electronic white board readers). Acceptable detection technologies include Passive Infrared (PIR), and/or Microphonics technology. Ultrasonic or Microwave based sensing technologies shall not be accepted.

7. Sensors shall be available with zero, one, or two integrated Class 1 switching relays, and up to one 0-10 VDC dimming output. Sensors shall be capable of switching 120 / 277 / 347 VAC. Load ratings shall be 800 W @ 120 VAC, 1200 W @ 277 VAC, 1500 W @ 347 VAC, and ¼ HP motor. Relays shall be dry contacts.

8. Sensors shall be available with one or two occupancy “poles”, each of which provides a programmable time delay.

9. Sensors shall be available in multiple lens options which are customized for specific applications.

10. Communication and Class 2 low voltage power shall be delivered to each device via standard CAT-5 low voltage cabling with RJ-45 connectors.

11. All sensors shall have two RJ-45 ports.

12. All sensors shall have the ability to detect when it is not receiving valid communication (via CAT-5 connections) and blink its LED in a pattern to visually indicate of a potential wiring issue.

13. Every sensor parameter shall be available and configurable remotely from the software and locally via the device push-button.

14. Sensors shall be able to function together with other sensors in order to provide expanded coverage areas by simply daisy-chain wiring together the units with CAT-5 cabling.

15. Sensors shall be equipped with an automatic override for 100 hour burn-in of lamps. This feature must be available at any time for lamp replacements.

16. Wall switch sensors shall recess into single-gang switch box and fit a standard GFI opening.

17. Wall switch sensors must meet NEC grounding requirements by providing a dedicated ground connection and grounding to mounting strap. Line and load wire connections shall be interchangeable. Sensor shall not allow current to pass to the load when sensor is in the unoccupied (Off) condition.

18. Wall switch sensors shall have optional features for photocell/daylight override, vandal resistant lens, and low temperature/high humidity operation.

19. Wall switch sensors shall be available in four standard colors (Ivory, White, Light Almond, Gray)

20. Wall switch sensors shall be the following Sensor Switch model numbers, with device color and optional features as specified. See Drawings for Details and Part Numbers.

21. Network system shall also have ceiling, fixture, recessed, & corner mounted sensors available.

22. Sensors shall have optional features for photocell/daylight override, dimming control, and low temperature/high humidity operation.

23. Sensors with dimming can control 0 to 10 VDC dimmable ballasts by sinking up to 20 mA of Class 2 current (typically 40 or more ballasts).

24. Sensors shall be the following Sensor Switch model numbers, with device options as specified: See Drawings for Details and Part Numbers.

C. Digital System Power (Relay) Packs

1. Power Pack shall incorporate one or more Class 1 relays and contribute low voltage power to the rest of the system. Secondary Packs shall incorporate the relay(s), shall have an optional 2nd relay, 0-10 VDC dimming output, or line voltage dimming output, but shall not be required to contribute system power. Power Supplies shall provide system power only, but are not required to switch line voltage circuit. Auxiliary Relay Packs shall switch low voltage circuits only.

2. Power Packs shall accept 120 or 277 VAC (or optionally 347 VAC), be plenum rated, and provide Class 2 power to the system.

3. All devices shall have two RJ-45 ports.
4. Every Power Pack parameter shall be available and configurable remotely from the software and locally via the device push-button.
5. Power Pack shall securely mount to junction location through a threaded ½ inch chase nipple. Plastic clips into junction box shall not be accepted. All Class 1 wiring shall pass through chase nipple into adjacent junction box without any exposure of wire leads. Note: UL Listing under Energy Management or Industrial Control Equipment automatically meets this requirement, whereas Appliance Control Listing does not meet this safety requirement.
6. When required by local code, Power Pack must install inside standard electrical enclosure and provide UL recognized support to junction box. All Class 1 wiring is to pass through chase nipple into adjacent junction box without any exposure of wire leads.
7. Power (Secondary) Packs shall be available that provide up to 16 Amp switching of all load types, and be rated for 400,000 cycles.
8. Specific Secondary Packs shall be available that provide up to 5 Amps of switching as well as 0-10 VDC dimming of fluorescent ballasts.
9. Specific Secondary Packs shall be available that provide up to 5 Amps of switching and can dim 120 VAC incandescent lighting loads or 120/277 VAC line voltage dimmable fluorescent ballasts (2-wire and 3-wire versions).
10. Specific Secondary Packs shall be available that provide up to 5 Amps of switching of dual phase (208/240/480 VAC) lighting loads.
11. Specific Secondary Packs shall be available that require a manual switch signal (via a networked Wall Station) in order to close its relay.
12. When Required Specific Emergency Secondary Power Packs shall be available to provide switching up to 5 Amps at 120 or 277 V and must hold a UL924 Listing.
13. Provide auxiliary relay for connection to building management system.
14. Power (Relay) Packs and Supplies shall be the following Sensor Switch model numbers: See Drawings for Details and Part Numbers.

D. Digital System Wall Switches & Dimmers
1. Devices shall recess into single-gang switch box and fit a standard GFI opening.
2. Devices shall be available with zero or one integrated Class 1 switching relay.
3. Communication and low voltage power shall be delivered to each device via standard CAT-5 low voltage cabling with RJ-45 connectors.
4. All sensors shall have two RJ-45 ports.
5. All devices shall provide toggle switch control. Dimming control and low temperature/high humidity operation are available options.
6. Devices shall be available in four colors (Ivory, White, Light Almond, Gray).
7. Devices with dimming control outputs can control 0 to 10 VDC dimmable ballasts by sinking up to 20 mA of current (typically 40 or more ballasts).
8. Devices with capacitive touch buttons shall provide audible user feedback with different sounds for on/off, raise/lower, start-up, and communication offline.
9. Devices with mechanical push-buttons shall provide tactile and LED user feedback.
10. Devices with mechanical push-buttons shall be made available with custom button labeling.
11. Devices with a single on button shall be capable of selecting all possible lighting combinations for a bi-level lighting zone such that the user confusion as to which of two buttons (as is present in multi-button scenarios) controls which load is eliminated.
12. Wall switches & dimmers shall be the following Sensor Switch model numbers, with device options as specified: See Drawings for Details and Part Numbers.
2.4 LIGHTING CONTACTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. ASCO Power Technologies, LP; a division of Emerson Electric Co.
4. Douglas Lighting Controls
5. GE Industrial Systems; Total Lighting Control.
8. Lighting Control and Design.
9. Lithonia Lighting; Acuity Lighting Group, Inc.
10. Square D; Schneider Electric.
11. TORK.
12. Touch-Plate, Inc.
13. Watt Stopper (The).

B. Description: Electrically operated and mechanically held, combination type with nonfused disconnect, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.5 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No.14 AWG. Comply with requirements in Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Install and aim sensors in locations to achieve at least 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
B. Install ceiling mounted sensors in the center of the lay-in ceiling tile when available.

C. Install power packs above the accessible ceiling at the light switch location in room. If room does not have accessible ceiling and the adjacent corridor does, then install on corridor side. Install power pack in junction box to conceal the termination if installed on an exposed ceiling.

D. Install according to manufacturer’s recommendations.

3.2 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads, to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION

A. Wiring Method: Comply with Division 26 Section "Low Voltage Electrical Power Conductors and Cables." Minimum conduit size shall be 1/2 inch (13 mm). All low voltage and communication cabling shall be run in conduit, refer to Section 26 0533 – Raceways and Boxes for Electrical Systems.

B. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Separate power-limited and nonpower-limited conductors according to conductor manufacturer’s written instructions.

C. Install field-mounting transient voltage suppressors for lighting control devices in Category A locations that do not have integral line-voltage surge protection.

D. Size conductors according to lighting control device manufacturer’s written instructions, unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

F. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 IDENTIFICATION

A. Identify components and power and control wiring according to Division 26 Section "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaries controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:
1. After installing time switches and sensors, and after electrical circuitry has been energized, adjust and test for compliance with requirements.

2. Operational Test: Verify actuation of each sensor and adjust time delays.

B. Remove and replace lighting control devices where test results indicate that they do not comply with specified requirements.

C. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.6 ADJUSTING

A. Adjust time delay on each sensor to 15 minutes unless noted otherwise on plans.

B. Coordinate light sensor level with owner to determine preferred operating range.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to site outside normal occupancy hours for this purpose.

END OF SECTION 26 0923
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following types of dry-type transformers rated 600 V and less, with capacities up to 1000 kVA:

1. Distribution transformers.
2. Buck-boost transformers.

1.2 ACTION SUBMITTALS

A. Product Data: For each product indicated.

B. Shop Drawings: Indicate dimensions and weights.

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
3. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that transformers, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Qualification Data: For testing agency.

C. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

B. Include dated documentation of torque values on all equipment.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each transformer type through one source from a single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. Comply with IEEE C57.12.91, "Test Code for Dry-Type Distribution and Power Transformers."

1.6 COORDINATION

A. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

B. Coordinate installation of wall-mounting and structure-hanging supports with actual transformer provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton Corporation; Cutler-Hammer.
2. General Electric Company.
4. Micron Industries Corp.
5. Siemens Energy & Automation, Inc.
7. Square D; Schneider Electric.
8. Industrial Electric Mfg.
9.

2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Cores: Grain-oriented, non-aging silicon steel.

C. Coils: Continuous windings without splices, except for taps.

1. Internal Coil Connections: Brazed or pressure type.
2. Coil Material: Copper.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NEMA ST 20, and list and label as complying with UL 1561.

B. Must be TP-1 energy efficient compliant.

C. Must be DOE 2016 compliant.

D. Cores: One leg per phase.

E. Enclosure: Ventilated, dripproof, NEMA 250, Type 2.
1. Core and coil shall be encapsulated within resin compound, sealing out moisture and air.

F. Insulation Class: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

G. Taps for Transformers Smaller Than 3 kVA: One 5 percent tap above normal full capacity.

H. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and four 2.5 percent taps below normal full capacity.

