Data Transfer Project

EU Digital Single Market
Cloud Stakeholders Meeting

Babak Jahromi, Microsoft
Nov 2019
Data Portability is non-Trivial!

Data syntactic portability
Transferring data from a source system to a target system using data formats that can be decoded on the target system. Data is structured according to the data model defined by the semantic facet, and is encoded using a particular syntax, such as XML.

Data semantic portability
Data semantic portability is defined as transferring data to a target such that the meaning of the data model is understood within the context of a subject area by the target.

Data policy portability
Data policy portability is defined as the ability to transfer data between a source and a target while complying within the legal, organizational, and policy frameworks applicable to the source and target. This includes regulations on data locality, rights to access, use and share data, and mutual responsibilities with respect to security and privacy between a CSP and a CSC.
AUTOMATED TRANSFER of USER DATA

A test of utilizing power of Open Source community
Examples of technically feasible direct transfer of personal data

- Photos/Files
- Contacts list
- Calendar
- Emails
Scale problem with Direct Transfer of Data

- Direct transfer of data requires any two providers to design, build and test together
- For N providers, there are $N*(N-1)/2$ such projects ($O(n^2)$)
- There is obviously a scale problem

There are $[N*(N-1)/2]$ direct data transfers; A problem of $O(n^2)$
How to Determine Technical Feasibility

01 Open Process

02 Open Technologies

03 Open Source Code

04 Robust participation by all stakeholders
Data Transfer Project

- Project Page
 - https://datatransferproject.dev/
- Developer-friendly, open source
 - Hosted at GitHub (https://github.com/google/data-transfer-project)
 - Apache 2.0 License
 - Java-based
- Backed by key industry players
Underlying principles for the project

1. Commitment to developing techniques to address direct data transfer when technically feasible.

2. Implementing direct data transfer across a virtually unlimited number of possible pairs is complex!

3. Open source is the best way to go.
User-initiated service transfer
- A user decides to switch from one service provider to another and wants to import their data to the new service.
- Including (but not limited to) contacts, photos, tasks, email, and derived data.

Partner service enablement
- Based on user-consent, a service provider shares specific data on a one-time basis with another provider to complete a task.
- For example, location and driving distance data is shared from a mapping service to an insurance company for the purposes of providing an accurate quote.

Use Case Categories
So what is unique about this idea?

01 For each pair of source/destination transfer, there is a pair of open source components

02 The “source” vendors are encouraged to “seed” the open source repository by contributing reference components showing how data can be pulled or published from or to their services

03 Other stakeholders are encouraged to use the “seed” contributions to enrich the functionality

04 Common application(s) hosting the components provide runtime and user interface for users to initiate data transfer requests
An Open Source approach to realize the right to have personal data transmitted directly when technically feasible

Common Data Transfer Application (enabling users to start, stop, pause, etc.)

“Pull” code is generic for each source service
“Upload” code is unique to source and receiving service
Data Transfer Program Details

1. Proof of concept for direct controller to controller transfer using the pull and upload model between two participating partners. For example, transfer of calendar and/or contacts data from Microsoft to/from another email/calendar service vendor.

2. Participating partners provide and document the export (pull) capabilities.

3. Participating partners provide a demonstration pull component for their own service that can be forked and used by other services to create pull capabilities. This pull application is based on the technical specification for data download and persistence.

4. Support advocacy for other stakeholders to build pull/upload services for each pair of participants of the program.
Appendix
Open Source vs. Open Standards: Data Portability Scenarios

- Both standards and OSS are tools in the quiver
- Use the right tool for the right scenario
- Each data portability scenario is unique to a pair of data sender and receiver
- Use of data format standards will lead to a race to the common denominator, causing loss of fidelity
- Open source is a better solution as each scenario can be programmed specifically
- Therefore....
Summary of facets of cloud data portability

<table>
<thead>
<tr>
<th>Facets</th>
<th>Aim</th>
<th>Objects</th>
<th>Requirements</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Syntactic</td>
<td>Receiving data in a machine readable, structured and commonly used format</td>
<td>Data</td>
<td>Common machine readable data format</td>
<td>XML, CSV, JSON</td>
</tr>
<tr>
<td>Data Semantic</td>
<td>Assured meaning of data</td>
<td>Data</td>
<td>Mutually understood ontologies and metadata</td>
<td>OWL, Dublin Core Schema</td>
</tr>
<tr>
<td>Data Policy</td>
<td>Adhering to all applicable regulations and organizational policies</td>
<td>Regulatory and organizational policy</td>
<td>Agreed set of applicable regulations and organizational policies</td>
<td>Confidentiality levels, privacy rights, cross border transfer</td>
</tr>
</tbody>
</table>
Considerations for portability of “Derived” data