J. K-Factor Rating: Transformers indicated to be K-factor rated shall comply with UL 1561 requirements for nonsinusoidal load current-handling capability to the degree defined by designated K-factor.

 1. Unit shall not overheat when carrying full-load current with harmonic distortion corresponding to designated K-factor.
 2. Indicate value of K-factor on transformer nameplate.

K. Wall Brackets: Manufacturer's standard brackets.

L. Low-Sound-Level Requirements: Minimum of 3 dBA less than NEMA ST 20 standard sound levels when factory tested according to IEEE C57.12.91.

 1. Maximum acceptable sound level:
 a. 9 KVA and less: 37dBA.
 b. 30 to 50 KVA: 42 dBA.
 c. 51 to 150 KVA: 47 dBA.
 d. 151 to 300 KVA: 52 dBA.
 e. 301 to 500 KVA: 57 dBA.
 f. 501 to 750 KVA: 59 dBA.
 g. 751 to 1000 KVA: 61 dBA.

2.4 CONTROL AND SIGNAL TRANSFORMERS

A. Description: Self-cooled, two-winding dry type, rated for continuous duty, complying with NEMA ST 1, and listed and labeled as complying with UL 506.

B. Ratings: Continuous duty. If rating is not indicated, provide at least 50 percent spare capacity above connected peak load.

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.91.

B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.
2.6 IDENTIFICATION DEVICES

A. Nameplates: Engraved, laminated-plastic or metal nameplate. Nameplates are specified in Division 26 Section "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls and floors for suitable mounting conditions where transformers will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounting transformers level and plumb with wall brackets fabricated by transformer manufacturer.

B. Install floor-mounting transformers level on concrete bases. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit and 4 inches high.

C. Install transformers larger than 75 KVA at least 12 inches away from walls or other obstructions that might prevent free air circulation through and around the transformer.

D. Identify transformers and install warning signs according to Division 26 Section "Identification for Electrical Systems".

3.3 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Connect transformer units to conduit system panelboards, disconnect switches, or junction/pull boxes, using liquid-tight flexible conduit.

C. Connect wiring according to Division 26 Section "Low Voltage Electrical Power Conductors and Cables."

D. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
3.4 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 10 percent and not being lower than nameplate voltage minus 5 percent. Submit recording and tap settings as test results.

B. Adjust buck-boost transformers to provide nameplate voltage of equipment being served, plus or minus 5 percent, at secondary terminals.

3.5 FIELD QUALITY CONTROL

A. Infrared Scanning: After Substantial Completion, but not more than 30 days after Final Acceptance, perform an infrared scan of each switchgear. Remove front and rear panels so joints and connections are accessible to portable scanner.

1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchgear 11 months after date of Substantial Completion.

2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

3. Record of Infrared Scanning: Prepare a certified report that identifies switchgear checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. Include scanning results.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

1. END OF SECTION 26 2200
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Service and distribution switchboards rated 600 V and less.
 2. Transient voltage suppression devices.
 3. Disconnecting and overcurrent protective devices.
 4. Instrumentation.
 5. Control power.
 6. Accessory components and features.
 7. Identification.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For each switchboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 2. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards.
 3. Include schematic and wiring diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

B. Include dated documentation of torque values on all equipment.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA PB 2.

C. Comply with NFPA 70.

D. Comply with UL 891.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

 1. Warranty Period: Five years from date of Substantial Completion.

1.7 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03 Section "Cast-in-Place Concrete."

C. Coordinate panels to be supplied with meter with Division 26 Section “Electrical Energy Metering”.

1.8 EXTRA MATERIALS

A. Spares: For the following:

 1. Potential transformer fuses.
 2. Control power fuses.
 3. Fuses for fused switches.

B. Spare Indicating Lights: Six of each type installed.

PART 2 - PRODUCT

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. ABB Inc.
2. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
5. Square D; a brand of Schneider Electric.

2.2 MANUFACTURED UNITS

A. Front-Connected, Front-Accessible Switchboard: Panel mounted main device, panel-mounted branches, and sections rear aligned.

2.3 FABRICATION AND FEATURES

A. Enclosure Finish for Indoor Units: Factory-applied electrostatic powder coat in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

B. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard, if shown on Drawings.

C. Screwed Front Panels: Allow access to circuit-breaker, metering, accessory, and blank compartments.

D. Buses and Connections: Three phase, four wire, unless otherwise indicated. Include the following features:

2. Ground Bus: 1/4-by-2-inch (6-by-50-mm) minimum size, drawn-temper copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.

3. Contact Surfaces of Buses: Silver plated.

4. Main Phase Buses, Neutral Buses, and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.

6. Neutral Buses: 100 percent of the ampacity of the phase buses, unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables. Bus extensions for busway feeder neutral bus is braced.

E. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of fused switch/circuit-breaker compartment.

2.4 SPD DEVICES

A. Panelboard enclosure shall be designed to accommodate SPD within enclosure. SPD shall be factory mounted in panelboard connected directly to the bus without the use of a circuit breaker.

B. Refer to Division 26 Section “Surge Protection for Low-Voltage Electrical Power Circuits.”
2.5 OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents with 20% additional capacity, 40,000 KA minimum.

2. Electronic Trip Unit Circuit Breakers (ET): RMS sensing; field-replaceable rating plug; with the following field-adjustable settings: 100% Sensing, 100% Rating.
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I²t response.
 e. Provide electronic trip breakers where indicated on Drawings.

B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.

1. Lugs: Mechanical style, suitable for number, size, trip ratings, and material of conductors.
2. Application Listing: Appropriate for application; Type HACR for heating, air-conditioning, and refrigerating equipment.
3. Ground-Fault Protection: Where indicated on Drawings and where panel is over 1000A at 480V at the service entrance. Internally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
4. Shunt Trip: Where indicated on drawings. 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
5. Zone-Selective Interlocking: Where indicated on drawings. Integral with electronic trip unit; for interlocking ground-fault protection function.
6. Breakers with continuous trip setting adjustable to 1200A or higher shall be provided with remote arc energy reduction for maintenance option with remote switch to be installed near door of electrical room (where indicated on Drawings). Remote switch shall not require manual change in circuit breaker or trip device settings.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

2.6 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:

1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.
2. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.

B. Multifunction Digital-Metering Monitor (where indicated on drawings):

1. Provide in accordance with Division 26 Section “Electrical Energy Metering”.

[Copyright] 2022 Tower Pinkster Titus Associates - All Rights Reserved
2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

2.7 CONTROL POWER

A. Control Circuits: 120 V, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

PART 3 - EXECUTION

3.1 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions.

3.2 EXAMINATION

A. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance.

1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.3 INSTALLATION

A. Install switchboards and accessories according to NEMA PB 2.1.

B. Support switchboards on concrete bases, 4-inch (100-mm) nominal thickness.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.

D. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."
B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.5 CONNECTIONS

A. Install equipment grounding connections for switchboards with ground continuity to main electrical ground bus.

B. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.6 FIELD QUALITY CONTROL

A. Infrared Scanning: After Substantial Completion, but not more than 30 days after Final Acceptance, perform an infrared scan of each switchgear. Remove front and rear panels so joints and connections are accessible to portable scanner.

1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchgear 11 months after date of Substantial Completion.
2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
3. Record of Infrared Scanning: Prepare a certified report that identifies switchgear checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. Include scanning results.

3.7 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.8 CLEANING

A. On completion of installation, inspect interior and exterior of switchboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to properly use the switchboard mounted metering equipment. Refer to Division 01 Section “Demonstration and Training.”

END OF SECTION 26 2413
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For each panelboard and related equipment.

1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.

2. Detail enclosure types and details for types other than NEMA 250, Type 1.

3. Detail bus configuration, current, and voltage ratings.

4. Short-circuit current rating of panelboards and overcurrent protective devices.

5. Include evidence of NRTL listing for series rating of installed devices.

6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

7. Include wiring diagrams for power, signal, and control wiring.

8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.

1.3 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Field quality-control reports.

C. Panelboard schedules for installation in panelboards.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

B. Include dated documentation of torque values on all equipment.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NEMA PB 1.
C. Comply with NFPA 70.

1.6 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

1.7 COORDINATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.

B. Prior to equipment installation, temporarily tape off distribution equipment rough-in and NEC clearance requirements in front of equipment and above equipment for other trades to observe. Label markings “ELECTRICAL CLEAR SPACE”.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories:
 c. Siemens Energy & Automation, Inc.
 d. Square D Co.
 e. Industrial Electric Mfg.

2.2 FABRICATION AND FEATURES

A. Enclosures: Flush- surface- mounted cabinets. NEMA PB 1, Type 1, to meet environmental conditions at installed location.

1. Outdoor Locations: NEMA 250, Type 3R.
2. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

B. Cabinet heights shall not exceed the following without pre-approval:

C. (Subtract 12 inches from max cabinet height for MLO interiors)
D. **Panelboard Specifications**

<table>
<thead>
<tr>
<th></th>
<th>NQ TYPE PANELBOARD MAIN</th>
<th></th>
<th>NUMBER OF SPACES</th>
<th></th>
<th>MAX CABINET HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>100A or less MB</td>
<td>5.</td>
<td>30 spaces or less</td>
<td>6.</td>
<td>44 inches</td>
</tr>
<tr>
<td>7.</td>
<td>225A or less MB</td>
<td>8.</td>
<td>54 spaces or less</td>
<td>9.</td>
<td>50 inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.</td>
<td>72 spaces or less</td>
<td>11.</td>
<td>56 inches</td>
</tr>
<tr>
<td>12.</td>
<td>400A or less MB</td>
<td>14.</td>
<td>42 spaces or less</td>
<td>15.</td>
<td>62 inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.</td>
<td>72 spaces or less</td>
<td>17.</td>
<td>74 inches</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NF TYPE PANELBOARD MAIN</th>
<th></th>
<th>NUMBER OF SPACES</th>
<th></th>
<th>MAX CABINET HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>125A or less MB</td>
<td>22.</td>
<td>30 spaces or less</td>
<td>23.</td>
<td>44 inches</td>
</tr>
<tr>
<td>24.</td>
<td>250A or less MB</td>
<td>25.</td>
<td>54 spaces or less</td>
<td>26.</td>
<td>56 inches</td>
</tr>
<tr>
<td>27.</td>
<td>400A or less MB</td>
<td>28.</td>
<td>42 spaces or less</td>
<td>29.</td>
<td>68 inches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.</td>
<td>66 spaces or less</td>
<td>31.</td>
<td>86 inches</td>
</tr>
</tbody>
</table>

E. **Front**
- Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

F. **Hinged Front Cover**
- Entire front trim hinged to box and with standard door within hinged trim cover.

G. **Finish**
- Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat.

H. **Directory Card**
- With transparent protective cover, mounted inside metal frame, inside panelboard door.

I. **Breaker numbering**
- Provide adhesive labels with breaker numbering to be installed on each side of breakers to identify breaker number that corresponds to circuit directory.

J. **Bus**
- Hard-drawn copper, 98 percent conductivity.

K. **Main and Neutral Lugs**
- Mechanical type suitable for use with conductor material. Contractor is responsible for locating top or bottom feed main or lugs appropriate for top or bottom feeds.
L. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors; bonded to box.

M. Service Equipment Label: UL labeled for use as service equipment for panelboards with main service disconnect switches.

N. Future Devices: Mounting brackets, bus connections, and necessary appurtenances required for future installation of devices.

O. Isolated Equipment Ground Bus: Where indicated on Drawings. Adequate for branch-circuit equipment ground conductors; insulated from box.

P. Extra-Capacity Neutral Bus: Where indicated on Drawings. Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.

Q. Feed-through Lugs: Where indicated on Drawings. Mechanical type suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.

R. Provide handle clamps on all circuit breakers feeding fire alarm system components. Handle clamps shall lock the circuit breaker in the “ON” position.

2.3 PANELBOARD SHORT-CIRCUIT RATING

A. Fully rated to interrupt symmetrical short-circuit current available at terminals with 20% additional capacity, 10,000 KA minimum.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

B. Circuit breaker interrupting rating shall be 10,000 RMS symmetrical amperes at 120/208/240 volts; 14,000 RMS symmetrical amperes at 277/480 volts unless noted otherwise on plans (add 20% to rating on plans).

C. Doors: Front mounted with concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.5 DISTRIBUTION PANELBOARDS

A. Doors: Hinged, front mounted, except omit in fused-switch panelboards; secured with vault-type latch with tumbler lock; keyed alike.

B. Main Overcurrent Protective Devices: Circuit breaker or Fused switch, as indicated on plans.

C. Branch overcurrent protective devices shall be one of the following:

1. For Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
2. For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.
3. Circuit breaker interrupting rating shall be 22,000 RMS symmetrical amperes at 120/208/240 volts; 25,000 RMS symmetrical amperes at 277/480 volts unless noted otherwise on plans.
4. Fused switches.

2.6 SPD PANELBOARDS
A. Refer to Division 26 Section “Surge Protection for Low-Voltage Electrical Power Circuits.”
B. Panelboard enclosure shall be designed to accommodate SPD externally. SPD shall be mounted within manufacturer recommended cable distance and shall use circuit breaker closest to SPD.

2.7 INSTRUMENTATION
A. Instrument Transformers: NEMA EI 21.1, IEEE C57.13, and the following:
 1. Potential Transformers: Secondary voltage rating of 120 V and NEMA accuracy class of 0.3 with burdens of W, X, and Y.
 2. Current Transformers: Ratios shall be as indicated with accuracy class and burden suitable for connected relays, meters, and instruments.
 3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kV.
B. Multifunction Digital-Metering Monitor (where indicated on drawings):
 1. Provide in accordance with Division 26 Section “Electrical Energy Metering”.
 2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

2.8 OVERCURRENT PROTECTIVE DEVICES
A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 2. Electronic Trip Unit Circuit Breakers: (Where indicated on drawings and any over 400A) RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 a. 100% Rated with 100% sensing.
 b. Instantaneous trip.
 c. Long- and short-time pickup levels.
 d. Long- and short-time time adjustments.
 e. Ground-fault pickup level, time delay, and I²t response.
 3. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
B. Molded-Case Circuit-Breaker Features and Accessories. Standard frame sizes, trip ratings, and number of poles.

1. Lugs: Mechanical style, suitable for number, size, trip ratings, and material of conductors.
2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment; HID rated for high intensity discharge lighting.
4. Main breaker over 1000A at 480V on service entrance panel shall have ground fault protection.
5. Breakers or trip devices with continuous trip setting adjustable to 1200A or higher shall be provided with remote arc energy reduction for maintenance option with remote switch to be installed near door of electrical room (where indicated on Drawings). Remote switch shall not require manual change in circuit breaker or trip device settings.
6. Shunt Trip: Where indicated on Drawings. 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

2.9 CONTROLLERS

A. Contactors in Main Bus: NEMA ICS 2, Class A, mechanically held general-purpose controller.

1. Control-Power Source: Control-power transformer, with fused primary and secondary terminals, connected to main bus ahead of contactor connection.
2. Control-Power Source: 120-V branch circuit.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Provide SWD rated circuit breakers for switching fluorescent lighting; HACR rated circuit breakers for heating, air conditioning and refrigeration equipment, and HID rated circuit breakers for high intensity discharge lighting.

B. Install panelboards and accessories according to NEMA PB 1.1.

C. Mounting Heights:

1. Top of box 72 inches above finished floor, unless otherwise indicated.
2. Bottom of box to be a minimum of 16 inches above finished floor.
3. Multi-Family Dwelling Unit Accessible Units: Mount top of panel or load center so that highest breaker in panel is at or below 48 inches above finished floor.
4.

D. Mounting: Plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish.
E. Circuit Directory: Create a directory to indicate installed circuit loads after balancing panelboard loads. Use a computer or typewriter to create directory; handwritten directories are not acceptable. All circuit loads shall be visible without removing directory card.

F. Distribution Panel Circuit Breaker/Switch Identification: Label each circuit breaker/switch unit with laminated-plastic nameplate mounted with corrosion-resistant screws or permanent adhesive.

G. Install filler plates in unused spaces.

H. Provision for Future Circuits at Flush Panelboards: Stub four 1-inch (27-GRC) empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch (27-GRC) empty conduits into raised floor space or below slab not on grade.

I. Wiring in Panelboard Gutters: Arrange conductors into groups and bundle and wrap with wire ties after completing load balancing.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 26 Section “Identification for Electrical Systems.”

B. Panelboard Nameplates: Label each panelboard with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

1. Panel label to have white letters on a black background. Provide the panel name, voltage and panel fed from on label.
2. Locate the label on the exterior of the panel door frame above the door unless otherwise indicated.
3. Locate the label on the panel interior side of the door when panel is recessed and located in a finished space.

C. Clearance Space: In electrical equipment rooms, mechanical rooms or janitor’s closets, provide floor marking tape to indicate NEC required clear space in front of panelboards and distribution equipment. Provide floor label that reads “ELECTRICAL CLEAR SPACE”. Provide floor tape and label in accordance with 260553, “Identification for Electrical Systems.”

3.3 CONNECTIONS

A. Install equipment grounding connections for panelboards with ground continuity to main electrical ground bus.

B. Where panelboards are located within 6 feet horizontally of any grounded structural building steel member, provide a bonding jumper between that steel member and the panelboard.

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Prepare for acceptance tests as follows:
1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

B. Testing: After installing panelboards and after electrical circuitry has been energized, demonstrate product capability and compliance with requirements.

1. Procedures: Perform each visual and mechanical inspection and electrical test indicated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

C. Balancing Loads: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes as follows:

1. Measure as directed during period of normal system loading.
2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data-processing, computing, transmitting, and receiving equipment.
3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.

D. Infrared Scanning: After Substantial Completion, but not more than 30 days after Final Acceptance, perform an infrared scan of each switchgear. Remove front and rear panels so joints and connections are accessible to portable scanner.

1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchgear 11 months after date of Substantial Completion.
2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
3. Record of Infrared Scanning: Prepare a certified report that identifies switchgear checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action. Include scanning results.

3.5 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.6 CLEANING

A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

END OF SECTION 26 2416
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Wall-box motion sensors.
 3. Snap switches and wall-box dimmers.
 4. Communications outlets.

B. See Division 27 Section "Communications Horizontal Cabling" for workstation outlets.

1.2 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Wiring Devices:
 a. Cooper Wiring Devices
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Mfg. Company Inc.
 d. Pass & Seymour/Legrand; Wiring Devices Div.

2. Wiring Devices for Hazardous (Classified) Locations:
 b. EGS/Appleton Electric Company.
 c. Killark Electric Manufacturing Co./Hubbell Incorporated.

3. Multi-outlet Assemblies:
 a. The Wiremold Company.

2.2 RECEPTACLES

A. Extra Heavy Duty/Industrial Grade Straight-Blade-Type Receptacles: Comply with NEMA WD 1, NEMA WD 6, and UL 498.
 1. NEMA 5-20R configuration, 125 volt, 20 ampere, listed as “tamper resistant”.
 2. Use in mechanical rooms, higher abuse areas, lab areas and rough service areas.

B. Tamper Resistant, Commercial Grade Straight-Blade Receptacles: Comply with NEMA WD 1, NEMA WD 6 and UL498.
 1. NEMA 5-20R configuration, 125 volt, 20 ampere, listed as “tamper resistant”.

C. Tamper Resistant, Hospital Grade Straight-Blade Receptacles. Comply with NEMA WD 1, NEMA WD 6 and UL498.
 1. NEMA 5-20R configuration, 125 volt, 20 ampere, listed as “tamper resistant”.
 2. Acceptable products:
 a. Cooper 8300.
 b. Hubbell HBL8300.
 c. Leviton 8300.
 d. P & S 8300.