<table>
<thead>
<tr>
<th>Topics</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extract and erase</td>
<td>Unlike cloud service customer data, which is assumed to be portable and erasable under the CSC’s control, the ability to extract cloud service derived data from the system for use by the CSC, or to enable erasure of some cloud service derived data by the CSC, is likely to need careful control and is subject to agreement between the CSC and the CSP.</td>
</tr>
<tr>
<td>Regulations</td>
<td>Regulations law can apply to some types of cloud service derived data. For example, some types of log information might have to be retained for a specified period and cannot be deleted.</td>
</tr>
<tr>
<td>Categorization</td>
<td>The detailed categorization of cloud service derived data in the taxonomy defined in ISO/IEC 19944 is intended to support the definition of the cloud service agreement between the CSC and CSP. This data categorization can be utilized when CSPs and CSCs engage in defining the portability requirements of cloud service derived data. In such cases the agreement may reference specific sub-types of derived data in the portability discussions and agreements.</td>
</tr>
<tr>
<td>Scope</td>
<td>Cloud service derived data has potential meaning outside the cloud service (otherwise it would fall under the categorization of cloud service provider data) and the CSC may wish to access some data categories of derived data, or to request erasure of some categories of derived data.</td>
</tr>
<tr>
<td>Aggregation</td>
<td>Cloud service derived data collected by a CSP is sometimes aggregated with that of other CSCs, and in many cases is de-identified to remove PII. In such circumstances, providing the data records specific to a CSC and its users is technically challenging and adds risk to the confidentiality of other tenants.</td>
</tr>
<tr>
<td>Data minimization</td>
<td>Making some types of cloud service derived data available to the CSC could interfere with data minimization policies designed to protect privacy and confidentiality. These policies dictate shortened data retention periods, de-identification of data and erasure or masking of records not needed to provide the cloud service. Removing these policies across all types of cloud service derived data to permit future access or erasure by CSCs is often unacceptable.</td>
</tr>
<tr>
<td>Challenges</td>
<td>There are circumstances, such as CSC access to log files, where the provision of certain categories of cloud service derived data specific to the CSC is an important requirement. However, the technical challenges and risk of confidentiality and privacy to other tenants means provision or erasure of these types of cloud service derived data needs to be explicitly defined and carefully controlled.</td>
</tr>
<tr>
<td>Analytics</td>
<td>CSPs could run data analytics algorithms on cloud service customer data. The results could also be combined with cloud service derived data collected as the user interacts with the capabilities of the cloud service(s). Such a combination should still be treated as cloud service derived data but it might have lost relevancy to a given CSC. Such a combination could generate cloud service derived data that can be the basis for offering additional new insights to the CSCs and their users about their data via new features or improved capabilities of the cloud service(s). In many such cases, the cloud service derived data is used to create the new and improved capabilities and feature set of the cloud service, but by itself it is unlikely be useful to the CSC. Therefore, these categories of cloud service derived data might not be portable.</td>
</tr>
<tr>
<td>Graph data</td>
<td>Some applications develop social graph data that relate to cloud service users and other artefacts that are stored in the corresponding cloud service. Such data are unlikely to be portable as they are highly cloud service implementation specific and combine cloud service customer data and cloud service derived data from multiple users and other sources. The portions of the data that are meaningful outside the social graph and are part of cloud service customer data are normally available to the CSC.</td>
</tr>
<tr>
<td>PII</td>
<td>Care needs to be taken not to compromise PII of a natural subject as well as that of other associated natural subjects when porting cloud service derived data.</td>
</tr>
</tbody>
</table>
Types of data portability in the cloud

<table>
<thead>
<tr>
<th>CLOUD DATA PORTABILITY FACETS</th>
<th>CLOUD CAPABILITIES TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infrastructure</td>
</tr>
<tr>
<td>Data syntactic (5.2.2.2)</td>
<td>8.2.2(1)</td>
</tr>
<tr>
<td>Data semantic (5.2.2.3)</td>
<td>8.3.2</td>
</tr>
<tr>
<td>Data policy (5.2.2.4)</td>
<td></td>
</tr>
</tbody>
</table>

(1): Clause numbers in ISO/IEC 19941
The Data Transfer Project (DTP)

An open source platform that enables service providers to offer *consent-based* data transfer in a *secure*, *reliable*, and *scalable* way.

<table>
<thead>
<tr>
<th>Consent-Based</th>
<th>Secure</th>
<th>Reliable</th>
<th>Scalable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users must explicitly consent with both the source and destination services</td>
<td>All data flow is encrypted</td>
<td>Failure recovery</td>
<td></td>
</tr>
<tr>
<td>Both providers must authorize transfer</td>
<td></td>
<td>Run across multiple datacenters</td>
<td></td>
</tr>
<tr>
<td>Automated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully auditable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DTP Platform