D. Tamper Resistant, GFCI Hospital Grade Straight-Blade Receptacles: Feed-through type, comply with NEMA WD 6, UL498 and UL943. Must meet UL 2003 standards for diagnostic indication of miss-wiring, increased surge immunity, improved corrosion resistance and resistance to false tripping.
 1. NEMA 5-20R configuration, 125 volt, 20 ampere, listed as “tamper resistant.”
 2. Use in buildings where hospital grade receptacles are required.

E. GFCI Specification Grade Straight-Blade Receptacles: Feed-through type, comply with NEMA WD 6, UL498 and UL943. Must meet UL 2003 standards for diagnostic indication of miss-wiring, increased surge immunity, improved corrosion resistance and resistance to false tripping.
1. NEMA 5-20R configuration, 125 volt, 20 ampere, listed as “tamper resistant”.
2. Use where indicated on drawings and breaker type GFCI protection is not provided and where access is restricted to facilities personal.

F. Isolated Ground Straight-Blade Receptacles: Comply with NEMA WD 1, NEMA WD 6, UL498.
 1. NEMA 5-20R configuration, 125 volt, 20 ampere, listed as “tamper resistant”.
 2. Use where indicated on drawings.

G. Industrial Heavy-Duty Pin and Sleeve Devices: Comply with IEC 309-1.

H. Hazardous (Classified) Location Receptacles: Comply with NEMA FB 11.

2.3 SWITCHES

A. Single and Multi-pole Switches: Comply with UL20.

B. Snap Switches: 20A, 120/277 volt, AC, heavy-duty grade, quiet type.

C. Keyed Switches: 20A, 120/277 volt, AC, heavy-duty grade, quiet type.
 1. Provide two keys for each keyed switch installed on project. Turn-over keys to owner at time of Substantial Completion.

D. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on/off switches and audible frequency and EMI/RFI filters.
 1. Wattage rating exceeds connected load by 30 percent minimum, except as otherwise indicated.
 2. Control: Continuously adjustable slider, toggle switch, or rotary knob; with single-pole or three-way switching to suit connections.
 3. Incandescent Lamp Dimmers: Modular, 120 V, 60 Hz with continuously adjustable rotary knob, toggle switch, or slider; single pole with soft tap or other quiet switch; EMI/RFI filter to eliminate interference; and 5-inch(130-mm) wire connecting leads.

2.4 DEVICE PLATES

A. Single and combination types to match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 3. Material for Unfinished Spaces: Galvanized steel.. Color shall match wiring device color.
 4. Premium Finishes: Provide screwless decorator wall plates that snap to included subplate. Legrand SWP# series or approved equivalent, finish to be selected
 5. Provide device plates for all power and data outlets.
2.5 WET LOCATION RECEPTACLE COVERS

A. Wet Location Receptacle Covers: Receptacles located outdoors or those indicated as weatherproof shall be equipped with covers that maintain the NEMA 3R weatherproof integrity when attachment plug caps are inserted.

1. Covers shall be die cast aluminum with powder coat finish, UL listed and comply with NEC.
2. Covers shall be:
 a. Tay Mac Corporation # MX3200
 b. Red Dot #CKSUV

2.6 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
B. Compartmentation: Barrier separates power and signal compartments.
C. Housing Material: Stamped steel suitable for concrete installation.
D. Power Receptacle: NEMA WD 6, Configuration 5-20R, ivory finish, unless otherwise indicated.
E. Signal Outlet: Blank cover with bushed cable opening, unless otherwise indicated.
F. Finish Trim and Door: Hinged nylon carpet/tile insert door permitting passage of cords and cables while in closed position. Trim color selected by Architect.

2.7 MULTIOUTLET ASSEMBLIES

A. Components of Assemblies: Products from a single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.
B. Raceway Material: Metal, with manufacturer's standard finish.
C. Wire: No. 12 AWG.

2.8 WIRING DEVICE AND COVER FINISHES

A. Color Plastic:

1. Covers on devices installed into CMU or drywall finishes shall generally be white, except for devices installed into wood, tile or stone wall finishes or casework. Devices installed into such materials shall be identified and coordinated with the finish and supplied with color chips for final selection by the interiors group.]
PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including the mounting heights listed in that standard, unless otherwise noted.

B. Coordination with Other Trades:
 1. Install devices and assemblies level, plumb, and secure.
 2. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of the boxes.
 3. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 4. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 5. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailling existing conductors is permitted provided the outlet box is large enough.

D. Device Installation:
 1. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact.
 10. Provide an individual GFCI receptacle for each one shown on the drawings. Do not feed downstream receptacles on the same circuit using the protection of a GFCI receptacle.
 11. Where GFCI receptacles are concealed behind either fixed or removable equipment, provide remote GFCI test device per NFPA-70 requirements.
E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
 1. Install dimmers within terms of their listing.
 2. Verify that dimmers used for fan speed control are listed for that application.
 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 IDENTIFICATION

A. Comply with Division 26 Section "Identification for Electrical Systems."
 1. Receptacles: Identify panelboard and circuit number from which served. Use hot, stamped or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 CONNECTIONS

A. Connect receptacles using screw-compression wiring contacts or pigtail leads. Do not use push-in contacts.

B. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.

C. Isolated-Ground Receptacles: Connect to isolated-ground conductor routed to designated isolated equipment ground terminal of electrical system.

D. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

A. Test wiring devices for proper polarity and ground continuity. Operate each device at least six times.

B. Test GFCI operation with both local and remote fault simulations according to manufacturer's written instructions.

C. Remove damaged and defective components.
3.5 CLEANING

A. Internally clean devices, device outlet boxes, and enclosures. Replace stained or improperly painted wall plates or devices.

END OF SECTION 26 2726
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Interior lighting fixtures, LED modules and drivers.
 2. Emergency lighting units.
 3. Exit signs.
 4. Lighting fixture supports.

B. Related Sections:
 1. Division 26 Section "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 2. Division 26 Section "Network Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
 3. Division 26 Section "Wiring Devices" for manual wall-box dimmers for incandescent lamps.

1.2 ACTION SUBMITTALS

A. General: Some lighting fixtures may require at least 3 to 4 months of lead time. The Contractor is responsible for allowing sufficient time for the review process, manufacturing and delivery of these products. Substitutions will not be accepted on the basis of the Contractor's obligation to meet project completion deadlines.

B. Lighting Fixtures Specified: The lighting fixtures specified in these documents have been carefully chosen for their ability to meet lighting requirements for this project. Selection has been based on esthetics, durability, ease of maintenance, luminance ratios, vertical and horizontal illuminances, lumen maintenance, CRI, efficacy, LED system life and warranty as well as their ability to satisfy governing codes such as ASHRAE/IES 90.1/1999. The Contractor is cautioned that substitute products are likely to be unable to meet all of the same criteria as the product specified.

C. Substitutions: When proposing substitute products, the Contractor shall be responsible for the negotiation with the Owner and Architect/Engineer, prior to substitution submittal, to assure fees are available to redesign the project based on the proposed substitutions or review by the Architect/Engineer of all photometric, sample, design and calculations for the proposed substitutions. All substitutions must be identified at time of bid. The Contractor's bid value shall not be based on substitutions in expectation of design team approval, nor on the Contractor's estimated value of the products specified. If review of the proposed substitute light fixtures finds the product unacceptable, the Contractor shall provide the fixtures specified at no additional cost to the Owner or delay in the project completion time.

D. Product Data: For each type of lighting fixture and lamp indicated, arranged in order of fixture designation. Submit fixture data in bound brochure. Include illustrations and dimensions of fixtures, and showing photometric performance. Include data on features, accessories, and the following:
2. Dimensions of fixtures.
3. Certified results of independent laboratory tests of fixtures and lamps for electrical ratings and photometric data.
4. Emergency lighting unit battery and charger.
5. LED fixture LM79, LM80 and TM21 testing data.
6. Written Warranty Compliance

E. Lighting Fixture Submittals: Fixture cuts lacking sufficient detail to indicate compliance with specifications will not be acceptable.

F. Shop Drawings: Show details of nonstandard and custom fixtures. Indicate dimensions, weights, components, features, accessories, and methods of field assembly and mounting.
 1. Wiring Diagrams: Detail wiring for fixtures and differentiate between manufacturer-installed and field-installed wiring.

G. Maintenance Data: For lighting fixtures to include in maintenance manuals specified in Division 01.

1.3 QUALITY ASSURANCE

A. Fixtures, Emergency Lighting Units, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.

B. Comply with NFPA 70.

C. Comply with LM 79, LM80 and TM21 LED testing standards.

D. FM Compliance: Fixtures for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM.

E. NFPA 101 Compliance: Comply with visibility and luminance requirements for exit signs.

1.4 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.5 WARRANTY

A. Special Warranty for Batteries: Written warranty, executed by manufacturer agreeing to replace rechargeable batteries that fail in materials or workmanship within specified warranty period.
1. Special Warranty Period for Batteries: Manufacturer's standard, but not less than 10 years from date of Substantial Completion. Full warranty shall apply for first year, and prorated warranty for last nine years.

B. Warranty for LED fixtures: Written warranty, agreeing to replace drivers, LED modules and any fixture housing or components that fail in materials and workmanship within minimum (5) years from date of purchase. Warranty shall provide materials necessary to restore to acceptable operation. Labor shall be warranted for two years of the project substantial completion. The warranty shall include fixture replacement or component replacement if the luminaire delivers less than 90% of the initial light level over the rated life.

1. For decorative pendant and track fixtures, warranty shall be minimum of (5) years.
2. All other fixtures shall match the standard warranty of the fixture specified.

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURE MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated for each designation in the Lighting Fixture Schedule on the plans.

2.2 FIXTURES AND FIXTURE COMPONENTS, GENERAL

A. Metal Parts: Free from burrs, sharp corners, and edges.

B. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.

C. Doors, Frames, and Other Internal Access: Smooth operating, free from light leakage under operating conditions, and arranged to permit relamping without use of tools. Arrange doors, frames, lenses, diffusers, and other pieces to prevent accidental falling during relamping and when secured in operating position.

D. Reflecting Surfaces: Minimum reflectance as follows, unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.
4. Laminated Silver Metallized Film: 90 percent.

E. Lenses, Diffusers, Covers, and Globes: 100 percent virgin acrylic plastic or annealed crystal glass, unless otherwise indicated.

1. Plastic: High resistance to yellowing and other changes due to aging, exposure to heat, and ultraviolet radiation.
2. Lens Thickness: 0.125 inch (3 mm) minimum, unless greater thickness is indicated.

F. Disconnecting Means: Provide disconnecting means for all LED fixtures. Disconnect shall comply with NEC Section 410.73(G).
2.3 LED FIXTURES

A. GENERAL

1. LED light fixtures shall meet all of the specified parameters with published independent testing in accordance with LM79, LM80 and TM21 testing standards.
2. LED light fixtures shall be sold as a complete system. Light fixtures shall have minimum efficacy as follows:
 a. Linear Recessed LED (2x2,2x4,1x4,1x2): 95 Lumens per watt.
 b. Linear Recessed LED (~4", Narrow Aperture): 74 Lumens per watt.
 c. Linear Pendant LED (~4" Aperture): 95 Lumens per watt up, 74 Lumens per watt down.
 d. Downlight LED: 80 Lumens per watt.
3. LED light fixtures shall have delivered lumen output within 5% of the delivered lumen output of the fixtures specified.
4. LED light fixtures shall be dimmable down to 20% or less of full output. If the specified fixture is dimmable to a level lower than 20%, equivalent fixture must be dimmable to the same level or lower than the fixture specified.
5. LED light fixture shall produce no noticeable variation in color temperature from one fixture to another by the same manufacturer. Color temperature shall be within 3-step MacAdam Ellipse.

B. LED DRIVERS

1. High performance LED driver to be 120/277V and wired for dimming or non-dimming. Provide with manufacturer tested compatible battery backup where indicated.
2. Driver expected lifetime shall be over 100,000 hours.
3. Total Harmonic Distortion Rating: Less than 20 percent.
4. Minimum power factor shall be 94%.

C. LED ENGINES

1. Manufacturers: Refer to light fixture schedule, light fixture is ordered as a complete system including LED driver, light engine and housing from the LED light fixture manufacturer.
2. LED Color Temperature and Minimum Color-Rendering Index:
 a. Downlights: 4100 K and over 85 CRI
 b. Linear LED: 4100 K and over 80 CRI
3. LED Life:
 a. Downlights: Rated average shall be 50,000 hours rated per LM79, LM80 and TM-21 standards.
 b. Linear LED: Rated average shall be 100,000 hours rated per LM79, LM80 and TM-21 standards.
 c. Track and pendant heads: Rated average shall be 50,000 hours to 70% rated per LM79, LM80 and TM-21 standards.

2.4 EXIT SIGNS

A. General Requirements: Comply with UL 924 and the following:

1. Refer to Lighting Fixture Schedule on the plans.
B. Internally Lighted Signs: Features as follows:
 1. Lamps for AC Operation: Light-emitting diodes, 70,000 hours minimum rated lamp life.

C. Self-Powered Exit Signs (Battery Type): Integral automatic charger in a self-contained power pack.
 1. Battery: Sealed, maintenance-free, nickel-cadmium type.
 2. Charger: Fully automatic, solid-state type with sealed transfer relay.
 3. Operation: Relay automatically energizes lamp from unit when circuit voltage drops to 80 percent of nominal or below. When normal voltage is restored, relay disconnects lamps, and battery is automatically recharged and floated on charger.

D. Wire Guard: Provide heavy chrome plated wire guards to protect fixtures installed in gymnasiums and multi-purpose rooms.

2.5 FINISHES

A. Fixtures: Manufacturer's standard, unless otherwise indicated.
 1. Paint Finish: Applied over corrosion-resistant treatment or primer, free of defects.

2.6 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section "Hangers and Supports for Electrical Systems" for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch (13-mm) steel tubes with single canopy designed to mount a single fixture. Finish same as fixture.

D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

E. Wires for Humid Spaces: ASTM A 580/A 580M, Composition 302 or 304, annealed stainless steel, 12 gage (2.68 mm).

F. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

G. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Interior Lighting Systems shall be installed in accordance with NECA/IESNA 500, Recommended Practice for Installing Indoor Commercial Lighting Systems and NECA/IESNA 502-2011, Recommended Practice for Installing Industrial Lighting Systems.

B. Fixtures: Set level, plumb, and square with ceiling and walls, and secure according to manufacturer’s written instructions and approved submittal materials.

C. Support for Fixtures in or on Grid-Type Suspended Ceilings: Support fixture using grid plus the following:
 1. Fixtures shall be positively attached to the ceiling grid system.
 2. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches (150 mm) from fixture corners.
 3. Support Clips: Fasten to fixtures and to ceiling grid members at or near each fixture corner.
 4. Fixtures of Sizes Less Than Ceiling Grid: Arrange as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently of panel, with at least two 3/4-inch (20-mm) metal channels spanning and secured to ceiling tees.

D. Suspended Fixture:
 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 2. Stem-Mounted, Single-Unit Fixtures: Suspend with two separate stem hangers.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing, stem, or rod for suspension for each unit length of fixture chassis, including one at each end.
 4. Continuous Rows: Suspend from cable installed according to fixture manufacturer’s written instructions and details on Drawings.
 5. Fixtures to be aligned and level, insure lenses are fastened properly in place.
 6. Any supports used to suspend fixture in exposed ceiling areas shall be installed as high as possible out of view and painted with ceiling.
 7. Mount remote type drivers out of site above ceilings or in painted enclosure.
 8. Coordinate installation so that no pipes, cable tray, duct work, etc are routed below light fixtures. Light fixtures shall be at a set plane so similar fixture types are all the same height or as noted on plans. Notify architects and engineers of any obstructions that will not allow for light to be installed at desired location.

E. In Mechanical and Boiler Rooms, coordinate lighting fixture installation with mechanical piping, duct work, etc. Provide all required supporting rods and channel to bridge duct work and piping. Generally, mount fixtures 8-9 feet above floor unless noted otherwise. Avoid positioning above mechanical piping and ducts.

3.2 CONNECTIONS

A. Ground equipment.
1. Tighten electrical connections and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 IDENTIFICATION

A. Install labels with panel and circuit numbers on concealed junction and outlet boxes. Comply with requirements for identification specified in Section 26 0553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Inspect each installed fixture for damage. Replace damaged fixtures and components.

B. Provide instruments to make and record test results.

C. Tests:
 1. Verify normal operation of each fixture after installation.
 2. Emergency Lighting: Interrupt electrical supply to demonstrate proper operation.
 3. Verify normal transfer to battery source and retransfer to normal.

D. Malfunctioning Fixtures and Components: Replace or repair, then retest. Repeat procedure until units are acceptable.

E. Corroded Fixtures: Replace during warranty period.

3.5 STARTUP SERVICE

A. Burn-in all fixtures that require specific aging period to operate properly, prior to occupancy by Owner.

3.6 CLEANING AND ADJUSTING

A. Clean fixtures internally and externally after installation. Fixture cones, reflectors, baffles, and visible trim shall be turned over to the owner clean and free of dust, drywall mud, smudges, fingerprints, and scratches. Only use methods and cleaning materials in accordance with respective fixture manufacturer recommendations.

B. All adjustable light fixtures shall be aimed, focused and locked by the Contractor under the observation of the Architect/Engineer. When daylighting interferes with the aiming and focusing, aiming shall be accomplished during hours of darkness.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting aimable luminaires to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose. Some of this work may be required after dark.
 1. Adjust aimable luminaires in the presence of Architect.
PROJECT NO. 21-134.00
STROSACKER - FLOOD RECOVERY
NORTHWOOD UNIVERSITY

INTERIOR LIGHTING
26 5100 - 8
01/26/2022

END OF SECTION 26 5100
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section. Failure to consult these documents shall not relieve the Contractor of the requirements therein.

1.2 SUMMARY

A. This Section includes fire alarm systems with manual stations, detectors, signal equipment, controls, and devices.

B. Related Sections include the following:

1. Division 08 Section "Door Hardware".

C. Allowances: Allowances affect the Work of this Section. Refer to Division 01 Section "Allowances" for procedures for allowances.

1. Allowance No. <Insert Number> - Fire Alarm Devices: Provide a lump sum allowance in the amount of [five thousand] <insert amount> dollars ($[5000.00] <insert amount>) to cover the cost for additional fire alarm pull stations, smoke detectors or audio/visual signals required by the Authority Having Jurisdiction.

1.3 DEFINITIONS

A. FACP: Fire alarm control panel.

B. LED: Light-emitting diode.

C. Definitions in NFPA 72 apply to fire alarm terms used in this Section.

1.4 SYSTEM DESCRIPTION

A. General: Digital-addressable system with manual and automatic alarm initiation; automatic sensitivity control of certain smoke detectors; and multiplexed signal transmission dedicated to fire alarm service only.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.
B. Shop Drawings:

1. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire alarm system design.
 b. Fire alarm certified by NICET, minimum Level III.

2. Wiring Diagrams: Detail wiring and differentiate between manufacturer-installed and field-installed wiring. Include diagrams for equipment and for system with all terminals and interconnections identified.

4. Floor Plans: Indicate final outlet locations and routings of raceway connections.

5. Alarm Characteristics: Indicate the visual strobe candela and audible sound level requirements to satisfy NFPA 72 and the Authority having jurisdiction.

6. Device Address List: Coordinate with final system programming.

7. System Operation Description: Detailed description for this Project, including method of operation and supervision of each type of circuit and sequence of operations for manually and automatically initiated system inputs and outputs. Manufacturer's standard descriptions for generic systems are not acceptable.

8. Ductwork Coordination Drawings: Plans, sections, and elevations of ducts, drawn to scale and coordinating the installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, the detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer’s written recommendations.

9. Voice/Alarm Signaling Service: Equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.

C. Operating Instructions: For mounting at the FACP.

D. Installer Certificates: Signed by manufacturer certifying that installers comply with requirements.

E. Field Test Reports: Indicate and interpret test results for compliance with performance requirements. Comply with NFPA 72.

F. Maintenance Data: For fire alarm systems to include in maintenance manuals specified in Division 01. Comply with NFPA 72.

G. Submissions to Authorities Having Jurisdiction: In addition to distribution requirements for Submittals specified in Division 01 Section "Submittal Procedures," make an identical submission to authorities having jurisdiction, (Department of Labor & Economic Growth, Office of Fire Safety, P.O. Box 30254, Lansing, Michigan, 48909). Include copies of annotated Contract Drawings as needed to depict component locations to facilitate review. Resubmit if required to make clarifications or revisions to obtain approval. On receipt of comments from authorities having jurisdiction, submit them to Architect for review.

I. Comply with NFPA 20 for fire pump installations.

J. Inspector’s qualifications for the smoke control system.

K. Smoke control system's test results.
1.6 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who is a trained and certified representative of the FACP manufacturer for both installation and maintenance of units required for this Project.

B. Manufacturer Qualifications: A firm experienced in manufacturing systems similar to those indicated for this Project and with a record of successful in-service performance.

C. Source Limitations: Obtain fire alarm system components through one source from a single manufacturer.

D. Compliance with Local Requirements: Comply with applicable building code, local ordinances and regulations, and requirements of authorities having jurisdiction.

E. Comply with NFPA 72.

1.7 SEQUENCING AND SCHEDULING

A. Existing Fire Alarm Equipment: Maintain fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service and label existing fire alarm equipment "NOT IN SERVICE" until removed from the building.

B. Equipment Removal: After acceptance of the new fire alarm system, remove existing disconnected fire alarm equipment and restore damaged surfaces.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Edwards Systems Technology; Unit of General Signal.
2. Faraday, Inc.
4. Notifier; a GE-Honeywell Company
5. Siemens Building Technologies, Inc.; a Cerberus Division.
8. Fire Control Instruments, Inc.
9. Fire Lite Alarms, Inc.

2.2 FUNCTIONAL DESCRIPTION OF SYSTEM

A. Control of System: By the FACP.
B. System Supervision: Automatically detect and report open circuits, shorts, and grounds of wiring for initiating device, signaling line, and notification-appliance circuits.

C. Priority of Signals: Automatic alarm response functions resulting from an alarm signal from one device are not altered by subsequent alarm, supervisory, or trouble signals. An alarm signal is the highest priority. Supervisory and trouble signals have second- and third-level priority. Higher-priority signals take precedence over signals of lower priority, even when the lower-priority condition occurs first. Annunciate and display all alarm, supervisory, and trouble signals regardless of priority or order received.

D. Noninterference: A signal from one device shall not prevent the receipt of signals from other devices.

E. System Reset: All devices are manually resettable from the FACP after initiating devices are restored to normal.

F. Transmission to Remote Alarm Receiving Station: Automatically route alarm, supervisory, and trouble signals to a remote alarm station by means of a digital alarm communicator transmitter and telephone lines.

G. System Alarm Capability during Circuit Fault Conditions: System wiring and circuit arrangement prevent alarm capability reduction when a single ground or open circuit occurs in an initiating device circuit, signal line circuit, or notification-appliance circuit.

H. Loss of primary power at the FACP initiates a trouble signal at the FACP. The FACP indicates when the fire alarm system is operating on the secondary power supply.

I. Basic Alarm Performance Requirements: Unless otherwise indicated, operation of a manual station, automatic alarm operation of a smoke or flame or heat detector, or operation of a sprinkler flow device initiates the following:

1. Notification-appliance operation.
2. Identification at the FACP and the remote annunciator of the device originating the alarm.
3. Transmission of an alarm signal to the remote alarm receiving station.
4. Unlocking of electric door locks in designated egress paths.
5. Release of fire and smoke doors held open by magnetic door holders.
6. Shutdown of fans and other air-handling equipment serving area when alarm was initiated.
7. Closing of smoke dampers in air ducts of system serving area where alarm was initiated.
8. Open normally closed contact tied to lighting control system to turn on emergency lighting.
9. Recording of the event in the system memory.

J. Alarm Silencing, System Reset and Indication: Controlled by switches in the FACP.

1. Silencing-switch operation halts alarm operation of notification appliances and activates an "alarm silence" light. Display of identity of the alarm zone or device is retained.
2. Subsequent alarm signals from other devices reactivate notification appliances until silencing switch is operated again.

K. Water-flow alarm switch operation initiates the following:

1. Notification-appliance operation.
2. Flashing of the device location-indicating light for the device that has operated.
L. Smoke detection for detectors with alarm verification initiates the following:
 1. Audible and visible indication of an "alarm verification" signal at the FACP.
 2. Activation of a listed and approved "alarm verification" sequence at the FACP and the detector.
 3. Recording of the event in the system memory.
 4. General alarm if the alarm is verified.
 5. Cancellation of the FACP indication and system reset if the alarm is not verified.

M. Sprinkler valve-tamper switch operation initiates the following:
 1. A supervisory, audible, and visible "valve-tamper" signal indication at the FACP and the annunciator.
 2. Flashing of the device location-indicating light for the device that has operated.
 3. Recording of the event in the system memory.
 4. Transmission of supervisory signal to remote alarm receiving station.

N. Fire-pump power failure, including a dead-phase or phase-reversal condition, initiates the following:
 1. A supervisory, audible, and visible "fire-pump power failure" signal indication at the FACP and the annunciator.
 2. Recording of the event in the system memory.
 3. Transmission of trouble signal to remote alarm receiving station.

O. Fire-pump running condition, initiates the following:
 1. A supervisory, audible, and visible "fire-pump running" signal indication at the FACP and the annunciator.
 2. Recording of the event in the system memory.
 3. Transmission of trouble signal to remote alarm receiving station.

P. Fire-pump alternate power supply condition, initiates the following:
 1. A supervisory, audible, and visible "alternate power source supplying fire-pump" signal indication at the FACP and the annunciator.
 2. Recording of the event in the system memory.
 3. Transmission of trouble signal to remote alarm receiving station.

Q. Generator connection to system shall monitor and display the following:
 1. Generator in Fault Mode
 2. Generator in Manual Mode
 3. Generator is running

R. Low-air-pressure switch operation on a dry-pipe or preaction sprinkler system initiates the following:
 1. A supervisory, audible, and visible "sprinkler trouble" signal indication at the FACP and the annunciator.
 2. Flashing of the device location-indicating light for the device that has operated.
 3. Recording of the event in the system memory.
 4. Transmission of trouble signal to remote central station.
S. Remote Detector Sensitivity Adjustment: Manipulation of controls at the FACP causes the selection of specific addressable smoke detectors for adjustment, display of their current status and sensitivity settings, and control of changes in those settings. Same controls can be used to program repetitive, scheduled, automated changes in sensitivity of specific detectors. Sensitivity adjustments and sensitivity-adjustment schedule changes are recorded in system memory.

T. Removal of an alarm-initiating device or a notification appliance initiates the following:
 1. A “trouble” signal indication at the FACP and the annunciator for the device or zone involved.
 2. Recording of the event in the system memory.
 3. Transmission of trouble signal to remote alarm receiving station.

U. Printout of Events: On receipt of the signal, print alarm, supervisory, and trouble events. Identify zone, device, and function. Include type of signal (alarm, supervisory, or trouble), and date and time of occurrence. Differentiate alarm signals from all other printed indications. Also print system reset event, including the same information for device, location, date, and time. Commands initiate the printout of a list of existing alarm, supervisory, and trouble conditions in the system and a historical log of events.

V. FACP Alphanumeric Display: Plain-English-language descriptions of alarm, supervisory, and trouble events; and addresses and locations of alarm-initiating or supervisory devices originating the report. Display monitoring actions, system and component status, system commands, programming information, and data from the system’s historical memory.

2.3 MANUAL PULL STATIONS

A. Description: Fabricated of metal or plastic, and finished in red with molded, raised-letter operating instructions of contrasting color.
 1. Double-action mechanism requires two actions, such as a push and a pull, to initiate an alarm. Break glass/plastic stations are not acceptable.
 2. Station Reset: Key or wrench operated; double pole, double throw; switch rated for the voltage and current at which it operates.
 3. Indoor Protective Shield: Factory-fabricated clear plastic enclosure, hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false alarm operation.
 4. Integral Addressable Module: Arranged to communicate manual-station status (normal, alarm, or trouble) to the FACP.

2.4 SMOKE DETECTORS

A. General: Include the following features:
 1. Operating Voltage: 24-V dc, nominal.
 2. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 3. Plug-in Arrangement: Detector and associated electronic components are mounted in a module that connects in a tamper-resistant manner to a fixed base with a twist-locking plug connection. Terminals in the fixed base accept building wiring.
 4. Integral Visual-Indicating Light: LED type. Indicates detector has operated.
5. Sensitivity: Can be tested and adjusted in-place after installation.
6. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
7. Remote Controllability: Unless otherwise indicated, detectors are analog-addressable type, individually monitored at the FACP for calibration, sensitivity, and alarm condition, and individually adjustable for sensitivity from the FACP.

B. Photoelectric Smoke Detectors: Include the following features:

1. Sensor: LED or infrared light source with matching silicon-cell receiver.
2. Detector Sensitivity: Between 2.5 and 3.5 percent/foot (0.008 and 0.011 percent/mm) smoke obscuration when tested according to UL 268A.
3. Integral Thermal Detector: Fixed-temperature type with 135 deg F (57 deg C) setting.

C. Beam-Type Smoke Detector: Each detector consists of a separate transmitter and receiver with the following features:

1. Adjustable Sensitivity: More than a six-level range, minimum.
2. Linear Range of Coverage: 330 feet (100 m), minimum.
3. Tamper Switch: Initiates trouble signal at the central FACP when either transmitter or receiver is disturbed.
4. Separate Color-Coded LEDs: Indicate normal, alarm, and trouble status. Any detector trouble, including power loss, is reported to the central FACP as a composite "trouble" signal.
5. Detectors with prism reflectors are not acceptable.

D. Duct Smoke Detector: Photoelectric type.

1. Photoelectric Smoke Detectors:
 a. Sensor: LED or infrared light source with matching silicon-cell receiver.
 b. Detector Sensitivity: Between 2.5 and 3.5 percent/foot (0.008 and 0.011 percent/mm) smoke obscuration when tested according to UL 268A.

2. UL 268A listed, operating at 24-V dc, nominal.
3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.
4. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. The fixed base shall be designed for mounting directly to the air duct. Provide terminals in the fixed base for connection to building wiring.
5. Self-Restoring: Detectors shall not require resetting or readjustment after actuation to restore them to normal operation.
6. Integral Visual-Indicating Light: LED type. Indicating [detector has operated] [and power-on] status. [Provide remote status and alarm indicator and test station where indicated.]
7. Sampling Tubes: Design and dimensions as recommended by manufacturer for the specific duct size, air velocity, and installation conditions where applied.
2.5 OTHER DETECTOR

A. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or rate of rise of temperature that exceeds 15 deg F (8.3 deg C) per minute, unless otherwise indicated.

2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FACP.

2.6 NOTIFICATION APPLIANCES

A. Description: Equip for mounting as indicated and have screw terminals for system connections.

B. Chimes, High-Level Output: Vibrating type, 81 dB minimum rated output.

C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Horns produce a sound-pressure level of 90 dB, measured 10 feet (3 m) from the horn. Beige or Ivory color.

1. Where installed in sleeping areas, provide square wave signal with fundamental frequency of 520 Hz +/- 10% per NFPA-72

D. Visible Alarm Devices: Xenon strobe lights listed under UL 1971 with clear or nominal white polycarbonate lens. Mount lens on an aluminum faceplate. The word “FIRE” is engraved in minimum 1-inch (25-mm) high letters on the lens. Beige or Ivory color.

1. Rated Light Output: 15, 30, 75, or 110 candela, as required to satisfy NFPA 72 requirements.
2. Strobe Leads: Factory connected to screw terminals.
3. Strobes shall be synchronized.

E. Voice/Tone Speakers:

1. High-Range Units: Rated 2 to 15 W.
2. Low-Range Units: Rated 1 to 2 W.
3. Mounting: Flush, semirecessed, surface, or surface-mounted; bi-directional as indicated.
4. Matching Transformers: Tap range matched to the acoustical environment of the speaker location.

F. Fire Connection Strobe: Provide all required connections to the strobe/horn associated with the fire fighters hose connection on the exterior of the building. Provide 120V power from nearest panel for devices provided by sprinkler system supplier. Connect to emergency power when available.

2.7 REMOTE DEVICE LOCATION-INDICATING LIGHTS AND IDENTIFICATION PLATES

A. Description: LED indicating light near each smoke detector that may not be readily visible, and each sprinkler water-flow switch and valve-tamper switch. Light is connected to flash when the associated device is in an alarm or trouble mode. Lamp is flush mounted in a single gang wall plate. A red, laminated, phenolic-resin identification plate at the indicating light identifies, in engraved white letters,
device initiating the signal and room where the smoke detector or valve is located. For water-flow
switches, the identification plate also designates protected spaces downstream from the water-flow switch.

2.8 MAGNETIC DOOR HOLDERS

A. Provide wiring for magnetic door holders furnished and installed by the door hardware contractor.

2.9 PROGRAMMER/TESTOR

A. Provide a programmer/testor for any fire alarm system requiring such a device for programming and
maintenance of signal initiation devices. Furnish unit complete with carrying case and instructions.

2.10 CENTRAL FACP

A. Cabinet: Lockable steel enclosure. Arrange interior components so operations required for testing or for
normal maintenance of the system are performed from the front of the enclosure. If more than one unit is
required to form a complete control panel, fabricate with matching modular unit enclosure to accommodate
components and to allow ample gutter space for field wiring and interconnecting panels.

1. Identify each enclosure with an engraved, red, laminated, phenolic-resin nameplate with lettering
not less than 1 inch (25 mm) high. Identify individual components and modules within cabinets
with permanent labels.

B. Alarm and Supervisory Systems: Separate and independent in the FACP. Alarm-initiating zone boards
consist of plug-in cards. Construction requiring removal of field wiring for module replacement is
unacceptable.

C. Control Modules: Include types and capacities required to perform all functions of fire alarm systems.
Provide 20% spare signal capacity for future alarm devices.

D. Indications: Local, visible, and audible signals announce alarm, supervisory, and trouble conditions. Each
type of audible alarm has a different sound.

E. Resetting Controls: Prevent the resetting of alarm, supervisory, or trouble signals while the alarm or
trouble condition still exists.

F. Alphanumeric Display and System Controls: Arranged for interface between human operator at the FACP
and addressable system components, including annunciation and supervision. Display alarm,
supervisory, and component status messages and the programming and control menu.

1. Display: Liquid-crystal type, 40 (small projects) or 80 (large projects) characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

G. Alphanumeric Display and System Controls: Arranged for interface between human operator at the FACP
and addressable system components, including annunciation, supervision, and control.
1. Display: A minimum of 80 characters; alarm, supervisory, and component status messages; and indicate control commands to be entered into the system for control of smoke detector sensitivity and other parameters.

2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

H. Instructions: Printed or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.11 NOTIFICATION APPLIANCE CIRCUIT (NAC) EXTENDER PANELS

A. Provide NAC panels as required to support notification appliances.

B. Provide layout of proposed NAC panel locations prior to installation.

2.12 REMOTE ANNUNCIATOR

A. Description: Duplicate annunciator functions of the FACP for alarm, supervisory, and trouble indications. Also duplicate manual switching functions of the FACP, including acknowledging, silencing, reset, and test.

B. Display Type and Functional Performance: Alphanumeric display same as the FACP. Controls with associated LEDs permit acknowledging, silencing, resetting, and testing functions for alarm, supervisory, and trouble signals identical to those in the FACP.

2.13 FIREFIGHTER'S SMOKE CONTROL STATION

A. Firefighters Smoke Control Station (FSCS): shall provide full monitoring and manual control capability over all smoke-control/evacuation systems and equipment. The FSCS shall be furnished by the fire alarm system manufacturer. The FSCS shall have the highest priority control over all smoke-control systems and equipment and shall override or bypass other building controls such as Hand-Off-Auto switches and On-Off switches. The FSCS shall depict graphically the physical building arrangement, smoke-control systems and equipment and the areas served by the equipment. Provide all equipment required for complete operation of the smoke control system including but not limited to conduit, wire and interface devices. System shall include the following:

1. Control panel shall be semi-flush mounting with a maximum panel width of 24 inches.
2. Operable controls shall be placed behind a lockable see-through door.
3. Graphic panel with pilot lamps and switches.
4. Provide a pilot lamp test switch to test all lamps on the panel.
5. All lamps shall be LED type.
6. Panel shall be UL Listed as a Firefighters Smoke Control Station under UL864-UUKL for smoke control.

B. Smoke Control System: Fans within the building shall be shown on the FSCS. A clear indication of the direction of the airflow and the relationship of the components shall be displayed. Status indicators shall
be provided for all smoke control equipment, annunciated by fan and zone and by pilot lamp type indicators as follows:

1. Fans, dampers, and other operating equipment in their normal status – White.
2. Fans, dampers, and other operating equipment in their off or closed status – Red.
3. Fans, dampers, and other operating equipment in their on or open status – Green.
4. Fans, dampers, and other operating equipment in a fault status – Yellow/Amber.

C. Features: The FSCS shall provide control capability over the complete smoke control system equipment within the building as follows:

1. On-Auto-Off control over each individual piece of operating smoke control equipment that can also be controlled from other sources within the building. This includes stairway pressurization fans; smoke exhaust fans; supply, return and exhaust fans; elevator shaft fans; and other operating equipment used or intended for smoke control purposes.
2. Open-Auto-Close control over individual dampers related to smoke control and that are also controlled from other sources within the building.
3. On-Off or Open-Close control over smoke control and other critical equipment associated with a fire or smoke emergency and that can only be controlled from the FSCS.

D. Acceptance Testing: Devices, equipment, components and sequences shall be individually tested. These tests shall consist of determination of function, sequence and capacity of their installed condition. Tests shall include:

1. Detection devices.
2. Ducts.
3. Dampers.
4. Inlet and outlets.
5. Fans.
7. Controls.

E. Special Inspections for Smoke Control: Smoke control systems shall be tested by a third party, special inspector as part of this contract.

1. Qualifications: Special inspection agencies for smoke control shall have experience in fire protection engineering, mechanical, engineering and certification as air balancers.
2. Reports: A complete report of testing shall be provided by the special inspector. The report shall include identification of all devices by manufacturer, nameplate data, design values, measured values and identification tag or mark.
3. Report Filing: A copy of the final report shall be filed with the fire code official and a copy shall be maintained in the building.

2.14 EMERGENCY POWER SUPPLY

A. General: Components include lead acid battery, charger, and an automatic transfer switch.

1. Battery Nominal Life Expectancy: 20 years, minimum.

B. Battery Capacity: Comply with NFPA 72.
1. Magnetic door holders are not served by emergency power. Magnetic door holders are released when normal power fails.

C. Battery Charger: Solid-state, fully automatic, variable-charging-rate type. Provide capacity for 150 percent of the connected system load while maintaining batteries at full charge. If batteries are fully discharged, the charger recharges them completely within four hours. Charger output is supervised as part of system power supply supervision.

D. Integral Automatic Transfer Switch: Transfers the load to the battery without loss of signals or status indications when normal power fails.

2.15 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module listed for use in providing a multiplex system address for listed fire and sprinkler alarm-initiating devices with normally open contacts.

2.16 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Listed and labeled under UL 864 and NFPA 72.

B. Functional Performance: Unit receives an alarm, supervisory, or trouble signal from the FACP panel, and automatically captures one or two telephone lines and dials a preset number for a remote central station. When contact is made with the central station(s), the signal is transmitted. The unit supervises up to two telephone lines. Where supervising two lines, if service on either line is interrupted for longer than 45 seconds, the unit initiates a local trouble signal and transmits a signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. When telephone service is restored, unit automatically reports that event to the central station. If service is lost on both telephone lines, the local trouble signal is initiated.

C. Contractor to confirm with other trades or owner the type of transmitter to provide. Provide Voice Over IP type dialler in installations where VOIP systems are in place.

D. Secondary Power: Integral rechargeable battery and automatic charger. Battery capacity is adequate to comply with NFPA 72 requirements.

E. Self Test: Conducted automatically every 24 hours with report transmitted to central station.

2.17 GUARDS FOR PHYSICAL PROTECTION

A. Description: Welded wire mesh of size and shape for the manual stations, smoke detectors, and audio/visual devices located in school gymnasiums, multi-purpose rooms and locker rooms.

1. Factory fabricated and furnished by the manufacturer of the device.

2.18 WIRE

A. Non-Power-Limited Circuits: Copper conductors with 600-V rated, 75 deg C, color-coded insulation.
1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.

B. Power-Limited Circuits: NFPA 70, Types FPL, FPLR, or FPLP, as recommended by manufacturer.

2.19 GENERATOR CONNECTION

A. Provide connection to emergency generator system and provide status as indicated in the fire alarm control panel section.

2.20 BREAKER LOCK DEVICE

A. Provide breaker circuit lockout device on branch circuits feeding any fire alarm equipment including fire alarm panels and NAC panels. Utilize Elock fire alarm circuit lockout kit #ELOCK-FA and a red placard indicating “FIRE ALARM / EMERGENCY CIRCUIT INSIDE”.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Install fire alarm system in accordance with manufacturer’s installation drawings and instructions.

B. Connecting to Existing Equipment: Verify that existing fire alarm system is operational before making changes or connections.

1. Connect new equipment to the existing control panel in the existing part of the building.
2. Expand, modify, and supplement the existing control equipment as necessary to extend the existing control functions to the new points. New components shall be capable of merging with the existing configuration without degrading the performance of either system.

D. Water-Flow Detectors and Valve Supervisory Switches: Connection for each sprinkler valve station required to be supervised.

E. Ceiling-Mounted Smoke Detectors: Not less than 4 inches from a side wall to the near edge. For exposed solid-joist construction, mount detectors on the bottom of joists. On smooth ceilings, install not more than 30 feet apart in any direction.

F. Wall-Mounted Smoke Detectors: At least 4 inches, but not more than 12 inches, below the ceiling.

G. Smoke Detectors near Air Registers: Install no closer than 60 inches.

H. Duct Smoke Detectors: Comply with manufacturer’s written instructions.

1. Verify that each unit is listed for the complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
2. Install sampling tubes so they extend the full width of the duct.
I. Audible Alarm-Indicating Devices: Install chimes and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Combine audible and visible alarms at the same location into a single unit.

J. Visible Alarm-Indicating Devices: Install adjacent to each alarm chime or alarm horn.

K. Device Location-Indicating Lights: Locate in public space near the device they monitor.

L. Horn/strobe at Fire Fighter’s Hose Connection: Connect horn/strobe located on the exterior of the building associated with the sprinkler system.

M. FACP: Surface mount with tops of cabinets not more than 72 inches above the finished floor.

N. Annunciator: Install with the top of the panel not more than 60 inches above the finished floor.

O. Provide smoke detectors where required for all FACP and NAC panels.

P. Provide power to all FACP and NAC panels. Connect to emergency power when available.

3.2 WIRING INSTALLATION

A. Install wiring according to the following:
 1. NECA 1.
 2. TIA/EIA 568-A.

B. [Wiring Method: Install wiring in metal raceway according to Division 26 Section "Raceway and Boxes for Electrical Systems."
 1. Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.]

C. Wiring Method:
 1. Install wiring in raceways except in accessible ceiling spaces and in gypsum-board partitions where cable wiring method may be used. Route the fire alarm cable in cable tray system when available. Wiring run in ceiling space where there is no tray or conduit, support independently of other systems with dedicated low voltage rings / hooks. No zip ties or support from other systems or conduits allowed.
 2. Conceal cables and raceways except in unfinished spaces.
 3. Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 4. Fire-Rated Cables: Use of 2-hour fire-rated fire alarm cables, NFPA 70 Types MI and CI, is not permitted.
 5. Signaling Line Circuits: Power-limited fire alarm cables shall not be installed in the same cable or raceway as signaling line circuits.

D. [Wiring Method: Fire alarm systems that interface with smoke control systems shall have all wiring, regardless of voltage, installed in continuous raceways.]
E. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by the manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

F. Cable Taps: Use numbered terminal strips in junction, pull and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.

G. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and a different color-code for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

H. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signal from other floors.

I. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the FACP and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

J. Provide handle clamps on all circuit breakers feeding fire alarm system components. Handle clamps shall lock the circuit breaker in the “ON” position.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals according to Division 26 Section Identification for Electrical Systems.*

B. Install instructions frame in a location visible from the FACP.

C. Install circuit breaker lockout kit and placard on panels indicating where emergency fire alarm circuits are fed from.

3.4 GROUNDING

A. Ground the FACP and associated circuits; comply with IEEE 1100. Install a #8 AWG ground wire from main service ground to the FACP.

B. Ground cable shields and equipment according to system manufacturer's written instructions to eliminate shock hazard and to minimize, to the greatest extent possible, ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

C. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding.

D. Install grounding electrodes of type, size, location, and quantity as indicated. Comply with installation requirements in Division 26 Section "Grounding and Bonding for Electrical Systems.*"
E. Ground equipment and conductor and cable shields. For audio circuits, minimize, to the greatest extent possible, ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Provide 5-ohm ground at main equipment location. Measure, record, and report ground resistance.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and connections and to supervise pretesting, testing, and adjustment of the system. Report results in writing.

B. Pretesting: After installation, align, adjust, and balance the system and perform complete pretesting. Determine, through pretesting, the compliance of the system with requirements of Drawings and Specifications. Correct deficiencies observed in pretesting. Replace malfunctioning or damaged items with new ones, and retest until satisfactory performance and conditions are achieved. Prepare forms for systematic recording of acceptance test results.

C. Report of Pretesting: After pretesting is complete, provide a letter certifying the installation is complete and fully operable, including the names and titles of witnesses to preliminary tests.

D. Final Test Notice: Provide a minimum of 10 days' notice in writing when the system is ready for final acceptance testing.

E. Minimum System Tests: Test the system according to procedures outlined in NFPA 72. Minimum required tests are as follows:

1. Verify the absence of unwanted voltages between circuit conductors and ground.
2. Test all conductors for short circuits using an insulation-testing device.
3. With each circuit pair, short circuit at the far end of the circuit and measure the circuit resistance with an ohmmeter. Record the circuit resistance of each circuit on record drawings.
4. Verify that the control unit is in the normal condition as detailed in the manufacturer's operation and maintenance manual.
5. Test initiating and indicating circuits for proper signal transmission under open circuit conditions. One connection each should be opened at not less than 10 percent of initiating and indicating devices. Observe proper signal transmission according to class of wiring used.
6. Test each initiating and indicating device for alarm operation and proper response at the control unit. Test smoke detectors with actual products of combustion.
7. Test the system for all specified functions according to the approved operation and maintenance manual. Systematically initiate specified functional performance items at each station, including making all possible alarm and monitoring initiations and using all communications options. For each item, observe related performance at all devices required to be affected by the item under all system sequences. Observe indicating lights, displays, signal tones, and annunciator indications.
8. Test Both Primary and Secondary Power: Verify by test that the secondary power system is capable of operating the system for the period and in the manner specified.
9. [Test smoke control operation startup and shutdown.]

F. Retesting: Correct deficiencies indicated by tests and completely retest work affected by such deficiencies. Verify by the system test that the total system meets Specifications and complies with applicable standards.
G. Report of Tests and Inspections: Provide a written record of inspections, tests, and detailed test results in the form of a test log. Submit log on the satisfactory completion of tests.

H. Tag all equipment, stations, and other components at which tests have been satisfactorily completed.

I. Provide certification of the fire alarm installation. Submit required documents to the Michigan Department of Labor & Economic Growth, Office of Fire Safety.

3.6 CLEANING AND ADJUSTING

A. Cleaning: Remove paint splatters and other spots, dirt, and debris. Touch up scratches and marred finish to match original finish. Clean unit internally using methods and materials recommended by manufacturer.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel as specified below:

1. Train Owner's maintenance personnel on procedures and schedules for starting and stopping, troubleshooting, servicing, adjusting, and maintaining equipment and schedules. Provide a minimum of 8 hours' training.

2. Training Aid: Use the approved final version of the operation and maintenance manual as a training aid.

3. Schedule training with Owner, through Architect, with at least seven days' advance notice.

3.8 ON-SITE ASSISTANCE

A. Occupancy Adjustments: When requested within one year of date of Substantial Completion, provide on-site assistance in adjusting sound levels, controls, and sensitivities to suit actual occupied conditions. Provide up to three requested visits to Project site for this purpose.

END OF SECTION 28 3100